
Markov games as a framework for multi-agent reinforcement learning�
Michael L. Littman

Brown University / Bellcore
Department of Computer Science

Brown University
Providence, RI 02912-1910

mlittman@cs.brown.edu

Abstract

In the Markov decision process (MDP) formaliza-
tion of reinforcement learning, a single adaptive
agent interacts with an environment defined by a
probabilistic transition function. In this solipsis-
tic view, secondary agents can only be part of the
environment and are therefore fixed in their be-
havior. The framework of Markov games allows
us to widen this view to include multiple adap-
tive agents with interacting or competing goals.
This paper considers a step in this direction in
which exactly two agents with diametrically op-
posed goals share an environment. It describes
a Q-learning-like algorithm for finding optimal
policies and demonstrates its application to a sim-
ple two-player game in which the optimal policy
is probabilistic.

1 INTRODUCTION

No agent lives in a vacuum; it must interact with other agents
to achieve its goals. Reinforcement learning is a promis-
ing technique for creating agents that co-exist [Tan, 1993,
Yanco and Stein, 1993], but the mathematical frame-
work that justifies it is inappropriate for multi-agent en-
vironments. The theory of Markov Decision Processes
(MDP’s) [Barto et al., 1989, Howard, 1960], which under-
lies much of the recent work on reinforcement learning,
assumes that the agent’s environment is stationary and as
such contains no other adaptive agents.

The theory of games [von Neumann and Morgenstern,
1947] is explicitly designed for reasoning about multi-agent
systems. Markov games (see e.g., [Van Der Wal, 1981]) is
an extension of game theory to MDP-like environments.
This paper considers the consequences of using the Markov
game framework in place of MDP’s in reinforcement learn-
ing. Only the specific case of two-player zero-sum games
is addressed, but even in this restricted version there are
insights that can be applied to open questions in the field of
reinforcement learning.

2 DEFINITIONS

An MDP [Howard, 1960] is defined by a set of states,S, and actions, A. A transition function, T : S � A !
PD(S), defines the effects of the various actions on the
state of the environment. (PD(S) represents the set of
discrete probability distributions over the setS.) The reward
function, R : S �A! <, specifies the agent’s task.

In broad terms, the agent’s objective is to find a policy
mapping its interaction history to a current choice of action
so as to maximize the expected sum of discounted reward,EfP1j=0 jrt+jg, where rt+j is the reward received j steps
into the future. A discount factor, 0 � < 1 controls how
much effect future rewards have on the optimal decisions,
with small values of emphasizing near-term gain and
larger values giving significant weight to later rewards.

In its general form, a Markov game, sometimes called a
stochastic game [Owen, 1982], is defined by a set of states,S, and a collection of action sets, A1; : : : ; Ak, one for each
agent in the environment. State transitions are controlled
by the current state and one action from each agent: T :S � A1 � � � � � Ak ! PD(S). Each agent also has an
associated reward function, Ri : S �A1 � � � � � Ak ! <,
for agent i, and attempts to maximize its expected sum of
discounted rewards, EfP1j=0 jri;t+jg, where ri;t+j is the
reward received j steps into the future by agent i.
In this paper, we consider a well-studied specialization in
which there are only two agents and they have diametrically
opposed goals. This allows us to use a single reward func-
tion that one agent tries to maximize and the other, called
the opponent, tries to minimize. In this paper, we use A to
denote the agent’s action set, O to denote the opponent’s
action set, and R(s; a; o) to denote the immediate reward to
the agent for taking action a 2 A in state s 2 S when its
opponent takes action o 2 O.

Adopting this specialization, which we call a two-player
zero-sum Markov game, simplifies the mathematics but
makes it impossible to consider important phenomena such
as cooperation. However, it is a first step and can be consid-
ered a strict generalization of both MDP’s (when jOj = 1)
and matrix games (when jSj = 1).

As in MDP’s, the discount factor, , can be thought of
as the probability that the game will be allowed to con-
tinue after the current move. It is possible to define a no-
tion of undiscounted rewards [Schwartz, 1993], but not all
Markov games have optimal strategies in the undiscounted
case [Owen, 1982]. This is because, in many games, it is
best to postpone risky actions indefinitely. For current pur-
poses, the discount factor has the desirable effect of goading
the players into trying to win sooner rather than later.

3 OPTIMAL POLICIES

The previous section defined the agent’s objective as max-
imizing the expected sum of discounted reward. There
are subtleties in applying this definition to Markov games,
however. First, we consider the parallel scenario in MDP’s.

In an MDP, an optimal policy is one that maximizes the
expected sum of discounted reward and is undominated,
meaning that there is no state from which any other policy
can achieve a better expected sum of discounted reward.
Every MDP has at least one optimal policy and of the op-
timal policies for a given MDP, at least one is stationary
and deterministic. This means that, for any MDP, there is
a policy � : S ! A that is optimal. The policy � is called
stationary since it does not change as a function of time
and it is called deterministic since the same action is always
chosen whenever the agent is in state s, for all s 2 S.

For many Markov games, there is no policy that is undomi-
nated because performance depends critically on the choice
of opponent. In the game theory literature, the resolu-
tion to this dilemma is to eliminate the choice and evaluate
each policy with respect to the opponent that makes it look
the worst. This performance measure prefers conservative
strategies that can force any opponent to a draw to more
daring ones that accrue a great deal of reward against some
opponents and lose a great deal to others. This is the essence
of minimax: Behave so as to maximize your reward in the
worst case.

Given this definition of optimality, Markov games have
several important properties. Like MDP’s, every Markov
game has a non-empty set of optimal policies, at least one
of which is stationary. Unlike MDP’s, there need not be a
deterministic optimal policy. Instead, the optimal stationary
policy is sometimes probabilistic, mapping states to discrete
probability distributions over actions, � : S ! PD(A). A
classic example is “rock, paper, scissors” in which any
deterministic policy can be consistently defeated.

The idea that optimal policies are sometimes stochastic may
seem strange to readers familiar with MDP’s or games with
alternating turns like backgammon or tic-tac-toe, since in
these frameworks there is always a deterministic policy that
does no worse than the best probabilistic one. The need for
probabilistic action choice stems from the agent’s uncer-
tainty of its opponent’s current move and its requirement to
avoid being “second guessed.”

Agent
rock paper scissors

rock 0 1 -1
Opponent paper -1 0 1

scissors 1 -1 0

Table 1: The matrix game for “rock, paper, scissors.”�paper � �scissors � V (vs. rock)� �rock + �scissors � V (vs. paper)�rock � �paper � V (vs. scissors)�rock + �paper + �scissors = 1

Table 2: Linear constraints on the solution to a matrix game.

4 FINDING OPTIMAL POLICIES

This section reviews methods for finding optimal policies
for matrix games, MDP’s, and Markov games. It uses a uni-
form notation that is intended to emphasize the similarities
between the three frameworks. To avoid confusion, func-
tion names that appear more than once appear with different
numbers of arguments each time.

4.1 MATRIX GAMES

At the core of the theory of games is the matrix game defined
by a matrix, R, of instantaneous rewards. Component Ri;j
is the reward to the agent for choosing action j when its
opponent chooses action i. The agent strives to maximize
its expected reward while the opponent tries to minimize
it. Table 1 gives the matrix game corresponding to “rock,
paper, scissors.”

The agent’s policy is a probability distribution over actions,� 2 PD(A). For “rock, paper, scissors,” � is made up of
3 components: �rock, �paper, and �scissors. According to the
notion of optimality discussed earlier, the optimal agent’s
minimum expected reward should be as large as possible.
How can we find a policy that achieves this? Imagine that
we would be satisfied with a policy that is guaranteed an
expected score of V no matter which action the opponent
chooses. The inequalities in Table 2, with � � 0, constrain
the components of � to represent exactly those policies—
any solution to the inequalities would suffice.

For � to be optimal, we must identify the largest V for
which there is some value of � that makes the constraints
hold. Linear programming (see, e.g., [Strang, 1980]) is a
general technique for solving problems of this kind. In this
example, linear programming finds a value of 0 for V and
(1/3, 1/3, 1/3) for �. We can abbreviate this linear program
as: V = max�2PD(A)mino2OXa2ARo;a�a;
where

PaRo;a�a expresses the expected reward to the
agent for using policy � against the opponent’s action o.

4.2 MDP’s

There is a host of methods for solving MDP’s. This section
describes a general method known as value iteration [Bert-
sekas, 1987].

The value of a state, V (s), is the total expected discounted
reward attained by the optimal policy starting from states 2 S. States for which V (s) is large are “good” in that a
smart agent can collect a great deal of reward starting from
those states. The quality of a state-action pair, Q(s; a) is
the total expected discounted reward attained by the non-
stationary policy that takes action a 2 A from state s 2 S
and then follows the optimal policy from then on. These
functions satisfy the following recursive relationship for alla and s:Q(s; a) = R(s; a) + Xs02S T (s; a; s0)V (s0) (1)V (s) = maxa02AQ(s; a0) (2)

This says that the quality of a state-action pair is the im-
mediate reward plus the discounted value of all succeeding
states weighted by their likelihood. The value of a state is
the quality of the best action for that state. It follows that
knowing Q is enough to specify an optimal policy since
in each state, we can choose the action with the highestQ-value.

The method of value iteration starts with estimates for Q
and V and generates new estimates by treating the equal
signs in Equations 1–2 as assignment operators. It can be
shown that the estimated values for Q and V converge to
their true values [Bertsekas, 1987].

4.3 MARKOV GAMES

Given Q(s; a), an agent can maximize its reward using the
“greedy” strategy of always choosing the action with the
highest Q-value. This strategy is greedy because it treatsQ(s; a) as a surrogate for immediate reward and then acts
to maximize its immediate gain. It is optimal because theQ-function is an accurate summary of future rewards.

A similar observation can be used for Markov games once
we redefine V (s) to be the expected reward for the optimal
policy starting from state s, and Q(s; a; o) as the expected
reward for taking action a when the opponent chooses o
from state s and continuing optimally thereafter. We can
then treat the Q(s; a; o) values as immediate payoffs in an
unrelated sequence of matrix games (one for each state, s),
each of which can be solved optimally using the techniques
of Section 4.1.

Thus, the value of a state s 2 S in a Markov game isV (s) = max�2PD(A)mino2OXa2AQ(s; a; o)�a;
and the quality of action a against action o in state s isQ(s; a; o) = R(s; a; o) + Xs0 T (s; a; o; s0)V (s0):

The resulting recursive equations look much like Equations
1–2 and indeed the analogous value iteration algorithm can
be shown to converge to the correct values [Owen, 1982].
It is worth noting that in games with alternating turns, the
value function need not be computed by linear programming
since there is an optimal deterministic policy. In this case
we can write V (s) = maxa minoQ(s; a; o).
5 LEARNING OPTIMAL POLICIES

Traditionally, solving an MDP using value iteration involves
applying Equations 1–2 simultaneously over all s 2 S.
Watkins [Watkins, 1989] proposed an alternative approach
that involves performing the updates asynchronously with-
out the use of the transition function, T .

In this Q-learning formulation, an update is performed by
an agent whenever it receives a reward of r when making
a transition from s to s0 after taking action a. The up-
date is Q(s; a) := r + V (s0) which takes the place of
Equation 1. The probability with which this happens is
precisely T (s; a; s0) which is why it is possible for an agent
to carry out the appropriate update without explicitly usingT . This learning rule converges to the correct values forQ and V , assuming that every action is tried in every state
infinitely often and that new estimates are blended with
previous ones using a slow enough exponentially weighted
average [Watkins and Dayan, 1992].

It is straightforward, though seemingly novel, to apply the
same technique to solving Markov games. A completely
specified version of the algorithm is given in Figure 1. The
variables in the figure warrant explanation since some are
given to the algorithm as part of the environment, others are
internal to the algorithm and still others are parameters of
the algorithm itself.

Variables from the environment are: the state set, S; the
action set, A; the opponent’s action set, O; and the discount
factor, gamma. The variables internal to the learner are: a
learning rate, alpha, which is initialized to 1.0 and decays
over time; the agent’s estimate of the Q-function, Q; the
agent’s estimate of the V -function, V; and the agent’s cur-
rent policy for state s, pi[s,.]. The remaining variables
are parameters of the algorithm: explor controls how
often the agent will deviate from its current policy to en-
sure that the state space is adequately explored, and decay
controls the rate at which the learning rate decays.

This algorithm is called minimax-Q since it is essentially
identical to the standard Q-learning algorithm with a mini-
max replacing the max.

6 EXPERIMENTS

This section demonstrates the minimax-Q learning algo-
rithm using a simple two-player zero-sum Markov game
modeled after the game of soccer.

Initialize:
For all s in S, a in A, and o in O,

Let Q[s,a,o] := 1
For all s in S,

Let V[s] := 1
For all s in S, a in A,

Let pi[s,a] := 1/|A|
Let alpha := 1.0

Choose an action:
With probabilityexplor, return an action uniformly at random.
Otherwise, if current state is s,

Return action a with probabilitypi[s,a].
Learn:
After receiving reward rew for moving from state s to s’

via action a and opponent’s action o,
Let Q[s,a,o] := (1-alpha) * Q[s,a,o] + alpha * (rew + gamma * V[s’])
Use linear programming to find pi[s,.] such that:
pi[s,.] := argmaxfpi’[s,.], minfo’, sumfa’, pi[s,a’] * Q[s,a’,o’]ggg

Let V[s] := minfo’, sumfa’, pi[s,a’] * Q[s,a’,o’]gg
Let alpha := alpha * decay

Figure 1: The minimax-Q algorithm.

AB

B

A

Figure 2: An initial board (left) and a situation requiring a probabilistic choice for A (right).

6.1 SOCCER

The game is played on a 4x5 grid as depicted in Figure 2.
The two players, A and B, occupy distinct squares of the
grid and can choose one of 5 actions on each turn: N, S, E,
W, and stand. Once both players have selected their actions,
the two moves are executed in random order.

The circle in the figures represents the “ball.” When the
player with the ball steps into the appropriate goal (left for
A, right for B), that player scores a point and the board
is reset to the configuration shown in the left half of the
figure. Possession of the ball goes to one or the other player
at random.

When a player executes an action that would take it to the
square occupied by the other player, possession of the ball
goes to the stationary player and the move does not take
place. A good defensive maneuver, then, is to stand where
the other player wants to go. Goals are worth one point
and the discount factor is set to 0.9, which makes scoring
sooner somewhat better than scoring later.

For an agent on the offensive to do better than breaking
even against an unknown defender, the agent must use a
probabilistic policy. For instance, in the example situation
shown in the right half of Figure 2, any deterministic choice
for A can be blocked indefinitely by a clever opponent. Only
by choosing randomly between stand and S can the agent
guarantee an opening and therefore an opportunity to score.

6.2 TRAINING AND TESTING

Four different policies were learned, two using the
minimax-Q algorithm and two using Q-learning. For each
learning algorithm, one learner was trained against a ran-
dom opponent and the other against another learner of
identical design. The resulting policies were named MR,
MM, QR, and QQ for minimax-Q trained against random,
minimax-Q trained against minimax-Q, Q trained against
random, and Q trained against Q.

The minimax-Q algorithm (MR, MM) was as described in
Figure 1 with explor = 0:2 and decay = 10log 0:01=106 =
0:9999954 and learning took place for one million steps.
(The value of decay was chosen so that the learning rate
reached 0.01 at the end of the run.) The Q-learning algo-
rithm (QR, QQ) was identical except a “max” operator was
used in place of the minimax and the Q-table did not keep
information about the opponent’s action. Parameters were
set identically to the minimax-Q case.

For MR and QR, the opponent for training was a fixed policy
that chose actions uniformly at random. For MM and QQ,
the opponent was another learner identical to the first but
with separate Q and V -tables.

The resulting policies were evaluated in three ways. First,
each policy was run head-to-head with a random policy
for one hundred thousand steps. To emulate the discount
factor, every step had a 0.1 probability of being declared a

draw. Wins and losses against the random opponent were
tabulated.

The second test was a head-to-head competition with a
hand-built policy. This policy was deterministic and had
simple rules for scoring and blocking. In 100,000 steps, it
completed 5600 games against the random opponent and
won 99.5% of them.

The third test used Q-learning to train a “challenger” op-
ponent for each of MR, MM, QR and QQ. The training
procedure for the challengers followed that of QR where
the “champion” policy was held fixed while the challenger
was trained against it. The resulting policies were then
evaluated against their respective champions. This test was
repeated three times to ensure stability with only the first
reported here. All evaluations were repeated three times
and averaged.

6.3 RESULTS

Table 3 summarizes the results. The columns marked
“games” list the number of completed games in 100,000
steps and the columns marked “% won” list the percent-
age won by the associated policy. Percentages close to 50
indicate that the contest was nearly a draw.

All the policies did quite well when tested against the ran-
dom opponent. The QR policy’s performance was quite
remarkable, however, since it completed more games than
the other policies and won nearly all of them. This might be
expected since QR was trained specifically to beat this op-
ponent whereas MR, though trained in competition with the
random policy, chooses actions with an idealized opponent
in mind.

Against the hand-built policy, MM and MR did well,
roughly breaking even. The MM policy did marginally
better. In the limit, this should not be the case since an
agent trained by the minimax-Q algorithm should be in-
sensitive to the opponent against which it was trained and
always behave so as to maximize its score in the worst case.
The fact that there was a difference suggests that the algo-
rithm had not converged on the optimal policy yet. Prior
to convergence, the opponent can make a big difference to
the behavior of a minimax-Q agent since playing against
a strong opponent means the training will take place in
important parts of the state space.

The performance of the QQ and QR policies against the
hand-built policy was strikingly different. This points out
an important consequence of not using a minimax criterion.
A close look at the two policies indicated that QQ, by luck,
implemented a defense that was perfect against the hand-
built policy. The QR policy, on the other hand, happened
to converge on a strategy that was not appropriate. Against
a slightly different opponent, the tables would have been
turned.

The fact that the QQ policy did so well against the ran-
dom and hand-built opponents, especially compared to the

MR MM QR QQ
% won games % won games % won games % won games

vs. random 99.3 6500 99.3 7200 99.4 11300 99.5 8600
vs. hand-built 48.1 4300 53.7 5300 26.1 14300 76.3 3300

vs. MR-challenger 35.0 4300
vs. MM-challenger 37.5 4400
vs. QR-challenger 0.0 5500
vs. QQ-challenger 0.0 1200

Table 3: Results for policies trained by minimax-Q (MR and MM) and Q-learning (QR and QQ).

minimax policies, was somewhat surprising. Simultane-
ously training two adaptive agents using Q-learning is not
mathematically justified and in practice is prone to “lock-
ing up,” that is, reaching a mutual local maximum in which
both agents stop learning prematurely (see, e.g., [Boyan,
1992]). In spite of this, some researchers have re-
ported amazing success with this approach [Tesauro, 1992,
Boyan, 1992] and it seemed to have been successful in this
instance as well.

The third experiment was intended to measure the worst
case performance of each of the policies. The learned poli-
cies were held fixed while a challenger was trained to beat
them. This is precisely the scenario that the minimax poli-
cies were designed for because, in a fair game such as
this, it should break even against even the strongest chal-
lenger. The MR policy did not quite achieve this level
of performance, indicating that one million steps against a
random opponent was insufficient for convergence to the
optimal strategy. The MM policy did slightly better, win-
ning against its challenger more often than did MR. It was
beatable but only barely so.

The algorithms trained by Q-learning did significantly
worse and were incapable of scoring at all against their
challengers. This was due in great part to the fact that
Q-learning is designed to find deterministic policies and
every deterministic offense in this game has a perfect de-
fense, much like rock, paper, scissors. Correctly extending
Q-learning to find optimal probabilistic policies is exactly
what minimax-Q was designed for.

7 DISCUSSION

This paper explores the Markov game formalism as a math-
ematical framework for reasoning about multi-agent envi-
ronments. In particular, the paper describes a reinforcement
learning approach to solving two-player zero-sum games in
which the “max” operator in the update step of a standard
Q-learning algorithm is replaced by a “minimax” operator
that can be evaluated by solving a linear program.

The use of linear programming in the innermost loop of a
learning algorithm is somewhat problematic since the com-
putational complexity of each step is large and typically
many steps will be needed before the system reaches con-
vergence. It is possible that approximate solutions to the
linear programs would suffice. Iterative methods are also

quite promising since the relevant linear programs change
slowly over time.

For most applications of reinforcement learning to zero-sum
games, this is not an impediment. Games such as check-
ers [Samuel, 1959], tic-tac-toe [Boyan, 1992], backgam-
mon [Tesauro, 1992], and Go [Schraudolph et al., 1994]
consist of a series of alternating moves and in such games
the minimax operator can be implemented extremely effi-
ciently.

The strength of the minimax criterion is that it allows the
agent to converge to a fixed strategy that is guaranteed to be
“safe” in that it does as well as possible against the worst
possible opponent. It can be argued that this is unnecessary
if the agent is allowed to adapt continually to its opponent.
This is certainly true to some extent but any such agent will
in principle be vulnerable to a devious form of trickery in
which the opponent leads the agent to learn a poor policy
and then exploits it. Identifying an opponent of this type
for the Q-learning agent described in this paper would be
an interesting topic for future research.

The use of the minimax criterion and probabilistic policies
is closely connected to other current research. First, a
minimax criterion can be used in single-agent environments
to produce more risk-averse behavior [Heger, 1994]. Here,
the random transitions of the environment play the role of
the opponent. Secondly, probabilistic policies have been
used in the context of acting optimally in environments
where the agent’s perception is incomplete [Singh et al.,
1994]. In these environments, random actions are used to
combat the agent’s uncertainty as to the true state of its
environment much as random actions in games help deal
with the agent’s uncertainty of the opponent’s move.

Although two-player Markov games are a fairly restricted
class of multi-agent environments, they are of independent
interest and include Markov decision processes as a special
case. Applying insights from the theory of cooperative
and multi-player games could also prove fruitful although
finding useful connections may be challenging.

Acknowledgments

Thanks to David Ackley, Justin Boyan, Tony Cassandra,
and Leslie Kaelbling for ideas and suggestions.

References

[Barto et al., 1989] Barto, A. G.; Sutton, R. S.; and
Watkins, C. J. C. H. 1989. Learning and sequential
decision making. Technical Report 89-95, Department
of Computer and Information Science, University of
Massachusetts, Amherst, Massachusetts. Also pub-
lished in Learning and Computational Neuroscience:
Foundations of Adaptive Networks, Michael Gabriel and
John Moore, editors. The MIT Press, Cambridge, Mas-
sachusetts, 1991.

[Bertsekas, 1987] Bertsekas, D. P. 1987. Dynamic Pro-
gramming: Deterministic and Stochastic Models.
Prentice-Hall.

[Boyan, 1992] Boyan, Justin A. 1992. Modular neural net-
works for learning context-dependent game strategies.
Master’s thesis, Department of Engineering and Com-
puter Laboratory, University of Cambridge, Cambridge,
England.

[Heger, 1994] Heger, Matthias 1994. Consideration of risk
in reinforcement learning. In Proceedings of the Machine
Learning Conference. To appear.

[Howard, 1960] Howard, Ronald A. 1960. Dynamic Pro-
gramming and Markov Processes. The MIT Press, Cam-
bridge, Massachusetts.

[Owen, 1982] Owen, Guillermo 1982. Game Theory: Sec-
ond edition. Academic Press, Orlando, Florida.

[Samuel, 1959] Samuel, A. L. 1959. Some studies in ma-
chine learning using the game of checkers. IBM Journal
of Research and Development 3:211–229. Reprinted in
E. A. Feigenbaum and J. Feldman, editors, Computers
and Thought, McGraw-Hill, New York 1963.

[Schraudolph et al., 1994] Schraudolph, Nicol N.; Dayan,
Peter; and Sejnowski, Terrence J. 1994. Using the
td(lambda) algorithm to learn an evaluation function for
the game of go. In Advances in Neural Information Pro-
cessing Systems 6, San Mateo, CA. Morgan Kaufman.
To appear.

[Schwartz, 1993] Schwartz, Anton 1993. A reinforcement
learning method for maximizing undiscounted rewards.
In Proceedings of the Tenth International Conference
on Machine Learning, Amherst, Massachusetts. Morgan
Kaufmann. 298–305.

[Singh et al., 1994] Singh, Satinder Pal; Jaakkola, Tommi;
and Jordan, Michael I. 1994. Model-free reinforcement
learning for non-markovian decision problems. In Pro-
ceedings of the Machine Learning Conference. To ap-
pear.

[Strang, 1980] Strang, Gilbert 1980. Linear Algebra and
its applications: second edition. Academic Press, Or-
lando, Florida.

[Tan, 1993] Tan, M. 1993. Multi-agent reinforcement
learning: independent vs. cooperative agents. In Pro-
ceedings of the Tenth International Conference on Ma-
chine Learning, Amherst, Massachusetts. Morgan Kauf-
mann.

[Tesauro, 1992] Tesauro, G. J. 1992. Practical issues in
temporal difference. In Moody, J. E.; Lippman, D. S.;
and Hanson, S. J., editors 1992, Advances in Neural In-
formation Processing Systems 4, San Mateo, CA. Mor-
gan Kaufman. 259–266.

[Van Der Wal, 1981] Van Der Wal, J. 1981. Stochastic dy-
namic programming. In Mathematical Centre Tracts
139. Morgan Kaufmann, Amsterdam.

[von Neumann and Morgenstern, 1947] von Neumann, J.
and Morgenstern, O. 1947. Theory of Games and Eco-
nomic Behavior. Princeton University Press, Princeton,
New Jersey.

[Watkins and Dayan, 1992] Watkins, C. J. C. H. and
Dayan, P. 1992. Q-learning. Machine Learning
8(3):279–292.

[Watkins, 1989] Watkins, C. J.C.H. 1989. Learning with
Delayed Rewards. Ph.D. Dissertation, Cambridge Uni-
versity.

[Yanco and Stein, 1993] Yanco, Holly and Stein, Lynn An-
drea 1993. An adaptive communication protocol for co-
operating mobile robots. In Meyer, Jean-Arcady; Roit-
blat, H. L.; and Wilson, Stewart W., editors 1993, From
Animals to Animats: Proceedings of the Second Interna-
tional Conference on the Simultion of Adaptive Behavior.
MIT Press/Bradford Books. 478–485.

