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Abstract:

Localization, that is the estimation of a robot's location from sensor data, is a fundamental problem in mobile

robotics. This papers presents a version of Markov localization which provides accurate position estimates and

which is tailored towards dynamic environments. The key idea of Markov localization is to maintain a probability

density over the space of all locations of a robot in its environment. Our approach represents this space metrically,

using a fine-grained grid to approximate densities. It is able to globally localize the robot from scratch and to

recover from localization failures. It is robust to approximate models of the environment (such as occupancy grid

maps) and noisy sensors (such as ultrasound sensors). Our approach also includes a filtering technique which

allows a mobile robot to reliably estimate its position even in densely populated environments in which crowds of

people block the robot's sensors for extended periods of time. The method described here has been implemented

and tested in several real-world applications of mobile robots, including the deployments of two mobile robots as

interactive museum tour-guides. 
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Introduction

  

Robot localization has been recognized as one of the most fundamental problems in mobile robotics [Cox &

Wilfong1990, Borenstein et al. 1996]. The aim of localization is to estimate the postition of a robot in its

environment, given a map of the environment and sensor data. Most successful mobile robot systems to date utilize

localization, as knowledge of the robot's position is essential for a broad range of mobile robot tasks. 

Localization--often referred to as position estimation or position control--is currently a highly active field of

research, as a recent book by Borenstein and colleagues [Borenstein et al. 1996] suggests. The localization

techniques developed so far can be distinguished according to the type of problem they attack. Tracking or local

techniques aim at compensating odometric errors occurring during robot navigation. They require, however, that

the initial location of the robot is (approximately) known and they typically cannot recover if they lose track of the

robot's position (within certain bounds). Another family of approaches is called global techniques. These are

designed to estimate the position of the robot even under global uncertainty. Techniques of this type solve the

so-called wake-up robot problem, in that they can localize a robot without any prior knowledge about its

position. They furthermore can handle the kidnapped robot problem, in which a robot is carried to an arbitrary

location during it's operation. Please note that the wake-up problem is the special case of the kidnapped robot

problem in which the robot is told that it has been carried away. Global localization techniques are more powerful

than local ones. They typically can cope with situations in which the robot is likely to experience serious positioning

errors. 

In this paper we present a metric variant of Markov localization, a technique to globally estimate the position of a

robot in its environment. Markov localization uses a probabilistic framework to maintain a position probability

density over the whole set of possible robot poses. Such a density can have arbitrary forms representing various

kinds of information about the robot's position. For example, the robot can start with a uniform distribution

representing that it is completely uncertain about its position. It furthermore can contain multiple modes in the case

of ambiguous situations. In the usual case, in which the robot is highly certain about its position, it consists of a

unimodal distribution centered around the true position of the robot. Based on the probabilistic nature of the

approach and the representation, Markov localization can globally estimate the position of the robot, it can deal

with ambiguous situations, and it can re-localize the robot in the case of localization failures. These properties are

basic preconditions for truly autonomous robots designed to operate over long periods of time. 

Our method uses a fine-grained and metric discretization of the state space. This approach has several advantages

over previous ones, which predominately used Gaussians or coarse-grained, topological representations for

approximating a robot's belief. First, it provides more accurate position estimates, which are required in many

mobile robot tasks (e.g., tasks involving mobile manipulation). Second, it can incorporate raw sensory input such

as a single beam of an ultrasound sensor. Most previous approaches to Markov localization, in contrast, screen

sensor data for the presence or absence of landmarks, and they are prone to fail if the environment does not align

well with the underlying assumptions (e.g., if it does not contain any of the required landmarks). 

Most importantly, however, previous Markov localization techniques assumed that the environment is static.

Therefore, they typically fail in highly dynamic environments, such as public places where crowds of people may
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cover the robot's sensors for extended periods of time. To deal with such situations, our method applies a filtering

technique that, in essence, updates the position probability density using only those measurements which are with

high likelihood produced by known objects contained in the map. As a result, it permits accurate localization even

in densely crowded, non-static environments. 

   

Our Markov localization approach has been implemented and evaluated in various environments, using different

kinds of robots and sensor modalities. Among these applications are the deployments of the mobile robots Rhino

and Minerva (see Figure 1) as interactive museum tour-guide robots ([Burgard et al. 1998a, Burgard et al. 2000,

Thrun et al. 1999]) in the Deutsches Museum Bonn and the National Museum of American History in

Washington, DC, respectively. Experiments described in this paper illustrate the ability of our Markov localization

technique to deal with approximate models of the environment, such as occupancy grid maps and noisy sensors

such as ultrasound sensors, and they demonstrate that our approach is well-suited to localize robots in densely

crowded environments, such as museums full of people. 

The paper is organized as follows. The next section describes the mathematical framework of Markov localization.

We introduce our metric version of Markov localization in Section 3. This section also presents a probabilistic

model of proximity sensors and a filtering scheme to deal with highly dynamic environments. Thereafter, we

describe experimental results illustrating different aspects of our approach. Related work is discussed in Section 5

followed by concluding remarks. 
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Markov Localization

  

To introduce the major concepts, we will begin with an intuitive description of Markov localization, followed by a

mathematical derivation of the algorithm. The reader may notice that Markov localization is a special case of

probabilistic state estimation, applied to mobile robot localization (see also [Russell & Norvig1995, Fox1998,

Koenig & Simmons1998]). 

For clarity of the presentation, we will initially make the restrictive assumption that the environment is static. This

assumption, called Markov assumption, is commonly made in the robotics literature. It postulates that the robot's

location is the only state in the environment which systematically affects sensor readings. The Markov assumption

is violated if robots share the same environment with people. Further below, in Section 3.3, we will side-step this

assumption and present a Markov localization algorithm that works well even in highly dynamic environments, e.g.,

museums full of people. 
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The Basic Idea

Markov localization addresses the problem of state estimation from sensor data. Markov localization is a

probabilistic algorithm: Instead of maintaining a single hypothesis as to where in the world a robot might be,

Markov localization maintains a probability distribution over the space of all such hypotheses. The probabilistic

representation allows it to weigh these different hypotheses in a mathematically sound way. 

Before we delve into mathematical detail, let us illustrate the basic concepts with a simple example. Consider the

environment depicted in Figure 2. For the sake of simplicity, let us assume that the space of robot positions is

one-dimensional, that is, the robot can only move horizontally (it may not rotate). Now suppose the robot is

placed somewhere in this environment, but it is not told its location. Markov localization represents this state of

uncertainty by a uniform distribution over all positions, as shown by the graph in the first diagram in Figure 2.

Now let us assume the robot queries its sensors and finds out that it is next to a door. Markov localization modifies

the belief by raising the probability for places next to doors, and lowering it anywhere else. This is illustrated in the

second diagram in Figure 2. Notice that the resulting belief is multi-modal, reflecting the fact that the available

information is insufficient for global localization. Notice also that places not next to a door still possess non-zero

probability. This is because sensor readings are noisy, and a single sight of a door is typically insufficient to exclude

the possibility of not being next to a door. 
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Now let us assume the robot moves a meter forward. Markov localization incorporates this information by shifting

the belief distribution accordingly, as visualized in the third diagram in Figure 2. To account for the inherent noise in

robot motion, which inevitably leads to a loss of information, the new belief is smoother (and less certain) than the

previous one. Finally, let us assume the robot senses a second time, and again it finds itself next to a door. Now

this observation is multiplied into the current (non-uniform) belief, which leads to the final belief shown at the last

diagram in Figure 2. At this point in time, most of the probability is centered around a single location. The robot is
now quite certain about its position. 
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Basic Notation

To make this more formal, let us denote the position (or: location) of a mobile robot by a three-dimensional

variable  , comprising its x-y coordinates (in some Cartesian coordinate system) and its heading

direction  . Let  denote the robot's true location at time t, and  denote the corresponding random variable.

Throughout this paper, we will use the terms position and location interchangeably. 

Typically, the robot does not know its exact position. Instead, it carries a belief as to where it might be. Let 

 denote the robot's position belief at time t.  is a probability distribution over the space of

positions. For example,  is the probability (density) that the robot assigns to the possibility that its

location at time t is l. The belief is updated in response to two different types of events: The arrival of a

measurement through the robot's environment sensors (e.g., a camera image, a sonar scan), and the arrival of an

odometry reading (e.g., wheel revolution count). Let us denote environment sensor measurements by s and

odometry measurements by a, and the corresponding random variables by S and A, respectively. 

The robot perceives a stream of measurements, sensor measurements s and odometry readings a. Let 

 

denote the stream of measurements, where each  (with  ) either is a sensor measurement or an

odometry reading. The variable t indexes the data, and T is the most recently collected data item (one might think

of t as ``time''). The set d, which comprises all available sensor data, will be referred to as the data. 
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Recursive Localization

  

Markov localization estimates the posterior distribution over  conditioned on all available data, that is 

   

Before deriving incremental update equations for this posterior, let us briefly make explicit the key assumption

underlying our derivation, called the Markov assumption. The Markov assumption, sometimes referred to as

static world assumption, specifies that if one knows the robot's location  , future measurements are independent

of past ones (and vice versa): 

   

In other words, we assume that the robot's location is the only state in the environment, and knowing it is all one

needs to know about the past to predict future data. This assumption is clearly inaccurate if the environment

contains moving (and measurable) objects other than the robot itself. Further below, in Section 3.3, we will extend

the basic paradigm to non-Markovian environments, effectively devising a localization algorithm that works well in

a broad range of dynamic environments. For now, however, we will adhere to the Markov assumption, to facilitate

the derivation of the basic algorithm. 

When computing  , we distinguish two cases, depending on whether the most recent data item 

is a sensor measurement or an odometry reading. 

Case 1: The most recent data item is a sensor measurement  .

Here 

   

Bayes rule suggests that this term can be transformed to 

   

which, because of our Markov assumption, can be simplified to: 
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We also observe that the denominator can be replaced by a constant  , since it does not depend on  . Thus,

we have 

   

The reader may notice the incremental nature of Equation (7): If we write 

   

to denote the robot's belief Equation (7) becomes 

   

In this equation we replaced the term  by  based on the assumption that it is

independent of the time. 

Case 2: The most recent data item is an odometry reading:  .

Here we compute  using the Theorem of Total Probability: 

   

Consider the first term on the right-hand side. Our Markov assumption suggests that 

   

The second term on the right-hand side of Equation (10) can also be simplified by observing that  does not

carry any information about the position  : 

   

Substituting 12 and 14 back into Equation (10) gives us the desired result 

   

Notice that Equation (15) is, too, of an incremental form. With our definition of belief above, we have 
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Please note that we used  instead of  since we assume that it does

not change over time. 
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The Markov Localization Algorithm

  

Update Equations (9) and (16) form the core of the Markov localization algorithm. The full algorithm is shown in Table 1.

Following [Basye et al. 1992] and [Russell & Norvig1995], we denote  as the robot's motion model, since it

models how motion effect the robot's position. The conditional probability  is called perceptual model, because it

models the outcome of the robot's sensors. 



       

In the Markov localization algorithm  , which initializes the belief  , reflects the prior knowledge about

the starting position of the robot. This distribution can be initialized arbitrarily, but in practice two cases prevail: If the

position of the robot relative to its map is entirely unknown,  is usually uniformly distributed. If the initial position of

the robot is approximately known, then  is typically a narrow Gaussian distribution centered at the robot's position. 
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Implementations of Markov Localization

The reader may notice that the principle of Markov localization leaves open 

1. how the robot's belief Bel(L) is represented and

2. how the conditional probabilities  and  are computed. 

Accordingly, existing approaches to Markov localization mainly differ in the representation of the state space and the

computation of the perceptual model. In this section we will briefly discuss different implementations of Markov localization

focusing on these two topics (see Section 5 for a more detailed discussion of related work). 

1. State Space Representations: A very common approach for the representation of the robots belief Bel(L) is based

on Kalman filtering [Kalman1960, Smith et al. 1990] which rests on the restrictive assumption that the position of the

robot can be modeled by a unimodal Gaussian distribution. Existing implementations [Leonard &

Durrant-Whyte1992, Schiele & Crowley1994, Gutmann & Schlegel1996, Arras & Vestli1998] have proven to be

robust and accurate for keeping track of the robot's position. Because of the restrictive assumption of a Gaussian

distribution these techniques lack the ability to represent situations in which the position of the robot maintains

multiple, distinct beliefs (c.f. 2). As a result, localization approaches using Kalman filters typically require that the

starting position of the robot is known and are not able to re-localize the robot in the case of localization failures.

Additionally, Kalman filters rely on sensor models that generate estimates with Gaussian uncertainty. This assumption,

unfortunately, is not met in all situations (see for example [Dellaert et al. 1999]). 

To overcome these limitations, different approaches have used increasingly richer schemes to represent uncertainty in

the robot's position, moving beyond the Gaussian density assumption inherent in the vanilla Kalman filter.

[Nourbakhsh et al. 1995, Simmons & Koenig1995, Kaelbling et al. 1996] use Markov localization for

landmark-based corridor navigation and the state space is organized according to the coarse, topological structure of

the environment and with generally only four possible orientations of the robot. These approaches can, in principle,

solve the problem of global localization. However, due to the coarse resolution of the state representation, the

accuracy of the position estimates is limited. Topological approaches typically give only a rough sense as to where the

robot is. Furthermore, these techniques require that the environment satisfies an orthogonality assumption and that

there are certain landmarks or abstract features that can be extracted from the sensor data. These assumptions make

it difficult to apply the topological approaches in unstructured environments.

2. Sensor Models: In addition to the different representations of the state space various perception models have been

developed for different types of sensors (see for example [Moravec1988, Kortenkamp & Weymouth1994, Simmons

& Koenig1995, Burgard et al. 1996, Dellaert et al. 1999, Konolige1999]). These sensor models differ in the way

how they compute the probability of the current measurement. Whereas topological approaches such

as [Kortenkamp & Weymouth1994, Simmons & Koenig1995, Kaelbling et al. 1996] first extract landmark

information out of a sensor scan, the approaches in [Moravec1988, Burgard et al. 1996, Dellaert et al. 1999,

Konolige1999] operate on the raw sensor measurements. The techniques for proximity sensors described

in [Moravec1988, Burgard et al. 1996, Konolige1999] mainly differ in their efficiency and how they model the

characteristics of the sensors and the map of the environment. 

In order to combine the strengths of the previous representations, our approach relies on a fine and less restrictive

representation of the state space ([Burgard et al. 1996, Burgard et al. 1998b, Fox1998]). Here the robot's belief is

approximated by a fine-grained, regularly spaced grid, where the spatial resolution is usually between 10 and 40 cm and the

angular resolution is usually 2 or 5 degrees. The advantage of this approach compared to the Kalman-filter based techniques

is its ability to represent multi-modal distributions, a prerequisite for global localization from scratch. In contrast to the



topological approaches to Markov localization, our approach allows accurate position estimates in a much broader range of

environments, including environments that might not even possess identifiable landmarks. Since it does not depend on

abstract features, it can incorporate raw sensor data into the robot's belief. And it typically yields results that are an order of
magnitude more accurate. An obvious shortcoming of the grid-based representation, however, is the size of the state space

that has to be maintained. Section 3.4 addresses this issue directly by introducing techniques that make it possible to update

extremely large grids in real-time. 
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Metric Markov Localization for Dynamic

Environments

  

In this section we will describe our metric variant of Markov localization. This includes appropriate motion and

sensor models. We also describe a filtering technique which is designed to overcome the assumption of a static

world model generally made in Markov localization and allows to localize a mobile robot even in densely crowded
environments. We then describe our fine-grained grid-based representation of the state space and present

techniques to efficiently update even large state spaces. 

The Action Model 

The Perception Model for Proximity Sensors 

Filtering Techniques for Dynamic Environments 

The Entropy Filter 

The Distance Filter 

Grid-based Representation of the State Space 

Pre-Computation of the Sensor Model 

Selective Update 
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The Action Model

  

To update the belief when the robot moves, we have to specify the action model  . Based on the assumption of

normally distributed errors in translation and rotation, we use a mixture of two independent, zero-centered Gaussian

distributions whose tails are cut off [Burgard et al. 1996]. The variances of these distributions are proportional to the length

of the measured motion. 

   

Figure 3 illustrates the resulting densities for two example paths if the robot's belief starts with a Dirac distribution. Both

distributions are three-dimensional (in  -space) and Figure 3 shows their 2D projections into  -space. 
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The Perception Model for Proximity Sensors

  

As mentioned above, the likelihood  that a sensor reading s is measured at position l has to be computed

for all positions l in each update of the Markov localization algorithm (see Table 1). Therefore, it is crucial for

on-line position estimation that this quantity can be computed very efficiently. [Moravec1988] proposed a method

to compute a generally non-Gaussian probability density function  over a discrete set of possible distances

measured by an ultrasound sensor at location l. In a first implementation of our approach [Burgard et al. 1996] we

used a similar method, which unfortunately turned out to be computationally too expensive for localization in

real-time. 

To overcome this disadvantage, we developed a sensor-model which allows to compute  solely based on

the distance  to the closest obstacle in the map along the direction of the sensor. This distance can be computed

by ray-tracing in occupancy grid maps or CAD-models of the environment. In particular, we consider a

discretization  of possible distances measured by a proximity sensor. In our discretization, the size of

the ranges  is the same for all i, and  corresponds to the maximal range of the proximity

sensor . Let  denote the probability of measuring a distance  if the robot is at location l. In order to

derive this probability we first consider the following two cases (see also [Hennig1997, Fox1998]): 

1. Known obstacles: If the sensor detects an obstacle the resulting distribution is modeled by a Gaussian

distribution with mean at the distance to this obstacle. Let  denote the probability of measuring

distance d if the robot is at location l, assuming that the sensor beam is reflected by the closest obstacle in

the map (along the sensor beam). We denote the distance to this specific obstacle by  . The probability 

 is then given by a Gaussian distribution with mean at  : 

   

The standard deviation  of this distribution models the uncertainty of the measured distance, based on 

the granularity of the discretization of L, which represents the robot's position,

the accuracy of the world model, and

the accuracy of the sensor. 

Figure 4(a) gives examples of such Gaussian distributions for ultrasound sensors and laser range-finders.

Here the distance  to the closest obstacle is 230cm. Observe here that the laser sensor has a higher

accuracy than the ultrasound sensor, as indicated by the smaller variance. 
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2. Unknown obstacles: In Markov localization, the world model generally is assumed to be static and

complete. However, mobile robot environments are often populated and therefore contain objects that are

not included in the map. Consequently, there is a non-zero probability that the sensor is reflected by an

obstacle not represented in the world model. Assuming that these objects are equally distributed in the

environment, the probability  of detecting an unknown obstacle at distance  is independent of the

location of the robot and can be modeled by a geometric distribution. This distribution results from the

following observation. A distance  is measured if the sensor is not reflected by an obstacle at a shorter

distance  and is reflected at distance  . The resulting probability is 

   

In this equation the constant  is the probability that the sensor is reflected by an unknown obstacle at any

range given by the discretization. 

A typical distribution for sonar and laser measurements is depicted in Figure 4(b). In this example, the

relatively large probability of measuring 500cm is due to the fact that the maximum range of the proximity

sensors is set to 500cm. Thus, this distance represents the probability of measuring at least 500cm. 

Obviously, only one of these two cases can occur at a certain point in time, i.e., the sensor beam is either reflected

by a known or an unknown object. Thus,  is a a mixture of the two distributions  and  . To

determine the combined probability  of measuring a distance  if the robot is at location l we consider

the following two situations: A distance  is measured, if { 

1. the sensor beam is 

1. not reflected by an unknown obstacle before reaching distance  
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2. and reflected by the known obstacle at distance  

   

2. OR the beam is 
1. reflected neither by an unknown obstacle nor by the known obstacle before reaching distance  

 

2. and reflected by an unknown obstacle at distance  

   

The parameter  in Equation (25) denotes the probability that the sensor detects the closest obstacle in the map.

These considerations for the combined probability are summarized in Equation (28). By double negation and

insertion of the Equations (24) to (27), we finally get Equation (31). 

      

To obtain the probability of measuring  , the maximal range of the sensor, we exploit the following equivalence:

The probability of measuring a distance larger than or equal to the maximal sensor range is equivalent to the

probability of not measuring a distance shorter than  . In our incremental scheme, this probability can easily be

determined: 

   

To summarize, the probability of sensor measurements is computed incrementally for the different distances starting

at distance  cm. For each distance we consider the probability that the sensor beam reaches the

corresponding distance and is reflected either by the closest obstacle in the map (along the sensor beam), or by an

unknown obstacle. 
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In order to adjust the parameters  ,  and  of our perception model we collected eleven million data pairs

consisting of the expected distance  and the measured distance  during the typical operation of the robot.

From these data we were able to estimate the probability of measuring a certain distance  if the distance  to the

closest obstacle in the map along the sensing direction is given. The dotted line in Figure 5(a) depicts this

probability for sonar measurements if the distance  to the next obstacle is 230cm. Again, the high probability of

measuring 500cm is due to the fact that this distance represents the probability of measuring at least 500cm. The

solid line in the figure represents the distribution obtained by adapting the parameters of our sensor model so as to

best fit the measured data. The corresponding measured and approximated probabilities for the laser sensor are

plotted in Figure 5(b). 

The observed densities for all possible distances  to an obstacle for ultrasound sensors and laser range-finder

are depicted in Figure 6(a) and Figure 6(c), respectively. The approximated densities are shown in Figure 6(b) and

Figure 6(d). In all figures, the distance  is labeled ``expected distance''. The similarity between the measured and

the approximated distributions shows that our sensor model yields a good approximation of the data. 
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Please note that there are further well-known types of sensor noise which are not explicitly represented in our

sensor model. Among them are specular reflections or cross-talk which are often regarded as serious sources of

noise in the context of ultra-sound sensors. However, these sources of sensor noise are modeled implicitly by the

geometric distribution resulting from unknown obstacles. 

   

Next: Filtering Techniques for Dynamic Up: Metric Markov Localization for Previous: The Action Model 

Dieter Fox 

Fri Nov 19 14:29:33 MET 1999 

5 of 5 12/10/00 11:47 AM

The Perception Model for Proximity Sensors http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/node10.html



   

Next: The Entropy Filter Up: Metric Markov Localization for Previous: The Perception Model for 

Filtering Techniques for Dynamic Environments

  

Markov localization has been shown to be robust to occasional changes of an environment such as opened /

closed doors or people walking by. Unfortunately, it fails to localize a robot if too many aspects of the environment

are not covered by the world model. This is the case, for example, in densely crowded environments, where
groups of people cover the robots sensors and thus lead to many unexpected measurements. The mobile robots

Rhino and Minerva, which were deployed as interactive museum tour-guides [Burgard et al. 1998a, Burgard et

al. 2000, Thrun et al. 1999], were permanently faced with such a situation. Figure 7 shows two cases in which the

robot Rhino is surrounded by many visitors while giving a tour in the Deutsches Museum Bonn, Germany. 

    

The reason why Markov localization fails in such situations is the violation of the Markov assumption, an

independence assumption on which virtually all localization techniques are based. As discussed in Section 2.3, this

1 of 3 12/10/00 11:48 AM

Filtering Techniques for Dynamic Environments http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/node11.html



assumption states that the sensor measurements observed at time t are independent of all other measurements,

given that the current state  of the world is known. In the case of localization in densely populated environments,

this independence assumption is clearly violated when using a static model of the world. 

To illustrate this point, Figure 8 depicts two typical laser scans obtained during the museum projects (maximal

range measurements are omitted). The figure also shows the obstacles contained in the map. Obviously, the

readings are, to a large extent, corrupted, since people in the museum are not represented in the static world

model. The different shading of the beams indicates the two classes they belong to: the black lines correspond to

the static obstacles in the map and are independent of each other if the position of the robot is known. The

grey-shaded lines are beams reflected by visitors in the Museum. These sensor beams cannot be predicted by the

world model and therefore are not independent of each other. Since the vicinity of people usually increases the

robot's belief of being close to modeled obstacles, the robot quickly loses track of its position when incorporating

all sensor measurements. To reestablish the independence of sensor measurements we could include the position

of the robot and the position of people into the state variable L. Unfortunately, this is infeasible since the

computational complexity of state estimation increases exponentially in the number of dependent state variables to

be estimated. 

A closely related solution to this problem could be to adapt the map according to the changes of the environment.

Techniques for concurrent map-building and localization such as [Lu & Milios1997, Gutmann & Schlegel1996,

Shatkey & Kaelbling1997, Thrun et al. 1998b], however, also assume that the environment is almost static and

therefore are unable to deal with such environments. Another approach would be to adapt the perception model to

correctly reflect such situations. Note that our perceptual model already assigns a certain probability to events

where the sensor beam is reflected by an unknown obstacle. Unfortunately, such approaches are only capable to

model such noise on average. While such approaches turn out to work reliably with occasional sensor blockage,

they are not sufficient in situations where more than fifty percent of the sensor measurements are corrupted. Our

localization system therefore includes filters which are designed to detect whether a certain sensor reading is

corrupted or not. Compared to a modification of the static sensor model described above, these filters have the

advantage that they do not average over all possible situations and that their decision is based on the current belief

of the robot. 

The filters are designed to select those readings of a complete scan which do not come from objects contained in

the map. In this section we introduce two different kinds of filters. The first one is called entropy filter. Since it

filters a reading based solely on its effect on the belief Bel(L), it can be applied to arbitrary sensors. The second

filter is the distance filter which selects the readings according to how much shorter they are than the expected

value. It therefore is especially designed for proximity sensors. 

The Entropy Filter 

The Distance Filter 
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The Entropy Filter

  

The entropy H(L) of the belief over L is defined as 

   

and is a measure of uncertainty about the outcome of the random variable L [Cover & Thomas1991]. The higher

the entropy, the higher the robot's uncertainty as to where it is. The entropy filter measures the relative change of

entropy upon incorporating a sensor reading into the belief Bel(L). More specifically, let s denote the measurement

of a sensor (in our case a single range measurement). The change of the entropy of Bel(L) given s is defined as: 

   

The term  is the entropy of the belief Bel(L) after incorporating the sensor measurement s (see

Equations (18) - (20)). While a positive change of entropy indicates that after incorporating s, the robot is less

certain about its position, a negative change indicates an increase in certainty. The selection scheme of the entropy

filter is to exclude all sensor measurements s with  . In other words, it only uses those sensor

readings confirming the robot's current belief. 

Entropy filters work well when the robot's belief is focused on the correct hypothesis. However, they may fail in

situations in which the robot's belief state is incorrect. This topic will be analyzed systematically in the experiments

described in Section 4.1. The advantage of the entropy filter is that it makes no assumptions about the nature of the

sensor data and the kind of disturbances occurring in dynamic environments. 
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The Distance Filter

  

The distance filter has specifically been designed for proximity sensors such as laser range-finders. Distance filters

are based on a simple observation: In proximity sensing, unmodeled obstacles typically produce readings that are
shorter than the distance expected from the map. In essence, the distance filter selects sensor readings based on

their distance relative to the distance to the closest obstacle in the map. 

To be more specific, this filter removes those sensor measurements s which with probability higher than  (this

threshold is set to 0.99 in all experiments) are shorter than expected, and which therefore are caused by an

unmodeled object (e.g. a person). 

To see, let  be a discrete set of possible distances measured by a proximity sensor. As in Section 3.2,

we denote by  the probability of measuring distance  if the robot is at position l and the sensor

detects the closest obstacle in the map along the sensing direction. The distribution  describes the sensor

measurement expected from the map. As described above, this distribution is assumed to be Gaussian with mean

at the distance  to the closest obstacle along the sensing direction. The dashed line in Figure 9 represents  ,

for a laser range-finder and a distance  of 230cm. We now can define the probability  that a

measured distance  is shorter than the expected one given the robot is at position l. This probability is obviously

equivalent to the probability that the expected measurement  is longer than  given the robot is at location l and

thus can be computed as follows: 
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In practice, however, we are interested in the probability  that  is shorter than expected, given the

complete current belief of the robot. Thus, we have to average over all possible positions of the robot: 

   

Given the distribution  , we now can implement the distance filter by excluding all sensor measurements 

 with  . Whereas the entropy filter filters measurements according to their effect on the belief

state of the robot the distance filter selects measurements solely based on their value and regardless of their effect

on the robot's certainty. 

It should be noted that [Fox1998] additionally developed a blockage filter for proximity sensors, which is based

on a probabilistic description of situations in which a sensor is blocked by an unknown obstacle. We omit this filter

here since its derivation is quite complex and the resulting filter is not significantly different from the distance filter

described here. 
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Grid-based Representation of the State Space

  

We will now return to the issue of how to represent and compute the belief distribution of the robot efficiently,

describing what one might think of as the ``nut and bolts'' of grid-based Markov localization. Recall that to obtain

accurate metric position estimates, our approach to Markov localization uses a fine-grained discretization of the
state space. Here L is represented by a three-dimensional, regularly spaced grid, where the spatial resolution is

usually between 10cm and 40cm and the angular resolution is usually 2 or 5 degrees. Figure 10 illustrates the

structure of a position probability grid. Each layer of such a grid corresponds to all possible poses of the robot

with the same orientation. 

   

While such a fine-grained approximation makes it possible to estimate the robot's position with high accuracy, an

obvious disadvantage of such a fine-grained discretization lies in the huge state space which has to be maintained.

For a mid-size environment of size  m  , an angular grid resolution of  , and a cell size of  cm 

the state space consists of 7,200,000 states. The basic Markov localization algorithm updates each of these states

for each sensory input and each atomic movement of the robot. Current computer speed, thus, makes it impossible

to update matrices of this size in real-time. 

To update such state spaces efficiently, we have developed two techniques, which are described in the remainder

of this section. The first method, introduced in Section 3.4.1, pre-computes the sensor model. It allows us to
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determine the likelihood  of sensor measurements by two look-up operations--instead of expensive ray

tracing operations. The second optimization, described in Section 3.4.2, is a selective update strategy. This

strategy focuses the computation, by only updating the relevant part of the state space. Based on these two

techniques, grid-based Markov localization can be applied on-line to estimate the position of a mobile robot during

its operation, using a low-cost PC. 

Pre-Computation of the Sensor Model 

Selective Update 
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Pre-Computation of the Sensor Model

  

As described in Section 3.2, the perception model  for proximity sensors only depends on the distance 

to the closest obstacle in the map along the sensor beam. Based on the assumption that the map of the environment

is static, our approach pre-computes and stores these distances  for each possible robot location l in the

environment. Following our sensor model, we use a discretization  of the possible distances  . This

discretization is exactly the same for the expected and the measured distances. We then store for each location l

only the index of the expected distance  in a three-dimensional table. Please note that this table only needs one

byte per value if 256 different values for the discretization of  are used. The probability  of measuring

a distance  if the closest obstacle is at distance  (see Figure 6) can also be pre-computed and stored in a

two-dimensional lookup-table. 

As a result, the probability  of measuring s given a location l can quickly be computed by two nested

lookups. The first look-up retrieves the distance  to the closest obstacle in the sensing direction given the robot is

at location l. The second lookup is then used to get the probability  . The efficient computation based on

table look-ups enabled our implementation to quickly incorporate even laser-range scans that consist of up to 180

values in the overall belief state of the robot. In our experiments, the use of the look-up tables led to a

speed-up-factor of 10, when compared to a computation of the distance to the closest obstacle at run-time. 
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Selective Update

  

The selective update scheme is based on the observation that during global localization, the certainty of the

position estimation permanently increases and the density quickly concentrates on the grid cells representing the
true position of the robot. The probability of the other grid cells decreases during localization and the key idea of

our optimization is to exclude unlikely cells from being updated. 

For this purpose, we introduce a threshold   and update only those grid cells l with  . To

allow for such a selective update while still maintaining a density over the entire state space, we approximate 

 for cells with  by the a priori probability of measuring  . This quantity, which we

call  , is determined by averaging over all possible locations of the robot: 

   

Please note that  is independent of the current belief state of the robot and can be determined beforehand.

The incremental update rule for a new sensor measurement  is changed as follows (compare Equation (9)): 

   

By multiplying  into the normalization factor  , we can rewrite this equation as 

   

where  . 

The key advantage of the selective update scheme given in Equation (39) is that all cells with 

 are updated with the same value  . In order to obtain smooth transitions between global

localization and position tracking and to focus the computation on the important regions of the state space L, for

example, in the case of ambiguities we use a partitioning of the state space. Suppose the state space L is

partitioned into n segments or parts  . A segment  is called active at time t if it contains locations
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with probability above the threshold  ; otherwise we call such a part passive because the probabilities of all cells

are below the threshold. Obviously, we can keep track of the individual probabilities within a passive part  by

accumulating the normalization factors  into a value  . Whenever a segment  becomes passive, i.e. the

probabilities of all locations within  no longer exceed  , the normalizer  is initialized to 1 and subsequently

updated as follows:  . As soon as a part becomes active again, we can restore the

probabilities of the individual grid cells by multiplying the probabilities of each cell with the accumulated normalizer 

 . By keeping track of the robot motion since a part became passive, it suffices to incorporate the

accumulated motion whenever the part becomes active again. In order to efficiently detect whether a passive part

has to be activated again, we store the maximal probability  of all cells in the part at the time it becomes

passive. Whenever  exceeds  , the part  is activated again because it contains at least one

position with probability above the threshold. In our current implementation we partition the state space L such

that each part  consists of all locations with equal orientation relative to the robot's start location. 

To illustrate the effect of this selective update scheme, let us compare the update of active and passive cells on

incoming sensor data. According to Equation (39), the difference lies in the ratio  . An example

of this ratio for our model of proximity sensors is depicted in Figure 11 (here, we replaced  by a proximity

measurement  ). 

  

In the beginning of the localization process, all cells are active and updated according to the ratio depicted in

Figure 11. The measured and expected distances for cells that do not represent the true location of the robot

usually deviate significantly. Thus, the probabilities of these cells quickly fall below the threshold  . 

Now the effect of the selective update scheme becomes obvious: Those parts of the state space that do not align

well with the orientation of the environment, quickly become passive as the robot localizes itself. Consequently,

only a small fraction of the state space has to be updated as soon as the robot has correctly determined its

position. If, however, the position of the robot is lost, then the likelihood ratios for the distances measured at the

active locations become smaller than one on average. Thus the probabilities of the active locations decrease while
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the normalizers  of the passive parts increase until these segments are activated again. Once the true position of

the robot is among the active locations, the robot is able to re-establish the correct belief. 

In extensive experimental tests we did not observe evidence that the selective update scheme has a noticably

negative impact on the robot's behavior. In contrast, it turned out to be highly effective, since in practice only a

small fraction (generally less than 5%) of the state space has to be updated once the position of the robot has

been determined correctly, and the probabilities of the active locations generally sum up to at least 0.99. Thus, the

selective update scheme automatically adapts the computation time required to update the belief to the certainty of

the robot. This way, our system is able to efficiently track the position of a robot once its position has been

determined. Additionally, Markov localization keeps the ability to detect localization failures and to relocalize the

robot. The only disadvantage lies in the fixed representation of the grid which has the undesirable effect that the

memory requirement in our current implementation stays constant even if only a minor part of the state space is

updated. In this context we would like to mention that recently promising techniques have been presented to

overcome this disadvantage by applying alternative and dynamic representations of the state space [Burgard et al.

1998b, Fox et al. 1999]. 
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Experimental Results

  

Our metric Markov localization technique, including both sensor filters, has been implemented and evaluated

extensively in various environments. In this section we present some of the experiments carried out with the mobile

robots Rhino and Minerva (see Figure 1). Rhino has a ring of 24 ultrasound sensors each with an opening angle of

15 degrees. Both, Rhino and Minerva are equipped with two laser range-finders covering a 360 degrees field of
view. 

The first set of experiments demonstrates the robustness of Markov localization in two real-world scenarios. In

particular, it systematically evaluates the effect of the filtering techniques on the localization performance in highly

dynamic environments. An additional experiment illustrates a further advantage of the filtering technique, which

enables a mobile robot to reliably estimate its position even if only an outline of an office environment is given as a

map. 

In further experiments described in this section, we will illustrate the ability of our Markov localization technique to

globally localize a mobile robot in approximate world models such as occupancy grid maps, even when using

inaccurate sensors such as ultrasound sensors. Finally, we present experiments analyzing the accuracy and

efficiency of grid-based Markov localization with respect to the size of the grid cells. 

The experiments reported here demonstrate that Markov localization is able to globally estimate the position of a

mobile robot, and to reliably keep track of it even if only an approximate model of a possibly dynamic

environment is given, if the robot has a weak odometry, and if noisy sensors such as ultrasound sensors are used. 

Long-term Experiments in Dynamic Environments 

Datasets 

Tracking the Robot's Position 

Recovery from Extreme Localization Failures 

Localization in Incomplete Maps 

Localization in Occupancy Grid Maps Using Sonar 

Precision and Performance 
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Long-term Experiments in Dynamic Environments

  

For our mobile robots Rhino and Minerva, which operated in the Deutsches Museum Bonn and the

US-Smithsonian's National Museum of American History, the robustness and reliability of our Markov

localization system was of utmost importance. Accurate position estimation was a crucial component, as many of
the obstacles were ``invisible'' to the robots' sensors (such as glass cages, metal bars, staircases, and the alike).

Given the estimate of the robot's position [Fox et al. 1998b] integrated map information into the collision

avoidance system in order to prevent the robot from colliding with obstacles that could not be detected.

Figure 12(a) shows a typical trajectory of the robot Rhino, recorded in the museum in Bonn, along with the map

used for localization. The reader may notice that only the obstacles shown in black were actually used for

localization; the others were either invisible or could not be detected reliably. Rhino used the entropy filter to

identify sensor readings that were corrupted by the presence of people. Rhino's localization module was able to

(1) globally localize the robot in the morning when the robot was switched on and (2) to reliably and accurately

keep track of the robot's position. In the entire six-day deployment period, in which Rhino traveled over 18km,

our approach led only to a single software-related collision, which involved an ``invisible'' obstacle and which was

caused by a localization error that was slightly larger than a 30cm safety margin. 

Figure 12(b) shows a 2km long trajectory of the robot Minerva in the National Museum of American History.

Minerva used the distance filter to identify readings reflected by unmodeled objects. This filter was developed

after Rhino's deployment in the museum in Bonn, based on an analysis of the localization failure reported above

and in an attempt to prevent similar effects in future installations. Based on the distance filter, Minerva was able to

operate reliably over a period of 13 days. During that time Minerva traveled a total of 44km with a maximum

speed of 1.63m/sec. 

Unfortunately, the evidence from the museum projects is anecdotal. Based on sensor data collected during Rhino's

deployment in the museum in Bonn, we also investigated the effect of our filter techniques more systematically, and

under even more extreme conditions. In particular, we were interested in the localization results 

1. when the environment is densely populated (more than 50% of the sensor reading are corrupted), and

2. when the robot suffers extreme dead-reckoning errors (e.g. induced by a person carrying the robot

somewhere else). Since such cases are rare, we manually inflicted such errors into the original data to

analyze their effect. 

Datasets 

Tracking the Robot's Position 

Recovery from Extreme Localization Failures 
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in Dynamic 

Datasets

  

  

During the experiments, we used two different datasets. These sets differ mainly in the amount of sensor noise. 

1. The first dataset was collected during 2.0 hours of robot motion, in which the robot traveled approximately

1,000 meters. This dataset was collected when the museum was closed, and the robot guided only remote

Internet-visitors through the museum. The robot's top speed was 50cm/sec. Thus, this dataset was ``ideal''
in that the environment was only sparsely populated, and the robot moved slowly.

2. The second dataset was recorded during a period of 4.8 hours, during which Rhino traveled approximately

1,540 meters. The path of this dataset is shown in Figure 12(a). When collecting this data, the robot

operated during peak traffic hours. It was frequently faced with situations such as the one illustrated in

Figure 7. The robot's top speed was 80cm/sec. 

Both datasets consist of logs of odometry and laser range-finder scans, collected while the robot moved through

the museum. Using the time stamps in the logs, all tests have been conducted in real-time simulation on a

SUN-Ultra-Sparc 1 (177-MHz). The first dataset contained more than 32,000, and the second dataset more

than 73,000 laser scans. To evaluate the different localization methods, we generated two reference paths, by

averaging over the estimates of nine independent runs for each filter on the datasets (with small random noise

added to the input data). We verified the correctness of both reference paths by visual inspection; hence, they can

be taken as ``ground truth.'' 
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Figure 13 shows the estimated percentage of corrupted sensor readings over time for both datasets. The dashed

line corresponds to the first data set, while the solid line illustrates the corruption of the second (longer) data set.

In the second dataset, more than half of all measurements were corrupted for extended durations of time, as

estimated by analyzing each laser reading post-facto as to whether it was significantly shorter than the distance to

the next obstacle. 
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Tracking the Robot's Position

  

In our first series of experiments, we were interested in comparing the ability of all three approaches--plain

Markov localization without filtering, localization with the entropy filter, and localization with the distance filter--to
keep track of the robot's position under normal working conditions. All three approaches tracked the robot's

position in the empty museum well (first dataset), exhibiting only negligible errors in localization. The results

obtained for the second, more challenging dataset, however, were quite different. In a nutshell, both filter-based

approaches tracked the robot's position accurately, whereas conventional Markov localization failed frequently.

Thus, had we used the latter in the museum exhibit, it would inevitably have led to a large number of collisions and

other failures. 

    

Table 2: Ability to track the robot's position.

Table 2 summarizes the results obtained for the different approaches in this tracking experiment. The first row of

Table 2 provides the percentage of failures for the different filters on the first dataset (error values represent 95%

confidence intervals). Position estimates were considered a ``failure'' if the estimated location of the robot deviated

from the reference path by more than 45cm for at least 20 seconds. The percentage is measured in time during

which the position was lost, relative to the total time of the dataset. 

As can be seen here, all three approaches work well, and the distance filter provides the best performance. The

second row provides the failures on the second dataset. While plain Markov localization failed in 26.8% of the

overall time, both filter techniques show almost equal results with a failure of less than 2%. Thus, the two filter

techniques are robust in highly dynamic environments, plain Markov localization is prone to fail. 
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To shed light onto the question as to why Markov localization performs so poorly when compared to the filter

algorithms, we analyzed the sensor readings that each method used during the localization task. Figure 14 shows,

for a a small fraction of the data, the measurements incorporated into the robot's belief by the three different

approaches. Shown there are the end points of the sensor measurements used for localization relative to the

positions on the reference path. Obviously, both filter approaches manage to focus their attention on the

``correct'' sensor measurements, whereas plain Markov localization incorporates massive amounts of corrupted

(misleading) measurements. As also illustrated by Figure 14, both filter-based approaches produce more accurate

results with a higher certainty in the correct position. 
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Recovery from Extreme Localization Failures

  

We conjecture that a key advantage of the original Markov localization technique lies in its ability to recover from
extreme localization failures. Re-localization after a failure is often more difficult than global localization from

scratch, since the robot starts with a belief that is centered at a completely wrong position. Since the filtering

techniques use the current belief to select the readings that are incorporated, it is not clear that they still maintain

the ability to recover from global localization failures. 

To analyze the behavior of the filters under such extreme conditions, we carried out a series of experiments during

which we manually introduced such failures into the data to test the robustness of these methods in the extreme.

More specifically, we ``tele-ported'' the robot at random points in time to other locations. Technically, this was

done by changing the robot's orientation by 180  degree and shifting it by 0  cm, without letting the

robot know. These perturbations were introduced randomly, with a probability of 0.005 per meter of robot

motion. Obviously, such incidents make the robot lose track of its position. Each method was tested on 20

differently corrupted versions of both datasets. This resulted in a total of more than 50 position failures in each

dataset. For each of these failures we measured the time until the methods re-localized the robot correctly.

Re-Localization was assumed to have succeeded if the distance between the estimated position and the reference

path was smaller than 45cm for more than 10 seconds. 

    

Table 3: Summary of recovery experiments.

Table 3 provides re-localization results for the various methods, based on the two different datasets. Here 

represents the average time in seconds needed to recover from a localization error. The results are remarkably

different from the results obtained under normal operational conditions. Both conventional Markov localization and

the technique using distance filters are relatively efficient in recovering from extreme positioning errors in the first

dataset, whereas the entropy filter-based approach is an order of magnitude less efficient (see first row in

Table 3). The unsatisfactory performance of the entropy filter in this experiment is due to the fact that it disregards

all sensor measurements that do not confirm the belief of the robot. While this procedure is reasonable when the
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belief is correct, it prevents the robot from detecting localization failures. The percentage of time when the position

of the robot was lost in the entire run is given in the second row of the table. Please note that this percentage

includes both, failures due to manually introduced perturbations and tracking failures. Again, the distance filter is

slightly better than the approach without filter, while the entropy filter performs poorly. The average times  to

recover from failures on the second dataset are similar to those in the first dataset. The bottom row in Table 3

provides the percentage of failures for this more difficult dataset. Here the distance filter-based approach performs

significantly better than both other approaches, since it is able to quickly recover from localization failures and to

reliably track the robot's position. 

The results illustrate that despite the fact that sensor readings are processed selectively, the distance filter-based

technique recovers as efficiently from extreme localization errors as the conventional Markov approach. 
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Localization in Incomplete Maps

A further advantage of the filtering techniques is that Markov localization does not require a detailed map of the

environment. Instead, it suffices to provide only an outline which merely includes the aspects of the world which

are static. 

  

Figure 15(a) shows a ground plan of our department building, which contains only the walls of the university

building. The complete map, including all movable objects such as tables and chairs, is shown in Figure 19. The

two Figures 15(b) and 15(c) illustrate how the distance filter typically behaves when tracking the robot's position

in such a sparse map of the environment. Filtered readings are shown in grey, and the incorporated sensor

readings are shown in black. Obviously, the filter focuses on the known aspects of the map and ignores all objects

(such as desks, chairs, doors and tables) which are not contained in the outline. [Fox1998] describes more

systematic experiments supporting our belief that Markov localization in combination with the distance filter is able

to accurately localize mobile robots even when relying only on an outline of the environment. 
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Next: Precision and Performance Up: Experimental Results Previous: Localization in Incomplete Maps 

Localization in Occupancy Grid Maps Using Sonar

  

The next experiment described here is carried out based on data collected with the mobile robot Rhino during the

1994 AAAI mobile robot competition [Simmons1995]. Figure 16(a) shows an occupancy grid map [Moravec &

Elfes1985, Moravec1988] of the environment, constructed with the techniques described in [Thrun et al. 1998a,

Thrun1998b]. The size of the map is  , and the grid resolution is 15cm. 

  

Figure 16(b) shows a trajectory of the robot along with measurements of the 24 ultrasound sensors obtained as

the robot moved through the competition arena. Here we use this sensor information to globally localize the robot

from scratch. The time required to process this data on a 400MHz Pentium II is 80 seconds, using a position

probability grid with an angular resolution of 3 degrees. Please note that this is exactly the time needed by the

robot to traverse this trajectory; thus, our approach works in real-time. Figure 16(b) also marks positions of the

robot after perceiving 5 (A), 18 (B), and 24 (C) sensor sweeps. The belief states during global localization at

these three points in time are illustrated in Figure 17. 

  

1 of 3 12/10/00 12:19 PM

Localization in Occupancy Grid Maps Using Sonar http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/node23.html



The figures show the belief of the robot projected onto the  -plane by plotting for each  -position the

maximum probability over all possible orientations. More likely positions are darker and for illustration purposes,

Figures 17(a) and 17(b) use a logarithmic scale in intensity. Figure 17(a) shows the belief state after integrating 5

sensor sweeps (see also position A in Figure 16(b)). At this point in time, all the robot knows is that it is in one of

the corridors of the environment. After integrating 18 sweeps of the ultrasound sensors, the robot is almost certain

that it is at the end of a corridor (compare position B in Figures 16(b) and 17(b)). A short time later, after turning

left and integrating six more sweeps of the ultrasound ring, the robot has determined its position uniquely. This is

represented by the unique peak containing 99% of the whole probability mass in Figure 17(c). 

   

Figure 18 illustrates the ability of Markov localization to correct accumulated dead-reckoning errors by matching

ultrasound data with occupancy grid maps. Figure 18(a) shows a typical 240m long trajectory, measured by

Rhino's wheel-encoders in the 1994 AAAI mobile robot competition arena. Obviously, the rotational error of the

odometry quickly increases. Already after traveling 40m, the accumulated error in the orientation (raw odometry)

is about 50 degrees. Figure 18(b) shows the path of the robot estimated by Markov localization, which is

significantly more correct. 
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Next: Related Work Up: Experimental Results Previous: Localization in Occupancy Grid 

Precision and Performance

  

We will now describe experiments aimed at characterizing the precision of position estimates. Our experiments

also characterize the time needed for global localization in relation to the size of the grid cells. Figure 19 shows a

path of the robot Rhino in the Computer Science Department's building at the University of Bonn. This path
includes 22 reference positions, where the true position of the robot was determined using the scan matching

technique presented in [Gutmann & Schlegel1996, Lu & Milios1994]. All data recorded during this run were split

into four disjoint traces of the sensor data. Each of these different traces contained the full length of the path, but

only every fourth sensor reading which was sufficient to test the localization performance. 

   

Figure 20(a) shows the localization error averaged over the four runs and all reference positions. The error was

determined for different sizes of grid cells, using a laser range-finder or ultrasound sensors. These results

demonstrate (1) that the average localization error for both sensors is generally below the cell size and (2) that

laser range-finders provide a significantly higher accuracy than ultrasound sensors. When using the laser

range-finder at a spatial resolution of 4cm, the average positioning error can even be reduced to 3.5cm. 
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Figure 20(b) shows the average CPU-time needed to globally localize the robot as a function of the size of the grid

cells. The values represent the computation time needed on a 266MHz Pentium II for global localization on the

path between the starting point and position 1. In this experiment, we used a fixed angular resolution of four

degrees. In the case of 64cm cell size, the average localization time is approximately 2.2 seconds. Of course, the

effective time needed for global localization in practice highly depends on the structure of the environment and the

amount of information gathered on the path of the robot. For example, due to the symmetry of the corridor of this

office environment, the robot is not able to localize itself unless it enters a room. The reader may notice that

recently, we developed a decision-theoretic method for actively guiding the robot to places which allow it to

resolve ambiguities during global localization [Fox et al. 1998a, Fox1998]. Based on this method, the localization

process becomes more efficient, especially in office environments with a lot of indistinguishable places as, for

example, long corridors. 

The experiments described above demonstrate that our metric variant of Markov localization is able to efficiently

estimate the position of a mobile robot in dynamic environments. It furthermore can deal with approximate models

of the environment such as occupancy grid maps or rough outline maps. Finally, it is able to efficiently and
accurately estimate the position of a mobile robot even if ultrasound sensors are used. 
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Related Work

  

Most of the techniques for mobile robot localization in the literature belong to the class of local approaches or

tracking techniques, which are designed to compensate odometric error occurring during navigation. They assume

that the initial position of the robot is known (see [Borenstein et al. 1996] for a comprehensive overview). For

example, [Weiß et al. 1994] store angle histograms constructed out of laser range-finder scans taken at different
locations in the environment. The position and orientation of the robot are calculated by maximizing the correlation

between the stored histograms and laser range-scans obtained while the robot moves through the environment.

The estimated position, together with the odometry information, is then used to predict the position of the robot

and to select the histogram used for the next match. [Yamauchi1996, Schultz et al. 1999] apply a similar

technique, but they use hill-climbing to match local maps built from ultrasound sensors into a global occupancy grid

map. As in the approach by [Weiß et al. 1994], the location of the robot is represented by the position yielding

the best match. These techniques, in contrast to Markov localization, do not represent the uncertainty of the robot

in its current belief and therefore cannot deal appropriately with globally ambiguous situations. 

A popular probabilistic framework for position tracking are Kalman filters [Maybeck1990, Smith et al. 1990], a

signal processing technique introduced by Kalman [Kalman1960]. As mentioned in Section 2.4, Kalman

filter-based methods represent their belief of the robot's position by a unimodal Gaussian distribution over the

three-dimensional state-space of the robot. The mode of this distribution yields the current position of the robot,

and the variance represents the robot's uncertainty. Whenever the robot moves, the Gaussian is shifted according

to the distance measured by the robot's odometry. Simultaneously, the variance of the Gaussian is increased

according to the model of the robot's odometry. New sensory input is incorporated into the position estimation by

matching the percepts with the world model. 

Existing applications of Kalman filtering to position estimation for mobile robots are similar in how they model the

motion of the robot. They differ mostly in how they update the Gaussian according to new sensory input. [Leonard

& Durrant-Whyte1991] match beacons extracted from sonar scans with beacons predicted from a geometric map

of the environment. These beacons consist of planes, cylinders, and corners. To update the current estimate of the

robot's position, [Cox1991] matches distances measured by infrared sensors with a line segment description of

the environment. [Schiele & Crowley1994] compare different strategies to track the robot's position based on

occupancy grid maps and ultrasonic sensors. They show that matching local occupancy grid maps with a global

grid map results in a similar localization performance as if the matching is based on features that are extracted from

both maps. [Shaffer et al. 1992] compare the robustness of two different matching techniques with different

sources of noise. They suggest a combination of map-matching and feature-based techniques in order to inherit the

benefits of both. [Gutmann & Schlegel1996, Lu & Milios1994] use a scan-matching technique to precisely

estimate the position of the robot based on laser range-finder scans and learned models of the environment.

[Arras & Vestli1998] use a similar technique to compute the position of the robot with a very high accuracy. All

these variants, however, rest on the assumption that the position of the robot can be represented by a single

Gaussian distribution. The advantage of Kalman filter-based techniques lies in their efficiency and in the high

accuracy that can be obtained. The restriction to a unimodal Gaussian distribution, however, is prone to fail if the

position of a robot has to be estimated from scratch, i.e. without knowledge about the starting position of the

robot. Furthermore, these technique are typically unable to recover from localization failures. Recently, [Jensfelt &
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Kristensen1999] introduced an approach based on multiple hypothesis tracking, which allows to model

multi-modal probability distributions as they occur during global localization. 

Markov localization, which has been employed successfully in several variants [Nourbakhsh et al. 1995, Simmons

& Koenig1995, Kaelbling et al. 1996, Burgard et al. 1996, Hertzberg & Kirchner1996, Koenig &

Simmons1998, Oore et al. 1997, Thrun1998a], overcomes the disadvantage of Kalman filter based techniques.

The different variants of this technique can be roughly distinguished by the type of discretization used for the

representation of the state space. [Nourbakhsh et al. 1995, Simmons & Koenig1995, Kaelbling et al. 1996] use

Markov localization for landmark-based navigation, and the state space is organized according to the topological

structure of the environment. Here nodes of the topological graph correspond to distinctive places in hallways

such as openings or junctions and the connections between these places. Possible observations of the robot are,

for example, hallway intersections. The advantage of these approaches is that they can represent ambiguous

situations and thus are in principle able to globally localize a robot. Furthermore, the coarse discretization of the

environment results in relatively small state spaces that can be maintained efficiently. The topological

representations have the disadvantage that they provide only coarse information about the robot's position and that

they rely on the definition of abstract features that can be extracted from the sensor information. The approaches

typically make strong assumptions about the nature of the environments. [Nourbakhsh et al. 1995, Simmons &

Koenig1995, Kaelbling et al. 1996], for example, only consider four possible headings for the robot position

assuming that the corridors in the environment are orthogonal to each other. 

Our method uses instead a fine-grained, grid-based discretization of the state space. The advantage of this

approach compared to the Kalman filter based techniques comes from the ability to represent more complex

probability distributions. In a recent experimental comparison to the technique by [Gutmann & Schlegel1996, Lu

& Milios1994], we found that Kalman filter based tracking techniques provide highly accurate position estimates

but are less robust, since they lack the ability to globally localize the robot and to recover from localization

errors [Gutmann et al. 1998]. In contrast to the topological implementations of Markov localization, our approach

provides accurate position estimates and can be applied even in highly unstructured environments [Burgard et al.

1998a, Thrun et al. 1999]. Using the selective update scheme, our technique is able to efficiently keep track of the

robot's position once it has been determined. It also allows the robot to recover from localization failures. 

Finally, the vast majority of existing approaches to localization differ from ours in that they address localization in

static environments. Therefore, these methods are prone to fail in highly dynamic environments in which, for

example, large crowds of people surround the robot [Fox et al. 1998c]. However, dynamic approaches have

great practical importance, and many envisioned application domains of service robots involve people and

populated environments. 

   

Next: Discussion Up: Markov Localization for Mobile Previous: Precision and Performance 

Dieter Fox 

Fri Nov 19 14:29:33 MET 1999 

2 of 2 12/10/00 12:22 PM

Related Work http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/node25.html



   

Next: Acknowledgment Up: Markov Localization for Mobile Previous: Related Work 

Discussion

  

In this paper we presented a metric variant of Markov localization, as a robust technique for estimating the

position of a mobile robot in dynamic environments. The key idea of Markov localization is to maintain a

probability density over the whole state space of the robot relative to its environment. This density is updated

whenever new sensory input is received and whenever the robot moves. Metric Markov localization represents
the state space using fine-grained, metric grids. Our approach employs efficient, selective update algorithms to

update the robot's belief in real-time. It uses filtering to cope with dynamic environments, making our approach

applicable to a wide range of target applications. 

In contrast to previous approaches to Markov localization, our method uses a fine-grained discretization of the

state space. This allows us to compute accurate position estimates and to incorporate raw sensory input into the

belief. As a result, our system can exploit arbitrary features of the environment. Additionally, our approach can be

applied in arbitrary unstructured environments and does not rely on an orthogonality assumption or similar

assumptions of the existence of certain landmarks, as most other approaches to Markov localization do. 

The majority of the localization approaches developed so far assume that the world is static and that the state of

the robot is the only changing aspect of the world. To be able to localize a mobile robot even in dynamic and

densely populated environments, we developed a technique for filtering sensor measurements which are corrupted

due to the presence of people or other objects not contained in the robot's model of the environment. 

To efficiently update the huge state spaces resulting from the grid-based discretization, we developed two different

techniques. First, we use look-up operations to efficiently compute the quantities necessary to update the belief of

the robot given new sensory input. Second, we apply the selective update scheme which focuses the computation

on the relevant parts of the state space. As a result, even large belief states can be updated in real-time. 

Our technique has been implemented and evaluated in several real-world experiments at different sites. Recently

we deployed the mobile robots Rhino in the Deutsches Museum Bonn, Germany, and Minerva in the

Smithsonian's National Museum of American History, Washington, DC, as interactive museum tour-guides.

During these deployments, our Markov localization technique reliably estimated the position of the robots over

long periods of time, despite the fact that both robots were permanently surrounded by visitors which produced

large amounts of false readings for the proximity sensors of the robots. The accuracy of grid-based Markov

localization turned out to be crucial to avoid even such obstacles that could not be sensed by the robot's sensors.

This has been accomplished by integrating map information into the collision avoidance system [Fox et al. 1998b].

Despite these encouraging results, several aspects warrant future research. A key disadvantage of our current

implementation of Markov localization lies in the fixed discretization of the state space, which is always kept in

main memory. To scale up to truly large environments, it seems inevitable that one needs variable-resolution

representations of the state space, such as as the one suggested in [Burgard et al. 1997, Burgard et al. 1998b,

Gutmann et al. 1998]. Alternatively, one could use Monte-Carlo based representations of the state space as

described in [Fox et al. 1999]. Here, the robot's belief is represented by samples that concentrate on the most

likely parts of the state space. 

1 of 2 12/10/00 12:23 PM

Discussion http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/node26.html



   

Next: References Up: Markov Localization for Mobile Previous: Discussion 

Acknowledgment

The authors would like to thank the research group for autonomous intelligent systems at the University of Bonn

for fruitful discussions, useful suggestions and comments, especially Daniel Hennig and Andreas Derr. We would

also like to thank the members of CMU's Robot Learning Lab for many inspiring discussions. Finally, we would

like to thank the staff of the Deutsches Museum Bonn and the National Museum of American History for their

enthusiasm and their willingness to expose their visitors to one of our mobile robots. 

This research is sponsored in part by NSF (CAREER Award IIS-9876136) and DARPA via TACOM (contract

number DAAE07-98-C-L032), and Rome Labs (contract number F30602-98-2-0137), which is gratefully

acknowledged. The views and conclusions contained in this document are those of the authors and should not be

interpreted as necessarily representing official policies or endorsements, either expressed or implied, of NSF,

DARPA, TACOM, Rome Labs, or the United States Government. 

Dieter Fox 

Fri Nov 19 14:29:33 MET 1999 

1 of 1 12/10/00 12:23 PM

Acknowledgment http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/node27.html


