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ABSTRACT
Most subfields of computer science have an interface layer via which applications communicate with

the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational

model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and

probabilistic graphical models each have some of the necessary features, but a viable interface layer

requires combining both.Markov logic is a powerful new language that accomplishes this by attaching

weights to first-order formulas and treating them as templates for features of Markov random

fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is

its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability,

Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of

conditional likelihood, convex optimization, and inductive logic programming. Markov logic has

been successfully applied to problems in information extraction and integration, natural language

processing, robot mapping, social networks, computational biology, and others, and is the basis of

the open-source Alchemy system.

KEYWORDS
Markov logic, statistical relational learning, machine learning, graphical models, first-

order logic, probabilistic logic, Markov networks, Markov random fields, inductive logic

programming, satisfiability, Markov chain Monte Carlo, belief propagation, collective

classification, link prediction, link-based clustering, entity resolution, information ex-

traction, social network analysis, natural language processing, robot mapping, compu-

tational biology
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C H A P T E R 1

Introduction
1.1 THE INTERFACE LAYER

Artificial intelligence (AI) has made tremendous progress in its first 50 years. However, it is still very

far from reaching and surpassing human intelligence. At the current rate of progress, the crossover

point will not be reached for hundreds of years. We need innovations that will permanently increase

the rate of progress. Most research is inevitably incremental, but the size of those increments depends

on the paradigms and tools that researchers have available. Improving these provides more than a

one-time gain; it enables researchers to consistently produce larger increments of progress at a higher

rate. If we do it enough times, we may be able to shorten those hundreds of years to decades, as

illustrated in Figure 1.1.

If we look at other subfields of computer science, we see that in most cases progress has been

enabled above all by the creation of an interface layer that separates innovation above and below it,

while allowing each to benefit from the other. Below the layer, research improves the foundations (or,

more pragmatically, the infrastructure); above it, research improves existing applications and invents

new ones.Table 1.1 shows examples of interface layers from various subfields of computer science. In

each of these fields, the development of the interface layer triggered a period of rapid progress above

and below it. In most cases, this progress continues today. For example, new applications enabled

by the Internet continue to appear, and protocol extensions continue to be proposed. In many cases,

the progress sparked by the new layer resulted in new industries, or in sizable expansions of existing

ones.

Figure 1.1: The first 100 years of AI. The graph on the right illustrates how increasing our rate of

progress several times could bring about human-level intelligence much faster.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-000.png&w=191&h=117
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-001.png&w=191&h=117


2 CHAPTER 1. INTRODUCTION

Table 1.1: Examples of interface layers.
Field Interface Layer Below the Layer Above the Layer
Hardware VLSI design VLSI modules Computer-aided

chip design
Architecture Microprocessors ALUs, buses Compilers, operating

systems
Operating systems Virtual machines Hardware Software
Programming systems High-level languages Compilers, Programming

code optimizers
Databases Relational model Query optimization, Enterprise applications

transaction mgmt.
Networking Internet Protocols, routers Web, email
HCI Graphical user interface Widget toolkits Productivity suites
AI ??? Inference, learning Planning, NLP, vision,

robotics

The interface layer allows each innovation below it to automatically become available to all

the applications above it, without the “infrastructure” researchers having to know the details of the

applications, or even what all the existing or possible applications are. Conversely, new applications

(and improvements to existing ones) can be developed with little or no knowledge of the infrastructure

below the layer. Without it, each innovation needs to be separately combined with each other, an

O(n2) problem that in practice is too costly to solve, leaving only a few of the connections made.

When the layer is available, each innovation needs to be combined only with the layer itself. Thus,

we obtain O(n2) benefits with O(n) work, as illustrated in Figure 1.2.

In each case, the separation between applications above the layer and infrastructure below

it is not perfect. If we care enough about a particular application, we can usually improve it by

developing infrastructure specifically for it. However, most applications are served well enough by

the general-purpose machinery, and in many cases would not be economically feasible without it.

For example, ASICs (application-specific integrated circuits) are far more efficient for their specific

applications than general-purpose microprocessors; but the vast majority of applications are still run

on the latter. Interface layers are an instance of the 80/20 rule: they allow us to obtain 80% of the

benefits for 20% of the cost.

The essential feature of an interface layer is that it provides a language of operations that is all

the infrastructure needs to support, and all that the applications need to know about. Designing it is

a difficult balancing act between providing what the applications need and staying within what the

infrastructure can do. A good interface layer exposes important distinctions and hides unimportant

ones. How to do this is often far from obvious. Creating a successful new interface layer is thus not

easy. Typically, it initially faces skepticism, because it is less efficient than the existing alternatives,

and appears too ambitious, being beset by difficulties that are only resolved by later research. But

once the layer becomes established, it enables innovations that were previously unthinkable.
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Figure 1.2: An interface layer provides the benefits of O(n2) connections between applications and

infrastructure algorithms with just O(n) connections.

1.2 WHAT IS THE INTERFACE LAYER FOR AI?

In AI, the interface layer has been conspicuously absent, and this, perhaps more than any other factor,

has limited the rate of progress. An early candidate for this role was first-order logic. However, it

quickly became apparent that first-order logic has many shortcomings as a basis for AI, leading

to a long series of efforts to extend it. Unfortunately, none of these extensions has achieved wide

acceptance. Perhaps the closest first-order logic has come to providing an interface layer is the

Prolog language. However, it remains a niche language even within AI. This is largely because,

being essentially a subset of first-order logic, it shares its limitations, and is thus insufficient to

support most applications at the 80/20 level.

Many (if not most) of the shortcomings of logic can be overcome by the use of probability.

Here, graphical models (i.e., Bayesian and Markov networks) have to some extent played the part of

an interface layer, but one with a limited range. Although they provide a unifying language for many

different probabilistic models, graphical models can only represent distributions over propositional

universes, and are thus insufficiently expressive for general AI. In practice, this limitation is often

circumvented by manually transforming the rich relational domain of interest into a simplified

propositional one, but the cost, brittleness, and lack of reusability of this manual work is precisely

what a good interface layer should avoid. Also, to the extent that graphical models can provide an

interface layer, they have done so mostly at the conceptual level. No widely accepted languages or

standards for representing and using graphical models exist today. Many toolkits with specialized

functionality have been developed, but none that could be used as widely as (say) SQL engines are in

databases. Perhaps the most widely used such toolkit is BUGS, but it is quite limited in the learning

and inference infrastructure it provides. Although very popular with Bayesian statisticians, it fails

the 80/20 test for AI.

It is clear that the AI interface layer needs to integrate first-order logic and graphical models.

One or the other by itself cannot provide the minimum functionality needed to support the full range

of AI applications. Further, the two need to be fully integrated, and not simply provided alongside

each other. Most applications require simultaneously the expressiveness of first-order logic and the

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-002.jpg&w=162&h=100
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-003.jpg&w=162&h=100


4 CHAPTER 1. INTRODUCTION

Table 1.2: Examples of logical and statistical AI.
Field Logical Approach Statistical Approach
Knowledge representation First-order logic Graphical models
Automated reasoning Satisfiability testing Markov chain Monte Carlo
Machine learning Inductive logic programming Neural networks
Planning Classical planning Markov decision processes
Natural language processing Definite clause grammars Probabilistic context-free grammars

robustness of probability, not just one or the other. Unfortunately, the split between logical and

statistical AI runs very deep. It dates to the earliest days of the field, and continues to be highly

visible today. It takes a different form in each subfield of AI, but it is omnipresent. Table 1.2 shows

examples of this. In each case, both the logical and the statistical approach contribute something

important. This justifies the abundant research on each of them, but also implies that ultimately a

combination of the two is required.

In recent years,we have begun to see increasingly frequent attempts to achieve such a combina-

tion in each subfield. In knowledge representation, knowledge-based model construction combines

logic programming and Bayesian networks, and substantial theoretical work on combining logic and

probability has appeared. In automated reasoning, researchers have identified common schemas in

satisfiability testing, constraint processing and probabilistic inference. In machine learning, statisti-

cal relational learning combines inductive logic programming and statistical learning. In planning,

relational MDPs add aspects of classical planning to MDPs. In natural language processing, work

on recognizing textual entailment and on learning to map sentences to logical form combines logical

and statistical components. However, for the most part these developments have been pursued inde-

pendently, and have not benefited from each other.This is largely attributable to the O(n2) problem:

researchers in one subfield can connect their work to perhaps one or two others, but connecting it

to all of them is not practically feasible.

1.3 MARKOV LOGIC AND ALCHEMY:
AN EMERGING SOLUTION

We have recently introduced Markov logic, a language that combines first-order logic and Markov

networks. A knowledge base (KB) in Markov logic is a set of first-order formulas with weights. Given

a set of constants representing objects in the domain of interest, it defines a probability distribution

over possible worlds, each world being an assignment of truth values to all possible ground atoms.The

distribution is in the form of a log-linear model: a normalized exponentiated weighted combination

of features of the world.1 Each feature is a grounding of a formula in the KB, with the corresponding

weight. In first-order logic, formulas are hard constraints: a world that violates even a single formula

1Log-linear models are also known as, or closely related to, Markov networks, Markov random fields, maximum entropy models,
Gibbs distributions, and exponential models; and they have Bayesian networks, Boltzmann machines, conditional random fields,
and logistic regression as special cases.
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Table 1.3: A comparison of Alchemy, Prolog, and BUGS.
Aspect Alchemy Prolog BUGS
Representation First-order logic + Markov networks Horn clauses Bayesian networks
Inference Model checking, MCMC, lifted BP Theorem proving Gibbs sampling
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No

is impossible. In Markov logic, formulas are soft constraints: a world that violates a formula is less

probable than one that satisfies it, other things being equal, but not impossible. The weight of a

formula represents its strength as a constraint. Finite first-order logic is the limit of Markov logic

when all weights tend to infinity. Markov logic allows an existing first-order KB to be transformed

into a probabilistic model simply by assigning weights to the formulas, manually or by learning

them from data. It allows multiple KBs to be merged without resolving their inconsistencies, and

obviates the need to exhaustively specify the conditions under which a formula can be applied. On

the statistical side, it allows very complex models to be represented very compactly; in particular,

it provides an elegant language for expressing non-i.i.d. models (i.e., models where data points are

not assumed independent and identically distributed). It also facilitates the incorporation of rich

domain knowledge, reducing reliance on purely empirical learning.

Markov logic builds on previous developments in knowledge-based model construction and

statistical relational learning, but goes beyond them in combining first-order logic and graphical

models without restrictions.Unlike previous representations, it is supported by a full range of learning

and inference algorithms, in each case combining logical and statistical elements. Because of its

generality, it provides a natural framework for integrating the logical and statistical approaches in

each field. For example, DCGs and PCFGs are both special cases of Markov logic, and classical

planning and MDPs can both be elegantly formulated using Markov logic and decision theory. With

Markov logic, combining classical planning and MDPs, or DCGs and PCFGs, does not require new

algorithms; the existing general-purpose inference and learning facilities can be directly applied.

AI can be roughly divided into “foundational” and “application” areas. Foundational areas

include knowledge representation, automated reasoning, probabilistic models, and machine learn-

ing. Application areas include planning, vision, robotics, speech, natural language processing, and

multi-agent systems. An interface layer for AI must provide the former, and serve the latter. We have

developed the Alchemy system as an open-source embodiment of Markov logic and implementation

of algorithms for it [60]. Alchemy seamlessly combines first-order knowledge representation, model

checking, probabilistic inference, inductive logic programming, and generative/discriminative pa-

rameter learning. Table 1.3 compares Alchemy with Prolog and BUGS, and shows that it provides

a critical mass of capabilities not previously available.

For researchers and practitioners in application areas, Alchemy offers a large reduction in the

effort required to assemble a state-of-the-art solution, and to extend it beyond the state of the art.
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The representation, inference and learning components required for each subtask, both logical and

probabilistic, no longer need to be built or patched together piece by piece; Alchemy provides them,

and the solution is built simply by writing formulas in Markov logic. A few lines of Alchemy suffice

to build state-of-the-art systems for applications like collective classification, link prediction, entity

resolution, information extraction, ontology mapping, and others. Because each of these pieces is

now simple to implement, combining them into larger systems becomes straightforward, and is no

longer a major engineering challenge. For example, we are currently beginning to build a complete

natural language processing system in Alchemy, which aims to provide the functionality of current

systems in one to two orders of magnitude fewer lines of code. Most significantly, Alchemy facilitates

extending NLP systems beyond the current state of the art, for example by integrating probabilities

into semantic analysis.

One of our goals with Alchemy is to support the growth of a repository of reusable knowl-

edge bases in Markov logic, akin to the shareware repositories available today, and building on the

traditional knowledge bases already available. Given such a repository, the first step of an application

project becomes the selection of relevant knowledge. This may be used as is or manually refined. A

new knowledge base is initiated by writing down plausible hypotheses about the new domain. This

is followed by induction from data of new knowledge for the task. The formulas and weights of the

supporting knowledge bases may also be adjusted based on data from the new task. New knowledge

is added by noting and correcting the failures of the induced and refined KBs, and the process re-

peats. Over time, new knowledge is gradually accumulated, and existing knowledge is refined and

specialized to different (sub)domains. Experience shows that neither knowledge engineering nor

machine learning by itself is sufficient to reach human-level AI, and a simple two-stage solution of

knowledge engineering followed by machine learning is also insufficient. What is needed is a fine-

grained combination of the two, where each one bootstraps from the other, and at the end of each

loop of bootstrapping the AI system’s state of knowledge is more advanced than at the beginning.

Alchemy supports this.

More broadly, a tool like Alchemy can help the focus of research shift from very specialized

goals to higher-level ones. This is essential to speed progress in AI. As the field has grown, it has

become atomized,but ultimately the pieces need to be brought back together.However, attempting to

do this without an interface layer, by gluing together a large number of disparate pieces, rapidly turns

into an engineering quagmire; systems become increasingly hard to build on for further progress, and

eventually sheer complexity slows progress to a crawl. By keeping the pieces simpler and providing

a uniform language for representing and combining them, even if at some cost in performance, an

interface layer enables us to reach much farther before hitting the complexity wall. At that point, we

have hopefully acquired the knowledge and insights to design the next higher-level interface layer,

and in this way we can continue to make rapid progress.

Highly focused research is essential for progress, and often provides immediate real-world

benefits in its own right. But these benefits will be dwarfed by those obtained if AI reaches and

surpasses human intelligence, and to contribute toward this, improvements in performance in the
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subtasks need to translate into improvements in the larger tasks. When the subtasks are pursued

in isolation, there is no guarantee that this will happen, and in fact experience suggests that the

tendency will be for the subtask solutions to evolve into local optima, which are best in isolation

but not in combination. By increasing the granularity of the tasks that can be routinely attempted,

platforms like Alchemy make this less likely, and help us reach human-level AI sooner.

1.4 OVERVIEW OF THE BOOK

In the remainder of this book, we will describe the Markov logic representation in greater detail,

along with algorithms and applications.

In Chapter 2, we first provide basic background on first-order logic and probabilistic graphical

models. We then define the Markov logic representation, building and unifying these two perspec-

tives. We conclude by showing how Markov logic relates to some of the many other combinations

of logic and probability that have been proposed in recent years.

Chapters 3 and 4 present state-of-the-art algorithms for reasoning and learning with Markov

logic. These algorithms build on standard methods for first-order logic or graphical models, includ-

ing satisfiability, Markov chain Monte Carlo, and belief propagation for inference; and inductive

logic programming and convex optimization for learning. In many cases, these methods have been

combined and extended to handle additional challenges introduced by the rich Markov logic repre-

sentation.

Chapter 5 goes beyond the basic Markov logic representation to describe several extensions

that increase its power or applicability to particular problems. In particular, we cover how Markov

logic can be extended to continuous and infinite domains, combined with decision theory, and

generalized to represent uncertain disjunctions and existential quantifiers. In addition to solving

particular problems better, these extensions demonstrate that Markov logic can easily be adapted

when necessary to explicitly support the features of new problems.

Chapter 6 is devoted to exploring applications of Markov logic to several real-world problems,

including collective classification, link prediction, link-based clustering, entity resolution, informa-

tion extraction, social network analysis, and robot mapping. Most datasets and models from this

chapter can be found online at http://alchemy.cs.washington.edu.

We conclude in Chapter 7 with final thoughts and future directions. An appendix provides a

brief introduction to Alchemy.

Sample course slides to accompany this book are available at

http://www.cs.washington.edu/homes/pedrod/803/.

http://alchemy.cs.washington.edu
http://alchemy.cs.washington.edu
http://www.cs.washington.edu/homes/pedrod/803/
http://www.cs.washington.edu/homes/pedrod/803/
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C H A P T E R 2

Markov Logic
In this chapter, we provide a detailed description of the Markov logic representation. We begin

by providing background on first-order logic and probabilistic graphical models and then show

how Markov logic unifies and builds on these concepts. Finally, we compare Markov logic to other

representations that combine probability and logic.

2.1 FIRST-ORDER LOGIC

A first-order knowledge base (KB) is a set of sentences or formulas in first-order logic [37]. Formulas

are constructed using four types of symbols: constants, variables, functions, and predicates. Constant

symbols represent objects in the domain of interest (e.g., people: Anna, Bob, Chris, etc.). Variable

symbols range over the objects in the domain.Function symbols (e.g.,MotherOf) represent mappings

from tuples of objects to objects. Predicate symbols represent relations among objects in the domain

(e.g., Friends) or attributes of objects (e.g., Smokes). An interpretation specifies which objects,

functions and relations in the domain are represented by which symbols. Variables and constants

may be typed, in which case variables range only over objects of the corresponding type, and constants

can only represent objects of the corresponding type. For example, the variable x might range over

people (e.g., Anna, Bob, etc.), and the constant C might represent a city (e.g., Seattle, Tokyo, etc.).

A term is any expression representing an object in the domain. It can be a constant, a variable, or

a function applied to a tuple of terms.For example,Anna,x, and GreatestCommonDivisor(x, y) are

terms. An atomic formula or atom is a predicate symbol applied to a tuple of terms (e.g., Friends(x,

MotherOf(Anna))). Formulas are recursively constructed from atomic formulas using logical con-

nectives and quantifiers. If F1 and F2 are formulas, the following are also formulas: ¬F1 (negation),

which is true iff F1 is false; F1 ∧ F2 (conjunction), which is true iff both F1 and F2 are true; F1 ∨ F2

(disjunction), which is true iff F1 or F2 is true; F1 ⇒ F2 (implication), which is true iff F1 is false

or F2 is true; F1 ⇔ F2 (equivalence), which is true iff F1 and F2 have the same truth value; ∀x F1

(universal quantification), which is true iff F1 is true for every object x in the domain; and ∃x F1

(existential quantification), which is true iff F1 is true for at least one object x in the domain. Paren-

theses may be used to enforce precedence. A positive literal is an atomic formula; a negative literal

is a negated atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB can be

viewed as a single large formula. A ground term is a term containing no variables. A ground atom

or ground predicate is an atomic formula all of whose arguments are ground terms. A possible world

(along with an interpretation) assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true.The basic inference

problem in first-order logic is to determine whether a knowledge base KB entails a formula F , i.e.,
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Table 2.1: Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm() for

Smokes(), and Ca() for Cancer().

English and First-Order Logic Clausal Form Weight

“Friends of friends are friends.”

∀x∀y∀z Fr(x, y) ∧ Fr(y, z) ⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7

“Smoking causes cancer.”

∀x Sm(x) ⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5

“If two people are friends and one

smokes, then so does the other.”

∀x∀y Fr(x, y) ∧ Sm(x) ⇒ Sm(y) ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

if F is true in all worlds where KB is true (denoted by KB |= F ). This is often done by refutation:

KB entails F iff KB ∪ ¬F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas

trivially follow from it, which makes painstaking knowledge engineering a necessity.) For automated

inference, it is often convenient to convert formulas to a more regular form, typically clausal form (also

known as conjunctive normal form (CNF)). A KB in clausal form is a conjunction of clauses, a clause

being a disjunction of literals. Every KB in first-order logic can be converted to clausal form using a

mechanical sequence of steps.1 Clausal form is used in resolution, a sound and refutation-complete

inference procedure for first-order logic [122].

Inference in first-order logic is only semidecidable. Because of this, knowledge bases are often

constructed using a restricted subset of first-order logic with more desirable properties. The most

widely used restriction is to Horn clauses, which are clauses containing at most one positive literal.

The Prolog programming language is based on Horn clause logic [72]. Prolog programs can be

learned from databases by searching for Horn clauses that (approximately) hold in the data; this is

studied in the field of inductive logic programming (ILP) [65].

Table 2.1 shows a simple KB and its conversion to clausal form. Note that, while these

formulas may be typically true in the real world, they are not always true. In most domains it is very

difficult to come up with non-trivial formulas that are always true, and such formulas capture only a

fraction of the relevant knowledge.Thus, despite its expressiveness, pure first-order logic has limited

applicability to practical AI problems. Many ad hoc extensions to address this have been proposed.

In the more limited case of propositional logic, the problem is well solved by probabilistic graphical

models such as Markov networks, described in the next section. We will later show how to generalize

these models to the first-order case.

1This conversion includes the removal of existential quantifiers by Skolemization, which is not sound in general. However, in finite
domains an existentially quantified formula can simply be replaced by a disjunction of its groundings.
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2.2 MARKOV NETWORKS

A Markov network (also known as Markov random field) is a model for the joint distribution of a

set of variables X = (X1, X2, . . . , Xn) ∈ X [99]. It is composed of an undirected graph G and a

set of potential functions φk . The graph has a node for each variable, and the model has a potential

function for each clique in the graph. A potential function is a non-negative real-valued function

of the state of the corresponding clique. The joint distribution represented by a Markov network is

given by

P(X=x) = 1

Z

∏

k

φk(x{k}) (2.1)

where x{k} is the state of the kth clique (i.e., the state of the variables that appear in that clique).

Z, known as the partition function, is given by Z = ∑

x∈X

∏

k φk(x{k}). Markov networks are often

conveniently represented as log-linear models, with each clique potential replaced by an exponentiated

weighted sum of features of the state, leading to

P(X=x) = 1

Z
exp

⎛

⎝

∑

j

wjfj (x)

⎞

⎠ (2.2)

A feature may be any real-valued function of the state. Except where stated, this book will focus

on binary features, fj (x) ∈ {0, 1}. In the most direct translation from the potential-function form

(Equation 2.1), there is one feature corresponding to each possible state x{k} of each clique, with

its weight being log φk(x{k}). This representation is exponential in the size of the cliques. However,

we are free to specify a much smaller number of features (e.g., logical functions of the state of the

clique), allowing for a more compact representation than the potential-function form, particularly

when large cliques are present. Markov logic will take advantage of this.

Inference in Markov networks is #P-complete [123]. The most widely used method for ap-

proximate inference in Markov networks is Markov chain Monte Carlo (MCMC) [40], and in

particular Gibbs sampling, which proceeds by sampling each variable in turn given its Markov blan-

ket. (The Markov blanket of a node is the minimal set of nodes that renders it independent of the

remaining network; in a Markov network, this is simply the node’s neighbors in the graph.) Marginal

probabilities are computed by counting over these samples; conditional probabilities are computed

by running the Gibbs sampler with the conditioning variables clamped to their given values.

Another popular method for inference in Markov networks is belief propagation [156], a

message-passing algorithm that performs exact inference on tree-structured Markov networks.

When applied to graphs with loops, the results are approximate and the algorithm may not converge.

Nonetheless, loopy belief propagation is more efficient than Gibbs sampling in many applications.

Maximum-likelihood or MAP estimates of Markov network weights cannot be computed

in closed form but, because the log-likelihood is a concave function of the weights, they can be

found efficiently (modulo inference) using standard gradient-based or quasi-Newton optimization
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methods [95]. Another alternative is iterative scaling [24]. Features can also be learned from data,

for example by greedily constructing conjunctions of atomic features [24].

2.3 MARKOV LOGIC

A first-order KB can be seen as a set of hard constraints on the set of possible worlds: if a world violates

even one formula, it has zero probability.The basic idea in MLNs is to soften these constraints: when

a world violates one formula in the KB it is less probable, but not impossible. The fewer formulas

a world violates, the more probable it is. Each formula has an associated weight that reflects how

strong a constraint it is: the higher the weight, the greater the difference in log probability between

a world that satisfies the formula and one that does not, other things being equal.

Definition 2.1. A Markov logic network L is a set of pairs (Fi, wi), where Fi is a formula in first-

order logic and wi is a real number. Together with a finite set of constants C = {c1, c2, . . . , c|C|}, it

defines a Markov network ML,C (Equations 2.1 and 2.2) as follows:

1. ML,C contains one binary node for each possible grounding of each predicate appearing in L.

The value of the node is 1 if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The value of

this feature is 1 if the ground formula is true, and 0 otherwise. The weight of the feature is the

wi associated with Fi in L.

The syntax of the formulas in an MLN is the standard syntax of first-order logic [37]. Free

(unquantified) variables are treated as universally quantified at the outermost level of the formula.

In this book, we will often assume that the set of formulas is in function-free clausal form for

convenience, but our methods can be applied to other MLNs as well.

An MLN can be viewed as a template for constructing Markov networks. Given different sets

of constants, it will produce different networks, and these may be of widely varying size, but all will

have certain regularities in structure and parameters, given by the MLN (e.g., all groundings of the

same formula will have the same weight). We call each of these networks a ground Markov network

to distinguish it from the first-order MLN. From Definition 2.1 and Equations 2.1 and 2.2, the

probability distribution over possible worlds x specified by the ground Markov network ML,C is

given by

P(X=x) = 1

Z
exp

(

∑

i

wini(x)

)

= 1

Z

∏

i

φi(x{i})ni(x) (2.3)

where ni(x) is the number of true groundings of Fi in x, x{i} is the state (truth values) of the

predicates appearing in Fi , and φi(x{i}) = ewi . Note that, although we defined MLNs as log-linear

models, they could equally well be defined as products of potential functions, as the second equality

above shows. This will be the most convenient approach in domains with a mixture of hard and
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Figure 2.1: Ground Markov network obtained by applying the last two formulas in Table 2.1 to the

constants Anna(A) and Bob(B).

soft constraints (i.e., where some formulas hold with certainty, leading to zero probabilities for some

worlds).

The graphical structure of ML,C follows from Definition 2.1: there is an edge between two

nodes of ML,C iff the corresponding ground predicates appear together in at least one grounding

of one formula in L. Thus, the predicates in each ground formula form a (not necessarily maximal)

clique in ML,C . Figure 2.1 shows the graph of the ground Markov network defined by the last two

formulas in Table 2.1 and the constants Anna and Bob. Each node in this graph is a ground predicate

(e.g., Friends(Anna, Bob)). The graph contains an arc between each pair of predicates that appear

together in some grounding of one of the formulas. ML,C can now be used to infer the probability

that Anna and Bob are friends given their smoking habits, the probability that Bob has cancer given

his friendship with Anna and whether she has cancer, etc.

Each state of ML,C represents a possible world. A possible world is a set of objects, a set of

functions (mappings from tuples of objects to objects), and a set of relations that hold between those

objects; together with an interpretation, they determine the truth value of each ground predicate.

The following assumptions ensure that the set of possible worlds for (L, C) is finite, and that

ML,C represents a unique, well-defined probability distribution over those worlds, irrespective of

the interpretation and domain.These assumptions are quite reasonable in most practical applications,

and greatly simplify the use of MLNs. For the remaining cases, we discuss below the extent to which

each one can be relaxed.

Assumption 2.2. Unique names. Different constants refer to different objects [37].

Assumption 2.3. Domain closure. The only objects in the domain are those representable using the

constant and function symbols in (L, C) [37].
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Table 2.2: Construction of all groundings of a first-order formula under Assumptions 2.2–2.4.

function Ground(F )

input: F , a formula in first-order logic

output: GF , a set of ground formulas

for each existentially quantified subformula ∃x S(x) in F

F ← F with ∃x S(x) replaced by S(c1) ∨ S(c2) ∨ . . . ∨ S(c|C|),
where S(ci) is S(x) with x replaced by ci

GF ← {F }
for each universally quantified variable x

for each formula Fj (x) in GF

GF ← (GF \ Fj (x)) ∪ {Fj (c1), Fj (c2), . . . , Fj (c|C|)},
where Fj (ci) is Fj (x) with x replaced by ci

for each formula Fj ∈ GF

repeat
for each function f (a1, a2, . . .) all of whose arguments are constants

Fj ← Fj with f (a1, a2, . . .) replaced by c, where c = f (a1, a2, . . .)

until Fj contains no functions

return GF

Assumption 2.4. Known functions. For each function appearing in L, the value of that function

applied to every possible tuple of arguments is known, and is an element of C.

This last assumption allows us to replace functions by their values when grounding formulas.

Thus the only ground predicates that need to be considered are those having constants as argu-

ments. The infinite number of terms constructible from all functions and constants in (L, C) (the

“Herbrand universe” of (L, C)) can be ignored, because each of those terms corresponds to a known

constant in C, and predicates involving them are already represented as the predicates involving the

corresponding constants. The possible groundings of a predicate in Definition 2.1 are thus obtained

simply by replacing each variable in the predicate with each constant in C, and replacing each func-

tion term in the predicate by the corresponding constant. Table 2.2 shows how the groundings of a

formula are obtained given Assumptions 2.2–2.4.

Assumption 2.2 (unique names) can be removed by introducing the equality predicate

(Equals(x, y), or x = y for short) and adding the necessary axioms to the MLN: equality is reflexive,

symmetric and transitive; for each unary predicate P , ∀x∀y x = y ⇒ (P(x) ⇔ P(y)); and similarly

for higher-order predicates and functions [37]. The resulting MLN will have a node for each pair of

constants, whose value is 1 if the constants represent the same object and 0 otherwise; these nodes

will be connected to each other and to the rest of the network by arcs representing the axioms above.
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Note that this allows us to make probabilistic inferences about the equality of two constants. The

example in Section 6.3 successfully uses this as the basis of an approach to entity resolution.

If the number u of unknown objects is known, Assumption 2.3 (domain closure) can be

removed simply by introducing u arbitrary new constants. If u is unknown but finite, Assumption 2.3

can be removed by introducing a distribution over u, grounding the MLN with each number of

unknown objects,and computing the probability of a formula F as P(F) = ∑umax

u=0 P(u)P (F |Mu
L,C),

where Mu
L,C is the ground MLN with u unknown objects.Markov logic can also be applied to infinite

domains; details are in Section 5.2.

Let HL,C be the set of all ground terms constructible from the function symbols in L and

the constants in L and C (the “Herbrand universe” of (L, C)). Assumption 2.4 (known functions)

can be removed by treating each element of HL,C as an additional constant and applying the same

procedure used to remove the unique names assumption. For example, with a function G(x) and

constants A and B, the MLN will now contain nodes for G(A) = A, G(A) = B, etc. This leads to an

infinite number of new constants, requiring the corresponding extension of MLNs. However, if we

restrict the level of nesting to some maximum, the resulting MLN is still finite.

To summarize, Assumptions 2.2–2.4 can be removed as long the domain is finite. Section 5.2

discusses how to extend MLNs to infinite domains. In the remainder of this book we proceed under

Assumptions 2.2–2.4, except where noted.

A first-order KB can be transformed into an MLN simply by assigning a weight to each

formula. For example, the formulas (or clauses) and weights in the last two columns of Table 2.1

constitute an MLN. According to this MLN, other things being equal, a world where n smokers

don’t have cancer is e1.5n times less probable than a world where all smokers have cancer. Note that

all the formulas in Table 2.1 are false in the real world as universally quantified logical statements,

but capture useful information on friendships and smoking habits, when viewed as features of a

Markov network. For example, it is well known that teenage friends tend to have similar smoking

habits [73]. In fact, an MLN like the one in Table 2.1 succinctly represents a type of model that is

a staple of social network analysis [149].

It is easy to see that MLNs subsume essentially all propositional probabilistic models, as

detailed below.

Theorem 2.5. Every probability distribution over discrete or finite-precision numeric variables can be

represented as a Markov logic network.

Proof. Consider first the case of Boolean variables (X1, X2, . . . , Xn). Define a predicate of zero

arity Rh for each variable Xh, and include in the MLN L a formula for each possible state of

(X1, X2, . . . , Xn). This formula is a conjunction of n literals, with the hth literal being Rh() if Xh

is true in the state, and ¬Rh() otherwise. The formula’s weight is log P(X1, X2, . . . , Xn). (If some

states have zero probability, use instead the product form (see Equation 2.3), with φi() equal to the

probability of the ith state.) Since all predicates in L have zero arity, L defines the same Markov

network ML,C irrespective of C, with one node for each variable Xh. For any state, the corresponding
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formula is true and all others are false, and thus Equation 2.3 represents the original distribution

(notice that Z = 1). The generalization to arbitrary discrete variables is straightforward, by defining

a zero-arity predicate for each value of each variable. Similarly for finite-precision numeric variables,

by noting that they can be represented as Boolean vectors. ✷

Of course, compact factored models like Markov networks and Bayesian networks can still

be represented compactly by MLNs, by defining formulas for the corresponding factors (arbitrary

features in Markov networks, and states of a node and its parents in Bayesian networks).2

First-order logic (with Assumptions 2.2–2.4 above) is the special case of MLNs obtained

when all weights are equal and tend to infinity, as described below.

Theorem 2.6. Let KB be a satisfiable knowledge base, L be the MLN obtained by assigning weight w to

every formula in KB, C be the set of constants appearing in KB, Pw(x) be the probability assigned to a (set

of ) possible world(s) x by ML,C , XKB be the set of worlds that satisfy KB, and F be an arbitrary formula

in first-order logic. Then:

1. ∀x ∈ XKB limw→∞ Pw(x) = |XKB|−1

∀x 
∈ XKB limw→∞ Pw(x) = 0

2. For all F , KB |= F iff limw→∞ Pw(F ) = 1.

Proof. Let k be the number of ground formulas in ML,C . By Equation 2.3, if x ∈ XKB then

Pw(x) = ekw/Z, and if x 
∈ XKB then Pw(x) ≤ e(k−1)w/Z. Thus all x ∈ XKB are equiprobable and

limw→∞ P(X \ XKB)/P (XKB) ≤ limw→∞(|X \ XKB|/|XKB|)e−w = 0, proving Part 1. By defini-

tion of entailment, KB |= F iff every world that satisfies KB also satisfies F . Therefore, letting

XF be the set of worlds that satisfy F , if KB |= F then XKB ⊆ XF and Pw(F ) = ∑

x∈XF
Pw(x) ≥

Pw(XKB). Since, from Part 1, limw→∞ Pw(XKB) = 1, this implies that if ’ KB |= F then Pw(F ) = 1.

The inverse direction of Part 2 is proved by noting that if Pw(F ) = 1 then every world with non-zero

probability must satisfy F , and this includes every world in XKB. ✷

In other words, in the limit of all equal infinite weights, the MLN represents a uniform

distribution over the worlds that satisfy the KB, and all entailment queries can be answered by

computing the probability of the query formula and checking whether it is 1. Even when weights

are finite, first-order logic is “embedded” in MLNs in the following sense. Assume without loss of

generality that all weights are non-negative. (A formula with a negative weight w can be replaced

by its negation with weight −w.) If the knowledge base composed of the formulas in an MLN L

(negated, if their weight is negative) is satisfiable, then, for any C, the satisfying assignments are the

modes of the distribution represented by ML,C . This is because the modes are the worlds x with

maximum
∑

i wini(x) (see Equation 2.3), and this expression is maximized when all groundings of

2While some conditional independence structures can be compactly represented with directed graphs but not with undirected
ones, they still lead to compact models in the form of Equation 2.3 (i.e., as products of potential functions).
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all formulas are true (i.e., the KB is satisfied). Unlike an ordinary first-order KB, however, an MLN

can produce useful results even when it contains contradictions. An MLN can also be obtained by

merging several KBs, even if they are partly incompatible. This is potentially useful in areas like the

Semantic Web [5] and mass collaboration [116].

It is interesting to see a simple example of how MLNs generalize first-order logic. Consider an

MLN containing the single formula ∀x R(x) ⇒ S(x) with weight w, and C = {A}.This leads to four

possible worlds: {¬R(A), ¬S(A)}, {¬R(A), S(A)}, {R(A), ¬S(A)}, and {R(A), S(A)}. From Equation 2.3

we obtain that P({R(A), ¬S(A)}) = 1/(3ew + 1) and the probability of each of the other three worlds

is ew/(3ew + 1). (The denominator is the partition function Z; see Section 2.2.) Thus, if w > 0, the

effect of the MLN is to make the world that is inconsistent with ∀x R(x) ⇒ S(x) less likely than

the other three. From the probabilities above we obtain that P(S(A)|R(A)) = 1/(1 + e−w). When

w → ∞, P(S(A)|R(A)) → 1, recovering the logical entailment.

A first-order KB partitions the set of possible worlds into two subsets: those that satisfy the KB

and those that do not. An MLN has many more degrees of freedom: it can partition the set of possible

worlds into many more subsets, and assign a different probability to each. How to use this freedom

is a key decision for both knowledge engineering and learning. At one extreme, the MLN can add

little to logic, treating the whole knowledge base as a single formula, and assigning one probability to

the worlds that satisfy it and another to the worlds that do not. At the other extreme, each formula

in the KB can be converted into clausal form, and a weight associated with each clause.3 The more

finely divided into subformulas a KB is, the more gradual the drop-off in probability as a world

violates more of those subformulas, and the greater the flexibility in specifying distributions over

worlds. From a knowledge engineering point of view, the decision about which formulas constitute

indivisible constraints should reflect domain knowledge and the goals of modeling. From a learning

point of view, dividing the KB into more formulas increases the number of parameters, with the

corresponding tradeoff in bias and variance.

It is also interesting to see an example of how MLNs generalize commonly-used statistical

models. One of the most widely used models for classification is logistic regression. Logistic re-

gression predicts the probability that an example with features f = (f1, . . . , fi, . . .) is of class c

according to the equation:

log

(

P(C = 1|F = f )

P (C = 0|F = f )

)

= a +
n

∑

i=1

bifi

This can be implemented as an MLN using a unit clause for the class, C(x), with weight a, and a

formula of the form Fi(x) ∧ C(x) for each feature, with weight bi . This yields the distribution

P(C = c, F = f ) = 1

Z
exp

(

ac +
∑

i

bific

)

3This conversion can be done in the standard way [37], except that, instead of introducing Skolem functions, existentially quantified
formulas should be replaced by disjunctions, as in Table 2.2.
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resulting in

P(C = 1|F = f )

P (C = 0|F = f )
= exp

(

a + ∑

i bifi

)

exp(0)
= exp

(

a +
n

∑

i

bifi

)

as desired.

In practice, we have found it useful to add each predicate to the MLN as a unit clause.

In other words, for each predicate R(x1, x2, . . .) appearing in the MLN, we add the formula

∀x1, x2, . . . R(x1, x2, . . .) with some weight wR .The weight of a unit clause can (roughly speaking)

capture the marginal distribution of the corresponding predicate, leaving the weights of the non-unit

clauses free to model only dependencies between predicates.

When manually constructing an MLN or interpreting a learned one, it is useful to have an

intuitive understanding of the weights. Consider a ground formula F with weight w. All other things

being equal, a world where F is true is ew times as likely as a world where F is false. Let Ut and

Uf be the number of possible worlds in which F is true and false, respectively. If F is independent

from all other ground formulas, then its probability is given by the following function:

P(F) = 1

1 + Uf

Ut
e−w

Solving for w:

w = log
P(F)

P (¬F)
− log

Ut

Uf

Therefore, w can be interpreted as the difference between the log odds of F according to the MLN

and according to the uniform distribution. However, if F shares atoms with other formulas, as will

typically be the case, it may not be possible to keep those formulas’ truth values unchanged while

reversing F ’s. In this case, there is no longer a one-to-one correspondence between weights and

probabilities of formulas.4 Nevertheless, the probabilities of all formulas collectively determine all

weights if we view them as constraints on a maximum entropy distribution, or treat them as empirical

probabilities and learn the maximum likelihood weights (the two are equivalent) [24]. Thus a good

way to set the weights of an MLN is to write down the probability with which each formula should

hold, treat these as empirical frequencies, and learn the weights from them using the algorithms in

Section 4.1. Conversely, the weights in a learned MLN can be viewed as collectively encoding the

empirical formula probabilities.

The size of ground Markov networks can be vastly reduced by having typed constants and

variables, and only grounding variables to constants of the same type. However, even in this case the

size of the network may still be extremely large. Fortunately, there are a number of ways to further

reduce this size, as we will see in Chapter 3.

4This is an unavoidable side-effect of the power and flexibility of Markov networks. In Bayesian networks, parameters are proba-
bilities, but at the cost of greatly restricting the ways in which the distribution may be factored. In particular, potential functions
must be conditional probabilities, and the directed graph must have no cycles. The latter condition is particularly troublesome to
enforce in relational extensions [141].
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2.4 RELATION TO OTHER APPROACHES

There is a very large literature relating logic and probability; here we will focus only on the approaches

most closely related to Markov logic.

EARLY WORK
Attempts to combine logic and probability in AI date back to at least Nilsson [94]. Bacchus [1],

Halpern [43] and coworkers (e.g., [2]) studied the problem in detail from a theoretical standpoint.

They made a distinction between statistical statements (e.g., “65% of the students in our department

are undergraduate”) and statements about possible worlds (e.g., “The probability that Anna is an

undergraduate is 65%”), and provided methods for computing the latter from the former. In their

approach, a KB did not specify a complete and unique distribution over possible worlds, leaving its

status as a probabilistic model unclear. MLNs overcome this limitation by viewing KBs as Markov

network templates.

Paskin [97] extended the work of Bacchus et al. [2] by associating a probability with each first-

order formula, and taking the maximum entropy distribution compatible with those probabilities.

This representation was still quite brittle, with a world that violates a single grounding of a universally

quantified formula being considered as unlikely as a world that violates all of them. In contrast, in

MLNs a rule like ∀x Smokes(x) ⇒ Cancer(x) causes the probability of a world to decrease smoothly

as the number of cancer-free smokers in it increases.

KNOWLEDGE-BASED MODEL CONSTRUCTION
Knowledge-based model construction (KBMC) is a combination of logic programming and Bayesian

networks [151, 93, 55]. As in MLNs, nodes in KBMC represent ground predicates. Given a Horn

KB, KBMC answers a query by finding all possible backward-chaining proofs of the query and

evidence predicates from each other, constructing a Bayesian network over the ground predicates

in the proofs, and performing inference over this network. The parents of a predicate node in the

network are deterministic AND nodes representing the bodies of the clauses that have that node as

the head. The conditional probability of the node given these is specified by a combination function

(e.g., noisy OR or logistic regression). MLNs have several advantages compared to KBMC: they

allow arbitrary formulas (not just Horn clauses) and inference in any direction, they sidestep the

thorny problem of avoiding cycles in the Bayesian networks constructed by KBMC, and they do not

require the introduction of ad hoc combination functions for clauses with the same consequent.

A KBMC model can be translated into an MLN by writing down a set of formulas for each

first-order predicate Pk(...) in the domain. Each formula is a conjunction containing Pk(...) and one

literal per parent of Pk(...) (i.e., per first-order predicate appearing in a Horn clause having Pk(...)

as the consequent). A subset of these literals are negated; there is one formula for each possible

combination of positive and negative literals. The weight of the formula is w = log[p/(1 − p)],
where p is the conditional probability of the child predicate when the corresponding conjunction

of parent literals is true, according to the combination function used. If the combination function is
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logistic regression, it can be represented using only a linear number of formulas, taking advantage

of the fact that a logistic regression model is a (conditional) Markov network with a binary clique

between each predictor and the response.Noisy OR can similarly be represented with a linear number

of parents.

OTHER LOGIC PROGRAMMING APPROACHES
Stochastic logic programs (SLPs) [87, 17] are a combination of logic programming and log-linear

models. Puech and Muggleton [111] showed that SLPs are a special case of KBMC, and thus they

can be converted into MLNs in the same way. Like MLNs, SLPs have one coefficient per clause,

but they represent distributions over Prolog proof trees rather than over predicates; the latter have

to be obtained by marginalization. Similar remarks apply to a number of other representations that

are essentially equivalent to SLPs, like independent choice logic [103] and PRISM [129].

MACCENT [23] is a system that learns log-linear models with first-order features; each

feature is a conjunction of a class and a Prolog query (clause with empty head). A key difference

between MACCENT and MLNs is that MACCENT is a classification system (i.e., it predicts

the conditional distribution of an object’s class given its properties), while an MLN represents the

full joint distribution of a set of predicates. Like any probability estimation approach, MLNs can

be used for classification simply by issuing the appropriate conditional queries.5 In particular, a

MACCENT model can be converted into an MLN simply by defining a class predicate, adding the

corresponding features and their weights to the MLN, and adding a formula with infinite weight

stating that each object must have exactly one class. (This fails to model the marginal distribution

of the non-class predicates, which is not a problem if only classification queries will be issued.)

MACCENT can make use of deterministic background knowledge in the form of Prolog clauses;

these can be added to the MLN as formulas with infinite weight. In addition, MLNs allow uncertain

background knowledge (via formulas with finite weights). As we demonstrate in Section 6.1, MLNs

can be used for collective classification, where the classes of different objects can depend on each

other; MACCENT, which requires that each object be represented in a separate Prolog knowledge

base, does not have this capability.

Constraint logic programming (CLP) is an extension of logic programming where variables

are constrained instead of being bound to specific values during inference [64]. Probabilistic CLP

generalizes SLPs to CLP [121], and CLP(BN ) combines CLP with Bayesian networks [128].

Unlike in MLNs, constraints in CLP(BN ) are hard (i.e., they cannot be violated; rather, they define

the form of the probability distribution).

PROBABILISTIC RELATIONAL MODELS
Probabilistic relational models (PRMs) [36] are a combination of frame-based systems and Bayesian

networks. PRMs can be converted into MLNs by defining a predicate S(x, v) for each (propositional

or relational) attribute of each class, where S(x, v) means “The value of attribute S in object x is v.”

5Conversely, joint distributions can be built up from classifiers (e.g., [44]), but this would be a significant extension of MACCENT.
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A PRM is then translated into an MLN by writing down a formula for each line of each (class-level)

conditional probability table (CPT) and value of the child attribute. The formula is a conjunction of

literals stating the parent values and a literal stating the child value, and its weight is the logarithm

of P(x|Parents(x)), the corresponding entry in the CPT. In addition, the MLN contains formulas

with infinite weight stating that each attribute must take exactly one value. This approach handles

all types of uncertainty in PRMs (attribute, reference and existence uncertainty).

As Taskar et al. [141] point out, the need to avoid cycles in PRMs causes significant represen-

tational and computational difficulties. Inference in PRMs is done by creating the complete ground

network, which limits their scalability. PRMs require specifying a complete conditional model for

each attribute of each class, which in large complex domains can be quite burdensome. In contrast,

MLNs create a complete joint distribution from whatever number of first-order features the user

chooses to specify.

RELATIONAL MARKOV NETWORKS
Relational Markov networks (RMNs) use database queries as clique templates, and have a feature

for each state of a clique [141]. MLNs generalize RMNs by providing a more powerful language for

constructing features (first-order logic instead of conjunctive queries), and by allowing uncertainty

over arbitrary relations (not just attributes of individual objects). RMNs are exponential in clique

size, while MLNs allow the user (or learner) to determine the number of features, making it possible

to scale to much larger clique sizes.

STRUCTURAL LOGISTIC REGRESSION
In structural logistic regression (SLR) [109], the predictors are the output of SQL queries over the

input data. Just as a logistic regression model is a discriminatively-trained Markov network, an SLR

model is a discriminatively-trained MLN.6

RELATIONAL DEPENDENCY NETWORKS
In a relational dependency network (RDN), each node’s probability conditioned on its Markov

blanket is given by a decision tree [90]. Every RDN has a corresponding MLN in the same way that

every dependency network has a corresponding Markov network, given by the stationary distribution

of a Gibbs sampler operating on it [44].

PLATES AND PROBABILISTIC ER MODELS
Large graphical models with repeated structure are often compactly represented using plates [14].

MLNs subsume plates as a representation language. In addition, they allow individuals and their

relations to be explicitly represented (see [18]), and context-specific independencies to be compactly

written down, instead of left implicit in the node models. More recently, Heckerman et al. [46] have

proposed a language based on entity-relationship models that combines the features of plates and

6Use of SQL aggregates requires that their definitions be imported into the MLN.
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PRMs; this language is a special case of MLNs in the same way that ER models are a special case

of logic. Probabilistic ER models allow logical expressions as constraints on how ground networks

are constructed, but the truth values of these expressions have to be known in advance; MLNs allow

uncertainty over all logical expressions.

BLOG
Milch et al. [84] have proposed a language called BLOG, designed to avoid making the unique

names and domain closure assumptions. A BLOG program specifies procedurally how to generate

a possible world, and does not allow arbitrary first-order knowledge to be easily incorporated. Also,

it only specifies the structure of the model, leaving the parameters to be specified by external calls.

BLOG models are directed graphs and need to avoid cycles, which substantially complicates their

design. We saw in the previous section how to remove the unique names and domain closure

assumptions in MLNs. (When there are unknown objects of multiple types, a random variable for

the number of each type is introduced.) Inference about an object’s attributes, rather than those of

its observations, can be done simply by having variables for objects as well as for their observations

(e.g., for books as well as citations to them). To our knowledge, BLOG has not yet been evaluated

on any real-world problems, and no learning or general-purpose efficient inference algorithms for

it have been developed.

FURTHER READING

See Richardson and Domingos [117] for a somewhat expanded introduction to the Markov logic

representation. See Getoor and Taskar [39] for details on other representations that combine logic

and probability. For more background on first-order logic, see Genesereth and Nilsson [37] or other

textbooks. For more background on Markov networks and other graphical models, see Koller and

Friedman [61] or Pearl [99].
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C H A P T E R 3

Inference
Inference in Markov logic lets us reason probabilistically about complex relationships. Since an

MLN acts as a template for a Markov network, we can always answer probabilistic queries using

standard Markov network inference methods on the instantiated network. However, due to the size

and complexity of the resulting network, this is often infeasible. Instead, the methods we discuss

here combine probabilistic methods with ideas from logical inference, including satisfiability and

resolution. This leads to efficient methods that take full advantage of the logical structure.

We consider two basic types of inference: finding the most likely state of the world consistent

with some evidence, and computing arbitrary conditional probabilities. We then discuss two ap-

proaches to making inference more tractable on large, relational problems: lazy inference, in which

only the groundings that deviate from a “default” value need to be instantiated; and lifted inference,

in which we group indistinguishable atoms together and treat them as a single unit during inference.

3.1 INFERRING THE MOST PROBABLE EXPLANATION

A basic inference task is finding the most probable state of the world y given some evidence x, where

x is a set of literals. (This is known as MAP inference in the Markov network literature, and MPE

inference in the Bayesian network literature.1) For Markov logic, this is formally defined as follows:

arg max
y

P(y|x) = arg max
y

1

Zx

exp

(

∑

i

wini(x, y)

)

= arg max
y

∑

i

wini(x, y) (3.1)

The first equality is due to Equation 2.3, which defines of the probability of a possible world. The

normalization constant is written as Zx to reflect the fact that we are only normalizing over possible

worlds consistent with x. In the second equality, we remove Zx since, being constant, it does not

affect the arg max operation. We can also remove the exponentiation because it is a monotonic

function.Therefore, the MPE problem in Markov logic reduces to finding the truth assignment that

maximizes the sum of weights of satisfied clauses.

This can be done using any weighted satisfiability solver, and (remarkably) need not be more

expensive than standard logical inference by model checking. (In fact, it can be faster, if some hard

constraints are softened.) The problem is NP-hard in general, but effective solvers exist, both exact

and approximate.The most commonly used approximate solver is MaxWalkSAT, a weighted variant

1 The term “MAP inference” is sometimes used to refer to finding the most probable configuration of a set of query variables,
given some evidence. The necessity of summing out all non-query, non-evidence variables makes this a harder inference problem
than the one we consider here, in which y is the complete state of the world.
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Table 3.1: MaxWalkSAT algorithm for MPE inference.

function MaxWalkSAT(L, mt , mf , target, p)

inputs: L, a set of weighted clauses

mt , the maximum number of tries

mf , the maximum number of flips

target, target solution cost

p, probability of taking a random step

output: soln, best variable assignment found

vars ← variables in L

for i ← 1 to mt

soln ← a random truth assignment to vars

cost ← sum of weights of unsatisfied clauses in soln

for i ← 1 to mf

if cost ≤ target

return “Success, solution is”, soln

c ← a randomly chosen unsatisfied clause

if Uniform(0,1) < p

vf ← a randomly chosen variable from c

else
for each variable v in c

compute DeltaCost(v)

vf ← v with lowest DeltaCost(v)

soln ← soln with vf flipped

cost ← cost + DeltaCost(vf )

return “Failure, best assignment is”, best soln found

of the WalkSAT local-search satisfiability solver, which can solve hard problems with hundreds of

thousands of variables in minutes [53]. MaxWalkSAT performs this stochastic search by repeatedly

picking an unsatisfied clause at random and flipping the truth value of one of the atoms in it. With

a certain probability, the atom is chosen randomly; otherwise, the atom is chosen to maximize the

sum of satisfied clause weights when flipped. This combination of random and greedy steps allows

MaxWalkSAT to avoid getting stuck in local optima while searching. Pseudocode for MaxWalkSAT

is shown in Table 3.1. DeltaCost(v) computes the change in the sum of weights of unsatisfied clauses

that results from flipping variable v in the current solution. Uniform(0,1) returns a uniform deviate

from the interval [0, 1].
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3.2 COMPUTING CONDITIONAL PROBABILITIES

MLNs can answer arbitrary queries of the form “What is the probability that formula F1 holds

given that formula F2 does?” If F1 and F2 are two formulas in first-order logic, C is a finite set of

constants including any constants that appear in F1 or F2, and L is an MLN, then

P(F1|F2, L, C) = P(F1|F2, ML,C)

= P(F1 ∧ F2|ML,C)

P (F2|ML,C)

=
∑

x∈XF1
∩XF2

P(X=x|ML,C)
∑

x∈XF2
P(X=x|ML,C)

(3.2)

where XFi
is the set of worlds where Fi holds, ML,C is the Markov network defined by L and C,

and P(X = x|ML,C) is given by Equation 2.3. Ordinary conditional queries in graphical models are

the special case of Equation 3.2 where all predicates in F1, F2 and L are zero-arity and the formulas

are conjunctions. The question of whether a knowledge base KB entails a formula F in first-order

logic is the question of whether P(F |LKB, CKB,F ) = 1, where L is the MLN obtained by assigning

infinite weight to all the formulas in KB, and CKB,F is the set of all constants appearing in KB or F .

The question is answered by computing P(F |LKB, CKB,F ) by Equation 3.2, with F2 = True.

Computing Equation 3.2 directly is intractable in all but the smallest domains. Since MLN

inference subsumes probabilistic inference, which is #P-complete, and logical inference, which is

NP-complete even in finite domains, no better results can be expected. However, many of the large

number of techniques for efficient inference in either case are applicable to MLNs. Because MLNs

allow fine-grained encoding of knowledge, including context-specific independences, inference in

them may in some cases be more efficient than inference in an ordinary graphical model for the same

domain. On the logic side, the probabilistic semantics of MLNs allows for approximate inference,

with the corresponding potential gains in efficiency.

In principle, P(F1|F2, L, C) can be approximated using an MCMC algorithm that rejects

all moves to states where F2 does not hold, and counts the number of samples in which F1 holds.

However, this may be too slow for arbitrary formulas. Instead, we focus on the case where F2 is a

conjunction of ground literals. While less general than Equation 3.2, this is the most frequent type

of query in practice. In this scenario, further efficiency can be gained by applying a generalization of

knowledge-based model construction [151]. The basic idea is to only construct the minimal subset

of the ground network required to answer the query. This network is constructed by checking if the

atoms that the query formula directly depends on are in the evidence. If they are, the construction is

complete. Those that are not are added to the network, and we in turn check the atoms they depend

on. This process is repeated until all relevant atoms have been retrieved. While in the worst case it

yields no savings, in practice it can vastly reduce the time and memory required for inference.

Pseudocode for the network construction algorithm is shown in Table 3.2. See Figure 3.1 for

an example of the resulting network. The size of the network returned may be further reduced, and

the algorithm sped up, by noticing that any ground formula that is made true by the evidence can
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Table 3.2: Network construction algorithm for inference in MLNs.

function ConstructNetwork(F1, F2, L, C)

inputs: F1, a set of ground predicates with unknown truth values (the “query”)

F2, a set of ground predicates with known truth values (the “evidence”)

L, a Markov logic network

C, a set of constants

output: M , a ground Markov network

calls: MB(q), the Markov blanket of q in ML,C

G ← F1

while F1 
= ∅
for all q ∈ F1

if q 
∈ F2

F1 ← F1 ∪ (MB(q) \ G)

G ← G ∪ MB(q)

F1 ← F1 \ {q}
return M , the ground Markov network composed of all nodes in G, all arcs

between them in ML,C , and the features and weights on the corresponding cliques.

be ignored, and the corresponding arcs removed from the network. In the worst case, the network

contains O(|C|a) nodes, where a is the largest predicate arity in the domain, but in practice, it may

be much smaller.

Once the network has been constructed, we can apply any standard inference technique for

Markov networks, such as Gibbs sampling, with the nodes in F2 set to their respective values in

F2. The basic Gibbs step consists of sampling one ground predicate given its Markov blanket. The

Markov blanket of a ground predicate is the set of ground predicates that appear in some grounding

of a formula with it. The probability of a ground predicate Xl when its Markov blanket Bl is in state

bl is

P(Xl =xl|Bl =bl) (3.3)

=
exp(

∑

fi∈Fl
wifi(Xl =xl, Bl =bl))

exp(
∑

fi∈Fl
wifi(Xl =0, Bl =bl)) + exp(

∑

fi∈Fl
wifi(Xl =1, Bl =bl))

where Fl is the set of ground formulas that Xl appears in, and fi(Xl = xl, Bl =bl) is the value

(0 or 1) of the feature corresponding to the ith ground formula when Xl = xl and Bl =bl . For

sets of predicates of which exactly one is true in any given world (e.g., the possible values of an

attribute), blocking can be used (i.e., one predicate is set to true and the others to false in one

step, by sampling conditioned on their collective Markov blanket). The estimated probability of a
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Figure 3.1: Ground network for computing P(Cancer(B)|Smokes(A), Friends(A, B),
Friends(B, A)), as built by the ConstructNetwork algorithm (Table 3.2). The constants

and network used are the same as in Figure 2.1, but for this query and evidence the atoms

Friends(A, A) and Cancer(A) are irrelevant and can be omitted from the network.

conjunction of ground literals is simply the fraction of samples in which the ground literals are true,

after the Markov chain has converged.

HANDLING DETERMINISTIC DEPENDENCIES
One problem with using Gibbs sampling for inference in MLNs is that it breaks down in the

presence of deterministic or near-deterministic dependencies (as do other probabilistic inference

methods, e.g., belief propagation [156]). Deterministic dependencies break up the space of possible

worlds into regions that are not reachable from each other, violating a basic requirement of MCMC.

Near-deterministic dependencies greatly slow down inference, by creating regions of low probability

that are very difficult to traverse. Running multiple chains with random starting points does not

solve this problem, because it does not guarantee that each region will be sampled with frequency

proportional to their probability, and there may be a very large number of regions.

The MC-SAT algorithm addresses this problem by combining MCMC with satisfiability

testing [105]. MC-SAT is a slice sampling MCMC algorithm which uses a combination of satisfia-

bility testing and simulated annealing to sample from the slice.The advantage of using a satisfiability

solver (WalkSAT) is that it efficiently finds isolated modes in the distribution, and as a result the

Markov chain mixes very rapidly. The slice sampling scheme ensures that detailed balance is (ap-

proximately) preserved.

MC-SAT is orders of magnitude faster than standard MCMC methods such as Gibbs sam-

pling and simulated tempering, and is applicable to any model that can be expressed in Markov

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-004.jpg&w=332&h=171
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Figure 3.2: Visual illustration of the MCMC slice sampling method. Given the kth sample, x(k),

we first sample the auxiliary variable u(k) uniformly from the range [0, P (x(k)]. The next sample in

the Markov chain, x(k+1), is sampled uniformly from all x with P(x) ≥ u(k). This set of candidate

x ’s is called the slice.

logic, including many standard models in statistical physics, vision, natural language processing,

social network analysis, spatial statistics, etc.

Slice sampling [19] is an instance of a widely used approach in MCMC inference that

introduces auxiliary variables, u, to capture the dependencies between observed variables, x.

For example, to sample from P(X=x) = (1/Z)
∏

k φk(x{k}), we can define P(X=x, U =u) =
(1/Z)

∏

k I[0,φk(x{k})](uk), where φk is the kth potential function, uk is the kth auxiliary variable,

I[a,b](uk) = 1 if a ≤ uk ≤ b, and I[a,b](uk) = 0 otherwise. The marginal distribution of X under

this joint is P(X=x), so to sample from the original distribution it suffices to sample from P(x, u)

and ignore the u values.This can be done by alternately sampling P(u|x) and P(x|u). See Figure 3.2

for a graphical example of slice sampling.

P(uk|x) is uniform in [0, φk(x{k})], and thus easy to sample from. The main challenge is to

sample x given u, which is uniform among all X that satisfy φk(x{k}) ≥ uk for all k. MC-SAT uses

SampleSAT [150] to do this. In each sampling step, MC-SAT takes the set of all ground clauses

satisfied by the current state of the world and constructs a subset,M , that must be satisfied by the next

sampled state of the world. (For the moment we will assume that all clauses have positive weight.)

Specifically, a satisfied ground clause is included in M with probability 1 − e−w, where w is the

clause’s weight. We then take as the next state a uniform sample from the set of states SAT (M) that

satisfy M . (Notice that SAT (M) is never empty because it always contains at least the current state.)

Table 3.3 gives pseudocode for MC-SAT. US is the uniform distribution over set S. At each step,

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-005.jpg&w=334&h=178
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Table 3.3: Efficient MCMC inference algorithm for MLNs.

function MC-SAT(L, n)

inputs: L, a set of weighted clauses {(wj , cj )}
n, number of samples

output: {x(1), . . . , x(n)}, set of n samples

x(0) ← Satisfy(hard clauses in L)

for i ← 1 to n

M ← ∅
for all (wk, ck) ∈ L satisfied by x(i−1)

With probability 1 − e−wk add ck to M

Sample x(i) ∼ USAT (M)

all hard clauses are selected with probability 1, and thus all sampled states satisfy them. Negative

weights are handled by noting that a clause with weight w < 0 is equivalent to its negation with

weight −w, and a clause’s negation is the conjunction of the negations of all of its literals. Thus,

instead of checking whether the clause is satisfied, we check whether its negation is satisfied; if it is,

with probability 1 − ew we select all of its negated literals, and with probability ew we select none.

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance and er-

godicity [105], assuming a perfect uniform sampler. In general, uniform sampling is #P-hard and

SampleSAT [150] only yields approximately uniform samples. However, experiments show that

MC-SAT is still able to produce very accurate probability estimates, and its performance is not very

sensitive to the parameter settings of SampleSAT.

3.3 LAZY INFERENCE

One problem with the aforementioned approaches is that they require propositionalizing the domain

(i.e., grounding all atoms and clauses in all possible ways), which consumes memory exponential in

the arity of the clauses. Lazy inference methods [135, 108] overcome this by only grounding atoms

and clauses as needed.This takes advantage of the sparseness of relational domains,where most atoms

are false and most clauses are trivially satisfied. For example, in the domain of scientific research

papers, most groundings of the atom Author(person, paper) are false, and most groundings of

the clause Author(p1, paper) ∧ Author(p2, paper) ⇒ Coauthor(p1, p2) are trivially satisfied.

With lazy inference, the memory cost does not scale with the number of possible clause groundings,

but only with the number of groundings that have non-default values at some point in the inference.

We first describe a general approach for making inference algorithms lazy and then show how

it can be applied to create lazy versions of MaxWalkSAT and MC-SAT. This method applies to

any algorithm that works by repeatedly selecting a function or variable and recomputing its value
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depending only on a subset of the other variables/functions.These include a diverse set of algorithms

for a variety of applications: WalkSAT, MaxWalkSAT, SampleSAT, DPLL, iterated conditional

modes, simulated annealing and MCMC algorithms that update one variable at a time (Gibbs

sampling, single-component Metropolis-Hastings and simulated tempering, etc.), MC-SAT, belief

propagation, algorithms for maximum expected utility, etc.

Our approach depends on the concept of “default” values that occur much more frequently

than others. In relational domains, the default is false for atoms and true for clauses. In a domain

where most variables assume the default value, it is wasteful to allocate memory for all variables

and functions in advance. The basic idea is to allocate memory only for a small subset of “active”

variables and functions, and activate more if necessary as inference proceeds. In addition to saving

memory, this can reduce inference time as well, for we do not allocate memory and compute values

for functions that are never used.

Definition 3.1. Let X be the set of variables and D be their domain.2 The default value d∗ ∈ D

is the most frequent value of the variables. An evidence variable is a variable whose value is given

and fixed. A function f = f (z1, z2, · · · , zk) inputs zi ’s, which are either variables or functions, and

outputs some value in the range of f .

Although these methods can be applied to other inference algorithms, we focus on relational

domains. Variables are ground atoms, which take binary values (i.e., D = {true, false}). The default

value for variables is false (i.e., d∗ = false). Examples of functions are clauses and DeltaCost in

MaxWalkSAT. Like variables, functions may also have default values (e.g., true for clauses). The

inputs to a relational inference algorithm are a weighted KB and a set of evidence atoms (DB).

Eager algorithms work by first carrying out propositionalization and then calling a propositional

algorithm. In lazy inference, we directly work on the KB and DB.The following concepts are crucial

to lazy inference.

Definition 3.2. A variable v is active iff v is set to a non-default value at some point, and x is

inactive if the value of x has always been d∗. A function f is activated by a variable v if either v is

an input of f , or v activates a function g that is an input of f .

BASIC LAZY INFERENCE
Let A be the eager algorithm that we want to make lazy. We make three assumptions about A:

1. A updates one variable at a time. (If not, the extension is straightforward.)

2. The values of variables in A are properly encapsulated so that they can be accessed by the

rest of the algorithm only via two methods: ReadVar(x) (which returns the value of x) and

WriteVar(x, v) (which sets the value of x to v). This is reasonable given the conventions in

software development, and if not, it is easy to implement.

2For simplicity, we assume that all variables have the same domain. The extension to different domains is straightforward.
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3. A always sets values of variables before calling a function that depends on those variables, as

it should be.

To develop the lazy version of A, we first identify the variables (usually all) and functions to make

lazy. We then modify the value-accessing methods and replace the propositionalization step with

lazy initialization as follows. The rest of the algorithm remains the same.

ReadVar(x): If x is in memory, Lazy-A returns its value as A; otherwise, it returns d∗.

WriteVar(x, v): If x is in memory, Lazy-A updates its value as A. If not, and if v = d∗, no action

is taken; otherwise, Lazy-A activates (allocates memory for) x and the functions activated by

x, and then sets the value.

Initialization: Lazy-A starts by allocating memory for the lazy functions that output non-default

values when all variables assume the default values. It then calls WriteVar to set values for

evidence variables, which activates those evidence variables with non-default values and the

functions they activate. Such variables become the initial active variables and their values are

fixed throughout the inference.

Lazy-A carries out the same inference steps as A and produces the same result. It never

allocates memory for more variables/functions than A, but each access incurs slightly more overhead

(in checking whether a variable or function is in memory). In the worst case, most variables are

updated, and Lazy-A produces little savings. However, if the updates are sparse, as is the case for

most algorithms in relational domains, Lazy-A can greatly reduce memory and time because it

activates and computes the values for many fewer variables and functions.

REFINEMENTS
The basic version of lazy inference above is generally applicable, but it does not exploit the character-

istics of the algorithm and may yield little savings in some cases. Next, we describe three refinements

that apply to many algorithms.See Poon et al. [108] for additional optimizations and implementation

details.

Function activation: To find the functions activated by a variable v, the basic version includes all

functions that depend on v by traversing the dependency graph of variables/functions, starting

from v. This can be done very efficiently, but may include functions whose values remain

the default even if v changes its value. A more intelligent approach traverses the graph and

only returns functions whose values become non-default if v changes its value. In general,

this requires evaluating the functions, which can be expensive, but for some functions (e.g.,

clauses), it can be done efficiently as described at the end of this section. Which approach to

use depends on the function.

Variable recycling: In the basic version, a variable is activated once it is set to a non-default value,

and so are the functions activated by the variable. This is necessary if the variable keeps the
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non-default value, but could be wasteful in algorithms where many such updates are temporary

(e.g., in simulated annealing and MCMC, we may temporarily set a variable to true to compute

the probability for flipping). To save memory, if an inactive variable considered for flipping is

not flipped in the end, we can discard it along with the functions activated by it. However, this

will increase inference time if the variable is considered again later, so we should only apply

this if we want to trade off time for memory, or if the variable is unlikely to be considered

again.

Smart randomization: Many local-search and MCMC algorithms use randomization to set initial

values for variables, or to choose the next variable to update.This is usually done without taking

the sparsity of relational domains into account. For example, WalkSAT assigns random initial

values to all variables; in a sparse domain where most atoms should be false, this is wasteful,

because we will need to flip many atoms back to false. In lazy inference, we can randomize in a

better way by focusing more on the active atoms and those “nearby,” since they are more likely

to become true. Formally, a variable u is a 1-neighbor of a variable v if u is an input of a function

f activated by v; u is a k-neighbor of v (k > 1) if u is a (k − 1)-neighbor of v, or if u is a

1-neighbor of a (k − 1)-neighbor of v. For initialization, we only randomize the k-neighbors

of initial active variables; for variable selection, we also favor such variables.3 k can be used

to trade off efficiency and solution quality. With large k, this reduces to eager inference. The

smaller k is, the more time and memory we can save from reducing the number of activations.

However, we also run the risk of missing some relevant variables. If the domain is sparse, as

typical relational domains are, the risk is negligible, and empirically we have observed that

k = 1 greatly improves efficiency without sacrificing solution quality.

LAZYSAT
Applying this method to MaxWalkSAT is fairly straightforward: each ground atom is a variable and

each ground clause is a function to be made lazy. Following Singla and Domingos [135], we refer

to the resulting algorithm as LazySAT. LazySAT initializes by activating true evidence atoms and

initial unsatisfied clauses (i.e., clauses which are unsatisfied when the true evidence atoms are set

to true and all other atoms are set to false).4 At each step in the search, the atom that is flipped is

activated, as are any clauses that by definition should become active as a result. While computing

DeltaCost(v), if v is active, the relevant clauses are already in memory; otherwise, they will be

activated when v is set to true (a necessary step before computing the cost change when v is set to

true). Table 3.4 gives pseudocode for LazySAT.

See Figure 3.3 for a sample application of LazySAT based on the Friends and Smokers

example.The figure on the left shows the initial state with the evidence Sm(A),Fr(A, B), and Fr(B, C).

3This does not preclude activation of remote relevant variables, which can happen after their clauses are active, or by random
selection (e.g., in simulated annealing).

4 This differs from MaxWalkSAT, which assigns random values to all atoms. However, the LazySAT initialization is a valid
MaxWalkSAT initialization, and the two give very similar results empirically. Given the same initialization, the two algorithms
will produce exactly the same results.
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Table 3.4: Lazy variant of the MaxWalkSAT algorithm.

function LazySAT(KB, DB, mt , mf , target, p)

inputs: KB, a weighted knowledge base

DB, database containing evidence

mt , the maximum number of tries

mf , the maximum number of flips

target, target solution cost

p, probability of taking a random step

output: soln, best variable assignment found

for i ← 1 to mt

active_atoms ← atoms in clauses not satisfied by DB

active_clauses ← clauses activated by active_atoms

soln ← a random truth assignment to active_atoms

cost ← sum of weights of unsatisfied clauses in soln

for i ← 1 to mf

if cost ≤ target

return “Success, solution is”, soln

c ← a randomly chosen unsatisfied clause

if Uniform(0,1) < p

vf ← a randomly chosen variable from c

else
for each variable v in c

compute DeltaCost(v), using KB if v 
∈ active_atoms

vf ← v with lowest DeltaCost(v)

if vf 
∈ active_atoms

add vf to active_atoms

add clauses activated by vf to active_clauses

soln ← soln with vf flipped

cost ← cost + DeltaCost(vf )

return “Failure, best assignment is”, best soln found
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Figure 3.3: Two steps of the LazySAT algorithm. Darkened nodes represent active variables or

functions.

By checking all clauses that reference these atoms, we can find and activate the one unsatisfied clause,

Sm(A) ∧ Fr(A, B) ⇒ Sm(B). LazySAT next selects an unsatisfied clause at random (there is only one

so far) and picks an atom to satisfy it using a random or greedy criterion. In this case, LazySAT picks

Sm(B) and activates it and the now unsatisfied clause Sm(B) ∧ Fr(B, C) ⇒ Sm(C). By again selecting

the unsatisfied clause and flipping Sm(C) to satisfy it, LazySAT can arrive at a variable assignment

that satisfies all clauses.

Experiments in a number of domains show that LazySAT can yield very large memory reduc-

tions, and these reductions increase with domain size [135]. For domains whose full instantiations fit

in memory, running time is comparable; as problems become larger, full instantiation for MaxWalk-

SAT becomes impossible.

LAZY-MC-SAT
Recall the MC-SAT algorithm from Section 3.2, with pseudocode in Table 3.3. MC-SAT initial-

izes with a solution to all hard clauses found by WalkSAT. In each iteration, it generates a set of

clauses M by sampling from the currently satisfied clauses according to their weights. It then calls

SampleSAT [150] to select the next state by sampling near-uniformly the solutions to M . Sample-

SAT initializes with a random state and, in each iteration, performs a simulated annealing step with

probability p and a WalkSAT step with probability 1 − p. To improve efficiency, MC-SAT runs

unit propagation in M before calling SampleSAT (i.e., it repeatedly sets atoms in unit clauses to the

corresponding fixed values and simplifies the remaining clauses).

Here, the functions to be made lazy are clauses, clauses’ memberships in M , and whether

an atom is fixed by unit propagation. Effectively, Lazy-MC-SAT initializes by calling LazySAT

to find a solution to all hard clauses. At each iteration, it computes M-memberships for and runs

unit propagation among active clauses only. It then calls Lazy-SampleSAT, the lazy version of

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-006.jpg&w=388&h=142
http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-006.jpg&w=388&h=142
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SampleSAT. Lazy-SampleSAT initializes using smart randomization with k = 1. When an inactive

atom v is set to false, no action is taken. When it is set to true, Lazy-SampleSAT activates v

and the clauses activated by v; it then computes M-memberships for these clauses,5 and runs unit

propagation among them; if v is fixed to false by unit propagation, Lazy-SampleSAT sets v back

to false and applies variable recycling. It also applies variable recycling to simulated annealing steps.

Notice that, when an M-membership or fixed-atom flag is set, this is remembered until the current

run of Lazy-SampleSAT ends, to avoid inconsistencies.

3.4 LIFTED INFERENCE

The inference methods discussed so far are purely probabilistic in the sense that they propositionalize

all atoms and clauses and apply standard probabilistic inference algorithms. A key property of first-

order logic is that it allows lifted inference, where queries are answered without materializing all the

objects in the domain (e.g., resolution [122]). Lifted inference is potentially much more efficient

than propositionalized inference, and extending it to probabilistic logical languages is a desirable

goal. The first approach to lifted probabilistic inference, first-order variable elimination (FOVE),

was developed by Poole [104] and extended by Braz et al. [11, 12] and Milch et al. [85]. (Limited

lifted aspects are present in some earlier systems, like Pfeffer et al.’s [101] SPOOK.) Unfortunately,

variable elimination has exponential cost in the treewidth of the graph, making it infeasible for most

real-world applications. Scalable approximate algorithms for probabilistic inference fall into three

main classes: loopy belief propagation (BP), Monte Carlo methods, and variational methods.

We have developed a lifted version of BP [138], building on the work of Jaimovich et al. [51].

Jaimovich et al. pointed out that, if there is no evidence, BP in probabilistic logical models can be

trivially lifted, because all groundings of the same atoms and clauses become indistinguishable. Our

approach proceeds by identifying the subsets of atoms and clauses that remain indistinguishable

even after evidence is taken into account. We then form a network with supernodes and superfeatures

corresponding to these sets, and apply BP to it.This network can be vastly smaller than the full ground

network, with the corresponding efficiency gains. Our algorithm produces the unique minimal lifted

network for every inference problem.

BELIEF PROPAGATION
In our description of Markov networks from Chapter 2, the graph G contains a node for each

variable and an edge connecting each pair of variables that share a potential function, or factor.

Markov networks can also be represented as factor graphs [62]. A factor graph is a bipartite graph

with a node for each variable and factor in the model. (For convenience, we will consider one factor

fi(x) = exp(wigi(x)) per feature gi(x), i.e., we will not aggregate features over the same variables

into a single factor.) Variables and the factors they appear in are connected by undirected edges. See

Figure 3.4 for an example of a factor graph.

5These clauses must be previously satisfied; otherwise, they would have been activated before.
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Figure 3.4: Belief propagation in a factor graph. Above is the equation for messages from variables

to factors; below is the equation for messages from factors to variables.

The main inference task in graphical models is to compute the conditional probability of

some variables (the query) given the values of some others (the evidence), by summing out the

remaining variables. This problem is #P-complete, but becomes tractable if the graph is a tree. In

this case, the marginal probabilities of the query variables can be computed in polynomial time by

belief propagation, which consists of passing messages from variable nodes to the corresponding factor

nodes and vice-versa. The message from a variable x to a factor f is

μx→f (x) =
∏

h∈nb(x)\{f }
μh→x(x) (3.4)

where nb(x) is the set of factors x appears in. The message from a factor to a variable is

μf →x(x) =
∑

∼{x}

⎛

⎝f (x)
∏

y∈nb(f )\{x}
μy→f (y)

⎞

⎠ (3.5)

where nb(f ) are the arguments of f , and the sum is over all of these except x. The messages from

leaf variables are initialized to 1, and a pass from the leaves to the root and back to the leaves suffices.

The (unnormalized) marginal of each variable x is then given by
∏

h∈nb(x) μh→x(x). Evidence is

incorporated by setting f (x) = 0 for states x that are incompatible with it.This algorithm can still be

applied when the graph has loops (e.g., Figure 3.4), repeating the message-passing until convergence.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-008.jpg&w=272&h=209
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Although this loopy belief propagation has no guarantees of convergence or of giving accurate results,

in practice it often does, and can be much more efficient than other methods. Different schedules

may be used for message-passing. Here we assume flooding, the most widely used and generally

best-performing method, in which messages are passed from each variable to each corresponding

factor and back at each step (after initializing all variable messages to 1).

Belief propagation can also be used for exact inference in arbitrary graphs, by combining

nodes until a tree is obtained, but this suffers from the same combinatorial explosion as variable

elimination.

LIFTED BELIEF PROPAGATION
We begin with some necessary definitions.These assume the existence of an MLN L, set of constants

C, and evidence database E (set of ground literals). For simplicity, our definitions and explanation

of the algorithm will assume that each predicate appears at most once in any given MLN clause. We

will then describe how to handle multiple occurrences of a predicate in a clause.

Definition 3.3. A supernode is a set of groundings of a predicate that all send and receive the same

messages at each step of belief propagation, given L, C and E. The supernodes of a predicate form

a partition of its groundings.

A superfeature is a set of groundings of a clause that all send and receive the same messages at

each step of belief propagation, given L, C and E. The superfeatures of a clause form a partition of

its groundings.

Definition 3.4. A lifted network is a factor graph composed of supernodes and superfeatures. The

factor corresponding to a superfeatureg(x) is exp(wg(x)),wherew is the weight of the corresponding

first-order clause. A supernode and a superfeature have an edge between them iff some ground atom

in the supernode appears in some ground clause in the superfeature. Each edge has a positive integer

weight. A minimal lifted network is a lifted network with the smallest possible number of supernodes

and superfeatures.

The first step of lifted BP is to construct the minimal lifted network. The size of this network

is O(nm), where n is the number of supernodes and m the number of superfeatures. In the best

case, the lifted network has the same size as the MLN L; in the worst case, as the ground Markov

network ML,C .

The second and final step in lifted BP is to apply standard BP to the lifted network, with two

changes:

1. The message from supernode x to superfeature f becomes

μ
n(f,x)−1
f →x

∏

h∈nb(x)\{f }
μh→x(x)n(h,x)

where n(h, x) is the weight of the edge between h and x.
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2. The (unnormalized) marginal of each supernode (and, therefore, of each ground atom in it) is

given by
∏

h∈nb(x) μ
n(h,x)
h→x (x).

The weight of an edge is the number of identical messages that would be sent from the ground

clauses in the superfeature to each ground atom in the supernode if BP was carried out on the

ground network. The n(f, x) − 1 exponent reflects the fact that a variable’s message to a factor

excludes the factor’s message to the variable.

The lifted network is constructed by (essentially) simulating BP and keeping track of which

ground atoms and clauses send the same messages. Initially, the groundings of each predicate fall

into three groups: known true, known false and unknown. (One or two of these may be empty.)

Each such group constitutes an initial supernode. All groundings of a clause whose atoms have

the same combination of truth values (true, false or unknown) now send the same messages to the

ground atoms in them. In turn, all ground atoms that receive the same number of messages from

the superfeatures they appear in send the same messages, and constitute a new supernode. As the

effect of the evidence propagates through the network, finer and finer supernodes and superfeatures

are created.

If a clause involves predicates R1, . . . , Rk , and N = (N1, . . . , Nk) is a corresponding tuple

of supernodes, the groundings of the clause generated by N are found by joining N1, . . . , Nk (i.e.,

by forming the Cartesian product of the relations N1, . . . , Nk , and selecting the tuples in which the

corresponding arguments agree with each other, and with any corresponding constants in the first-

order clause). Conversely, the groundings of predicate Ri connected to elements of a superfeature

F are obtained by projecting F onto the arguments it shares with Ri . Lifted network construction

thus proceeds by alternating between two steps:

1. Form superfeatures by doing joins of their supernodes.

2. Form supernodes by projecting superfeatures down to their predicates, and merging atoms

with the same projection counts.

Pseudocode for the algorithm is shown in Table 3.5. The projection counts at convergence are the

weights associated with the corresponding edges.

To handle clauses with multiple occurrences of a predicate, we keep a tuple of edge weights,

one for each occurrence of the predicate in the clause. A message is passed for each occurrence

of the predicate, with the corresponding edge weight. Similarly, when projecting superfeatures into

supernodes, a separate count is maintained for each occurrence, and only tuples with the same counts

for all occurrences are merged.

Figure 3.5 demonstrates how the initial supernodes and superfeatures are constructed for a

friendship (Fr(x, y)) and smoking (Sm(x)) domain based on the example of Table 2.1. The only

rule in the MLN is Sm(x) ∧ Fr(x, y) ⇒ Sm(y) (if two people are friends and one smokes, so does

the other). We assume a set of n constants, {A, B, C, D, . . .} and the evidence Sm(A), Fr(B, C), and

Fr(C, B).To form the supernodes, each predicate is partitioned into its unknown and true groundings

(since there are no false atoms in the evidence), yielding four initial supernodes. These are joined in
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Table 3.5: Lifted network construction algorithm.

function LNC(L, C, E)

inputs: L, a Markov logic network

C, a set of constants

E, a set of ground literals

output: M , a lifted network

for each predicate P

for each truth value t in {true, false, unknown}

form a supernode containing all groundings of P with truth value t

repeat
for each clause involving predicates P1, . . . , Pk

for each tuple of supernodes (N1, . . . , Nk),

where Ni is a Pi supernode

form a superfeature F by joining N1, . . . , Nk

for each predicate P

for each superfeature F it appears in

S(P, F ) ← projection of the tuples in F down to the variables in P

for each tuple s in S(P, F )

T (s, F ) ← number of F ’s tuples that were projected into s

S(P ) ← ⋃

F S(P, F )

form a new supernode from each set of tuples in S(P ) with the

same T (s, F ) counts for all F

until convergence

add all current supernodes and superfeatures to M

for each supernode N and superfeature F in M

add to M an edge between N and F with weight T (s, F )

return M
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Figure 3.5: Initial supernodes and superfeatures when Sm(A), Fr(B, C), and Fr(C, B) are evidence

and the only formula is Sm(x) ∧ Fr(x, y) ⇒ Sm(y).

all possible ways to produce five superfeatures. For clarity, each superfeature in Figure 3.5 is labeled

with the supernodes it joins. The next step in lifted network construction is to count the number

of times each atom appears in each position in each superfeature, as shown in Table 3.6 for the

Sm() predicate. Atoms with the same counts are clustered into new supernodes, as indicated by the

horizontal lines in Table 3.6. These new supernodes are joined to produce new superfeatures, then

projected to produce refined supernodes, and so on until convergence.

Theorem 3.5. Given an MLN L, set of constants C and set of ground literals E, there exists a unique

minimal lifted network M∗, and algorithm LNC(L, C, E) returns it. Belief propagation applied to M∗

produces the same results as belief propagation applied to the ground Markov network generated by L and

C.

See Singla and Domingos [138] for the proof.

Clauses involving evidence atoms can be simplified (false literals and clauses containing true

literals can be deleted). As a result, duplicate clauses may appear, and the corresponding superfeatures

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-009.jpg&w=347&h=276
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Table 3.6: Projection of superfeatures from Figure 3.5 down to the Sm() predicate. Two projected

counts are provided for each feature, since Sm() appears twice in the rule Sm(x) ∧ Fr(x, y) ⇒ Sm(y).

Horizontal lines cluster the atoms into a new set of supernodes.

Atom F1 F2 F3 F4 F5

Sm(A) 1 1 n − 1 0 0 n − 1 0 0 0 0

Sm(B) 0 0 0 1 1 0 1 1 n − 2 n − 2

Sm(C) 0 0 0 1 1 0 1 1 n − 2 n − 2

Sm(D) 0 0 0 1 1 0 0 0 n − 1 n − 1

Sm(E) 0 0 0 1 1 0 0 0 n − 1 n − 1

. . . 0 0 0 1 1 0 0 0 n − 1 n − 1

can be merged. This will typically result in duplicate instances of tuples. Each tuple in the merged

superfeature is assigned a weight
∑

i miwi , where mi is the number of duplicate tuples resulting

from the ith superfeature and wi is the corresponding weight. During the creation of supernodes,

T (s, F ) is now the number of F tuples projecting into s multiplied by the corresponding weight.

This can greatly reduce the size of the lifted network. When no evidence is present, the algorithm

reduces to the one proposed by Jaimovich et al. [51].

An important question remains: how to represent supernodes and superfeatures.Although this

does not affect the space or time cost of belief propagation (where each supernode and superfeature

is represented by a single symbol), it can greatly affect the cost of constructing the lifted network.

The simplest option is to represent each supernode or superfeature extensionally as a set of tuples (i.e.,

a relation), in which case joins and projections reduce to standard database operations. However, in

this case the cost of constructing the lifted network is similar to the cost of constructing the full

ground network, and can easily become the bottleneck. A better option is to use a more compact

intensional representation, as done by Poole [104] and Braz et al. [11, 12].6

A ground atom can be viewed as a first-order atom with all variables constrained to be equal to

constants, and similarly for ground clauses. (For example, R(A, B) is R(x, y) with x = A and y = B.)

We represent supernodes by sets of (α, γ ) pairs, where α is a first-order atom and γ is a set of

constraints, and similarly for superfeatures. Constraints are of the form x = y or x 
= y, where x is

an argument of the atom andy is either a constant or another argument.For example,(S(v, w, x, y, z),

{w = x, y = A, z 
= B, z 
= C}) compactly represents all groundings of S(v, w, x, y, z) compatible

with the constraints. Notice that variables may be left unconstrained, and that infinite sets of atoms

can be finitely represented in this way.

Let the default value of a predicate R be its most frequent value given the evidence (true,

false or unknown). Let SR,i be the set of constants that appear as the ith argument of R only in

6Superfeatures are related, but not identical, to the parfactors of Poole and Braz et al.. One important difference is that superfeatures
correspond to factors in the original graph,while parfactors correspond to factors created during variable elimination.Superfeatures
are thus exponentially more compact.
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groundings with the default value. Supernodes not involving any members of SR,i for any argument

i are represented extensionally (i.e. with pairs (α, γ ) where γ contains a constraint of the form

x = A, where A is a constant, for each argument x). Initially, supernodes involving members of SR,i

are represented using (α, γ ) pairs containing constraints of the form x 
= A for each A ∈ C \ SR,i .
7

When two or more supernodes are joined to form a superfeature F , if the kth argument of F ’s

clause is the i(j)th argument of its j th literal, Sk = ⋂

j Sr(j),i , where r(j) is the predicate symbol

in the j th literal. F is now represented analogously to the supernodes, according to whether or not

it involves elements of Sk . If F is represented intensionally, each (α, γ ) pair is divided into one

pair for each possible combination of equality/inequality constraints among the clause’s arguments,

which are added to γ . When forming a supernode from superfeatures, the constraints in each (α, γ )

pair in the supernode are the union of (a) the corresponding constraints in the superfeatures on the

variables included in the supernode, and (b) the constraints induced by the excluded variables on

the included ones. This process is analogous to the shattering process of Braz et al. [11].

In general, finding the most compact representation for supernodes and superfeatures is an

intractable problem, and is an area of active research.

FURTHER READING

The MaxWalkSAT algorithm used for MPE inference in Markov logic is described in Kautz

et al. [53]. Its source code is available at http://www.cs.rochester.edu/˜kautz/walksat/.

MaxWalkSAT is a propositional MaxSAT solver, so the MLN formulas are first grounded in all

possible ways to construct the MaxSAT problem for MaxWalkSAT to solve.

For full details on MC-SAT, including experimental evaluation, see Poon and Domin-

gos [105].

For more information about LazySAT,including experiments, see Singla and Domingos [135].

For a more general treatment of lazy inference, including details on Lazy-MC-SAT and how to

make other algorithms lazy, see Poon et al. [108].

Recently, Riedel [118] proposed Cutting Plane Inference (CPI), an alternative MAP solver

based on cutting plane methods. CPI is similar to lazy inference in that it adds clauses only as

needed. Riedel uses both MaxWalkSAT and integer linear programming as the “base” solver. On

a semantic role labeling problem, CPI with integer linear programming was able to find the exact

MAP solution faster than MaxWalkSAT could approximate it.

An introduction to the original belief propagation algorithm can be found in Yedidia et

al. [156]. For details, proofs, and experiments on lifted belief propagation, see Singla and Domin-

gos [138]. Publications on exact lifted inference include Poole [104], Braz et al. [11, 12], and Milch

et al. [85].

7In practice, variables are typed, and C is replaced by the domain of the argument; and the set of constraints is only stored once,
and pointed to as needed.

http://www.cs.rochester.edu/~kautz/walksat/
http://www.cs.rochester.edu/~kautz/walksat/
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Learning
Learning algorithms use data to automatically construct or refine a Markov logic network, typically

obtaining much better models with less work than manually specifying the complete model. We

begin by discussing weight learning, in which we try to find the formula weights that maximize the

likelihood or conditional likelihood of a relational database.Our methods for solving this problem are

based on convex optimization but take into account the hardness of inference. Structure learning, in

which we try to learn the formulas themselves, is a much harder problem.We present two approaches

based on inductive logic programming. Finally, we describe how new concepts can be discovered

through statistical predicate invention, and how experience in one domain can help us learn faster

in another through transfer learning. Solutions for these problems naturally use second-order Markov

logic to reason about predicates in much the way that first-order Markov logic reasons about objects.

4.1 WEIGHT LEARNING

GENERATIVE WEIGHT LEARNING
MLN weights can be learned generatively by maximizing the likelihood of a relational database

(Equation 2.3). This relational database consists of one or more “possible worlds” that form our

training examples. We assume that the set of constants of each type is known. We also make a

closed-world assumption [37]: all ground atoms not in the database are false.1 If there are n possible

ground atoms, a database is effectively a vector x = (x1, . . . , xl, . . . , xn) where xl is the truth value

of the lth ground atom (xl = 1 if the atom appears in the database, and xl = 0 otherwise). Note that

we can learn to generalize from even a single example because the clause weights are shared across

their many respective groundings. Given a database, MLN weights can in principle be learned using

standard methods, as follows. If the ith formula has ni(x) true groundings in the data x, then by

Equation 2.3, the derivative of the log-likelihood with respect to its weight is

∂

∂wi

log Pw(X=x) = ni(x) −
∑

x′
Pw(X=x′) ni(x

′) (4.1)

where the sum is over all possible databases x′, and Pw(X=x′) is P(X=x′) computed using the

current weight vector w = (w1, . . . , wi, . . .). In other words, the ith component of the gradient

is simply the difference between the number of true groundings of the ith formula in the data

and its expectation according to the current model. We can derive this expression as follows. The

1This assumption can be removed by using the expectation maximization (EM) algorithm [25] to learn from the resulting incomplete
data, as we will see in Section 4.3.
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log-likelihood itself is just the log of Equation 2.3:

Pw(X=x) = 1

Z
exp

⎛

⎝

∑

j

wjnj (x)

⎞

⎠

log Pw(X=x) =
∑

j

wjnj (x) − log Z (4.2)

Now we take the partial derivative.

∂

∂wi

log Pw(X=x) = ∂

∂wi

∑

j

wjnj (x) − ∂

∂wi

log Z

= ni(x) − 1

Z

∂

∂wi

Z (4.3)

= ni(x) − 1

Z

∑

x′

∂

∂wi

exp

⎛

⎝

∑

j

wjnj (x
′)

⎞

⎠ (4.4)

= ni(x) − 1

Z

∑

x′
exp

⎛

⎝

∑

j

wjnj (x
′)

⎞

⎠ ni(x
′) (4.5)

= ni(x) −
∑

x′
Pw(X=x′)ni(x

′)

Equation 4.3 follows from basic derivative rules. In particular, note that the derivative of wjnj (x)

with respect to wi is zero for j 
= i. We substitute the definition of Z to obtain Equation 4.4, and

we apply the chain and sum rules to obtain Equation 4.5. By moving Z inside the summation and

substituting the definition of Pw, we arrive at Equation 4.1.

In the worst case, counting the number of true groundings of a formula in a database is

intractable, even when the formula is a single clause, as stated in the following proposition (due to

Dan Suciu):

Proposition 4.1. Counting the number of true groundings of a first-order clause in a database is #P-

complete in the length of the clause.

Proof. Counting satisfying assignments of propositional monotone 2-CNF is #P-complete [123].

This problem can be reduced to counting the number of true groundings of a first-order clause

in a database as follows. Consider a database composed of the ground atoms R(0, 1), R(1, 0) and

R(1, 1). Given a monotone 2-CNF formula, construct a formula F that is a conjunction of atoms of

the form R(xi, xj ), one for each disjunction xi ∨ xj appearing in the CNF formula. (For example,

(x1 ∨ x2) ∧ (x3 ∨ x4) would yield R(x1, x2) ∧ R(x3, x4).) There is a one-to-one correspondence

between the satisfying assignments of the 2-CNF and the true groundings of F . The latter are the
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Figure 4.1:Comparison of pseudo-likelihood and likelihood on a simple three-node network.Shaded

nodes represent conditioning on the true values. Pseudo-likelihood (above) is the product of the

probability of each node conditioned on its Markov blanket. In contrast, likelihood (below) obeys

the chain rule of probability when decomposed.

false groundings of the disjunction of the negations of all the R(xi, xj ), and thus can be counted by

counting the number of true groundings of this clause and subtracting it from the total number of

groundings. ✷

In large domains, the number of true groundings of a formula may be counted approximately,

by uniformly sampling groundings of the formula and checking whether they are true in the data.

In smaller domains, and in most applications to date, we use an efficient recursive algorithm to find

the exact count.

A second problem with Equation 4.1 is that computing the expected number of true ground-

ings is also intractable, requiring inference over the model. Instead, we maximize the pseudo-

likelihood of the data, a widely used alternative [6]. If x is a possible world (relational database)

and xl is the lth ground atom’s truth value, the pseudo-log-likelihood of x given weights w is

log P ∗
w(X=x) =

n
∑

l=1

log Pw(Xl =xl|MBx(Xl)) (4.6)

where MBx(Xl) is the state of Xl ’s Markov blanket in the data (i.e., the truth values of the ground

atoms it appears in some ground formula with). Figure 4.1 illustrates the difference between pseudo-

likelihood and likelihood on a simple three-node network.The gradient of the pseudo-log-likelihood

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-010.jpg&w=332&h=182
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is

∂

∂wi

log P ∗
w(X=x) =

n
∑

l=1

[ni(x) − Pw(Xl =0|MBx(Xl)) ni(x[Xl=0])

−Pw(Xl =1|MBx(Xl)) ni(x[Xl=1])] (4.7)

where ni(x[Xl=0]) is the number of true groundings of the ith formula when we force Xl = 0 and leave

the remaining data unchanged, and similarly for ni(x[Xl=1]). Computing this expression (or Equa-

tion 4.6) does not require inference over the model, and is therefore much faster. The computation

can be made more efficient in several ways:

• The sum in Equation 4.7 can be greatly sped up by ignoring predicates that do not appear in

the ith formula.

• The counts ni(x), ni(x[Xl=0]) and ni(x[Xl=0]) do not change with the weights, and need only

be computed once (as opposed to in every iteration of optimization).

• Ground formulas whose truth value is unaffected by changing the truth value of any single

literal may be ignored, since then ni(x) = ni(x[Xl=0]) = ni(x[Xl=0]). In particular, this holds

for any clause which contains at least two true literals. This can often be the great majority of

ground clauses.

Combined with the L-BFGS optimizer [71], pseudo-likelihood yields efficient learning of

MLN weights even in domains with millions of ground atoms [117].However, the pseudo-likelihood

parameters may lead to poor results when long chains of inference are required. In the next section

on discriminative learning, we will see how optimizing the conditional likelihood instead can yield

better results.

In order to reduce overfitting, we penalize each weight with a Gaussian prior. We apply this

strategy not only to generative learning, but to all of our weight learning methods, including those

embedded within structure learning.

DISCRIMINATIVE WEIGHT LEARNING
In discriminative learning, we know a priori which atoms will be evidence and which ones will be

queried, and the goal is to correctly predict the latter given the former. Such a distinction between

evidence and query naturally exists in most applications. For example, in collective classification

(Section 6.1), the goal is to predict each object’s class given all other attributes and relations. If we

partition the ground atoms in the domain into a set of evidence atoms X and a set of query atoms

Y , the conditional likelihood of Y given X is

P(Y =y|X=x) = 1

Zx

exp

(

∑

i

wini(x, y)

)

(4.8)



4.1. WEIGHT LEARNING 47

where Zx normalizes over all possible worlds consistent with the evidence x, and ni(x, y) is the

number of true groundings of the ith formula in the data. Note that ground clauses satisfied by the

evidence or having no query atoms can be ignored, since no configuration of the query atoms can

change the truth value of these clauses.

Weights are learned discriminatively by maximizing the conditional log-likelihood (CLL).

CLL is easier to optimize than log-likelihood because the evidence typically constrains the proba-

bility distribution to a much smaller set of likely states. Singla and Domingos [133] demonstrated

that learning weights to optimize the CLL can greatly outperform pseudo-likelihood learning for

MLNs. However, note that CLL and pseudo-likelihood are equivalent for the special case where

the Markov blanket of each query atom is in the evidence, such as in the logistic regression example

from Chapter 2.

Since most of the optimization literature assumes that the objective function is to be mini-

mized, we will equivalently minimize the negative conditional log likelihood. We discuss two classes

of optimization algorithms, first-order and second-order methods. First-order methods pick a search

direction based on the function’s gradient. Second-order methods derive a search direction from ap-

proximating the function as a quadratic surface. While this approximation may not hold globally, it

can be good enough in local regions to greatly speed up convergence.

Voted Perceptron
Gradient descent algorithms use the gradient, g, scaled by a learning rate, η, to update the weight

vector w in each step:

wt+1 = wt − ηg (4.9)

See Figure 4.2 for a simple illustration. Note that the gradient is always perpendicular to the level

sets.

In an MLN, the derivative of the negative CLL with respect to a weight is the difference of the

expected number of true groundings of the corresponding clause and the actual number according

to the data:

∂

∂wi

(− log Pw(Y =y|X=x)) = −ni(x, y) +
∑

y′
Pw(Y =y′|X=x) ni(x, y′) (4.10)

= Ew,y[ni(x, y)] − ni(x, y) (4.11)

where y is the state of the non-evidence atoms in the data, x is the state of the evidence, and the

expectation Ew,y is over the non-evidence atoms Y . We use the w, y subscript to emphasize that

the expectation depends on the current weight vector, w, and is obtained by summing over states of

the world y. In the remainder of this section, we will write expectations Ew,y[ni(x, y)] as Ew[ni]
when the meaning is clear from the context.

The basic idea of the voted perceptron (VP) algorithm [15] is to approximate the intractable

expectations Ew[ni] with the counts in the MPE (most probable explanation) state, which is the

most probable state of non-evidence atoms given the evidence. To combat overfitting, instead of
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Figure 4.2: Behavior of (a) gradient descent, (b) conjugate gradient, and (c) Newton’s method on a

quadratic surface. The surface is presented as its level sets.

returning the final weights, VP returns the average of the weights from all iterations of gradient

descent.

Collins originally proposed VP for training hidden Markov models discriminatively, and in

this case the MPE state is unique and can be computed exactly in polynomial time using the Viterbi

algorithm. As discussed in Section 3.1, MPE inference in MLNs is intractable but can be reduced

to solving a weighted maximum satisfiability problem, for which efficient algorithms exist, such as

MaxWalkSAT [53]. Singla and Domingos [133] use this approach and discuss how the resulting

algorithm can be viewed as approximately optimizing log-likelihood. However, the use of voted

perceptron in MLNs is potentially complicated by the fact that the MPE state may no longer be

unique, and MaxWalkSAT is not guaranteed to find it.

Contrastive Divergence
The contrastive divergence (CD) algorithm is similar to VP, except that it approximates the expec-

tations Ew[ni] from a small number of MCMC samples instead of using the MPE state. Using

MCMC is presumably more accurate and stable, since it converges to the true expectations in the

limit. While running an MCMC algorithm to convergence at each iteration of gradient descent is

infeasibly slow, Hinton [47] has shown that a few iterations of MCMC yield enough information

to choose a good direction for gradient descent. Hinton named this method contrastive divergence

because it can be interpreted as optimizing a difference of Kullback-Leibler divergences. Contrastive

divergence can also be seen as an efficient way to approximately optimize log-likelihood.

The MCMC algorithm typically used with contrastive divergence is Gibbs sampling, but for

MLNs the much faster alternative of MC-SAT (Section 3.2) is available. Because successive samples

in MC-SAT are much less correlated than successive sweeps in Gibbs sampling, they carry more

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-011.jpg&w=289&h=159
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information and are likely to yield a better descent direction. In particular, the different samples

are likely to be from different modes, reducing the error and potential instability associated with

choosing a single mode.

In an MLN, each state typically contains a large number of instances of each clause, unlike

i.i.d. learning, which would contain only one. This makes even a small number of MCMC steps

particularly effective in relational domains. In our experience, five samples is often sufficient and

additional samples may not be worth the time: any increased accuracy that 10 or 100 samples might

bring is offset by the increased time per iteration. We avoid the need for burn-in by starting at the

last state sampled in the previous iteration of gradient descent. (This differs from Hinton’s approach,

which always starts at the true values in the training data.)

Per-Weight Learning Rates
VP and CD are both simple gradient descent procedures, and as a result highly vulnerable to the

problem of ill-conditioning. On ill-conditioned problems, the direction of steepest descent is nearly

orthogonal to the direction to the optimum, causing gradient descent to take many iterations to

converge. Ill-conditioning occurs when the condition number, the ratio between the largest and

smallest eigenvalues of the Hessian (matrix of second derivatives), is far from one. In MLNs, the

Hessian is the negative covariance matrix of the clause counts. Because some clauses can have

vastly greater numbers of true groundings than others, the variances of their counts can be corre-

spondingly larger, and ill-conditioning becomes a serious issue. Intuitively, gradient descent is slow

because no single learning rate is appropriate for all weights; a clause with O(n) groundings, such

as Smokes(x) ⇒ Cancer(x), will typically require a much higher learning rate than a clause with

O(n3) groundings, such as transitivity.

One solution is to modify both algorithms to have a different learning rate for each weight.

Since tuning every learning rate separately is impractical,we use a simple heuristic to assign a learning

rate to each weight:

ηi = η

ni

where η is the user-specified global learning rate and ni is the number of true groundings of the

ith formula. (To avoid dividing by zero, if ni = 0 then ηi = η.) When computing this number, we

ignore the groundings that are satisfied by the evidence (e.g., A ⇒ B when A is false). This is

because, being fixed, they cannot contribute to the variance.

Diagonal Newton
When the function being optimized is quadratic, as in Figure 4.2, Newton’s method can move to

the global minimum or maximum in a single step. It does so by multiplying the gradient, g, by the

inverse Hessian, H−1:

wt+1 = wt − H−1g (4.12)

When there are many weights, inverting the full Hessian becomes infeasible. A common ap-

proximation is to use the diagonal Newton (DN) method, which makes the simplifying assumption
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that all off-diagonal entries of the Hessian are zero, yielding an easily inverted diagonal matrix.

DN typically uses a smaller step size than the full Newton method. This is important when apply-

ing the algorithm to non-quadratic functions, such as the CLL of an MLN, where the quadratic

approximation is only good within a local region.

The Hessian of the negative CLL for an MLN is simply the covariance matrix:

∂

∂wi∂wj

(− log Pw(Y =y|X=x)) = Ew[ninj ] − Ew[ni]Ew[nj ] (4.13)

Like the gradient, this can be estimated using samples from MC-SAT. Since the off-diagonal entries

capture interactions between different clauses, the diagonal assumption is equivalent to assuming

that all clauses are uncorrelated. This can be a reasonable approximation if the true correlations are

weak. In each iteration, we take a step in the diagonal Newton direction:

wi = wi − α
Ew[ni] − ni

Ew[n2
i ] − (Ew[ni])2

(4.14)

The step size α can be computed in a number of ways, including keeping it fixed, but we have

obtained the best results using the following method. Given a search direction d and Hessian matrix

H, we compute the step size as follows:

α = −dT g

dT Hd + λdT d
(4.15)

where d is the search direction. For a quadratic function and λ = 0, this step size would move to the

minimum function value along d. Since our function is not quadratic, a non-zero λ term serves to

limit the size of the step to a region in which our quadratic approximation is good. After each step,

we adjust λ to increase or decrease the size of the so-called model trust region [95] based on how well

the approximation matched the function. Let �actual be the actual change in the function value,

and let �pred be the predicted change in the function value from the previous gradient and Hessian

and our last step, dt−1:

�pred = dT
t−1gt−1 + 1/2 dT

t−1Ht−1dt−1 (4.16)

A standard method for adjusting λ is as follows [35]:

if (�actual/�pred > 0.75) then λt+1 = λt/2

if (�actual/�pred < 0.25) then λt+1 = 4λt

Since we cannot efficiently compute the actual change in negative CLL, we approximate it as

the product of the step we just took and the gradient after taking it: �actual = dT
t−1gt . Since the

negative CLL is a convex function, this product is an upper bound on the actual change.This bound

is often quite loose. Suppose the last step took us directly to the optimum. At the optimum, the new

gradient gt is zero, so �actual is approximated as zero regardless of the actual change in function
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value. Therefore, we only increase λ when �actual is positive. In this case, the CLL may be worse

than before, so the step is rejected and redone after adjusting λ.

In models with thousands of weights or more, storing the entire Hessian matrix becomes

impractical. However, when the Hessian appears only inside a quadratic form, as above, we can

avoid storing the matrix by computing the values of these forms directly from the clause counts in

each sampled state:

dT Hd = Ew[(∑idini)
2] − (Ew[∑idini])2 (4.17)

As with the Equations 4.11 and 4.13, these expectations are over all possible worlds but can be

approximated by a small number of samples. The product of the Hessian by a vector can also be

computed compactly [100]. Note that α is computed using the full Hessian matrix, but the step

direction is computed from the diagonal approximation, which is easier to invert.

Per-weight learning rates can be seen as a crude approximation of the diagonal Newton

method.The number of true groundings not satisfied by evidence is a heuristic approximation to the

count variance, which the diagonal Newton method uses to rescale each dimension of the gradient.

The diagonal Newton method, however, can adapt to changes in the second derivative at different

points in the weight space. Its main limitation is that clauses can be far from uncorrelated. The next

method addresses this issue.

Scaled Conjugate Gradient
Gradient descent can be sped up by, instead of taking a small step of constant size at each iteration,

performing a line search to find the optimum along the chosen descent direction. However, on ill-

conditioned problems this is still inefficient because line searches along successive directions tend to

partly undo the effect of each other: each line search makes the gradient along its direction zero, but

the next line search will generally make it non-zero again. In long narrow valleys, instead of moving

quickly to the optimum, gradient descent zigzags (see Figure 4.2).

A solution to this is to impose at each step the condition that the gradient along previous

directions remain zero. The directions chosen in this way are called conjugate, and the method

conjugate gradient [132]. Figure 4.2 shows an example of conjugate gradient on a quadratic surface.

We use the Polak-Ribiere method for choosing conjugate gradients since it has generally been found

to be the best-performing one. Conjugate gradient methods are some of the most efficient available,

on a par with quasi-Newton ones. Unfortunately, applying them to MLNs is difficult, because line

searches require computing the objective function, and therefore the partition function Z, which is

highly intractable. (Computing Z is equivalent to computing all moments of the MLN, of which

the gradient and Hessian are the first two.)

Fortunately, we can use the Hessian instead of a line search to choose a step size.This method

is known as scaled conjugate gradient (SCG), and was originally proposed by Møller [86] for training

neural networks. In our implementation, we choose a step size in the same way as diagonal Newton.

Conjugate gradient is usually more effective with a preconditioner, a linear transformation

that attempts to reduce the condition number of the problem (e.g., [131]). Good precondition-

ers approximate the inverse Hessian. We use the inverse diagonal Hessian as our preconditioner.
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Figure 4.3: Application of the inverse diagonal Hessian preconditioner to two ill-conditioned learn-

ing problems. The surfaces of the objective functions are represented by their level sets. When the

problem dimensions are uncorrelated, the final condition number will be 1, as in the upper problem.

Figure 4.3 shows how the inverse diagonal Hessian rescales problems to make them less skewed,

reducing their condition number. Performance with the preconditioner is much better than without.

Of these methods, scaled conjugate gradient with a preconditioner is typically the most effec-

tive, but diagonal Newton also performs very well. See Lowd and Domingos [75] for more details

and results.

4.2 STRUCTURE LEARNING AND THEORY REVISION

The structure of a Markov logic network is the set of formulas or clauses to which we attach weights.

In principle, this structure can be learned or revised using any inductive logic programming (ILP)

technique. However, since an MLN represents a probability distribution, much better results are

obtained by using an evaluation function based on pseudo-likelihood, rather than typical ILP ones

like accuracy and coverage [57]. Log-likelihood or conditional log-likelihood are potentially better

evaluation functions, but are much more expensive to compute. In this section, we describe two

algorithms for optimizing pseudo-likelihood with an ILP-style structure search. In experiments

on real-world datasets, MLN structure learning algorithms have found better MLN rules than

CLAUDIEN [22], FOIL [113], Aleph [140], and a hand-written knowledge base.

TOP-DOWN STRUCTURE LEARNING
The top-down structure learning (TDSL) methods of Kok and Domingos [57] learn or revise an

MLN one clause at a time, one literal at a time. The initial structure can either be an empty network

or existing KB. Either way, it is useful to start by adding all unit clauses (single atoms) to the MLN.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-012.jpg&w=277&h=162
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Figure 4.4: Top-down structure learning (TDSL) of a single clause through beam search when the

beam width is one. In Step 1, TDSL extends all unit clauses with all possible literals and select

the highest scoring candidate, Smokes(x) ∨ ¬Friends(x, y). (For space, we only show extensions

of the Smokes(x) unit clause.) This process repeats with the new clause until no additional literal

improves the score. Selected literals are shown in gray.

The weights of these capture (roughly speaking) the marginal distributions of the atoms, allowing

the longer clauses to focus on modeling atom dependencies. To extend this initial model, TDSL

either repeatedly finds the best clause using beam search and adds it to the MLN, or adds all “good”

clauses of length l before trying clauses of length l + 1. Candidate clauses are formed by adding each

predicate (negated or otherwise) to each current clause, with all possible combinations of variables,

subject to the constraint that at least one variable in the new predicate must appear in the current

clause. Hand-coded clauses are also modified by removing predicates.

Figure 4.4 shows an example of how TDSL can induce the clause

Smokes(x) ∨ ¬Friends(x, y) ∨ ¬Smokes(y) (i.e., friends have similar smoking habits) through

beam search. For simplicity, this example starts with the unit clauses and only considers adding

literals.

We now discuss the evaluation measure, clause construction operators, and search strategy in

greater detail.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-013.jpg&w=383&h=229
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Evaluation
As an evaluation measure, pseudo-likelihood (Equation 4.6) tends to give undue weight to the

highest-arity predicates, resulting in poor modeling of the rest. We thus define the weighted pseudo-

log-likelihood (WPLL) as

log P •
w(X=x) =

∑

r∈R

cr

gr
∑

k=1

log Pw(Xr,k =xr,k|MBx(Xr,k)) (4.18)

where R is the set of first-order atoms, gr is the number of groundings of first-order atom r , and

xr,k is the truth value (0 or 1) of the kth grounding of r . The choice of atom weights cr depends

on the user’s goals. By default, we can simply set cr = 1/gr , which has the effect of weighting all

first-order predicates equally. If modeling a predicate is not important (e.g., because it will always be

part of the evidence), we set its weight to zero. To combat overfitting, TDSL penalizes the WPLL

with a structure prior of e−α
∑F

i=1 di , where di is the number of literals that differ between the current

version of the clause and the original one. (If the clause is new, this is simply its length.) This is

similar to the approach used in learning Bayesian networks [45].

A potentially serious problem that arises when evaluating candidate clauses using WPLL is

that the optimal (maximum WPLL) weights need to be computed for each candidate.Given that this

involves numerical optimization, and may need to be done thousands or millions of times, it could

easily make the algorithm too slow to be practical.TDSL avoids this bottleneck by simply initializing

L-BFGS with the current weights (and zero weight for a new clause) and relaxing its convergence

threshold when evaluating candidate clauses. Second-order, quadratic-convergence methods such

as L-BFGS are known to be very fast if started near the optimum. This is what happens in our case;

L-BFGS typically converges in just a few iterations, sometimes one. The time required to evaluate

a clause is in fact dominated by the time required to compute the number of its true groundings in

the data. This time can be greatly reduced using sampling and other techniques [57].

Operators
When learning an MLN from scratch (i.e., from a set of unit clauses), the natural operator to use is

the addition of a literal to a clause. When refining a hand-coded KB, the goal is to correct the errors

made by the human experts. These errors include omitting conditions from rules and including

spurious ones, and can be corrected by operators that add and remove literals from a clause. These

are the basic operators used by TDSL. In addition, we have found that many common errors (wrong

direction of implication, wrong use of connectives with quantifiers, etc.) can be corrected at the

clause level by flipping the signs of atoms, and TDSL also allows this. When adding a literal to a

clause, TDSL considers all possible ways in which the literal’s variables can be shared with existing

ones, subject to the constraint that the new literal must contain at least one variable that appears in

an existing one.To control the size of the search space,TDSL limits the number of distinct variables

in a clause. TDSL only removes literals from the original hand-coded clauses or their descendants,

and only considers removing a literal if it leaves at least one path of shared variables between each

pair of remaining literals.
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Search
There are two alternative search strategies, one faster and one more complete. The first approach

adds clauses to the MLN one at a time, using beam search to find the best clause to add: starting with

the unit clauses and the expert-supplied ones, TDSL applies each legal literal addition and deletion

to each clause, keeps the b best ones, applies the operators to those, and repeats until no new clause

improves the WPLL. The chosen clause is the one with highest WPLL found in any iteration of

the search. If the new clause is a refinement of a hand-coded one, it replaces it. (Notice that, even

though TDSL both adds and deletes literals, no loops can occur because each change must improve

WPLL to be accepted.)

The second approach adds k clauses at a time to the MLN, and is similar to that of McCallum

for learning CRFs [78]. In contrast to beam search, which adds the best clause of any length found,

this approach adds all “good” clauses of length l before attempting any of length l + 1. We call it

shortest-first search. Shortest-first search is usually more expensive than beam search, but it tends to

produce smaller and more accurate MLNs.

BOTTOM-UP STRUCTURE LEARNING
Top-down approaches, such as the one described in the previous section, follow a blind generate-

and-test strategy in which many potential changes to an existing model are systematically generated

independent of the training data, and then tested for empirical adequacy. For complex models

such as MLNs, the space of potential revisions is combinatorially explosive and such a search can

become difficult to control, resulting in convergence to suboptimal local maxima.Bottom-up learning

methods attempt to use the training data to directly construct promising structural changes or

additions to the model, avoiding many of the local maxima and plateaus in a large search space [88].

The BUSL (bottom-up structure learning) algorithm, introduced by Mihalkova and

Mooney [83], applies this bottom-up approach to the task of learning MLN structure. Empiri-

cally, BUSL often yields more accurate models much faster than purely top-down structure learning.

BUSL uses a propositional Markov network structure learner to construct template networks

that then guide the construction of candidate clauses. The template networks are composed of tem-

plate nodes, conjunctions of one or more literals that serve as building blocks for creating clauses.

Template nodes are constructed by looking for groups of constant-sharing ground literals that are

true in the data and abstracting them by substituting variables for the constants.Thus, these template

nodes could also be viewed as portions of clauses that have true groundings in the data. To under-

stand why conjunctions of literals with true groundings are good candidates for clause components,

consider the special case of a definite clause: L1 ∧ · · · ∧ Ln ⇒ P . If the conjoined literals in the

body have no true groundings, then the clause is always trivially satisfied. Therefore, we expect that

true conjunctions will be most useful for building effective clauses. (Note that the conjunction in the

antecedent becomes a disjunction when we rewrite the implication in normal form.) The template

Markov networks encode independencies among these template nodes. A template network does

not specify the actual MLN clauses or their weights. To search for these, BUSL generates clause
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candidates by focusing on each maximal clique in turn and producing all possible clauses consistent

with it.The candidates are then evaluated using the WPLL score, as in top-down structure learning.

We now discuss how BUSL builds template nodes, template networks, and candidate clauses

in greater detail. A separate template and set of template nodes is created for each predicate P . First,

BUSL creates a head template node consisting of a literal for P in which each argument is assigned a

unique variable. This template node is analogous to the head in a definite clause; however, note that

BUSL is not limited to constructing definite clauses. Starting with each ground literal l of predicate

P , BUSL finds “chains” of literals connected by shared constant arguments. Each chain is abstracted

by replacing constants with variables. The resulting conjunctions of “variablized” literals become the

template nodes. BUSL keeps track of which template nodes can be created from each ground literal l

of predicate P .These statistics are used to create a set of examples – one example per literal, each with

one attribute per template node – for training the template Markov network. Mihalkova and Mooney

chose the recent Grow-Shrink Markov Network (GSMN) algorithm by Bromberg et al. [13].GSMN

uses χ2 statistical tests to determine whether two nodes are conditionally independent of each other.

The resulting Markov network captures independencies among the template nodes: each

template node is independent of all others given its immediate neighbors (i.e. its Markov blanket).

Because of these independencies, BUSL can restrict its structure search for clauses only to those

candidates whose literals correspond to template nodes that form a clique in the template. BUSL

makes a number of additional restrictions on the search in order to decrease the number of free

variables in a clause, thus decreasing the size of the ground MLN during inference, and further

reducing the search space. Complying with these restrictions, BUSL considers each clique in which

the head template node participates and constructs all possible clauses of length one to the size of the

clique by forming disjunctions from the literals of the participating template nodes with all possible

negation/non-negation combinations.

After template creation and clause candidate generation are carried out for each predicate in

the domain, duplicates are removed and the candidates are evaluated using the WPLL. The WPLL

scoring is done by generatively learning weights for all clauses at once with L-BFGS. After all

candidates are scored, they are considered for addition to the MLN in order of decreasing score. To

reduce overfitting and speed up inference, only candidates with weight greater than a fixed threshold

are considered. Candidates that do not increase the overall WPLL of the learned structure are

discarded.

See Mihalkova and Mooney [83] for additional details, pseudocode, and examples of how

BUSL works.

4.3 UNSUPERVISED LEARNING

In supervised learning, the true values of all predicates are known in the training data; in unsupervised

learning, this is no longer the case. We will begin by discussing the simple case of missing data,

where some or all groundings of a predicate are unknown in the training data. Partial missing data

is common when some attributes are more expensive to obtain than others. Model-based clustering
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is an example of an entirely unknown predicate: the cluster assignment for each example is never

observed, but a good model and clustering can be found together with the expectation maximization

(EM) algorithm. In these examples, something is always known about the predicate – either the

values of some of its groundings or the structure of its relationships with other predicates. In the

second part of this section, we will discuss statistical predicate invention, in which the goal is to

discover new concepts that help explain the observed data with minimal guidance or restrictions

on what those concepts could represent. As in the supervised case, we optimize our models by

maximizing the likelihood of the observed data; the key difference is that unsupervised models must

sum out some variables to obtain this likelihood.

WEIGHT LEARNING
Suppose that some subset Y of the ground atoms have unknown values in the training data. The

likelihood of the observed atoms, X, can be found by summing out the unobserved ones:

Pw(X=x) =
∑

y

Pw(X=x, Y =y) =
∑

y

1

Z
exp

(

∑

i

wini(x, y)

)

(4.19)

The gradient of the log likelihood is analogous to the fully observed case, except that it is now a

difference of expectations:

∂

∂wi

log Pw(x) =
∑

y′
Pw(x, y′)ni(x, y′) −

∑

x′,y′
Pw(x′, y′)ni(x

′, y′)

= Ew,y[ni(x, y)] − Ew,x,y[ni(x, y)] (4.20)

where the expectation Ew,y is over the unknown atoms,Y , and Ew,y,x is over all atoms,Y ∪ X. (Both

expectations are computed according to the current model, Pw.) Calculating these expectations is

typically intractable, but we can choose to optimize the pseudo-likelihood instead.The key difference

from weight learning with complete data is that we must run inference to estimate the state of Y

even when using pseudo-likelihood.

We can do discriminative weight learning with missing data as well.There are now three classes

of literals in the domain: known evidence atoms, X; observed query atoms, Yo; and unobserved query

atoms, Yu (note the change in notation from the previous paragraph). Since X is evidence and Yu is

unknown, the only likelihood we can optimize is that of Yo. Our ability to learn a meaningful model

therefore depends on having a non-empty set of observed query atoms, Yo. The gradient is the same

as the generative case except that we are now conditioning on the evidence atoms x:

∂

∂wi

log Pw(yo|x) =
∑

y′
u

Pw(yo, y
′
u|x)ni(x, yo, y

′
u) −

∑

y′
o,y

′
u

Pw(y′
o, y

′
u|x)ni(x, y′

o, y
′
u)

= Ew,yu[ni(x, yo, yu)] − Ew,yo,yu[ni(x, yo, yu)] (4.21)

The Hessian matrix is now a difference of covariance matrices: the covariance matrix when only

unknown query atoms vary minus the covariance matrix when all query atoms vary. As in the
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fully observed case, the gradient and Hessian are intractable to compute but can be approximated

using MCMC. The same types of numeric optimization methods also apply, with one caveat: the

(conditional) log likelihood may no longer be convex when there is missing data. Therefore, when

using scaled conjugate gradient, we recommend being more conservative in adjusting the size of

the trust region that limits step size. For more information on unsupervised weight learning and an

application to coreference resolution, see Poon and Domingos [107].

Missing data can also be handled by the expectation maximization (EM) algorithm [25].

EM splits parameter optimization into two steps: the expectation step (E-step) fills in missing

data using the current model and the maximization step (M-step) adjusts the model parameters to

maximize the likelihood of the filled-in data.Repeating these two steps is guaranteed to lead to a local

optimum. In many applications of EM, such as mixture models, the M-step is trivial. For Markov

logic, however, selecting the maximum likelihood parameters is typically very hard – attempting a

full weight optimization in every iteration of EM would be very expensive, and almost certainly a

waste of effort. Also, in MLNs in general, there is a single, large, interconnected learning example,

and so the M step is not amortized over many independent examples. Thus directly optimizing the

expected likelihood using gradient descent (or second-order techniques) is likely to be preferable to

EM.

STATISTICAL PREDICATE INVENTION
Statistical predicate invention is the discovery of new concepts, properties and relations from data,

expressed in terms of the observable ones, using statistical techniques to guide the process and

explicitly representing the uncertainty in the discovered predicates. These can in turn be used as a

basis for discovering new predicates, which is potentially much more powerful than learning based

on a fixed set of simple primitives. Essentially all the concepts used by humans can be viewed as

invented predicates, with many levels of discovery between them and the sensory percepts they are

ultimately based on.

In statistical learning, this problem is known as hidden or latent variable discovery, and in

relational learning as predicate invention. Both hidden variable discovery and predicate invention are

considered quite important in their respective communities, but are also very difficult, with limited

progress to date.

Only a few approaches combine elements of statistical and relational learning. Most of them

learn a single relation or perform a single clustering [110, 153, 91, 155, 74, 124, 16, 21]. The

most advanced approach is the MRC (Multiple Relational Clusterings) algorithm by Kok and

Domingos [58]. MRC automatically invents predicates by clustering objects, attributes and relations.

MRC learns multiple clusterings, rather than just one, to represent the complexities in relational

data. The invented predicates capture arbitrary regularities over all relations, and are not just used

to predict a designated target relation.

MRC is based on the observation that, in relational domains,multiple clusterings are necessary

to fully capture the interactions between objects. Consider the following simple example. People have
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Figure 4.5: Example of multiple clusterings. Friends are clustered together in horizontal ovals, and

co-workers are clustered in vertical ovals.

coworkers, friends, technical skills, and hobbies. People’s technical skills are best predicted by their

coworkers’ skills, and their hobbies by their friends’ hobbies. If we form a single clustering of people,

coworkers and friends will be mixed, and our ability to predict both skills and hobbies will be hurt.

Instead, we should cluster together people who work together, and simultaneously cluster people

who are friends with each other. Each person thus belongs to both a “work cluster” and a “friendship

cluster.” (See Figure 4.5.) Membership in a work cluster is highly predictive of technical skills, and

membership in a friendship cluster is highly predictive of hobbies. The remainder of this section

presents a formalization of this idea and an efficient algorithm to implement it.

Notice that multiple clusterings may also be useful in propositional domains, but the need

for them there is less acute because objects tend to have many fewer properties than relations. (For

example, Friends(Anna, x) can have as many groundings as there are people in the world, and

different friendships may be best predicted by different clusters Anna belongs to.)

The statistical model used by MRC is defined using finite second-order Markov logic, in which

variables can range over relations (predicates) as well as objects (constants). Extending Markov logic

to second-order involves simply grounding atoms with all possible predicate symbols as well as all

constant symbols, and allows us to represent some models much more compactly than first-order

Markov logic. We use it to specify how predicate symbols are clustered.

We use the variable r to range over predicate symbols, xi for the ith argument of a predicate,

γi for a cluster of ith arguments of a predicate (i.e., a set of symbols), and Ŵ for a clustering (i.e., a

set of clusters or, equivalently, a partitioning of a set of symbols). For simplicity, we present our rules

in generic form for predicates of all arities and argument types, with n representing the arity of r ;

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-014.jpg&w=243&h=173
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in reality, if a rule involves quantification over predicate variables, a separate version of the rule is

required for each arity and argument type.

The first rule in our second-order MLN for predicate invention states that each symbol belongs

to at least one cluster:

∀x ∃γ x ∈ γ

This rule is hard, i.e., it has infinite weight and cannot be violated. The second rule states that a

symbol cannot belong to more than one cluster in the same clustering:

∀x, γ, γ ′, Ŵ x ∈ γ ∧ γ ∈ Ŵ ∧ γ ′ ∈ Ŵ ∧ γ 
= γ ′ ⇒ x /∈ γ ′

This rule is also hard. It is called the mutual exclusion rule.

If r is in cluster γr and xi is in cluster γi , we say that r(x1, . . . , xn) is in the combination of

clusters (γr , γ1, . . . , γn). The next rule says that each atom appears in exactly one combination of

clusters, and is also hard:
∀r, x1, . . . , xn ∃!γr , γ1, . . . , γn

r ∈ γr ∧ x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn

(The ∃! quantifier is used here to mean “exactly one combination exists.”) The next rule is the key

rule in the model, and states that the truth value of an atom is determined by the cluster combination

it belongs to:

∀r, x1, . . . , xn, +γr , +γ1, . . . ,+γn

r ∈ γr ∧ x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn ⇒ r(x1, . . . , xn)

This rule is soft. The “+” notation is syntactic sugar that signifies the MLN contains an instance

of this rule with a separate weight for each tuple of clusters (γr , γ1, . . . , γn). As we will see below,

this weight is the log-odds that a random atom in this cluster combination is true. Thus, this is the

rule that allows us to predict the probability of query atoms given the cluster memberships of the

symbols in them. We call this the atom prediction rule. Combined with the mutual exclusion rule, it

also allows us to predict the cluster membership of evidence atoms. Chaining these two inferences

allows us to predict the probability of query atoms given evidence atoms.

To combat the proliferation of clusters and consequent overfitting, we impose an exponential

prior on the number of clusters, represented by the formula

∀γ ∃x x ∈ γ

with negative weight −λ.The parameter λ is fixed during learning, and is the penalty in log-posterior

incurred by adding a cluster to the model. Thus larger λs lead to fewer clusterings being formed.2

A cluster assignment {Ŵ} is an assignment of truth values to all r ∈ γr and xi ∈ γi atoms. The

MLN defined by the five rules above represents a joint distribution P({Ŵ}, R) over {Ŵ} and R, the

2 We have also experimented with using a Chinese restaurant process prior (CRP, [102]), and the results were similar. We thus use
the simpler exponential prior.
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vector of truth assignments to the observable ground atoms. Learning consists of finding the clus-

ter assignment that maximizes P({Ŵ}|R) ∝ P({Ŵ}, R) = P({Ŵ})P (R|{Ŵ}), and the corresponding

weights. P({Ŵ}) = 0 for any {Ŵ} that violates a hard rule. For the remainder, P({Ŵ}) reduces to the

exponential prior. It is easily seen that, given a cluster assignment, the MLN decomposes into a sep-

arate MLN for each combination of clusters, and the weight of the corresponding atom prediction

rule is the log odds of an atom in that combination of clusters being true. (Recall that, by design,

each atom appears in exactly one combination of clusters.) Further, given a cluster assignment, atoms

with unknown truth values do not affect the estimation of weights, because they are graph-separated

from all other atoms by the cluster assignment. If tk is the empirical number of true atoms in cluster

combination k, and fk the number of false atoms, we estimate wk as log((tk + β)/(fk + β)), where

β is a smoothing parameter.

Conversely, given the model weights, we can use inference to assign probabilities of member-

ship in combinations of clusters to all atoms. Thus the learning problem can in principle be solved

using an EM algorithm, with cluster assignment as the E step, and MAP estimation of weights as the

M step. We begin by simplifying the problem by performing hard assignment of symbols to clusters

(i.e., instead of computing probabilities of cluster membership, a symbol is simply assigned to its

most likely cluster). Since performing an exhaustive search over cluster assignments is infeasible, the

key is to develop an intelligent tractable approach. This makes the M step trivial, but the E step is

still extremely complex. Since, given a cluster assignment, the MAP weights can be computed in

closed form, a better alternative to EM is simply to search over cluster assignments, evaluating each

assignment by its posterior probability. This can be viewed as a form of structure learning, where a

structure is a cluster assignment.

We now describe the MRC algorithm. The basic idea is that, when clustering sets of symbols

related by atoms, each refinement of one set of symbols potentially forms a basis for the further

refinement of the related clusters. MRC is thus composed of two levels of search: the top level finds

clusterings, and the bottom level finds clusters. At the top level, MRC is a recursive procedure whose

inputs are a cluster of predicates γr per arity and argument type, and a cluster of symbols γi per

type. In the initial call to MRC, each γr is the set of all predicate symbols with the same number

and type of arguments, and γi is the set of all constant symbols of the ith type. At each step, MRC

creates a cluster symbol for each cluster of predicate and constant symbols it receives as input. Next

it clusters the predicate and constant symbols, creating and deleting cluster symbols as it creates

and destroys clusters. It then calls itself recursively with each possible combination of the clusters

it formed. For example, suppose the data consists of binary predicates r(x1, x2), where x1 and x2

are of different type. If r is clustered into γ 1
r and γ 2

r , x1 into x1
1 and x2

1 , and x2 into x1
2 and x2

2 ,

MRC calls itself recursively with the cluster combinations (γ 1
r , γ 1

1 , γ 1
2 ), (γ 1

r , γ 1
1 , γ 2

2 ), (γ 1
r , γ 2

1 , γ 1
2 ),

(γ 1
r , γ 2

1 , γ 2
2 ), (γ 2

r , γ 1
1 , γ 1

2 ), etc.

Within each recursive call, MRC uses greedy search with restarts to find the MAP clustering

of the subset of predicate and constant symbols it received. It begins by assigning all constant symbols

of the same type to a single cluster, and similarly for predicate symbols of the same arity and argument
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type. The search operators used are: move a symbol between clusters, merge two clusters, and split

a cluster. (If clusters are large, only a random subset of the splits is tried at each step.) A greedy

search ends when no operator increases posterior probability. Restarts are performed, and they give

different results because of the random split operator used.

Notice that in each call of MRC, it forms a clustering for each of its input clusters, thereby

always satisfying the first two hard rules in the MLN. MRC also always satisfies the third hard rule

because it only passes the atoms in the current combination to each recursive call.

MRC terminates when no further refinement increases posterior probability, and returns the

finest clusterings produced. In other words, if we view MRC as growing a tree of clusterings, it returns

the leaves. Conceivably, it might be useful to retain the whole tree, and perform shrinkage [79] over

it. This is an item for future work. Notice that the clusters created at a higher level of recursion

constrain the clusters that can be created at lower levels, e.g., if two symbols are assigned to different

clusters at a higher level, they cannot be assigned to the same cluster in subsequent levels. Notice

also that predicate symbols of different arities and argument types are never clustered together. This

is a limitation that we plan to overcome in the future.

Statistical predicate invention can be seen as an alternative to structure learning in rela-

tional domains. Traditional relational structure learning approaches such as ILP build formulas

by incrementally adding predicates that share variables with existing predicates. The dependen-

cies these formulas represent can also be captured by inventing new predicates. For example,

consider a formula that states that if two people are friends, either both smoke or neither does:

∀x∀y Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y)). We can compactly represent this using two clusters, one con-

taining friends who smoke, and one containing friends who do not. The model introduced in this

section represents a first step in this direction.

4.4 TRANSFER LEARNING

The learning algorithms discussed so far work within a single domain: the only information used

is contained within the dataset or manually specified (e.g., formulas, algorithm parameters, etc.).

This approach overlooks a potentially valuable source of information: related domains with similar

characteristics. Transfer learning is the task of automatically incorporating knowledge learned in

these related domains to improve learning speed or accuracy in a new domain of interest. Interest in

transfer learning has grown rapidly in recent years (e.g., [142, 31, 67, 125, 143, 144]). Work to date

falls mainly into what may be termed shallow transfer: generalizing to different distributions over

the same variables, or different variations of the same domain (e.g., different numbers of objects).

What remains largely unaddressed is deep transfer: generalizing across domains (i.e.,between domains

where the types of objects and variables are different). In this section, we describe two recent methods

for deep transfer learning in relational domains using Markov logic.
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DEEP TRANSFER VIA AUTOMATIC MAPPING AND REVISION
Problems that are superficially different often contain analogous concepts. For example, directors

working with actors on movies are in some ways similar to professors working with students on

publications.Therefore, rules that apply to directors, actors, and movies may also apply to professors,

students, and publications.The TAMAR (Transfer via Automatic Mapping and Revision) algorithm

developed by Mihalkova et al. [82] finds and adapts these analogies automatically using Markov

logic. Results in several real-world domains demonstrate that this approach successfully reduces the

amount of time and training data needed to learn an accurate model of a target domain over learning

from scratch.

TAMAR begins by learning an MLN for the source domain using structure learning methods

such as those described in Section 4.2. For each learned rule, it finds the best mapping to predicates

in the target domain, scored by WPLL (Equation 4.18). Once these rules have been mapped into the

target domain, they are lengthened to become more specific or shortened to become more general.

Finally, a relational pathfinding algorithm is used to discover additional rules. We next describe these

steps in more detail.

Predicate Mapping
The first step is to find the best way to map a source MLN into a target MLN. The quality of

a mapping is measured by the performance of the mapped MLN on the target data, as estimated

by the WPLL score. The number of possible predicate mappings is exponential in the number of

predicates. This makes finding the best global mapping computationally prohibitive in most cases.

Instead, TAMAR finds the best local mapping for each clause, independent of how other clauses

were mapped.

TAMAR does this through exhaustive search through the space of all legal mappings. A

mapping is legal if each source predicate in a given clause is mapped either to a compatible target

predicate or to the “empty” predicate, which erases all literals of that source predicate from the

clause. Two predicates are compatible if they have the same arity and the types of their arguments

are compatible with any existing type constraints. For any legal mapping, a type in the source domain

is mapped to at most one corresponding type in the target domain,and the type constraints are formed

by requiring that these type mappings be consistent across all predicates in the clause. After a legal

mapping is established, TAMAR evaluates the translated clause by calculating the WPLL of an

MLN consisting of only this translated clause. The best predicate mapping for a clause is the one

whose translated clause has the highest WPLL score. Figure 4.6 shows the best predicate mapping

found by the algorithm for a given source clause, when transferring from an academic domain to a

film production one.

Note that because the predicate mapping algorithm may sometimes choose to map a predicate

to an “empty” predicate, the entire structure is not necessarily always mapped to the target domain.

The mapped structure is then revised to improve its fit to the data.The skeleton of the revision

algorithm has three steps and is similar to that of FORTE [115], which revises first-order theories.
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Source clause:

Publication(T, A) ∧ Publication(T, B) ∧ Professor(A) ∧ Student(B)

∧ ¬SamePerson(A, B) ⇒ AdvisedBy(B, A)

Best mapping:

Publication(title, person) → MovieMember(movie, person)

Professor(person) → Director(person)

Student(person) → Actor(person)

SamePerson(person, person) → SamePerson(person, person)

AdvisedBy(person, person) → WorkedFor(person, person)

Figure 4.6: An output of the predicate mapping algorithm.

1. Self-Diagnosis: The purpose of this step is to focus the search for revisions only on the

inaccurate parts of the MLN. The algorithm inspects the source MLN and determines for

each clause whether it should be shortened, lengthened, or left as is. For each clause C, this

is done by considering every possible way of viewing C as an implication in which one of the

literals is placed on the right-hand side of the implication and is treated as the conclusion and

the remaining literals serve as the antecedents. The conclusion of a clause is drawn only if the

antecedents are satisfied and the clause “fires.” Thus, if a clause makes the wrong conclusion,

it is considered for lengthening because the addition of more literals, or conditions, to the

antecedent will make it harder to satisfy, thus preventing the clause from firing. On the other

hand, there may be clauses that fail to draw the correct conclusion because there are too

many conditions in the antecedents that prevent them from firing. In this case, we consider

shortening the clause.

2. Structure Update: Clauses marked as too long are shortened, while those marked as too short

are lengthened. This is done via beam search, using the WPLL for scoring candidate clauses.

3. New Clause Discovery: Relational pathfinding (RPF) [114] finds new clauses in the target

domain. RPF is a bottom-up ILP technique similar to some of the methods used in BUSL

(Section 4.2). Only clauses that improve the WPLL are added to the MLN. RPF and the

previous structure update step operate independently of each other; in particular, the clauses

discovered by RPF are not diagnosed or revised. However, better results are obtained if the

clauses discovered by RPF are added to the MLN before carrying out the revisions.

DEEP TRANSFER VIA SECOND-ORDER MARKOV LOGIC
Some concepts, such as transitivity, are common to many different domains. Learning these concepts

and looking for them in new domains can lead to faster and more accurate structure learning.
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This is the approach used by DTM (Deep Transfer via Markov logic), introduced by Davis and

Domingos [20]. Instead of constructing a specific mapping between source and target domains as

TAMAR does, DTM extracts general, transferable knowledge that could be applied to any target

domain. DTM has been successfully used to transfer learned knowledge among social network,

molecular biology and Web domains. In addition to improving empirical performance over normal

structure learning, DTM discovered patterns including broadly useful properties of predicates, like

symmetry and transitivity, and relations among predicates, such as homophily.

In order to abstract away superficial domain descriptions, DTM uses second-order Markov

logic, where formulas contain predicate variables to model common structures among first-order

clauses. To illustrate the intuition behind DTM, consider the following two formulas:

Complex(z, y) ∧ Interacts(x, z) ⇒ Complex(x, y)

Location(z, y) ∧ Interacts(x, z) ⇒ Location(x, y)

Both are instantiations of the following clause:

r(z, y) ∧ s(x, z) ⇒ r(x, y)

where r and s are predicate variables. Introducing predicate variables allows DTM to represent high-

level structural regularities in a domain-independent fashion. This knowledge can be transferred to

another problem, where the clauses are instantiated with the appropriate predicate names. The key

assumption that DTM makes is that the target domain shares some second-order structure with the

source domain.

Given a set of first-order formulas, DTM converts each formula into second-order logic by

replacing all predicate names with predicate variables. It then groups the second-order formulas

into cliques. Two second-order formulas are assigned to the same clique if and only if they are over

the same set of literals. DTM evaluates which second-order cliques represent regularities whose

probability deviates significantly from independence among their subcliques. It selects the top k

highest-scoring second-order cliques to transfer to the target domain. The transferred knowledge

provides a declarative bias for structure learning in the target domain.

The four key elements of DTM, introduced in the next subsections, are: (i) how to define

cliques, (ii) how to search for cliques, (iii) how to score the cliques and (iv) how to apply cliques to

a new problem.

Second-order Cliques
DTM uses second-order cliques to model second-order structure. It is preferable to use this rep-

resentation as opposed to arbitrary second-order formulas because multiple different formulas over

the same predicates can capture the same regularity. A clique groups those formulas with similar

effects into one structure. A set of literals with predicate variables, such as {r(x, y), r(y, x)}, defines

each second-order clique and the states, or features, are conjunctions over the literals in the clique. It

is more convenient to look at conjunctions than clauses as they do not overlap, and can be evaluated
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separately. The features correspond to all possible ways of negating the literals in a clique. The fea-

tures for {r(x, y), r(y, x)} are {r(x, y) ∧ r(y, x)}, {r(x, y) ∧ ¬r(y, x)}, {¬r(x, y) ∧ r(y, x)} and

{¬r(x, y) ∧ ¬r(y, x)}.
DTM imposes the following restrictions on cliques:

1. The literals in the clique are connected. That is, a path of shared variables must connect each

pair of literals in the clique.

2. No cliques are the same modulo variable renaming. For example, {r(x, y), r(z, y), s(x, z)}
and {r(z, y), r(x, y), s(z, x)}, where r and s are predicate variables, are equivalent as the

second clique renames variable x to z and variable z to x.

The states of a clique are all possible ways of negating the literals in the clique subject to the

following constraints:

1. No two features are the same modulo variable renaming.

2. Two distinct variables are not allowed to unify. For example, r(x, y) ∧ r(y, x) really repre-

sents the following formula: r(x, y) ∧ r(y, x) ∧ x 
= y.This constraint ensures that a possible

grounding does not appear in two separate cliques.Without this constraint, all true groundings

of r(x, y) ∧ s(x, x) would also be true of r(x, y) ∧ s(x, z) (which appears as a feature in a

different clique).

Second-Order Clique Evaluation
Intuitively, the goal is to assign a high score to a second-order clique that captures a depen-

dency between its literals. Each clique can be decomposed into pairs of subcliques, and it should

capture a regularity beyond what its subcliques represent. For example, the second-order clique

{r(x, y), r(z, y), s(x, z)} can be decomposed into the following three pairs of subcliques: (i)

{r(x, y), r(z, y)} and {s(x, z)}, (ii) {r(x, y), s(x, z)} and {r(z, y)}, and (iii) {r(z, y), s(x, z)} and

{r(x, y)}.
To score a second-order clique, each of its first-order instantiations is evaluated. To score

a first-order clique, DTM checks if its probability distribution is significantly different from the

product of the probabilities of each possible pair of subcliques that it can be decomposed into. The

natural way to compare these two distributions is to use the Kullback-Leibler (K-L) divergence:

D(p||q) =
∑

x

p(x) log
p(x)

q(x)
(4.22)

where p is the clique’s probability distribution, and q is the distribution it would have if the two

subcliques were independent.DTM uses Bayesian estimates of the probabilities with Dirichlet priors

with all αi = 1.

For each first-order instantiation of a second-order clique, DTM computes its K-L divergence

versus all its decompositions. Each instantiation receives the minimum K-L score over the set of its
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decompositions, because any single one could explain the clique’s distribution. Each second-order

clique receives the average score of its top m first-order instantiations, in order to favor second-order

cliques that have multiple useful instantiations.

Search
DTM works with any learner that induces formulas in first-order logic. We have explored two

separate strategies for inducing formulas in the source domain: exhaustive search and beam search.

Exhaustive search. Given a source domain, the learner generates all first-order clauses up to a

maximum clause length and a maximum number of object variables. The entire set of clauses

is passed to DTM for evaluation.

Beam search. Exhaustive search does not scale well, as the number of clauses it produces is expo-

nential in the clause length, and it becomes computationally infeasible to score long clauses.

Beam search, a common strategy for scaling structure learning, is used in top-down structure

learning (TDSL) (Section 4.2). However, transfer learning and structure learning have differ-

ent objectives. In transfer learning, the goal is to derive a large, diverse set of clauses to evaluate

for potential transfer to the target domain. Structure learning simply needs to induce a com-

pact theory that accurately models the predicates in the source domain. The theories induced

by TDSL tend to contain very few clauses and thus are not ideal for transfer. An alternative

approach is to induce a separate theory to predict each predicate in the domain. However, the

resulting theory may not be very diverse, since clauses will contain only the target predicate

and predicates in its Markov blanket (i.e., its neighbors in the network). A better approach is

to construct models that predict sets of predicates.

Given the final set of learned models, DTM groups the clauses into second-order cliques and

evaluates each clique that appears more than twice.

Transfer Mechanism
The next question is how to make use of the transferred knowledge in the target domain. A key

component of an inductive logic programming (ILP) [33] system is the declarative bias. Due to the

large search space of possible first-order clauses, devising a good declarative bias is crucial for achiev-

ing good results with an ILP system. In ILP, two primary methods exist for expressing a declarative

bias, and both forms of bias are often used in the same system. The first method restricts the search

space. Common strategies include having type constraints, forcing certain predicate arguments to

contain bound variables, and setting a maximum clause length. The second method involves incor-

porating background knowledge. Background knowledge comes in the form of hand-crafted clauses

that define additional predicates, which can be added to a clause under construction. Effectively,

background knowledge allows the learner to add multiple literals to a clause at once and overcome

the myopia of greedy search. It is important to note that these common strategies can easily be ex-

pressed in second-order logic, and this is part of what motivates this approach. DTM can be viewed

as a way to learn the declarative bias in one domain and apply it in another, as opposed to having a

user hand-craft the bias for each domain.
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When applying a second-order clique in a target domain, DTM decomposes the clique into

a set of clauses, and transfers each clause. It uses clauses instead of conjunctions since most structure

learning approaches, both in Markov logic and ILP, construct clauses. In Markov logic, a conjunction

can be converted into an equivalent clause by negating each literal in it and flipping the sign of its

weight.

There are three different ways to reapply the knowledge in the target domain:

Transfer by Seeding the Beam. In the first approach, the second-order cliques provide a declarative

bias for the standard MLN structure search. DTM selects the top k clique templates that have

at least one true grounding in the target domain. At the beginning of each iteration of the

beam search, DTM seeds the beam with the clauses obtained from each legal instantiation of

a clique in the target domain (i.e., only instantiations that conform with the type constraints

of the domain are considered).This strategy forces certain clauses to be evaluated in the search

process that would not be scored otherwise and helps overcome some of the limitations of

greedy search.

Greedy Transfer without Refinement. The second approach again picks the top k clique templates

that have at least one true grounding in the target domain and creates all legal instantiations

in the target domain. This algorithm imposes a very stringent bias by performing a structure

search where it only considers including the transferred clauses. The algorithm evaluates all

clauses and greedily picks the one that leads to the biggest improvement in WPLL.The search

terminates when no clause addition improves the WPLL.

Greedy Transfer with Refinement. The final approach adds a refinement step to the previous al-

gorithm. In this case, the MLN generated by the greedy procedure serves as seed network

during standard structure learning. The MLN search can now refine the clauses picked by the

greedy procedure to better match the target domain. Additionally, it can induce new clauses

to add to the theory.

In transfer learning experiments among social network, molecular biology, a Web domains,

we found that DTM was more effective than top-down structure learning (which transfers no

knowledge), and that greedy transfer with refinement was the most accurate DTM method [20]. In

general, exhaustive search seems to yield better and more stable results than beam search, perhaps

because beam search still focuses too heavily on finding a good theory as opposed to finding the best

clauses for transfer.

FURTHER READING

The first learning algorithm for Markov logic was generative weight learning with pseudo-likelihood;

see Richardson and Domingos for details and experimental results [117]. Pseudo-likelihood has

also been used for structure learning by Kok and Domingos [57] and Mihalkova and Mooney [83].
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Pseudo-likelihood was originally introduced by Besag [6]; for a theoretical comparison to exact

generative and discriminative learning, see Liang and Jordan [68].

Discriminative weight learning in Markov logic was first done by Singla and Domingos [133]

using a variant of Collins’ voted perceptron algorithm [15]. See Lowd and Domingos [75] for

details and an empirical comparison of all discriminative weight learning algorithms discussed in

this chapter.

For more information on top-down and bottom-up structure learning, see Kok and Domin-

gos [57] and Mihalkova and Mooney [83], respectively. Both approaches outperform directly using

the output of various ILP algorithms, as previously done by Richardson and Domingos [117]. Most

recently, Huynh and Mooney [50] introduced a method for discriminative structure and parameter

learning. They examined the classic ILP scenario in which a single predicate is predicted given all

others.Their method consisted of generating clauses using traditional ILP algorithms, selecting and

weighting them using Markov logic weight learning with an L1 prior, and adding transitivity clauses

as appropriate to allow for joint inference. Biba et al. [8] propose a discriminative structure learning

algorithm that uses pseudo-likelihood to set weights and filter clause candidates, but does the final

clause evaluation by CLL using MC-SAT. Instead of greedy or exhaustive search, the algorithm

uses stochastic local search to find many locally optimal candidate clauses.

See Poon and Domingos [107] for an example of unsupervised weight learning. Details on

statistical predicate invention can be found in Kok and Domingos [58]. For a large-scale application

of these ideas to the Web, see the more recent Kok and Domingos publication [59] (also discussed

in Chapter 6).

For transfer learning details and experiments, consult Mihalkova et al. [82] regardingTAMAR

and Davis and Domingos [20] regarding DTM.
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C H A P T E R 5

Extensions
In this chapter, we describe how to overcome a number of limitations of the basic Markov logic

representation introduced in Chapter 2. We extend Markov logic to handle continuous variables and

infinite domains; uncertain disjunctions and existential quantifiers; and relational decision theory.

We also describe inference algorithms for these extensions.

5.1 CONTINUOUS DOMAINS

In this section, we discuss how to extend Markov logic networks to hybrid domains involving

both discrete and continuous variables, as developed by Wang and Domingos [148]. We call the

generalized representation hybrid Markov logic networks (HMLNs). We have developed efficient

algorithms for inference in HMLNs, combining ideas from satisfiability testing, slice-sampling

MCMC, and numerical optimization. Because most probabilistic models are easily translated into

HMLNs, our algorithms are a powerful general-purpose tool for inference in structured domains.

Weight learning algorithms are straightforward extensions of existing ones for MLNs.An application

of HMLNs to a robot mapping domain appears in Chapter 6.

REPRESENTATION
Conceptually, extending MLNs to numeric and hybrid domains is quite straightforward: it suffices

to allow numeric properties of objects as nodes, in addition to Boolean ones, and numeric terms as

features, in addition to logical formulas. Since the syntax of first-order logic already includes numeric

terms, no new constructs are required. A numeric term is a term of numeric type, and a numeric

property is a designated function of numeric type. For example, if we are interested in distances

between objects as random variables, we can introduce the numeric property Distance(x, y).

Definition 5.1. A hybrid Markov logic network L is a set of pairs (Fi, wi), where Fi is a first-

order formula or a numeric term, and wi is a real number. Together with a finite set of constants

C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C as follows:

1. ML,C contains one node for each possible grounding with constants in C of each predicate or

numeric property appearing in L. The value of a predicate node is 1 if the ground predicate is

true, and 0 otherwise. The value of a numeric node is the value of the corresponding ground

term.

2. ML,C contains one feature for each possible grounding with constants in C of each formula or

numeric term Fi in L. The value of a formula feature is 1 if the ground formula is true, and 0
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otherwise. The value of a numeric feature is the value of the corresponding ground term. The

weight of the feature is the wi associated with Fi in L.

Thus an HMLN defines a family of log-linear models of the form P(X=x) =
1
Z

exp
(
∑

i wisi(x)
)

, where si is the sum of the values of all groundings of Fi in x. Notice that

logical formulas may contain numeric terms and these may contain indicator functions, allowing

for arbitrary hybrid features. As in discrete MLNs, we assume that the value of every function for

every tuple of arguments is known, and thus when grounding an HMLN every functional term can

be replaced by its value. Proper measures and finite solutions are guaranteed by requiring that all

variables have finite range, and features be finite everywhere in this range. For convenience, we allow

some extensions of first-order syntax in defining HMLNs:

Infix notation. Numeric terms may appear in infix form.

Formulas as indicators. First-order formulas may be used as indicator functions within numeric

terms.

Soft equality. α = β may be used as a shorthand for −(α − β)2, where α and β are arbitrary

numeric terms. This makes it possible to state numeric constraints as equations, with an

implied Gaussian penalty for diverging from them. If the weight of a formula is w, the standard

deviation of the Gaussian is σ = 1/
√

2w. A numeric domain can now be modeled simply by

writing down the equations that describe it. In our experience, this is the most common use

of numeric features in HMLNs.

Soft inequality. α > t may be used as a shorthand for − log(1 + ea(t−α)), and α < t for − log(1 +
ea(α−t)), with α an arbitrary numeric term. In other words, the (log) sigmoid function is used

to represent soft inequality, with a controlling the degree of softness.

We now present algorithms for inference in HMLNs by extending the corresponding ones

for MLNs. All algorithms assume logical formulas have been converted to standard clausal form.

For simplicity, the exposition assumes that all weights are positive. Weights can be learned using

the same algorithms as for MLNs, with feature counts generalized to feature sums. Other numeric

parameters require a straightforward extension of these algorithms. HMLNs structure learning is a

topic for future research.

INFERRING THE MOST PROBABLE STATE
The hybrid MaxWalkSAT (HMWS) algorithm performs MPE inference in HMLNs by combining

MaxWalkSAT and L-BFGS [148]. Pseudocode for it is shown in Table 5.1, where x is the current

state and S(x) is the current sum of weighted features. Numeric variables are initialized uniformly at

random, with user-determined range. At each search step, HMWS randomly chooses an unsatisfied

clause or numeric feature c, and performs a random step with probability p and a greedy one

otherwise. In random steps, HMWS chooses a variable at random and sets it to the value that



5.1. CONTINUOUS DOMAINS 73

maximizes c(x). For a Boolean variable in an unsatisfied clause, this simply means flipping it. For a

numeric variable, the maximization is done using L-BFGS, and HMWS then adds Gaussian noise

to it (with user-determined variance). In greedy steps, HMWS first performs a one-dimensional

optimization of S(x) as a function of each variable, and chooses the variable change that yields the

greatest improvement in S(x). In numeric features, if all one-variable changes fail to improve S,

HMWS performs a greedy or exhaustive search over assignments to the Boolean variables, for each

assignment maximizing the feature sum as a function of the numeric variables using L-BFGS. The

choice between greedy and exhaustive search is determined by the number of Boolean variables.The

result of the numeric search for each setting of the Boolean variables is cached, to avoid redoing the

search in the future. As in MaxWalkSAT, this process continues for a predefined number of steps,

and is restarted a predefined number of times. The best assignment found is returned. When all

variables and features are Boolean, HMWS reduces to MaxWalkSAT; when all are numeric, to a

series of calls to L-BFGS.

INFERRING CONDITIONAL PROBABILITIES
Extending MC-SAT to handle numeric variables and features requires first extending WalkSAT

and SampleSAT. A Boolean constraint is a clause. A numeric constraint is an inequality of the form

fk(x) ≥ a. Given a set of constraints over Boolean and numeric variables, hybrid WalkSAT (HWS)

attempts to find the assignment of values to the variables that maximizes the number of satisfied

constraints. HWS is similar to HMWS with the functions fk(x) as numeric features, except that in

each step maximization of fk(x) is halted as soon as fk(x) ≥ a, and the global objective function is

the number of satisfied constraints, not the weighted sum of features.

Hybrid SampleSAT (HSS) generates a uniform sample from the states that satisfy a set of

constraints M . It mixes HWS and simulated annealing steps. The energy (negative log probability)

of a state for simulated annealing is the number of satisfied constraints. A new candidate state is

generated by choosing a variable at random, flipping it if it is Boolean, and adding Gaussian noise

with user-determined variance to it if it is numeric.

Hybrid MC-SAT (HMCS) is a slice sampler with one auxiliary variable per feature. In state

x, the auxiliary variable uk corresponding to feature fk is sampled uniformly from [0, ewkfk(x)]. For

Boolean features, the construction of the constraint set M is the same as in MC-SAT. For numeric

feature fk , the standard slice sampling constraint fk ≥ log(uk)/wk is added to M .The constraints in

M define the slice, and a new state is sampled from it using HSS. Pseudocode for HMCS is shown

in Table 5.2, where the first step calls WalkSAT to satisfy all hard (infinite-weight) clauses, and US is

the uniform distribution over set S.The proof that HMCS satisfies ergodicity and detailed balance is

analogous to that for MC-SAT. In purely discrete domains, HMCS reduces to MC-SAT. In purely

continuous ones, it is a new type of slice sampler, using a combination of simulated annealing and

numerical optimization to very efficiently sample from the slice.
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Table 5.1: MPE inference algorithm for hybrid MLNs.

function Hybrid-MaxWalkSAT(L, F, mt , mf , p)

inputs: L, a set of weighted clauses

F , a set of weighted numeric terms

nt , number of tries

nf , number of flips

p, probability of a random move

output: x∗, best variable assignment found

x∗ = null

S(x∗) = −∞
for i ← 1 to nt

x ← random assignment

for j ← 1 to nf

if S(x) > S(x∗)
x∗ ← x
S(x∗) ← S(x)

c ← a random unsatisfied clause or numeric term

if uniform(0,1) < p

select a random variable x appearing in c

x ← argmaxxc(x)

if x is numeric

x ← x + Gaussian noise

else
for each variable xi in c

x′
i ← argmaxxi

S(x)

S(x′
i) ← S(x) with xi ← x′

i

x′
f ← x′

i with highest S(x′
i)

if S(x′
f ) > S(x) or c is a clause

xf ← x′
f

else
xc ← argmaxxc

S(x), where xc is the subset of x appearing in c

return x∗
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Table 5.2: Efficient MCMC algorithm for hybrid MLNs.

function Hybrid-MC-SAT (L, F, n)

inputs: L, a set of weighted clauses {(wj , cj )}
F , a set of weighted numeric terms {(wj , fj )}
n, number of samples

output: {x(1), . . . , x(n)}, set of n samples

x(0) ← Satisfy(hard clauses in L)

for i ← 1 to n

M ← ∅
for all (wk, ck) ∈ C satisfied by x(i−1)

with probability 1 − e−wk add ck to M

for all (wk, fk) ∈ F

uk ∼ U[0,exp(wkfk(x
(i−1)))]

add fk(x
(i)) ≥ log(uk)/wk to M

sample x(i) ∼ USAT(M)

5.2 INFINITE DOMAINS

One limitation of Markov logic is that it is only defined for finite domains. While this is seldom a

problem in practice, considering the infinite limit can simplify the treatment of some problems, and

yield new insights. We would also like to elucidate how far it is possible to combine the full power of

first-order logic and graphical models. Thus, in this section we describe how to extend Markov logic

to infinite domains, as done by Singla and Domingos [136]. Our treatment is based on the theory

of Gibbs measures [38]. Gibbs measures are infinite-dimensional extensions of Markov networks,

and have been studied extensively by statistical physicists and mathematical statisticians, due to their

importance in modeling systems with phase transitions. We begin with some necessary background

on Gibbs measures. We then define MLNs over infinite domains, state sufficient conditions for the

existence and uniqueness of a probability measure consistent with a given MLN, and examine the

important case of MLNs with non-unique measures. Next, we establish a correspondence between

the problem of satisfiability in logic and the existence of MLN measures with certain properties.

We conclude with a discussion of the relationship between infinite MLNs and previous infinite

relational models.

GIBBS MEASURES
Gibbs measures are infinite-dimensional generalizations of Gibbs distributions. A Gibbs distribu-

tion, also known as a log-linear model or exponential model, and equivalent under mild conditions
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to a Markov network or Markov random field, assigns to a state x the probability

P(X =x) = 1

Z
exp

(

∑

i

wifi(x)

)

(5.1)

where wi is any real number, fi is an arbitrary function or feature of x, and Z is a normalization

constant. In this section we will be concerned exclusively with Boolean states and functions (i.e.,

states are binary vectors, corresponding to possible worlds, and functions are logical formulas).

Markov logic can be viewed as the use of first-order logic to compactly specify families of these

functions. Thus, a natural way to generalize it to infinite domains is to use the existing theory of

Gibbs measures [38]. Although Gibbs measures were primarily developed to model regular lattices

(e.g., ferromagnetic materials, gas/liquid phases, etc.), the theory is quite general, and applies equally

well to the richer structures definable using Markov logic.

One problem with defining probability distributions over infinite domains is that the prob-

ability of most or all worlds will be zero. Measure theory allows us to overcome this problem by

instead assigning probabilities to sets of worlds [9]. Let 
 denote the set of all possible worlds, and

E denote a set of subsets of 
. E must be a σ -algebra, i.e., it must be non-empty and closed under

complements and countable unions. A function μ : E → R is said to be a probability measure over

(
, E) if μ(E) ≥ 0 for every E ∈ E , μ(
) = 1, and μ(
⋃

Ei) = ∑

μ(Ei), where the union is taken

over any countable collection of disjoint elements of E .

A related difficulty is that in infinite domains the sum in Equation 5.1 may not exist. However,

the distribution of any finite subset of the state variables conditioned on its complement is still well

defined. We can thus define the infinite distribution indirectly by means of an infinite collection of

finite conditional distributions. This is the basic idea in Gibbs measures.

Let us introduce some notation which will be used throughout the section. Consider a count-

able set of variables S = {X1, X2, . . .}, where each Xi takes values in {0, 1}. Let X be a finite set of

variables in S, and SX = S \ X. A possible world ω ∈ 
 is an assignment to all the variables in S.

Let ωX denote the assignment to the variables in X under ω, and ωXi
the assignment to Xi . Let

X denote the set of all finite subsets of S. A basic event X = x is an assignment of values to a finite

subset of variables X ∈ X , and denotes the set of possible worlds ω ∈ 
 such that wX = x. Let E
be the set of all basic events, and let E be the σ -algebra generated by E, i.e., the smallest σ -algebra

containing E. An element E of E is called an event, and E is the event space.The following treatment

is adapted from Georgii [38].

Definition 5.2. An interaction potential (or simply a potential) is a family � = (�V)V∈X of functions

�V : V → R such that, for all X ∈ X and ω ∈ 
, the summation

H�
X (ω) =

∑

V∈X ,V∩X 
=∅
�V(ωV) (5.2)

is finite. H�
X is called the Hamiltonian in X for �.
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Intuitively, the Hamiltonian H�
X includes a contribution from all the potentials �V that share

at least one variable with the set X. Given an interaction potential � and a subset of variables X, we

define the conditional distribution γ �
X (X|SX) as1

γ �
X (X = x|SX = y) = exp(H�

X (x, y))
∑

x∈Dom(X)

exp(H�
X (x, y))

(5.3)

where the denominator is called the partition function in X for � and denoted by Z�
X , and Dom(X)

is the domain of X. Equation 5.3 can be easily extended to arbitrary events E ∈ E by defining

γ �
X (E|SX) to be non-zero only when E is consistent with the assignment in SX. Details are skipped

here to keep the discussion simple, and can be found in Georgii [38]. The family of conditional

distributions γ � = (γ �
X )X∈X as defined above is called a Gibbsian specification.2

Given a measure μ over (
, E) and conditional probabilities γ �
X (E|SX), let the composition

μγ �
X be defined as

μγ �
X (E) =

∫

Dom(SX)

γ �
X (E|SX) ∂μ (5.4)

μγ �
X (E) is the probability of event E according to the conditional probabilities γ �

X (E|SX) and the

measure μ on SX. We are now ready to define Gibbs measure.

Definition 5.3. Let γ � be a Gibbsian specification.Let μ be a probability measure over the measur-

able space (
, E) such that, for every X ∈ X and E ∈ E , μ(E) = μγ �
X (E). Then the specification

γ � is said to admit the Gibbs measure μ. Further, G(γ �) denotes the set of all such measures.

In other words, a Gibbs measure is consistent with a Gibbsian specification if its event prob-

abilities agree with those obtained from the specification. Given a Gibbsian specification, we can

ask whether there exists a Gibbs measure consistent with it (|G(γ �)| > 0), and whether it is unique

(|G(γ �)| = 1). In the non-unique case, we can ask what the structure of G(γ �) is, and what the

measures in it represent. We can also ask whether Gibbs measures with specific properties exist.

The theory of Gibbs measures addresses these questions. In this section, we apply it to the case of

Gibbsian specifications defined by MLNs.

DEFINITION
The first-order formulas in an MLN can be converted to equivalent formulas in prenex conjunc-

tive normal form, Qx1 . . . Qxn C(x1, . . . , xn), where each Q is a quantifier, the xi are the quantified

variables, and C(. . .) is a conjunction of clauses. We will assume throughout this section that all exis-

tentially quantified variables in an MLN have finite domains,unless otherwise specified.While this is

1For physical reasons, this equation is usually written with a negative sign in the exponent, i.e., exp[−H�
X (ω)]. Since this is not

relevant in Markov logic and does not affect any of the results, we omit it.
2Georgii [38] defines Gibbsian specifications in terms of underlying independent specifications. For simplicity, we assume these
to be equi-distributions and omit them throughout this section.
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a significant restriction, it still includes essentially all previous probabilistic relational representations

as special cases. Existentially quantified formulas can now be replaced by finite disjunctions. By dis-

tributing conjunctions over disjunctions, every prenex CNF can now be converted to a quantifier-free

CNF, with all variables implicitly universally quantified.

The Herbrand universe U(L) of an MLN L is the set of all ground terms constructible from

the constants and function symbols in the MLN. The Herbrand base B(L) of L is the set of all

ground atoms and clauses constructible from the predicates in L, the clauses in the CNF form of

L, and the terms in U(L), replacing typed variables only by terms of the corresponding type. We

assume Herbrand interpretations throughout. We are now ready to formally define infinite MLNs.

Definition 5.4. A Markov logic network (MLN) L is a (finite) set of pairs (Fi, wi), where Fi is a

formula in first-order logic and wi is a real number. L defines a countable set of variables S and

interaction potential �L = (�L
X)X∈X , X being the set of all finite subsets of S, as follows:

1. S contains a binary variable for each atom in B(L). The value of this variable is 1 if the atom

is true, and 0 otherwise.

2. �L
X(x) = ∑

j wjfj (x), where the sum is over the clauses Cj in B(L) whose arguments are

exactly the elements of X. If Fi(j) is the formula in L from which Cj originated, and Fi(j)

gave rise to n clauses in the CNF form of L, then wj = wi/n. fj (x) = 1 if Cj is true in world

x, and fj = 0 otherwise.

For �L to correspond to a well-defined Gibbsian specification, the corresponding Hamilto-

nians (Equation 5.2) need to be finite. This brings us to the following definition.

Definition 5.5. Let C be a set of first-order clauses. Given a ground atom X ∈ B(C), let the

neighbors N(X) of X be the atoms that appear with it in some ground clause. C is said to be locally

finite if each atom in the Herbrand base of C has a finite number of neighbors, i.e., ∀X ∈ B(C),

|N(X)| < ∞. An MLN (or knowledge base) is said to be locally finite if the set of its clauses is

locally finite.

It is easy to see that local finiteness is sufficient to ensure a well-defined Gibbsian specification.

Given such an MLN L, the distributionγ L
X of a set of variables X ∈ X conditioned on its complement

SX is given by

γ L
X (X =x|SX =y) =

exp
(

∑

j wjfj (x, y)
)

∑

x′∈Dom(X) exp
(

∑

j wjfj (x′, y)
) (5.5)

where the sum is over the clauses in B(L) that contain at least one element of X, and fj (x, y) = 1

if clause Cj is true under the assignment (x, y) and 0 otherwise. The corresponding Gibbsian

specification is denoted by γ L.
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For an MLN to be locally finite, it suffices that it be σ -determinate.

Definition 5.6. A clause is σ -determinate if all the variables with infinite domains it contains appear

in all literals.3 A set of clauses is σ -determinate if each clause in the set is σ -determinate. An MLN

is σ -determinate if the set of its clauses is σ -determinate.

Notice that this definition does not require that all literals have the same infinite arguments;

for example, the clause Q(x, y) ⇒ R(f(x), g(x, y)) is σ -determinate. In essence, σ -determinacy

requires that the neighbors of an atom be defined by functions of its arguments. Because functions

can be composed indefinitely, the network can be infinite; because first-order clauses have finite

length, σ -determinacy ensures that neighborhoods are still finite.

If the MLN contains no function symbols, Definition 5.4 reduces to the finite case from

Chapter 2 (Definition 2.1), with C being the constants appearing in the MLN. This can be easily

seen by substituting X = S in Equation 5.5. Notice it would be equally possible to define features

for conjunctions of clauses, and this may be preferable for some applications.

EXISTENCE
Let L be a locally finite MLN.The focus of this subsection is to show that its specification γ L always

admits some measure μ. It is useful to first gain some intuition as to why this might not always be the

case. Consider an MLN stating that each person is loved by exactly one person: ∀x ∃!y Loves(y, x).
(We the ∃! quantifier here to mean “exactly one exists.”) Let ωk denote the event Loves(Pk, Anna),

i.e., Anna is loved by the kth person in the (countably infinite) domain. Then, in the limit of infinite

weights, one would expect that μ(
⋃

ωk) = μ(
) = 1. But in fact μ(
⋃

ωk) = ∑

μ(ωk) = 0. The

first equality holds because the ωk ’s are disjoint, and the second one because each ωk has zero

probability of occurring by itself. There is a contradiction, and there exists no measure consistent

with the MLN above.4 The reason the MLN fails to have a measure is that the formulas are not

local, in the sense that the truth value of an atom depends on the truth values of infinite others.

Locality is in fact the key property for the existence of a consistent measure, and local finiteness

ensures it.

Definition 5.7. A function f : 
 → R is local if it depends only on a finite subset V ∈ X . A

Gibbsian specification γ = (γX)X∈X is local if each γX is local.

Lemma 5.8. Let L be a locally finite MLN, and γ L the corresponding specification. Then γ L is local.

3This is related to the notion of a determinate clause in logic programming. In a determinate clause, the grounding of the variables
in the head determines the grounding of all the variables in the body. In infinite MLNs, any literal in a clause can be inferred
from the others, not just the head from the body, so we require that the (infinite-domain) variables in each literal determine the
variables in the others.

4See Example 4.16 in Georgii [38] for a detailed proof.
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Proof. Each Hamiltonian H L
X is local, since by local finiteness it depends only on a finite number

of potentials φL
V . It follows that each γ L

X is local, and hence the corresponding specification γ L is

also local. ✷

We now state the theorem for the existence of a measure admitted by γ L.

Theorem 5.9. Let L be a locally finite MLN, and γ L = (γ L
X )X∈X be the corresponding Gibbsian

specification. Then there exists a measure μ over (
, E) admitted by γ L, i.e., |G(γ L)| ≥ 1.

Proof. To show the existence of a measure μ, we need to prove the following two conditions:

1. The net (γ L
X (X|SX))X∈X has a cluster point with respect to the weak topology on (
, E).

2. Each cluster point of (γ L
X (X|SX))X∈X belongs to G(γ L).

It is a well known result that, if all the variables Xi have finite domains, then the net in Condition 1

has a cluster point (see Section 4.2 in Georgii [38]). Thus, since all the variables in the MLN are

binary, Condition 1 holds. Further, since γ L is local, every cluster point μ of the net (γ L
X (X|SX))X∈X

belongs to G(γ L) (Comment 4.18 in Georgii [38]). Therefore, Condition 2 is also satisfied. Hence

there exists a measure μ consistent with the specification γ L, as required. ✷

UNIQUENESS
We now address the question of under what conditions an MLN admits a unique measure.Let us first

gain some intuition as to why an MLN might admit more than one measure. The only condition an

MLN L imposes on a measure is that it should be consistent with the local conditional distributions

γ L
X . But since these distributions are local, they do not determine the behavior of the measure at

infinity. Consider, for example, a semi-infinite two-dimensional lattice, where neighboring sites are

more likely to have the same truth value than not. This can be represented by formulas of the form

∀x, y Q(x, y) ⇔ Q(s(x), y) and ∀x, y Q(x, y) ⇔ Q(x, s(y)), with a single constant 0 to define the

origin (0, 0), and with s() being the successor function. The higher the weight w of these formulas,

the more likely neighbors are to have the same value. This MLN has two extreme states: one where

∀x S(x), and one where ∀x ¬S(x). Let us call these states ξ and ξ¬, and let ξ ′ be a local perturbation

of ξ (i.e., ξ ′ differs from ξ on only a finite number of sites). If we draw a contour around the sites

where ξ ′ and ξ differ, then the log odds of ξ and ξ ′ increase with wd, where d is the length of

the contour. Thus long contours are improbable, and there is a measure μ → δξ as w → ∞. Since,

by the same reasoning, there is a measure μ¬ → δξ¬ as w → ∞, the MLN admits more than one

measure.5

Let us now turn to the mathematical conditions for the existence of a unique measure for a

given MLN L. Clearly, in the limit of all non-unit clause weights going to zero, L defines a unique

5Notice that this argument fails for a one-dimensional lattice (equivalent to a Markov chain), since in this case an arbitrarily large
number of sites can be separated from the rest by a contour of length 2. Non-uniqueness (corresponding to a non-ergodic chain)
can then only be obtained by making some weights infinite (corresponding to zero transition probabilities).
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distribution.Thus, by a continuity argument, one would expect the same to be true for small enough

weights. This is indeed the case. To make it precise, let us first define the notion of the oscillation of

a function. Given a function f : X → R, let the oscillation of f , δ(f ), be defined as

δ(f ) = max
x,x′∈Dom(X)

|f (x) − f (x′)|
= max

x
|f (x)| − min

x
|f (x)| (5.6)

The oscillation of a function is thus simply the difference between its extreme values. We can

now state a sufficient condition for the existence of a unique measure.

Theorem 5.10. Let L be a locally finite MLN with interaction potential �L and Gibbsian specification

γ L such that

sup
Xi∈S

∑

Cj ∈C(Xi)

(|Cj | − 1)|wj | < 2 (5.7)

where C(Xi) is the set of ground clauses in which Xi appears, |Cj | is the number of ground atoms appearing

in clause Cj , and wj is its weight. Then γ L admits a unique Gibbs measure.

Proof. Based on Theorem 8.7 and Proposition 8.8 in Georgii [38], a sufficient condition for unique-

ness is

sup
Xi∈S

∑

V∋Xi

(|V| − 1)δ(�L
V) < 2 (5.8)

Rewriting this condition in terms of the ground formulas in which a variable Xi appears (see

Definition 5.4) yields the desired result. ✷

Note that, as alluded to before, the above condition does not depend on the weight of the

unit clauses. This is because for a unit clause |Cj | − 1 = 0. If we define the interaction between two

variables as the sum of the weights of all the ground clauses in which they appear together, then the

above theorem states that the total sum of the interactions of any variable with its neighbors should

be less than 2 for the measure to be unique.

Two other sufficient conditions are worth mentioning briefly. One is that, if the weights of

the unit clauses are sufficiently large compared to the weights of the non-unit ones, the measure is

unique. Intuitively, the unit terms “drown out” the interactions, rendering the variables approximately

independent.The other condition is that, if the MLN is a one-dimensional lattice, it suffices that the

total interaction between the variables to the left and right of any edge be finite. This corresponds

to the ergodicity condition for a Markov chain.



82 CHAPTER 5. EXTENSIONS

NON-UNIQUE MLNS
At first sight, it might appear that non-uniqueness is an undesirable property, and non-unique MLNs

are not an interesting object of study. However, the non-unique case is in fact quite important,

because many phenomena of interest are represented by MLNs with non-unique measures (for

example, very large social networks with strong word-of-mouth effects). The question of what these

measures represent, and how they relate to each other, then becomes important. This is the subject

of this subsection.

The first observation is that the set of all Gibbs measures G(γ L) is convex. That is, if μ, μ′ ∈
G(γ L) then ν ∈ G(γ L), where ν = sμ + (1 − s)μ′, s ∈ (0, 1).This is easily verified by substituting

ν in Equation 5.4. Hence, the non-uniqueness of a Gibbs measure implies the existence of infinitely

many consistent Gibbs measures. Further, many properties of the set G(γ L) depend on the set of

extreme Gibbs measures ex G(γ L), where μ ∈ ex G(γ L) if μ ∈ G(γ L) cannot be written as a linear

combination of two distinct measures in G(γ L).

An important notion to understand the properties of extreme Gibbs measures is the notion

of a tail event. Consider a subset S′ of S. Let σ(S′) denote the σ -algebra generated by the set of

basic events involving only variables in S′. Then we define the tail σ -algebra T as

T =
⋂

X∈X

σ(SX) (5.9)

Any event belonging to T is called a tail event. T is precisely the set of events which do not

depend on the value of any finite set of variables, but rather only on the behavior at infinity. For

example, in the infinite tosses of a coin, the event that ten consecutive heads come out infinitely many

times is a tail event. Similarly, in the lattice example in the previous section, the event that a finite

number of variables have the value 1 is a tail event. Events in T can be thought of as representing

macroscopic properties of the system being modeled.

Definition 5.11. A measure μ is trivial on a σ -algebra E if μ(E) = 0 or 1 for all E ∈ E .

The following theorem (adapted from Theorem 7.8 in Georgii [38]) describes the relationship

between the extreme Gibbs measures and the tail σ -algebra.

Theorem 5.12. Let L be a locally finite MLN, and γ L denote the corresponding Gibbsian specification.

Then the following results hold:

1. A measure μ ∈ ex G(γ L)) iff it is trivial on the tail σ -algebra T .

2. Each measure μ is uniquely determined by its behavior on the tail σ -algebra, i.e., if μ1 = μ2 on T

then μ1 = μ2.
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It is easy to see that each extreme measure corresponds to some particular value for all the

macroscopic properties of the network. In physical systems, extreme measures correspond to phases

of the system (e.g., liquid vs. gas, or different directions of magnetization), and non-extreme mea-

sures correspond to probability distributions over phases. Uncertainty over phases arises when our

knowledge of a system is not sufficient to determine its macroscopic state. Clearly, the study of

non-unique MLNs beyond the highly regular ones statistical physicists have focused on promises

to be quite interesting. In the next subsection, we take a step in this direction by considering the

problem of satisfiability in the context of MLN measures.

SATISFIABILITY AND ENTAILMENT
From Theorem 2.6, we know that MLNs generalize finite first-order logic in the infinite-weight

limit. We now extend this result to infinite domains.

Consider an MLN L such that each clause in its CNF form has the same weight w. In

the limit w → ∞, L does not correspond to a valid Gibbsian specification since the Hamiltonians

defined in Equation 5.2 are no longer finite. Revisiting Equation 5.5 in the limit of all equal infinite

clause weights, the limiting conditional distribution is equi-distribution over those configurations

X that satisfy the maximum number of clauses given SX = y. It turns out we can still talk about the

existence of a measure consistent with these conditional distributions because they constitute a valid

specification (though not Gibbsian) under the same conditions as in the finite weight case. Details

and proofs can be found in Singla and Domingos [137]. Existence of a measure follows as in the

case of finite weights because of the locality of conditional distributions. We now define the notion

of a satisfying measure, which is central to the results presented in this section.

Definition 5.13. Let L be a locally finite MLN. Given a clause Ci ∈ B(L), let Vi denote the set of

Boolean variables appearing in Ci . A measure μ ∈ G(γ L) is said to be a satisfying measure for L if, for

every ground clause Ci ∈ B(L), μ assigns non-zero probability only to the satisfying assignments

of the variables in Ci , i.e., μ(Vi = vi) > 0 implies that Vi = vi is a satisfying assignment for Ci .

S(γ L) denotes the set of all satisfying measures for L.

Informally, a satisfying measure assigns non-zero probability only to those worlds that are

consistent with all the formulas in L. Intuitively, existence of a satisfying measure for L should be in

some way related to the existence of a satisfying assignment for the corresponding knowledge base.

Our next theorem formalizes this intuition.

Theorem 5.14. Let K be a locally finite knowledge base, and let L∞ be the MLN obtained by assigning

weight w → ∞ to all the clauses in K. Then there exists a satisfying measure for L∞ iff K is satisfiable.

Mathematically,

|S(γ L∞)| > 0 ⇔ Satisfiable(K) (5.10)
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A full proof can be found in Singla and Domingos [137].

Corollary 5.15. Let K be a locally finite knowledge base. Let α be a first-order formula, and Lα
∞ be the

MLN obtained by assigning weight w → ∞ to all clauses in K ∪ {¬α}. Then K entails α iff Lα
∞ has no

satisfying measure. Mathematically,

K |= α ⇔ |S(γ Lα
∞)| = 0 (5.11)

Thus, for locally finite knowledge bases with Herbrand interpretations, first-order logic can

be viewed as the limiting case of Markov logic when all weights tend to infinity. Whether these

conditions can be relaxed is a question for future work.

5.3 RECURSIVE MARKOV LOGIC

In Markov logic, the unification of logic and probability is incomplete. Markov logic only treats

the top-level conjunction and universal quantifiers in a knowledge base as probabilistic, when in

principle any logical combination can be viewed as the limiting case of an underlying probability

distribution; disjunctions and existential quantifiers remain deterministic. Thus the symmetry be-

tween conjunctions and disjunctions, and between universal and existential quantifiers, is lost (except

in the infinite-weight limit).

For example, an MLN with the formula R(X) ∧ S(X) can treat worlds that violate both R(X)

and S(X) as less probable than worlds that only violate one. Since an MLN acts as a soft conjunction,

the groundings of R(X) and S(X) simply appear as distinct formulas. (As usual, we will assume that the

knowledge base is converted to CNF before performing learning or inference.) This is not possible

for the disjunction R(X) ∨ S(X): no distinction is made between satisfying both R(X) and S(X) and

satisfying just one. Since a universally quantified formula is effectively a conjunction over all its

groundings, while an existentially quantified formula is a disjunction over them, this leads to the two

quantifiers being handled differently.

This asymmetry can be avoided by “softening” disjunction and existential quantification in

the same way that Markov logic softens conjunction and universal quantification. The result is a

representation in which MLNs can have nested MLNs as features. We call these recursive Markov

logic networks, or recursive random fields (RRFs) for short.

RRFs have many desirable properties, including the ability to represent distributions like noisy

DNF, rules with exceptions, and m-of-all quantifiers much more compactly than MLNs. RRFs also

allow more flexibility in revising first-order theories to maximize data likelihood. Standard methods

for inference in Markov networks are easily extended to RRFs, and weight learning can be carried

out efficiently using a variant of the backpropagation algorithm.

RRF theory revision can be viewed as a first-order probabilistic analog of the KBANN algo-

rithm, which initializes a neural network with a propositional theory and uses backpropagation to
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improve its fit to data [145]. A propositional RRF (where all predicates have zero arity) differs from

a multilayer perceptron in that its output is the joint probability of its inputs, not the regression of

a variable on others (or, in the probabilistic version, its conditional probability). Propositional RRFs

are an alternative to Boltzmann machines, with nested features playing the role of hidden variables.

Because the nested features are deterministic functions of the inputs, learning does not require EM,

and inference does not require marginalizing out variables.

A recursive random field is a log-linear model in which each feature is either an observable

random variable or the output of another recursive random field. To build up intuition, we first

describe the propositional case, then generalize it to the more interesting relational case. A concrete

example is given in a later subsection, and illustrated in Figure 5.1.

PROPOSITIONAL RRFS
While our primary goal is solving relational problems, RRFs may be interesting in propositional

domains as well. Propositional RRFs extend Markov random fields and Boltzmann machines in the

same way multilayer perceptrons extend single-layer ones. The extension is very simple in principle,

but allows RRFs to compactly represent important concepts, such as m-of-n. It also allows RRFs to

learn features via weight learning, which could be more effective than current feature-search methods

for Markov random fields.

The probability distribution represented by a propositional RRF is as follows:

P(X = x) = 1

Z0
exp

(

∑

i

wifi(x)

)

where Z0 is a normalization constant, to ensure that the probabilities of all possible states x sum to

1. What makes this different from a standard Markov network is that the features can be built up

from other subfeatures to an arbitrary number of levels. Specifically, each fi(x) is either:

fi(x) = xj (base case), or

fi(x) = 1

Zi

exp

⎛

⎝

∑

j

wijfj (x)

⎞

⎠ (recursive case)

In the recursive case, the summation is over all features fj referenced by the “parent” feature

fi . A child feature, fj , can appear in more than one parent feature, and thus an RRF can be viewed

as a directed acyclic graph of features. The attribute values are at the leaves, and the probability of

their configuration is given by the root. (Note that the probabilistic graphical model represented by

the RRF is still undirected.)

Since the overall distribution is simply a recursive feature, we can also write the probability

distribution as follows:

P(X = x) = f0(x)
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Except for Z0 (the normalization of the root feature, f0), the per-feature normalization con-

stants Zi can be absorbed into the corresponding feature weights wki in their parent features fk .

Therefore, the user is free to choose any convenient normalization, or even no normalization at all.

It is easy to show that this generalizes Markov networks with conjunctive or disjunctive

features. Each fi approximates a conjunction when weights wij are very large. In the limit, fi will

be 1 iff the conjunct is true. fi can also represent disjunctions using large negative weights, along

with a negative weight for the parent feature fk , wki .The negative weight wki turns the conjunction

into a disjunction just as negation does in De Morgan’s laws. However, one can also move beyond

conjunction and disjunction to represent m-of-n concepts, or even more complex distributions where

different features have different weights.

Note that features with small absolute weights have little effect. Therefore, instead of using

heuristics or search to determine which attributes should appear in which feature, we can include

all predicates and let weight learning sort out which attributes are relevant for which feature. This is

similar to learning a neural network by initializing it with small random values. Since the network

can represent any logical formula, there is no need to commit to a specific structure ahead of time.

This is an attractive alternative to the traditional inductive methods used for learning MRF features.

An RRF can be seen as a type of multi-layer neural network, in which the node function is

exponential (rather than sigmoidal) and the network is trained to maximize joint likelihood. Unlike

in multilayer perceptrons, where some random variables are inputs and some are outputs, in RRFs

all variables are inputs, and the output is their joint probability. In other ways, an RRF resembles a

Boltzmann machine, but with the greater flexibility of multiple layers and learnable using a variant

of the back-propagation algorithm. RRFs have no hidden variables to sum out since all nodes in the

network have deterministic values, making inference more efficient.

RELATIONAL RRFS
In the relational case, relations over an arbitrary number of objects take the place of a fixed number

of variables. To allow parameter tying across different groundings, we use parameterized features, or

parfeatures. We represent the parameter tuple as a vector, �g, whose size depends on the arity of the

parfeature. Note that �g is a vector of logical variables (i.e., arguments to predicates) as opposed to the

random Boolean variables x (ground atoms) that represent a state of the world. We use subscripts to

distinguish among parfeatures with different parameterizations, e.g. fi,�g(x) and f
i, �g′(x) represent

different groundings of the ith parfeature.

Each RRF parfeature is defined in one of two ways:

fi,�g(x) = Ri(gi1, . . . , gik) (base case)

fi,�g(x) = 1

Zi

exp

⎛

⎝

∑

j

wij

∑

�g′

f
j,�g, �g′(x)

⎞

⎠ (recursive case)

The base case is straightforward: it simply represents the truth value of a ground relation (as specified

by x). There is one such grounding for each possible combination of parameters (arguments) of the
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parfeature. The recursive case sums the weighted values of all child parfeatures. Each parameter gi
of a child parfeature is either a parameter of the parent feature (gi ∈ �g) or a parameter of a child

feature that is summed out and does not appear in the parent feature (gi ∈ �g′). (These �g′ parameters

are analogous to the parameters that appear in the body but not the head of a Horn clause.) Just

as sums of child features act as conjunctions, the summations over �g′ parameters act as universal

quantifiers with Markov logic semantics. In fact, these generalized quantifiers can represent m-of-all

concepts, just as the simple feature sums can represent m-of-n concepts.

The relational version of a recursive random field is therefore defined as follows:

P(X = x) = f0(x)

where X is the set of all ground relations (e.g., R(A, B), S(A)), x is an assignment of truth values to

ground relations, and f0 is the root recursive parfeature (which, being the root, has no parameters).

Since f0 is a recursive parfeature, it is normalized by the constant Z0 to ensure a valid probability

distribution. (As in the propositional case, all other Zi ’s can be absorbed into the weights of their

parent features, and may therefore be normalized in any convenient way.)

Any relational RRF can be converted into a propositional RRF by grounding all parfeatures

and expanding all summations. Each distinct grounding of a parfeature becomes a distinct feature,

but with shared weights.

RRF EXAMPLE
To clarify these ideas, let us take the example knowledge base from Chapter 2. The domain consists

of three predicates: Smokes(g) (g is a smoker); Cancer(g) (g has cancer); and Friends(g, h) (g is

a friend of h). We abbreviate these predicates as Sm(g), Ca(g), and Fr(g, h), respectively.

We wish to represent three beliefs: (i) smoking causes cancer; (ii) friends of friends are friends

(transitivity of friendship); and (iii) everyone has at least one friend who smokes. (The most in-

teresting belief from Chapter 2, that people tend to smoke if their friends do, is omitted here for

simplicity.) We demonstrate how to represent these beliefs by first converting them to first-order

logic, and then converting to an RRF.

One can represent the first belief, “smoking causes cancer," in first-order logic as a univer-

sally quantified implication: ∀g Sm(g) ⇒ Ca(g). This implication can be rewritten as a disjunction:

¬Sm(g) ∨ Ca(g). From De Morgan’s laws, this is equivalent to: ¬(Sm(g) ∧ ¬Ca(g)), which can be

represented as an RRF feature:

f1,g(x) = 1

Z1
exp(w1,1Sm(g) + w1,2Ca(g))

where w1,1 is positive, w1,2 is negative, and the feature weight w0,1 is negative (not shown above).

In general, since RRF features can model conjunction and disjunction, any CNF knowledge base

can be represented as an RRF. A similar approach works for the second belief, “friends of people are

friends.”
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The first two beliefs are also handled well by Markov logic networks. The key advantage of

recursive random fields is in representing more complex formulas. The third belief, “everyone has at

least one friend who smokes," is naturally represented by nested quantifiers: ∀g∃h Fr(g, h) ∧ Sm(h).

This is best represented as an RRF feature that references a secondary feature:

f3,g(x) = 1

Z3
exp

(

∑

h

w3,1f4,g,h(x)

)

f4,g,h(x) = 1

Z4
exp(w4,1Fr(g, h) + w4,2Sm(h))

Note that in RRFs this feature can also represent a distribution over the number of smoking friends

each person has, depending on the assigned weights. It is possible that, while almost everyone has

at least one smoking friend, many people have at least two or three. With an RRF, we can actually

learn this distribution from data.

This third belief is very problematic for an MLN. First of all, in an MLN it is purely logical:

there is no change in probability with the number of smoking friends once that number exceeds

one. Secondly, MLNs do not represent the belief efficiently. In an MLN, the existential quantifier

is converted to a very large disjunction:

(Fr(g, A) ∧ Sm(A)) ∨ (Fr(g, B) ∧ Sm(B)) ∨ · · ·
If there are 1000 objects in the database, then this disjunction is over 1000 conjunctions. Further,

converting this to clausal form would require 21000 CNF clauses for each grounding of this rule.

These features define a full joint distribution as follows:

P(X = x) = 1

Z0
exp

⎛

⎝

∑

g

w0,1f1,g(x) +
∑

g,h,i

w0,2f2,g,h,i(x) +
∑

g

w0,3f3,g(x)

⎞

⎠

Figure 5.1 diagrams the first-order knowledge base containing all of these beliefs, along with the

corresponding RRF.

INFERENCE
Of the inference methods discussed in Chapter 3, MaxWalkSAT and MC-SAT are not directly

applicable because they exploit the logical structure of MLNs, which RRFs do not share. Instead,

Gibbs sampling is used for computing probabilities and iterated conditional modes (ICM) [7] is

used for approximating the most likely state. ICM starts from a random configuration and sets each

variable in turn to its most likely value, conditioned on all other variables. This procedure continues

until no single-variable change will further improve the probability. ICM is easy to implement, fast

to run, and guaranteed to converge. Unfortunately, it has no guarantee of converging to the most

likely overall configuration. Possible improvements include random restarts, simulated annealing,

etc. ICM can also be used to find a good initial state for the Gibbs sampling, significantly reducing

burn-in time and achieving better predictions sooner.
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Figure 5.1: Comparison of first-order logic and RRF structures. The RRF structure closely mirrors

that of first-order logic, but connectives and quantifiers are replaced by weighted sums.

LEARNING
Given a particular RRF structure and initial set of weights, we can learn weights using a novel variant

of the back-propagation algorithm. As in traditional back-propagation, the goal is to efficiently

compute the derivative of the loss function with respect to each weight in the model. In this case,

the loss function is not the error in predicting the output variables, but rather the joint log likelihood

of all variables. We must also consider the partition function for the root feature, Z0. For these

computations, we extract the 1/Z0 term from f0, and use f0 refer to the unnormalized feature value.

We begin by discussing the simpler, propositional case. We abbreviate fi(x) as fi for these

arguments. The derivative of the log likelihood with respect to a weight wij consists of two terms:

∂ log P(x)

∂wij

= ∂ log(f0/Z0)

∂wij

= ∂ log(f0)

∂wij

− ∂ log(Z0)

∂wij

The first term can be evaluated with the chain rule:

∂ log(f0)

∂wij

= ∂ log(f0)

∂fi

∂fi

∂wij
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From the definition of fi (including the normalization Zi):

∂fi

∂wij

= fi

(

fj − 1

Zi

∂Zi

∂wij

)

From repeated applications of the chain rule, the ∂ log(f0)/∂fi term is the sum of all derivatives along

all paths through the network from f0 tofi .Given a path in the feature graph {f0, fa, fb, . . . , fk, fi},
the derivative along that path takes the form f0wafawbfb · · · wkfkwi . We can efficiently compute

the sum of all paths by caching the per-feature partials, ∂f0/∂fi , analogous to back-propagation.

The second term, ∂ log(Z0)/∂wij , is the expected value of the first term, evaluated over all

possible inputs x′. Therefore, the complete partial derivative is:

∂ log P(x)

∂wij

= ∂ log(f0(x))

∂wij

− Ex′

[

∂ log(f0(x′))
∂wij

]

where the individual components are evaluated as above.

Computing the expectation is typically intractable, but it can be approximated using Gibbs

sampling. A more efficient alternative is to instead optimize the pseudo-likelihood [6], as done in

generative training of MLNs (Section 4.1).

The expression for the gradient of the pseudo-log-likelihood of a propositional RRF is as

follows:

∂ log P ∗(X=x)

∂wi

=
n

∑

t=1

P(Xt = ¬xt |MBx(Xt )) ×
(

∂ log f0

∂wi

−
∂log f0[Xt=¬xt ]

∂wi

)

We can compute this by iterating over all query predicates, toggling each one in turn, and computing

the relative likelihood and unnormalized likelihood gradient for that permuted state. Note that we

compute the gradient of the unnormalized log likelihood as a subroutine in computing the gradient of

the pseudo-log-likelihood.However,we no longer need to approximate the intractable normalization

term, Z.

To learn a relational RRF, we use the domain to instantiate a propositional RRF with tied

weights. The number of features as well as the number of children per feature will depend on the

number of objects in the domain. Instead of a weight being attached to a single feature, it is now

attached to a set of groundings of a parfeature. The partial derivative with respect to a weight is

therefore the sum of the partial derivatives with respect to each instantiation of the shared weight.

RRFS VS. MLNS
Both RRFs and MLNs subsume probabilistic models and first-order logic in finite domains.Both can

be trained generatively or discriminatively using gradient descent, either to optimize log likelihood

or pseudo-likelihood. For both, when optimizing log likelihood, the normalization constant Z0 can

be approximated using the MPE state or MCMC.

Any MLN can be converted into a relational RRF by translating each clause into an equiv-

alent parfeature. With sufficiently large weights, a parfeature approximates a hard conjunction or
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disjunction over its children. However, when its weights are sufficiently distinct, a parfeature can take

on a different value for each configuration of its children. This allows RRFs to compactly represent

distributions that would require an exponential number of clauses in an MLN.

Any RRF can be converted to an MLN by flattening the model, but this will typically require

an exponential number of clauses. Such an MLN would be intractable for learning or inference.

RRFs are therefore much better at modeling soft disjunction, existential quantification, and nested

formulas.

In addition to being “softer” than an MLN clause, an RRF parfeature can represent many

different MLN clauses simply by adjusting its weights. This makes RRF weight learning more

powerful than MLN structure learning: an RRF with n + 1 recursive parfeatures (one for the root)

can represent any MLN structure with up to n clauses, as well as many distributions that an n-clause

MLN cannot represent.

This leads to new alternatives for structure learning and theory revision. In a domain where

little background knowledge is available, an RRF could be initialized with small random weights

and still converge to a good statistical model. This is potentially much better than MLN structure

learning, which constructs clauses one predicate at a time, and must adjust weights to evaluate every

candidate clause.

When background knowledge is available, we can begin by initializing the RRF to the back-

ground theory, just as in MLNs. However, in addition to the known dependencies, we can also add

dependencies on other parfeatures or predicates with very small weights. Weight learning can learn

large weights for relevant dependencies and negligible weights for irrelevant dependencies. This is

analogous to what the KBANN system does using neural networks [145]. In contrast, MLNs can

only do theory revision through discrete search.

With the current algorithms, MLNs remain much more efficient than RRFs. This is partly

because more work has been done on MLN learning and inference, including optimized implemen-

tations in Alchemy, and partly due to Markov logic’s more restricted structure. RRFs are also very

sensitive to initial conditions during weight optimization. Due to these factors, MLNs remain a

more practical solution for most applications. Coming up with more efficient RRF algorithms and

implementations is an important area for future work. RRFs are not currently available in Alchemy.

5.4 RELATIONAL DECISION THEORY

The problem of extending decision theory [4] to statistical relational models had remained largely

unaddressed to date. The one major exception is relational reinforcement learning and first-order

MDPs. (e.g., [32, 146, 127]). However, the representations and algorithms in these approaches are

geared to the problem of sequential decision-making, and many decision-theoretic problems are not

sequential. In particular, relational domains often lead to very large and complex decision problems

for which no effective general solution is currently available (e.g., influence maximization in social

networks, combinatorial auctions with uncertain supplies, etc.).
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In this section, we describe a framework introduced by Nath and Domingos [89] for relational

decision theory using Markov logic.This framework allows for very rich utility functions by attaching

utility weights as well as probability weights to clauses. In particular, both classical planning and

Markov decision processes are special cases of this framework. Maximizing expected utility in this

representation is intractable, but there are approximate algorithms for it, based on a combination of

weighted satisfiability testing for maximization and MCMC for computing expectations.

MARKOV DECISION NETWORKS
An influence diagram or decision network is a graphical representation of a decision problem [48]. It

consists of a Bayesian network augmented with two types of nodes: decision or action nodes and utility

nodes. The action nodes represent the agent’s choices; factors involving these nodes and state nodes

in the Bayesian network represent the (probabilistic) effect of the actions on the world. Utility nodes

represent the agent’s utility function, and are connected to the state nodes that directly influence

utility. We can also define a Markov decision network as a decision network with a Markov network

instead of a Bayesian network.

The fundamental inference problem in decision networks is finding the assignment of values to

the action nodes that maximizes the agent’s expected utility, possibly conditioned on some evidence.

If a is a choice of actions, e is the evidence, x is a state, and U(x|a, e) is the utility of x given a and

e, then the MEU problem is to compute argmaxaE[U(x|a, e)] = argmaxa

∑

x P(x|a, e)U(x|a, e).

MARKOV LOGIC DECISION NETWORKS
Decision theory can be incorporated into Markov logic simply by allowing formulas to have utilities

as well as weights. This puts the expressiveness of first-order logic at our disposal for defining utility

functions, at the cost of very little additional complexity in the language. Let an action predicate be

a predicate whose groundings correspond to possible actions (choices, decisions) by the agent, and

a state predicate be any predicate in a standard MLN. Formally:

Definition 5.16. A Markov logic decision network (MLDN) L is a set of triples (Fi, wi, ui), where

Fi is a formula in first-order logic and wi and ui are real numbers. Together with a finite set of

constants C = {c1, c2, . . . , c|C|}, it defines a Markov decision network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each state and action predicate

appearing in L. The value of the node is 1 if the ground atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L for which

wi 
= 0. The value of this feature is 1 if the ground formula is true, and 0 otherwise. The

weight of the feature is the wi associated with Fi in L.

3. ML,C contains one utility node for each possible grounding of each formula Fi in L for which

ui 
= 0. The value of the node is the utility ui associated with Fi in L if Fi is true, and 0

otherwise.
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We refer to groundings of action predicates as action atoms, and groundings of state predicates

as state atoms. An assignment of truth values to all action atoms is an action choice. An assignment of

truth values to all state atoms is a state of the world or possible world.The utility of world x given action

choice a and evidence e is U(x|a, e) = ∑

i uini(x, a, e), where ni is the number of true groundings

of Fi . The expected utility of action choice a given evidence e is:

E[U(x|a, e)] =
∑

x

P(x|a, e)
∑

i

uini(x, a, e) =
∑

i

uiE[ni] (5.12)

This expectation can be computed using existing algorithms such as MC-SAT.

A wide range of decision problems can be elegantly formulated as MLDNs, including both

classical planning and Markov decision processes (MDPs). To represent an MDP as an MLDN,

we can define a constant for each state, action and time step, and the predicates State(s!, t)
and Action(a!, t), with the obvious meaning. (The ! notation indicates that, for each t, ex-

actly one grounding of State(s, t) is true.) The transition function is then represented by the

formula State(+s, t) ∧ Action(+a, t) ⇒ State(+s′, t + 1), with a separate weight for each

(s, a, s′) triple. (Formulas with + signs before certain variables represent sets of identical for-

mulas with separate weights, one for each combination of groundings of the variables with +
signs.) The reward function is defined by the unit clause State(∗s, t), with a utility for each

state (using ∗ to represent per-grounding utilities). Policies can be represented by formulas of the

form State(+s, t) ⇒ Action(+a, t). Infinite-horizon MDPs can be represented using infinite

MLNs (Section 5.2). Partially-observable MDPs are represented by adding the observation model:

State(+s, t) ⇒ Observation(+o, t).

Since classical planning languages are variants of first-order logic, translating problems for-

mulated in these languages into MLDNs is straightforward. For simplicity, suppose the problem

has been expressed in satisfiability form [52]. It suffices then to translate the (first-order) CNF into

a deterministic MLN by assigning infinite weight to all clauses, and to assign a positive utility to

the formula defining the goal states. MLDNs now offer a path to extend classical planning with

uncertain actions, complex utilities, etc., by assigning finite weights and utilities to formulas. (For

example, an action with uncertain effects can be represented by assigning a finite weight to the

axiom that defines them.) This can be used to represent first-order MDPs in a manner analogous to

Boitilier et al. [10].

MAXIMIZING EXPECTED UTILITY
The problem of selecting an action grounding assignment that maximizes expected utility has par-

allels with the problem of selecting a truth assignment that maximizes the probability of the world.

Table 5.3 gives a modified version of the MaxWalkSAT algorithm that maximizes expected utility

instead of probability. We refer to this algorithm as RMEU (Relational Maximization of Expected

Utility).
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Table 5.3: Algorithm for maximizing expected utility in an MLDN.

function RMEU(L, DB, n, mt , mf )

inputs: L, a Markov logic decision network

DB, database containing evidence

n, number of restarts

mt , number of tries

mf , number of flips

output: highest utility configuration of the action atoms found

for i ← 1 to n

Run WalkSAT to satisfy all hard clauses.

for j ← 1 to mt

for k ← 1 to mf

action ← Random action ground atom

Flip action.

Run WalkSAT to satisfy hard clauses.

if flip violates hard clauses

Flip action back.

else
Infer probabilities of ground clauses.

utility ← ∑F
i=1 ui

∑gi

j=1 pij

return solution with highest utility found.

Computing Probabilities
In each iteration of RMEU, we need to infer the probabilities of all ground clauses with non-zero

utilities. A natural way to do this is to use MC-SAT. However, it may be too expensive to run

MC-SAT at every iteration of RMEU. It seems unlikely that flipping a single action grounding

would affect a large number of clauses. The vast majority of clauses are unlikely to be affected by

most flips; it is wasteful to repeatedly infer their probabilities at every iteration. Instead, we use an

incremental version of MC-SAT to update only the probabilities of nodes significantly affected by

the flip.

We initialize the probability distribution by running MC-SAT over the whole network before

flipping any action groundings. After each flip, we run MC-SAT over a network containing the

neighbors of the flipped node to see if they are significantly affected. We then add the neighbors of

the affected nodes to the network, and run inference again. We repeat this until we find a network

containing all the nodes significantly affected by the flip. Note that we do not need to calculate
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accurate probabilities during each iteration of incremental MC-SAT; we only need to know whether

the probability has changed significantly since the last flip.Therefore, we only need a relatively small

number of MC-SAT iterations for each iteration of incremental MC-SAT. Once we have found

the set of nodes affected by the flip, we can run MC-SAT for more iterations to calculate accurate

probabilities for those nodes.

FURTHER READING

Full details for these extensions can be found in their respective publications: hybrid Markov logic

for handling continuous domains was introduced by Wang and Domingos [148]; Markov logic

in infinite domains was introduced by Singla and Domingos [138]; recursive random fields were

introduced by Lowd and Domingos [76]; and relational decision theory was introduced by Nath

and Domingos [89].
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C H A P T E R 6

Applications
In this chapter, we go above the interface layer to show how Markov logic enables us to build

state-of-the-art solutions for many problem domains. We cover eight applications: collective clas-

sification, social network analysis, entity resolution, information extraction, coreference resolution,

robot mapping, link-based clustering, and semantic network extraction.

6.1 COLLECTIVE CLASSIFICATION

Collective classification is the task of inferring labels for a set of objects using not just their attributes

but also the relations among them. For example, Web pages that link to each other tend to have

similar topics. Markov logic makes it easy to incorporate relational information and jointly infer all

of the labels at once.

A classic example of this is the WebKB dataset, which consists of labeled Web pages from

the computer science departments of four universities. In this section, we show how to create a

sophisticated model for collective classification on WebKB with just a few formulas in Markov logic.

We used the relational version of the dataset from Craven and Slattery [16], which features 4165

Web pages and 10,935 Web links. Each Web page is marked with one of the following categories:

student, faculty, professor, department, research project, course, or other. The goal is to predict these

categories from the Web pages’ words and links.

We can start with a simple logistic regression model, using only the words on the Web pages:

PageClass(p, +c)

Has(p, +w) ⇒ PageClass(p, +c)

The ‘+’ operator here generates a separate rule (and with it, a separate learnable weight) for each

constant of the appropriate type. The first line, therefore, generates a unit clause for each class,

capturing the prior distribution over page classes. The second line generates thousands of rules

representing the relationship between each word and each class. We can encode the fact that classes

are mutually exclusive and exhaustive with a set of hard (infinite-weight) constraints:

PageClass(p, +c1) ∧ (+c1 
= +c2) ⇒ ¬PageClass(p, +c2)

∃c PageClass(p, c)

In Alchemy, we can instead state this property of the PageClass predicate in its definition using

the ‘!’ operator: PageClass(page, class!), where page and class are type names. (In general, the

‘!’ notation signifies that, for each possible combination of values of the arguments without ‘!’, there

is exactly one combination of the arguments with ‘!’ for which the predicate is true.)
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To turn this multi-class logistic regression into a collective classification model with joint

inference, we only need one more formula:

Linked(u1, u2) ∧ PageClass(+c1, u1) ∧ PageClass(+c2, u2)

This says that linked Web pages have related classes.

We performed leave-one-out cross-validation, training these models for 500 iterations of

scaled conjugate gradient with a preconditioner (Section 4.1). The logistic regression baseline had

an accuracy of 70.9%, while the model with joint inference had an accuracy of 76.4%. Markov logic

makes it easy to construct additional features as well, such as words on linked pages, anchor text, etc.

(See Taskar et al. [141] for a similar approach using relational Markov networks.)

6.2 SOCIAL NETWORK ANALYSIS AND LINK PREDICTION

In social network analysis, we seek to understand and reason about the connections among a group

of people. A simple example of this is the friends and smokers domain introduced in Chapter 2.This

example can easily be extended to include other attributes such as age, sex, etc. or other relationships

such as coworker, parent, etc. Given such an MLN, we can predict relationships from the attributes

(link prediction); attributes from the relationships (collective classification); or cluster entities based

on their relationships (link-based clustering).

In addition to inferring specific facts, social network analysis is concerned with understanding

the underlying causes and mechanisms that govern observed behavior. For such tasks, examining the

learned weights can provide some intuition about which relationships and rules are most informative.

For example, the weight learned for a transitivity clause (e.g., friends of friends are friends) says

something about how cliquish a network is.

In the remainder of this section, we present a detailed example of link prediction in a social

network, as done by Richardson and Domingos [117].The specific task is to predict which professors

advise which graduate students in the University of Washington Department of Computer Science

and Engineering (UW-CSE). This dataset has been used as a benchmark for weight learning [133],

structure learning [57, 83] and transfer learning [82]. We will focus, however, on the simplest

scenario: generative weight learning with a manually specified knowledge base, using purely logical

and probabilistic approaches as our baselines. This demonstrates both the applicability of Markov

logic to social network analysis and its advantages over the pure approaches.

DATASET
The domain consists of 12 predicates and 2707 constants divided into 10

types. Types include: publication (342 constants), person (442), course (176),

project (153), academic quarter (20), etc. Predicates include: Professor(person),

Student(person), AuthorOf(publication, person), AdvisedBy(person, person),

YearsInProgram(person, years), TeachingAssistant(course,person, quarter),

CourseLevel(course,level), TaughtBy(course, person, quarter), etc.
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Using typed variables, the total number of possible ground predicates is 4,106,841. The

database contains a total of 3380 tuples (i.e., there are 3380 true ground predicates). We obtained

this dataset by scraping pages in the department’s Web site (http://www.cs.washington.edu).

To obtain a knowledge base, we asked four volunteers from the department to each provide a

set of formulas in first-order logic describing the domain. Merging these yielded a KB of 96 formulas.

Formulas in the KB include statements like: students are not professors; each student has at most

one advisor; if a student is an author of a paper, so is her advisor; advanced students only TA courses

taught by their advisors; at most, one author of a given publication is a professor; students in Phase

I of the Ph.D. program have no advisor; etc. Notice that these statements are not always true, but

are typically true.

For training and testing purposes, we divided the database into five sub-databases, one for each

area: AI,graphics,programming languages, systems, and theory.We performed leave-one-out testing

by area, testing on each area in turn using the model trained from the remaining four. The test task

was to predict the AdvisedBy(x, y) predicate given (a) all others (All Info) and (b) all others except

Student(x) and Professor(x) (Partial Info). In both cases, we measured the average conditional

log-likelihood of all possible groundings of AdvisedBy(x, y) over all areas, drew precision/recall

curves, and computed the area under the curve.

SYSTEMS
In order to evaluate MLNs, which use logic and probability for inference, we wished to compare

with methods that use only logic or only probability. We were also interested in automatic induction

of clauses using ILP techniques. This subsection gives details of the comparison systems used.

Logic
One important question we aimed to answer with the experiments is whether adding probability to

a logical knowledge base improves its ability to model the domain. Doing this requires observing

the results of answering queries using only logical inference, but this is complicated by the fact

that computing log-likelihood and the area under the precision/recall curve requires real-valued

probabilities, or at least some measure of “confidence” in the truth of each ground predicate being

tested. We thus used the following approach. For a given knowledge base KB and set of evidence

predicates E, let XKB∪E be the set of worlds that satisfy KB ∪ E.The probability of a query predicate

q is then defined as P(q) = XKB∪E∪q

XKB∪E
, the fraction of XKB∪E in which q is true.

A more serious problem arises if the KB is inconsistent (which was indeed the case with the

KB collected from volunteers). In this case the denominator of P(q) is zero. (Also, recall that an

inconsistent knowledge base trivially entails any arbitrary formula). To address this, we redefined

XKB∪E to be the set of worlds that satisfies the maximum possible number of ground clauses. We

used Gibbs sampling to sample from this set, with each chain initialized to a mode using WalkSat.

At each Gibbs step, the step is taken with the following probability: 1 if the new state satisfies

more clauses than the current one (since that means the current state should have 0 probability),

0.5 if the new state satisfies the same number of clauses (since the new and old state then have

http://www.cs.washington.edu
http://www.cs.washington.edu
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equal probability), and 0 if the new state satisfies fewer clauses. We then used only the states with

maximum number of satisfied clauses to compute probabilities. Notice that this is equivalent to using

an MLN built from the KB and with all infinite equal weights.

Probability
The other question we wanted to answer with these experiments is whether existing (propositional)

probabilistic models are already powerful enough to be used in relational domains without the need

for the additional representational power provided by MLNs.In order to use such models, the domain

must first be propositionalized by defining features that capture useful information about it. Creating

good attributes for propositional learners in this highly relational domain is a difficult problem.

Nevertheless,as a tradeoff between incorporating as much potentially relevant information as possible

and avoiding extremely long feature vectors, we defined two sets of propositional attributes: order-1

and order-2. The former involves characteristics of individual constants in the query predicate, and

the latter involves characteristics of relations between the constants in the query predicate. For details

on how these attributes were constructed, see Richardson and Domingos [117].

The resulting 28 order-1 attributes and 120 order-2 attributes (for the All Info case) were

discretized into five equal-frequency bins (based on the training set). We used two propositional

learners: Naive Bayes [30] and Bayesian networks [45] with structure and parameters learned using

the VFBN2 algorithm [49] with a maximum of four parents per node.The order-2 attributes helped

the naive Bayes classifier but hurt the performance of the Bayesian network classifier, so below we

report results using the order-1 and order-2 attributes for naive Bayes, and only the order-1 attributes

for Bayesian networks.

Inductive logic programming
The original knowledge base was acquired from volunteers, but we were also interested in whether

it could have been developed automatically using inductive logic programming methods. We used

CLAUDIEN [22] to induce a knowledge base from data. Besides inducing clauses from the training

data, we were also interested in using data to automatically refine the knowledge base provided by

our volunteers. CLAUDIEN does not support this feature directly, but it can be emulated by an

appropriately constructed language bias.

MLNs
Our results compare the above systems to Markov logic networks. The MLNs were trained to

maximize pseudo-log-likelihood, as described in Section 4.1 on generative weight learning. Since

these experiments were performed before MC-SAT was developed, inference was done using Gibbs

sampling. Typically, inference converged within 5000 to 100,000 passes.

RESULTS
We compared twelve systems: the original KB (KB); CLAUDIEN (CL); CLAUDIEN with the

original KB as language bias (CLB); the union of the original KB and CLAUDIEN’s output in

both cases (KB+CL and KB+CLB); an MLN with each of the above KBs (MLN(KB), MLN(CL),
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Table 6.1: Experimental results for predicting AdvisedBy(x, y) in the UW-CSE dataset when all

other predicates are known (All Info) and when Student(x) and Professor(x) are unknown

(Partial Info).

System All Info Partial Info
AUC CLL AUC CLL

MLN(KB) 0.215±0.0172 −0.052±0.004 0.224±0.0185 −0.048±0.004

MLN(KB+CL) 0.152±0.0165 −0.058±0.005 0.203±0.0196 −0.045±0.004

MLN(KB+CLB) 0.011±0.0003 −3.905±0.048 0.011±0.0003 −3.958±0.048

MLN(CL) 0.035±0.0008 −2.315±0.030 0.032±0.0009 −2.478±0.030

MLN(CLB) 0.003±0.0000 −0.052±0.005 0.023±0.0003 −0.338±0.002

KB 0.059±0.0081 −0.135±0.005 0.048±0.0058 −0.063±0.004

KB+CL 0.037±0.0012 −0.202±0.008 0.028±0.0012 −0.122±0.006

KB+CLB 0.084±0.0100 −0.056±0.004 0.044±0.0064 −0.051±0.005

CL 0.048±0.0009 −0.434±0.012 0.037±0.0001 −0.836±0.017

CLB 0.003±0.0000 −0.052±0.005 0.010±0.0001 −0.598±0.003

NB 0.054±0.0006 −1.214±0.036 0.044±0.0009 −1.140±0.031

BN 0.015±0.0006 −0.072±0.003 0.015±0.0007 −0.215±0.003

MLN(KB+CL), and MLN(KB+CLB)); naive Bayes (NB); and a Bayesian network learner (BN).

Add-one smoothing of probabilities was used in all cases.

Table 6.1 summarizes the results and Figure 6.1 shows precision/recall curves for all areas (i.e.,

averaged over all AdvisedBy(x, y) predicates). CLL is the average conditional log-likelihood, and

AUC is the area under the precision-recall curve. (See http://www.cs.washington.edu/ai/mln

for details on how the standard deviations of the AUCs were computed.) MLNs are clearly more

accurate than the alternatives.The purely logical and purely probabilistic methods often suffer when

intermediate predicates have to be inferred,while MLNs are largely unaffected.Naive Bayes performs

well in AUC in some test sets, but very poorly in others; its CLLs are uniformly poor. CLAUDIEN

performs poorly on its own, and produces no improvement when added to the KB in the MLN.

Using CLAUDIEN to refine the KB typically performs worse in AUC but better in CLL than using

CLAUDIEN from scratch; overall, the best-performing logical method is KB+CLB, but its results

fall well short of the best MLNs’. The drop-off in precision around 50% recall is attributable to the

fact that the database is very incomplete, and only allows identifying a minority of the AdvisedBy

relations. Inspection reveals that the occasional smaller drop-offs in precision at very low recalls are

due to students who graduated or changed advisors after co-authoring many publications with them.

http://www.cs.washington.edu/ai/mln
http://www.cs.washington.edu/ai/mln
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Figure 6.1: Precision and recall for link prediction in UW-CSE dataset: All Info (upper graph) and

Partial Info (lower graph).
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6.3 ENTITY RESOLUTION

Entity resolution is the problem of determining which observations (e.g., database records, noun

phrases, video regions, etc.) correspond to the same real-world objects, and is of crucial importance

in many areas. Typically, it is solved by forming a vector of properties for each pair of observations,

using a learned classifier (such as logistic regression) to predict whether they match, and applying

transitive closure. Markov logic yields an improved solution simply by applying the standard logical

approach of removing the unique names assumption and introducing the equality predicate and its

axioms: equality is reflexive, symmetric and transitive; groundings of a predicate with equal constants

have the same truth values; and constants appearing in a ground predicate with equal constants are

equal. This last axiom is not valid in logic, but captures a useful statistical tendency. For example,

if two papers are the same, their authors are the same; and if two authors are the same, papers by

them are more likely to be the same. Weights for different instances of these axioms can be learned

from data. Inference over the resulting MLN, with entity properties and relations as the evidence

and equality atoms as the query, naturally combines logistic regression and transitive closure. Most

importantly, it performs collective entity resolution, where resolving one pair of entities helps to

resolve pairs of related entities.

As a concrete example, consider the task of deduplicating a citation database in which each

citation has author, title, and venue fields, as done by Singla and Domingos [134]. We can represent

the domain structure with eight relations: Author(bib, author), Title(bib, title), and

Venue(bib, venue) relate citations to their fields; HasWord(author/title/ venue, word)

indicates which words are present in each field; SameAuthor (author, author),

SameTitle(title, title), and SameVenue(venue, venue) represent field equality; and

SameBib(bib, bib) represents citation equality. The truth values of all relations except for the

equality relations are provided as evidence. The objective is to predict the SameBib relation.

We begin with a logistic regression model to predict citation equality based on the words in

the fields. This is easily expressed in Markov logic by rules such as the following:

Title(b1, t1) ∧ Title(b2, t2) ∧ HasWord(t1, +word)

∧ HasWord(t2, +word) ⇒ SameBib(b1, b2)

When given a positive weight, each of these rules increases the probability that two citations with

a particular title word in common are equivalent. We can construct similar rules for other fields.

Note that we may learn negative weights for some of these rules, just as logistic regression may learn

negative feature weights. Transitive closure consists of a single rule:

SameBib(b1, b2) ∧ SameBib(b2, b3) ⇒ SameBib(b1, b3)

This model is similar to the standard solution, but has the advantage that the classifier is learned in

the context of the transitive closure operation.



104 CHAPTER 6. APPLICATIONS

We can construct similar rules to predict the equivalence of two fields as well. The usefulness

of Markov logic is shown further when we link field equivalence to citation equivalence:

Author(b1, a1) ∧ Author(b2, a2) ∧ SameBib(b1, b2) ⇒ SameAuthor(a1, a2)

Author(b1, a1) ∧ Author(b2, a2) ∧ SameAuthor(a1, a2) ⇒ SameBib(b1, b2)

The above rules state that if two citations are the same, their authors should be the same, and that

citations with the same author are more likely to be the same.

Most importantly, the resulting model can now perform collective entity resolution, where

resolving one pair of entities helps to resolve pairs of related entities. For example, inferring that a

pair of citations are equivalent can provide evidence that the names AAAI-06 and 21st Natl. Conf. on

AI refer to the same venue, even though they are superficially very different. This equivalence can

then aid in resolving other entities.

Experiments on citation databases like Cora and BibServ.org show that these methods can

greatly improve accuracy, particularly for entity types that are difficult to resolve in isolation, as in the

above example [134]. Due to the large number of words and the high arity of the transitive closure

formula, these models have thousands of weights and ground millions of clauses during learning,

even after using canopies to limit the number of comparisons considered. Learning at this scale

is still reasonably efficient: preconditioned scaled conjugate gradient with MC-SAT for inference

converges within a few hours [75]. Rather than presenting detailed experimental results for entity

resolution, we will show in the next section how to incorporate automatic field segmentation and

then compare the performance of the full system to several state-of-the-art methods.

6.4 INFORMATION EXTRACTION

In the citation example of the previous section, it was assumed that the fields were manually seg-

mented in advance. The goal of information extraction is to extract database records starting from

raw text or semi-structured data sources. Traditionally, information extraction proceeds by first seg-

menting each candidate record separately, and then merging records that refer to the same entities.

Such a pipeline architecture is adopted by many AI systems in natural language processing, speech

recognition, vision, robotics, etc. Markov logic allows us to perform the two tasks jointly. This en-

ables us to use the segmentation of one candidate record to help segment similar ones. For example,

resolving a well-segmented field with a less-clear one can disambiguate the latter’s boundaries. We

will continue with the example of citations, as done by Poon and Domingos [106], but similar ideas

could be applied to other data sources, such as Web pages or emails.

The main evidence predicate in the information extraction MLN is Token(t, i, c), which is

true iff token t appears in the ith position of the cth citation. A token can be a word, date, number,

etc. Punctuation marks are not treated as separate tokens; rather, the predicate HasPunc(c, i) is

true iff a punctuation mark appears immediately after the ith position in the cth citation. The

query predicates are InField(i, f, c) and SameCitation(c, c′). InField(i, f, c) is true iff the

ith position of the cth citation is part of field f, where f ∈ {Title, Author, Venue}, and inferring
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it performs segmentation. SameCitation(c, c′) is true iff citations c and c′ represent the same

publication, and inferring it performs entity resolution.

Our segmentation model is essentially a hidden Markov model (HMM) with enhanced ability

to detect field boundaries. The observation matrix of the HMM correlates tokens with fields, and is

represented by the simple rule

Token(+t, i, c) ⇒ InField(i, +f, c)

If this rule was learned in isolation, the weight of the (t, f )th instance would be log(ptf /(1 − ptf )),

where ptf is the corresponding entry in the HMM observation matrix. In general, the transition

matrix of the HMM is represented by a rule of the form

InField(i, +f, c) ⇒ InField(i + 1, +f′, c)

However, we (and others, e.g., [41]) have found that for segmentation it suffices to capture the basic

regularity that consecutive positions tend to be part of the same field. Thus we replace f′ by f in

the formula above. We also impose the condition that a position in a citation string can be part of

at most one field; it may be part of none.

The main shortcoming of this model is that it has difficulty pinpointing field boundaries.

Detecting these is key for information extraction, and a number of approaches use rules designed

specifically for this purpose (e.g., [63]). In citation matching, boundaries are usually marked by

punctuation symbols. This can be incorporated into the MLN by modifying the rule above to

InField(i, +f, c) ∧ ¬HasPunc(c, i) ⇒ InField(i + 1, +f, c)

The ¬HasPunc(c, i) precondition prevents propagation of fields across punctuation marks. Because

propagation can occur differentially to the left and right, the MLN also contains the reverse form

of the rule. In addition, to account for commas being weaker separators than other punctuation, the

MLN includes versions of these rules with HasComma() instead of HasPunc().

Finally, the MLN contains rules capturing a variety of knowledge about citations: the first

two positions of a citation are usually in the author field, and the middle one in the title; initials (e.g.,

“J.”) tend to appear in either the author or the venue field; positions preceding the last non-venue

initial are usually not part of the title or venue; and positions after the first venue keyword (e.g.,

“Proceedings”, “Journal”) are usually not part of the author or title.

By combining this segmentation model with our entity resolution model from before, we can

exploit relational information as part of the segmentation process. In practice, something a little

more sophisticated is necessary to get good results on real data. In Poon and Domingos [106], we

define predicates and rules specifically for passing information between the stages, as opposed to

just using the existing InField() outputs. This leads to a “higher bandwidth” of communication

between segmentation and entity resolution, without letting excessive segmentation noise through.

We also define an additional predicate and modify rules to better exploit information from similar

citations during the segmentation process. See Poon and Domingos [106] for further details.
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Table 6.2: CiteSeer entity resolution: cluster recall on each section.

Approach Constr. Face Reason. Reinfor.

Fellegi-Sunter 84.3 81.4 71.3 50.6

Lawrence et al. (1999) 89 94 86 79

Pasula et al. (2002) 93 97 96 94

Wellner et al. (2004) 95.1 96.9 93.7 94.7

Joint MLN 96.0 97.1 95.1 96.7

Table 6.3: Cora entity resolution: pairwise recall/precision and cluster recall.

Approach Pairwise Rec./Prec. Cluster Recall

Fellegi-Sunter 78.0 / 97.7 62.7

Joint MLN 94.3 / 97.0 78.1

We evaluated this model on the CiteSeer and Cora datasets. For entity resolution in Cite-

Seer, we measured cluster recall for comparison with previously published results. Cluster recall is

the fraction of clusters that are correctly output by the system after taking transitive closure from

pairwise decisions. For entity resolution in Cora, we measured both cluster recall and pairwise re-

call/precision. In both datasets, we also compared with a “standard” Fellegi-Sunter model (see Singla

and Domingos [134]), learned using logistic regression, and with oracle segmentation as the input.

In both datasets, joint inference improved accuracy and our approach outperformed previous

ones. Table 6.2 shows that our approach outperforms previous ones on CiteSeer entity resolution.

(Results for Lawrence et al. (1999) [66], Pasula et al. (2002) [98] and Wellner et al. (2004) [152] are

taken from the corresponding papers.) This is particularly notable given that the models of Pasula

et al. [98] and Wellner et al. [152] involved considerably more knowledge engineering than ours,

contained more learnable parameters, and used additional training data.

Table 6.3 shows that our entity resolution approach easily outperforms Fellegi-Sunter on

Cora, and has very high pairwise recall/precision.

6.5 UNSUPERVISED COREFERENCE RESOLUTION

In natural language processing, the goal of coreference resolution is to identify mentions (typically

noun phrases) within a document that refer to the same entities. This is a key subtask in many NLP

applications, including information extraction, question answering, machine translation, and others.

Supervised learning approaches treat the problem as one of classification: for each pair of mentions,

predict whether they corefer or not (e.g., McCallum and Wellner [80]). While successful, these

approaches require labeled training data, consisting of mention pairs and the correct decisions for

them. This limits their applicability. Unsupervised approaches are attractive due to the availability



6.5. UNSUPERVISED COREFERENCE RESOLUTION 107

of large quantities of unlabeled text. However, unsupervised coreference resolution is much more

difficult. Haghighi and Klein’s model [42], the most sophisticated prior work, still lags behind

supervised ones by a substantial margin.

The lack of label information in unsupervised coreference resolution can potentially be over-

come by performing joint inference, which leverages the “easy” decisions to help make related “hard”

ones. Markov logic allows us to easily build models involving relations among mentions, like appo-

sition and predicate nominals. In this section, we describe Poon and Domingos’ method for joint

unsupervised coreference resolution using Markov logic [107]. On the standard MUC and ACE

datasets, this approach outperforms Haghighi and Klein’s using only a fraction of the training data,

and often matches or exceeds the accuracy of state-of-the-art supervised models.

AN MLN FOR JOINT UNSUPERVISED COREFERENCE RESOLUTION
In this subsection, we present an MLN for joint unsupervised coreference resolution. As common

in previous work, we assume that true mention boundaries are given. We do not assume any other

labeled information. We determined the head of a mention either by taking its rightmost token, or

by using the head rules in a parser. We detected pronouns using a list.

Base MLN
The main query predicate is InClust(m, c!), which is true iff mention m is in cluster c. The “c!"
notation signifies that for each m, this predicate is true for a unique value of c. The main evidence

predicate is Head(m, t!), where m is a mention and t a token, and which is true iff t is the head of

m. A key component in our MLN is a simple head mixture model, where the mixture component

priors are represented by the unit clause InClust(+m, +c) and the head distribution is represented

by the head prediction rule

InClust(m, +c) ∧ Head(m, +t).

By convention, at each inference step we name each non-empty cluster after the earliest

mention it contains. This helps break the symmetry among mentions, which otherwise produces

multiple optima and makes learning unnecessarily harder. To encourage clustering, we impose an

exponential prior on the number of non-empty clusters with weight −1.

The above model only clusters mentions with the same head, and does not work well for

pronouns. To address this, we introduce the predicate IsPronoun(m), which is true iff the mention

m is a pronoun, and adapt the head prediction rule as follows:

¬IsPronoun(m) ∧ InClust(m, +c) ∧ Head(m, +t)

This is always false when m is a pronoun, and thus applies only to non-pronouns.

Pronouns tend to resolve with mentions that are semantically compatible with

them. Thus we introduce predicates that represent entity type, number, and gen-

der: Type(x, e!), Number(x, n!), Gender(x, g!), where x can be either a cluster or

mention, e ∈ {Person, Organization, Location, Other}, n ∈ {Singular, Plural} and g ∈
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{Male, Female, Neuter}. Many of these are known for pronouns, and some can be inferred from

simple linguistic cues (e.g., “Ms. Galen" is a singular female person, while “XYZ Corp." is an orga-

nization). Entity type assignment is represented by the unit clause Type(+x, +e) and similarly for

number and gender. A mention should agree with its cluster in entity type. This is ensured by the

hard (infinite-weight) rule

InClust(m, c) ⇒ (Type(m, e) ⇔ Type(c, e))

There are similar hard rules for number and gender.

Different pronouns prefer different entity types, as represented by

IsPronoun(m) ∧ InClust(m, c) ∧ Head(m, +t) ∧ Type(c, +e)

which only applies to pronouns, and whose weight is positive if pronoun t is likely to assume entity

type e and negative otherwise. There are similar rules for number and gender.

Aside from semantic compatibility, pronouns tend to resolve with nearby mentions.To model

this, we impose an exponential prior on the distance (number of mentions) between a pronoun and

its antecedent, with weight −1.

Full MLN
Syntactic relations among mentions often suggest coreference. Incorporating such relations into

our MLN is straightforward. We illustrate this with two examples: apposition (e.g., “Morgan &

Claypool, our publisher”) and predicate nominals (e.g., “Morgan & Claypool is our publisher”). We

introduce a predicate for apposition, Appo(x, y), where x, y are mentions, and which is true iff y is

an appositive of x. We then add the rule

Appo(x, y) ⇒ (InClust(x, c) ⇔ InClust(y, c))

which ensures that x, y are in the same cluster if y is an appositive of x. Similarly, we introduce a

predicate for predicate nominals, PredNom(x, y), and the corresponding rule.1 The weights of both

rules can be learned from data with a positive prior mean. For simplicity, we treat them as hard

constraints.

Rule-Based MLN
We also consider a rule-based system that clusters non-pronouns by their heads, and attaches a

pronoun to the cluster which has no known conflicting type, number, or gender, and contains the

closest antecedent for the pronoun. This system can be encoded in an MLN with just four rules.

Three of them are the ones for enforcing agreement in type, number, and gender between a cluster

and its members, as defined in the base MLN. The fourth rule is

¬IsPronoun(m1) ∧ ¬IsPronoun(m2) ∧ Head(m1, h1) ∧ Head(m2, h2)

∧InClust(m1, c1) ∧ InClust(m2, c2) ⇒ (c1 = c2 ⇔ h1 = h2).

1We detected apposition and predicate nominatives using simple heuristics based on parses, e.g., if (NP, comma, NP) are the first
three children of an NP, then any two of the three noun phrases are apposition.
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With a large but not infinite weight (e.g., 100), this rule has the effect of clustering non-pronouns

by their heads, except when it violates the hard rules. The MLN can also include the apposition and

predicate-nominal rules. As in the base MLN, we impose the same exponential prior on the number

of non-empty clusters and that on the distance between a pronoun and its antecedent. This simple

MLN is remarkably competitive, as we will see below.

EXPERIMENTS
We conducted experiments on MUC-6, ACE-2004, and ACE Phrase-2 (ACE-2). We evaluated

our systems using the commonly-used MUC scoring program [147].

The MUC-6 dataset consists of 30 documents for testing and 221 for training.To evaluate the

contribution of the major components in our model, we conducted five experiments, each differing

from the previous one in a single aspect. We emphasize that our approach is unsupervised, and thus

the data only contains raw text plus true mention boundaries.

MLN-1 In this experiment, the base MLN was used, and the head was chosen crudely as the

rightmost token in a mention. Our system was run on each test document separately, using a

minimum of training data (the document itself ).

MLN-30 Our system was trained on all 30 test documents together. This tests how much can be

gained by pooling information.

MLN-H The heads were determined using the head rules in the Stanford parser [56], plus simple

heuristics to handle suffixes such as “Corp.” and “Inc.”

MLN-HA The apposition rule was added.

MLN-HAN The predicate-nominal rule was added. This is our full model.

We also compared with two rule-based MLNs: RULE chose the head crudely as the rightmost

token in a mention, and did not include the apposition rule and predicate-nominal rule; RULE-

HAN chose the head using the head rules in the Stanford parser, and included the apposition rule

and predicate-nominal rule.

We used the ACE Phrase-2 dataset (ACE-2) to enable direct comparisons with Haghighi

and Klein [42], Ng [92], and Denis and Baldridge [27]. The English version of the ACE-2004

training corpus contains two sections, BNEWS and NWIRE, with 220 and 128 documents, respec-

tively. ACE-2 contains a training set and a test set. In our experiments, we only used the test set,

which contains three sections, BNEWS, NWIRE, and NPAPER, with 51, 29, and 17 documents,

respectively.

We applied the weight learning methods from Section 4.3 to maximize the likelihood of

the observed query atoms given the evidence atoms, while summing over the unobserved query

atoms: P(yo|x) = ∑

yu
P(yo, yu|x). In our coreference resolution MLN, known query atoms (Yo)

include Head and known groundings of Type, Number and Gender; unknown query atoms (Yu)
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Table 6.4: Comparison of coreference results in MUC scores on the MUC-6 dataset.

# Doc. Prec. Rec. F1

H&K 60 80.8 52.8 63.9

H&K 381 80.4 62.4 70.3

M&W 221 - - 73.4

RULE - 76.0 65.9 70.5

RULE-HAN - 81.3 72.7 76.7

MLN-1 1 76.5 66.4 71.1

MLN-30 30 77.5 67.3 72.0

MLN-H 30 81.8 70.1 75.5

MLN-HA 30 82.7 75.1 78.7

MLN-HAN 30 83.0 75.8 79.2

Table 6.5: Comparison of coreference results in MUC scores on the ACE-2 datasets.

BNEWS NWIRE NPAPER
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Ng 67.9 62.2 64.9 60.3 50.1 54.7 71.4 67.4 69.3

D&B 78.0 62.1 69.2 75.8 60.8 67.5 77.6 68.0 72.5

MLN-HAN 68.3 66.6 67.4 67.7 67.3 67.4 69.2 71.7 70.4

include InClust and unknown groundings of Type, Number, Gender; and evidence (X) includes

IsPronoun, Appo and PredNom. For inference, we adapted MC-SAT and MaxWalkSAT to bet-

ter handle mutually exclusive and exhaustive rules. Additional details can be found in Poon and

Domingos [107].

Table 6.4 compares our system with previous approaches on the MUC-6 dataset, in MUC

scores. Our approach greatly outperformed Haghighi and Klein, the previous state-of-the-art un-

supervised system. Our system, when trained on individual documents, achieved an F1 score more

than 7% higher than theirs trained on 60 documents, and still outperformed it when trained on

381 documents. Training on the 30 test documents together resulted in a significant gain. (We also

ran experiments using more documents, and the results were similar.) Better head identification

(MLN-H) led to a large improvement in accuracy, which is expected since for mentions with a

right modifier, the rightmost tokens confuse rather than help coreference (e.g., “the chairman of

Microsoft"). Notice that with this improvement our system already outperforms a state-of-the-art

supervised system, McCallum and Wellner [80]. Leveraging apposition resulted in another large

improvement, and predicate nominals also helped. Our full model scores about 9% higher than

Haghighi and Klein, and about 6% higher than McCallum and Wellner. To our knowledge, this
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is the best coreference accuracy reported on MUC-6 to date.2 Interestingly, the rule-based MLN

(RULE) sufficed to outperform Haghighi and Klein, and by using better heads and the apposition

and predicate-nominal rules (RULE-HAN), it outperformed McCallum and Wellner, the supervised

system. The MLNs with learning (MLN-30 and MLN-HAN), on the other hand, substantially

outperformed the corresponding rule-based ones.

Tables 6.5 compares our system to two recent supervised systems, Ng [92] and Denis and

Baldridge [27]. Our approach significantly outperformed Ng. It tied with Denis and Baldridge on

NWIRE, and was somewhat less accurate on BNEWS and NPAPER.

6.6 ROBOT MAPPING

In robot mapping, the goal is to infer the map of an indoor environment from laser range data,

obtained by the robot as it moves about the environment [69]. Since this domain relies heavily on

real numbers and continuous variables for distances and coordinates, it is best approached using

hybrid Markov logic networks (HMLNs), as described in Section 5.1.

Using the mobile robot sensor data from the Radish robotics data set repository

(http://radish.sourceforge.net), the evidence is a set of range finder segments, defined by

the (x, y) coordinates of their endpoints.The output is: (a) a labeling of each segment as Door, Wall,

or Other (classification); (b) an assignment of wall segments to the walls they are part of (clustering);

and (c) the position of each wall, defined by the (x, y) coordinates of its endpoints (regression). On

average, each map consists of about 100 segments. More details on the dataset and experimental

setups can be found in Wang and Domingos [148].

Wang and Domingos [148] built an HMLN using the following rules. First, every segment

belongs to exactly one type with some prior probability distribution given by the unit clauses,

SegType(s, +t). Doors and walls also have a typical length and depth, represented by numeric

terms (e.g., SegType(s, Door) · (Length(s) = DoorLength), which has value 0 if the segment is

not a door and −(Length(s) − DoorLength)2 otherwise). A segment’s depth is defined as the

signed perpendicular distance of its midpoint to the nearest wall line. Lines are iteratively estimated

from the segments assigned to them, using the formulas below, as part of the HMLN inference. A

number of rules involving depth and angle between a segment and the nearest line identify segments

of type Other, whose distribution is more irregular than that of doors and walls.

The type of a segment is predictive of the types of consecutive segments along a wall line:

SegType(s, +t) ∧ Consecutive(s, s′)⇒ SegType(s′, +t′)

Two segments are consecutive if they are the closest segments to each other along either direction

of the nearest line. In addition, aligned segments tend to be of the same type:

SegType(s, t) ∧ Consecutive(s, s′) ∧ Aligned(s, s′)⇒ SegType(s′, t)
2As pointed out by Haghighi and Klein [42], Luo et al. [77] obtained a very high accuracy on MUC-6, but their system used gold
NER features and is not directly comparable.

http://radish.sourceforge.net
http://radish.sourceforge.net
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Segments are aligned if one is roughly a continuation of the other (i.e., their angle is below some

threshold, and so is their perpendicular distance). The rules above perform collective classification

of segments into types.

Aligned wall segments are part of the same wall line:

SegType(s, Wall) ∧ SegType(s′, Wall) ∧ Aligned(s, s′) ∧ PartOf(s, l) ⇒ PartOf(s′, l)

This rule clusters wall segments into wall lines. Notice that it captures long-range dependencies

between segments along the same corridor, not just between neighboring segments.

A segment is the start of a line if and only if it has no previous aligned segment:3

PartOf(s, l) ⇒ (¬PreviousAligned(s) ⇔ StartLine(s, l))

If a segment is the start of a line, their initial points are (about) the same:

StartLine(s, l) · (xi(s) = xi(l))

where xi(s) is the x coordinate of s’s initial point, etc.; and similarly for y. If a segment belongs to

a line, its slope should be the same as the slope of a line connecting their initial points. Multiplying

by the �x’s to avoid singularities, we obtain:

PartOf(s, l) · [(yf(s) − yi(s))(xi(s) − xi(l)) = (yi(s) − yi(l))(xf(s) − xi(s))]

where the subscript f denotes final points. Line ends are handled similarly. These rules infer the

locations of the wall lines from the segments assigned to them. They also influence the cluster-

ing and labeling of segments (e.g., if a better line fit is obtained by relabeling a segment from

Wall to Door and thus excluding it, this will be inferred). Classification, clustering and regres-

sion are fully joint. In the next section we show the experimental results obtained by this ap-

proach. The full HMLN, containing some additional formulas, is available at the Alchemy Web site

(http://alchemy.cs.washington.edu/).

EXPERIMENTAL METHODOLOGY
We learned HMLN weights using Alchemy’s voted perceptron with HMWS for inference, 100

steps of gradient descent, and a learning rate of 1.0.To combat ill-conditioning, we divided each for-

mula/term’s learning rate by the absolute sum of its values in the data, similar to per-weight learning

rates discussed in Section 4.1. Other parameters were learned by fitting Gaussian distributions to the

relevant variables. We used leave-one-map-out cross-validation throughout. In all inferences, the

correct number of walls was given.We evaluated inference results for discrete variables (SegType and

PartOf) using F1 score (harmonic mean of precision and recall over all groundings). We used mean

square error (MSE) for continuous variables (xi(l), yi(l), xf(l) and yf(l)). We also computed the

3By convention, a point precedes another if it has lower x coordinate and, if they are the same, lower y. Segments and lines are
ordered by their start points, which precede their final points.

http://alchemy.cs.washington.edu/
http://alchemy.cs.washington.edu/
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Table 6.6: Joint vs. pipeline approaches for robot mapping domain.

Measure SegType F1 PartOf F1 MSE

HMWS 0.746 0.753 0.112

MWS+LR 0.742 0.717 0.198

HMCS 0.922 0.931 0.002

MCS+LR 0.904 0.919 0.037

RMNs 0.899 N/A N/A

negative log likelihoods of the test values. To obtain density functions for continuous variables from

the output of MCMC, we placed a Gaussian kernel at each sample, with a standard deviation of

3r/n, where r is the sampled range of the variable and n is the number of samples. Details of the

experimental procedure, parameter settings and results can be found in Wang and Domingos [148]

and the associated online appendix.

INFERRING THE MOST PROBABLE STATE
We compared HMWS, which infers the discrete and continuous variables jointly, with a more

traditional pipeline approach, where the segment types and assignments are first inferred using

MWS, and the lines are then estimated by least-squares linear regression over the endpoints of the

segments assigned to them by MWS. HMWS and MWS were started from the same initial random

state and run for 1,000,000 flips; they typically converged within 100,000 flips.The results are shown

in the top two rows of Table 6.6. Joint inference outperforms pipelined inference on both discrete

and numeric variables.

INFERRING CONDITIONAL PROBABILITIES
We compared HMCS with a pipeline approach, where the discrete variables are first inferred using

MC-SAT, and the lines are then estimated by linear regression over the endpoints of the segments

that have probability greater than 0.3 of belonging to them. (There are typically four to six lines in

a map.) HMCS and MC-SAT were both run for 30,000 steps, with all other settings as above. The

results are shown in Table 6.6 (the bottom three lines). Joint inference performs best, illustrating

its benefits. Table 6.6 also shows the results on classifying SegType of Limketkai et al.’s state-of-

the-art approach [69], which is based on relational Markov networks [141]. HMLNs perform best,

illustrating the benefits of using a more flexible modeling language.

6.7 LINK-BASED CLUSTERING

Clustering is the task of automatically partitioning a set of objects into groups so that objects

within each group are similar to each other while being dissimilar to those in other groups. Link-

based clustering uses relationships among the objects in determining similarity. We can do this
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very naturally with the MRC algorithm from Section 4.3, which is based on second-order Markov

logic. Note that second-order formulas are quantified over predicates, so the same second-order

MLN can be applied to different datasets with different predicates. In this section, we describe Kok

and Domingos’ [58] experiments with MRC on four datasets. We compare MRC to the infinite

relational model (IRM) [54] and TDSL, the top-down structure learning algorithm presented in

Section 4.2.

IRM is a recently-published model that also clusters objects,attributes,and relations.However,

unlike MRC, it only finds a single clustering. It defines a generative model for the predicates and

cluster assignments. Like MRC, it assumes that the predicates are conditionally independent given

the cluster assignments, and the cluster assignments for each type are independent. IRM uses a

Chinese restaurant process prior (CRP) [102] on the cluster assignments. Under the CRP, each new

object is assigned to an existing cluster with probability proportional to the cluster size. Because

the CRP has the property of exchangeability, the order in which objects arrive does not affect

the outcome. IRM assumes that the probability p of an atom being true conditioned on cluster

membership is generated according to a symmetric Beta distribution, and that the truth values of

atoms are then generated according to a Bernoulli distribution with parameter p. IRM finds the

MAP cluster assignment using the same greedy search as our model, except that it also searches for

the optimal values of its CRP and Beta parameters.

DATASETS
Animals.This dataset contains a set of animals and their features [96]. It consists exclusively of unary

predicates of the form f(a), where f is a feature and a is an animal (e.g.,Swims(Dolphin)).There are

50 animals, 85 features, and thus a total of 4250 ground atoms,of which 1562 are true.This is a simple

propositional dataset with no relational structure, but it is useful as a “base case” for comparison.

Notice that, unlike traditional clustering algorithms, which only cluster objects by features, MRC

and IRM also cluster features by objects. This is known as bi-clustering or co-clustering, and has

received considerable attention in the recent literature (e.g., Dhillon et al. [28]).

UMLS. UMLS contains data from the Unified Medical Language System, a biomedical ontol-

ogy [81]. It consists of binary predicates of the form r(c, c′), where c and c′ are biomedical concepts

(e.g., Antibiotic, Disease), and r is a relation between them (e.g., Treats, Diagnoses). There

are 49 relations and 135 concepts, for a total of 893,025 ground atoms, of which 6529 are true.

Kinship. This dataset contains kinship relationships among members of the Alyawarra tribe from

Central Australia [26]. Predicates are of the form k(p, p′), where k is a kinship relation and p, p′ are

persons. There are 26 kinship terms and 104 persons, for a total of 281,216 ground atoms, of which

10,686 are true.

Nations. This dataset contains a set of relations among nations and their features [126]. It consists

of binary and unary predicates.The binary predicates are of the form r(n, n′), where n,n′ are nations,

and r is a relation between them (e.g., ExportsTo, GivesEconomicAidTo). The unary predicates
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are of the form f(n), where n is a nation and f is a feature (e.g., Communist, Monarchy). There are

14 nations, 56 relations and 111 features, for a total of 12,530 ground atoms, of which 2565 are true.

METHODOLOGY
Experimental evaluation of statistical relational learners is complicated by the fact that in many

cases the data cannot be separated into independent training and test sets. While developing a long-

term solution for this remains an open problem, we used an approach that is general and robust:

performing cross-validation by atom. For each dataset, we performed ten-fold cross-validation by

randomly dividing the atoms into ten folds, training on nine folds at a time, and testing on the

remaining one.This can be seen as evaluating the learners in a transductive setting, because an object

(e.g., Leopard) that appears in the test set (e.g., in MeatEater(Leopard)) may also appear in the

training set (e.g., in Quadrupedal(Leopard)). In the training data, the truth values of the test

atoms are set to unknown, and their actual values (true/false) are not available. Thus learners

must perform generalization in order to be able to infer the test atoms, but the generalization is

aided by the dependencies between test atoms and training ones.

TDSL is not directly comparable to MRC and IRM because it makes the closed-world

assumption and our experiments require the test atoms to be open-world. For an approximate

comparison, we set all test atoms to false when running TDSL. Since in each run these are only 10%

of the training set, setting them to false does not greatly change the sufficient statistics (true clause

counts). We then ran MC-SAT on the MLNs learned by TDSL to infer the probabilities of the test

atoms.

We ran IRM and MRC for ten hours on each fold of each dataset, using default parameter

settings for both algorithms. Almost all of MRC’s running time went into the first level of clustering

because this is where the sets of objects, attributes and relations to be clustered are by far the largest,

and finding a good initial clustering is important for the subsequent learning.

RESULTS
Figure 6.2 reports the CLL and AUC for MRC, IRM and TDSL, averaged over the ten folds of

each dataset. We also report the results obtained using just the initial clustering formed by MRC

(Init), in order to evaluate the usefulness of learning multiple clusterings.

TDSL does worse than MRC and IRM on all datasets except Nations. On Nations, it does

worse than MRC and IRM in terms of CLL, but approximately ties them in terms of AUC. Many

of the relations in Nations are symmetric, e.g., if country A has a military conflict with B, then the

reverse is usually true. TDSL learns a rule to capture the symmetry, and consequently does well in

terms of AUC.

MRC outperforms IRM on UMLS and Kinship, and ties it on Animals and Nations. The

difference on UMLS and Kinship is quite large. Animals is the smallest and least structured of the

datasets, and it is conceivable that it has little room for improvement beyond a single clustering.The

difference in performance between MRC and IRM correlates strongly with dataset size. (Notice
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Figure 6.2: Comparison of MRC, IRM, and MLN structure learning (TDSL) on four clustering

datasets. Init is the initial clustering formed by MRC. Error bars are one standard deviation in each

direction.

that UMLS and Kinship are an order of magnitude larger than Animals and Nations.) This suggests

that sophisticated algorithms for statistical predicate invention may be of most use in even larger

datasets. We look at such a dataset in the next section.

MRC outperforms Init on all domains except Animals. The differences on Nations are not

significant, but on UMLS and Kinship they are very large.These results show that forming multiple

clusterings is key to the good performance of MRC. In fact, Init does considerably worse than IRM

on UMLS and Kinship;we attribute this to the fact that IRM performs a search for optimal parameter

values, while in MRC these parameters were simply set to default values without any tuning on data.

This suggests that optimizing parameters in MRC could lead to further performance gains.

In the Animals dataset, MRC performs at most three levels of cluster refinement. On the other

datasets, it performs about five. The average total numbers of clusters generated are: Animals, 202;

UMLS, 405; Kinship, 1044; Nations, 586. The average numbers of atom prediction rules learned

are: Animals, 305; UMLS, 1935; Kinship, 3568; Nations, 12,169.

6.8 SEMANTIC NETWORK EXTRACTION FROM TEXT

A long-standing goal of AI is to build an autonomous agent that can read and understand text. A

good step towards this goal is automatically building knowledge bases of facts and relationships from

corpora such as the Web. Kok and Domingos [59] recently introduced Semantic Network Extractor

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-202.jpg&w=403&h=201
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(SNE), a scalable, unsupervised, and domain-independent system that simultaneously extracts high-

level relations and concepts, and learns a semantic network [112] from text. The knowledge in this

network can be used by itself or as a component of larger NLP systems. SNE represents the largest-

scale application of Markov logic to date.

SNE is built on top of TextRunner [3], a system for extracting a large set of relational tuples

of the form r(x, y) where x and y are strings denoting objects, and r is a string denoting a relation

between the objects. TextRunner uses a lightweight noun phrase chunker to identify objects, and

heuristically determines the text between objects as relations.However,whileTextRunner can quickly

acquire a large database of ground facts in an unsupervised manner, it is not able to learn general

knowledge that is embedded in the facts.

SNE uses TextRunner to extract ground facts as triples from text, and then extract knowledge

from the triples. TextRunner’s triples are noisy, sparse, and contain many co-referent objects and

relations. SNE overcomes this by using a probabilistic model based on second-order Markov logic

that clusters objects according to the objects they are related to and relations according to the objects

they relate.This allows information to propagate between clusters of relations and clusters of objects

as they are created. Each cluster represents a high-level relation or concept. A concept cluster can

be viewed as a node in a graph, and a relation cluster can be viewed as links between the concept

clusters that it relates. Together, the concept clusters and relation clusters define a simple semantic

network. Figure 6.3 illustrates part of a semantic network that our approach learns. (More fragments

are available at http://alchemy.cs.washington.edu/papers/kok08.) SNE is based on the

MRC model [58] discussed in Section 4.3, but with a different prior and a more scalable search

algorithm that finds a single clustering. For full details on SNE, see Kok and Domingos [59].

Our goal is to create a system that is capable of extracting semantic networks from what is

arguably the largest and most accessible text resource — the Web. Thus in our experiments, we

used a large Web corpus to evaluate the effectiveness of SNE’s relational clustering approach in

extracting a simple semantic network from it. Since to date, no other system could do the same,

we had to modify three other relational clustering approaches so that they could run on our large

Web-scale dataset, and compared SNE to them. The three approaches are MRC [58], IRM [54],

and Information-Theoretic Co-clustering (ITC) [28].

In order to make MRC and IRM feasible on large Web-scale datasets such as the one used

in our experiments, we used the SNE clustering algorithm in place of the MRC and IRM search

algorithms. We use MRC1 to denote an MRC model that is restricted to find a single clustering.

For IRM, we also fixed the values of the CRP and Beta parameters and applied the CRP prior to

cluster combinations instead of clusters.

The ITC model [28] clusters discrete data in a two-dimensional matrix along both dimensions

simultaneously. It greedily searches for the hard clusterings that optimize the mutual information

between the row and column clusters. The model has been shown to perform well on noisy and

sparse data. ITC’s top-down search algorithm has the flavor of K-means, and requires the number

of row and column clusters to be specified in advance. At every step, ITC finds the best cluster for

http://alchemy.cs.washington.edu/papers/kok08
http://alchemy.cs.washington.edu/papers/kok08
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Table 6.7: Semantic network comparison on gold standard. Object 1 and Object 2 respectively refer

to the object symbols that appear as the first and second arguments of relations.

Model Relation Object 1 Object 2
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.460 0.061 0.108 0.558 0.062 0.112

MRC1 0.054 0.044 0.049 0.031 0.007 0.012 0.05 0.011 0.018

IRM 0.201 0.089 0.124 0.252 0.043 0.073 0.307 0.041 0.072

ITC 0.773 0.003 0.006 0.470 0.047 0.085 0.764 0.002 0.004

each row or column by iterating through all clusters. This is not tractable for large datasets like our

Web dataset, which can contain many clusters; instead, we use the SNE clustering algorithm, but

with mutual information in place of change in log posterior probability. We further extended ITC

to three dimensions by optimizing the mutual information among the clusters of three dimensions.

We follow Dhillon et al.’s [28] suggestion of using a BIC prior, but we applied it to the number of

cluster combinations that contain at least one true ground atom, not the number of clusters.

DATASET
We compared the various models on a dataset of about 2.1 million triples4 extracted in a Web

crawl by TextRunner [3]. Each triple takes the form r(x, y) where r is a relation symbol, and

x and y are object symbols. Some example triples are: Named_after(Jupiter, Roman_god) and

Upheld(Court, Ruling). There are 15,872 distinct r symbols, 700,781 distinct x symbols, and

665,378 distinct y symbols. Two characteristics of TextRunner’s extractions are that they are sparse

and noisy. To reduce the noise in the dataset, our search algorithm only considered symbols that

appeared at least 25 times.This leaves 10,214 r symbols, 8942 x symbols, and 7995 y symbols.There

are 2,065,045 triples that contain at least one symbol that appears at least 25 times. We make the

closed-world assumption for all models (i.e., all triples not in the dataset are assumed false).

RESULTS
We evaluated the clusterings learned by each model against a manually created gold standard. The

gold standard assigns 2688 r symbols, 2568 x symbols, and 3058 y symbols to 874, 511, and 700

non-unit clusters respectively. We measured the pairwise precision, recall and F1 of each model

against the gold standard. Pairwise precision is the fraction of symbol pairs in learned clusters that

appear in the same gold clusters. Pairwise recall is the fraction of symbol pairs in gold clusters that

appear in the same learned clusters. F1 is the harmonic mean of precision and recall.Table 6.7 shows

the results. We see that SNE performs significantly better than MRC1, IRM, and ITC.

4Publicly available at http://knight.cis.temple.edu/˜yates/data/resolver_data.tar.gz

http://knight.cis.temple.edu/~yates/data/resolver_data.tar.gz
http://knight.cis.temple.edu/~yates/data/resolver_data.tar.gz
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Table 6.8: Evaluation of semantic statements learned by SNE, IRM, and ITC.

Model Total Number Fraction
Statements Correct Correct

SNE 1241 965 0.778

IRM 487 426 0.874

ITC 310 259 0.835

We also ran MRC to find multiple clusterings. Since the gold standard only defines a single

clustering, we cannot use it to evaluate the multiple clusterings. We provide a qualitative evaluation

instead. MRC returns 23,151 leaves that contain non-unit clusters, and 99.8% of these only contain 3

or fewer clusters of size 2.In contrast,SNE finds many clusters of varying sizes.The poor performance

of MRC in finding multiple clusterings is due to data sparsity. In each recursive call to MRC, it only

receives a small subset of the relation and object symbols. Thus the data becomes sparser with each

call and there is not enough signal to cluster the symbols.

We then evaluated SNE, IRM and ITC in terms of the semantic statements that they learned.

A cluster combination that contains a true ground atom corresponds to a semantic statement. SNE,

IRM and ITC respectively learned 1,464,965,1,254,995 and 82,609 semantic statements.We manu-

ally inspected semantic statements containing 5 or more true ground atoms, and counted the number

that were correct. Table 6.8 shows the results. Even though SNE’s accuracy is smaller than IRM’s

and ITC’s by 11% and 7% respectively, SNE more than compensates for the lower accuracy by

learning 127% and 273% more correct statements, respectively. Figure 6.3 shows examples of correct

semantic statements learned by SNE.

COMPARISON OF SNE WITH WORDNET
We also compared the object clusters that SNE learned with WordNet [34], a hand-built semantic

lexicon for the English language. WordNet organizes 117,798 distinct nouns into a taxonomy of

82,115 concepts. There are 4883 first-argument and 5076 second-argument object symbols that

appear at least 25 times in our dataset, and also in WordNet. We converted each node (synset) in

WordNet’s taxonomy into a cluster containing its original concepts and all its children concepts.

We then matched each SNE cluster to the WordNet cluster that gave the best F1 score. We found

that the scores were fairly good for object clusters of size seven or less, and that the object clusters

correspond to fairly specific concepts in WordNet. We did not compare the relation clusters to

WordNet’s verbs because the overlap between the relation symbols and the verbs is too small.

FURTHER READING

For more details on the specific applications and experiments discussed here, see Lowd and Domin-

gos [75] for collective classification; Richardson and Domingos [117] for link analysis in social
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Figure 6.3: Fragments of a semantic network learned by SNE. Nodes are concept clusters, and the

labels of links are relation clusters.

networks; Singla and Domingos [134] and Lowd and Domingos [75] for entity resolution; Poon

and Domingos [106] for information extraction; Poon and Domingos [107] for coreference res-

olution; Wang and Domingos for robot mapping [148]; Kok and Domingos [58] for link-based

clustering; and Kok and Domingos [59] for semantic network extraction from text.

The number of applications of Markov logic is quickly growing. Other applications include

the DARPA CALO personal assistant [29], semantic role labeling in NLP [120], extracting genic

interactions from Medline abstracts [119], predicting protein β-partners [70], extracting ontologies

from Wikipedia [154], discovering social relationships in photo collections [139], using the Web to

answer queries [130], and more.

http://www.morganclaypool.com/action/showImage?doi=10.2200/S00206ED1V01Y200907AIM007&iName=master.img-203.jpg&w=406&h=180
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Conclusion
Progress in an area of computer science picks up when the right interface layer is defined: an abstract

language that separates the infrastructure from the applications, enabling each piece of the infras-

tructure to communicate with all the applications without modification, and vice-versa. Markov

logic is an attempt to provide such an interface layer for artificial intelligence.

Markov logic combines first-order logic and probabilistic graphical models. A knowledge base

in Markov logic is simply a set of weighted first-order formulas, viewed as templates for features of a

Markov network: given a set of constants representing objects in the domain of interest, the Markov

network has one Boolean variable for each possible grounding of each predicate with those constants

(e.g., Friends(Anna, Bob), and one Boolean feature for each grounding of each formula, with the

corresponding weight (e.g., Smokes(Anna) ∧ Friends(Anna, Bob) ⇒ Smokes(Bob)). First-order

logic is the infinite-weight limit of Markov logic.

Most widely used graphical models can be specified very compactly in Markov logic (e.g., two

formulas containing a total of three predicates for logistic regression, three formulas for a hidden

Markov model, etc.). In turn, this makes it easy to define large, complex models involving combina-

tions of these components. For example, a complete information extraction system (performing joint

segmentation and entity resolution) can be specified with just a few formulas, and a state-of-the-art

one with a few dozen.

Several implementations of Markov logic exist, of which the most developed is Alchemy [60].

Alchemy includes a series of highly efficient inference and learning algorithms for Markov logic,

including:

• A weighted satisfiability solver for MAP inference.This and other algorithms use lazy inference

techniques to minimize the number of ground predicates that are actually created.

• MC-SAT, an MCMC algorithm that uses a satisfiability solver to find modes, for computing

conditional probabilities.

• Lifted belief propagation, which allows probabilistic inference to be carried out for whole sets

of objects at once, without grounding predicates, like resolution-based theorem proving in

Prolog.

• Gradient descent, conjugate gradient and quasi-Newton methods for generative and discrim-

inative weight learning.

• Inductive logic programming algorithms for learning new formulas from data and refining

manually specified ones.
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These algorithms make it possible to routinely perform learning and inference on graphical

models with millions of variables and billions of features. State-of-the-art solutions to a wide variety

of problems have been developed using Markov logic, including:

• The first system for unsupervised coreference resolution in NLP that outperforms supervised

ones on standard benchmarks.

• The first robot mapping system that performs joint labeling of range finder segments, clustering

of segments into walls, and regression to estimate the locations of walls from their segments.

• The winning entry in the LLL-05 competition on extracting gene interactions from Medline

abstracts.

• An inference engine for the DARPA CALO personal assistant.

• The most accurate system to date for extracting ontologies from Wikipedia.

• The first unsupervised system for extracting semantic networks from Web crawls.

• A state-of-the-art system for predicting protein β-partners.

• A probabilistic version of (parts of ) Cyc, the world’s largest knowledge base.

Markov logic makes the prospect of “programming by machine learning” a realistic one. With

Alchemy, the programmer’s work is reduced to specifying the approximate structure of the program;

the rest is filled in by learning from data, and the resulting uncertainties are handled by probabilistic

inference. With discriminative learning, Markov logic learns the conditional distribution of the

program outputs given its inputs, and the most likely program is run by performing MAP inference.

Even without learning, weighted logic makes it possible to write knowledge bases that are

much more compact than the corresponding ones in purely logical languages. It also relaxes the

requirements for perfect correctness, consistency and completeness that make writing large KBs and

integrating contributions from many sources a very costly (or even infeasible) enterprise.

Markov logic and Alchemy are not yet at the point where they can be easily used by developers

or researchers without expertise in machine learning, automated reasoning, or probabilistic inference.

The chief reason for this is that the underlying inference and learning algorithms still require tuning,

parameter choices, trial and error, etc., before they produce the desired results. Markov logic suc-

cessfully integrates learning, logic and probability, but it inherits the state of the art in each of these

fields, and in each of them there is still much research to be done before “push-button” algorithms

are available.

However, even with this state of art, Markov logic already allows us to attempt much more

ambitious applications than before. For example, we are currently developing a complete natural

language processing system, using fully joint inference across all stages, and ultimately consisting of

probably no more than hundreds of (second-order) Markov logic formulas.
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It is our hope that researchers in machine learning, probabilistic inference, and knowledge

representation and reasoning will find it worthwhile to provide their latest algorithms as plug-ins

to Alchemy using the corresponding APIs, thus making them available to all applications that use

MLNs as the interface layer. Conversely, we hope that researchers in natural language, planning,

vision and robotics, multi-agent systems, etc., will find Markov logic a useful modeling tool, and

contribute the MLNs they develop to the Alchemy repository, making them available for other

researchers to build on. Thus Markov logic will help speed progress toward the ultimate goal of

reaching and surpassing human-level intelligence.
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A P P E N D I X A

The Alchemy System
Alchemy is an open-source system that aims to make many of the models and algorithms

discussed in this book easily accessible to researchers and practitioners. Source code, docu-

mentation, tutorials, MLNs, datasets, and publications are available at the Alchemy Web site,

http://alchemy.cs.washington.edu. In this appendix, we provide a brief introduction to the

Alchemy system.

Alchemy includes algorithms for learning and inference with Markov logic networks and

hybrid Markov logic networks. This includes generative and discriminative weight learning, top-

down structure learning,1 MAP/MPE inference, and probabilistic inference. Second-order MLNs,

recursive random fields, and other extensions are not supported at this time.

Alchemy was developed under Linux, but also works under Windows using Cygwin. (To run

Alchemy on a Mac, see additional notes online.) To install Alchemy, first download the source code

distribution from the Web site. Unpacking the downloaded file will create an alchemy directory as

well as various subdirectories, including src.To build Alchemy, run make depend; make from the

alchemy/src directory. In addition to the make utility, compiling Alchemy also requires bison,

flex, g++, and perl.

A.1 INPUT FILES

Predicates and functions are declared and first-order formulas are specified in .mln files. The first

appearance of a predicate or function in a .mln file is taken to be its declaration. You can express

arbitrary first-order formulas in a .mln file. A variable in a formula must begin with a lowercase

character, and a constant with an uppercase one in a formula. A formula can be preceded by a weight

or terminated by a period, but not both. A period signifies that a formula is “hard” (i.e., worlds that

violate it should have zero probability). Types and constants are also declared in .mln files. As in

C++ and Java, comments can be included with // and /* */. Blank lines are ignored.

Table A.1 contains an example MLN to model friendship ties between people, their smoking

habits and the causality of cancer. The MLN begins by declaring the predicates Friends, Smokes,

and Cancer, each taking one or two arguments of type person. If we wished, we could declare the

person type explicitly by listing its constants, e.g., person = {Anna, Bob, Chris}. Without a

type declaration, the constants will automatically be inferred from the database. The two formulas

link smoking to cancer and the smoking habits of friends. When learning, weights may be omitted

or used to specify the prior means.

1Bottom-up structure learning has been implemented as an extension to Alchemy, available separately from
http://www.cs.utexas.edu/˜ml/mlns/.

http://alchemy.cs.washington.edu
http://alchemy.cs.washington.edu
http://www.cs.utexas.edu/~ml/mlns/
http://www.cs.utexas.edu/~ml/mlns/
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Ground atoms are defined in .db (database) files. Ground atoms preceded by ! (e.g.,

!Friends(Anna,Bob)) are false, by ? are unknown, and by neither are true. If the closed world

assumption is made for a predicate, its ground atoms that are not defined in a .db file are false, while

if the open world assumption is made, its undefined ground atoms are unknown. By default, all

predicates are closed world during learning and only the specified query predicates are open world

during inference. Table A.2 shows an example database for the “friends and smokers” social network

domain.

Table A.1: smoking.mln, example MLN for friends and smokers domain.

//predicate declarations

Friends(person, person)

Smokes(person)

Cancer(person)

// If you smoke, you get cancer

1.5 Smokes(x) => Cancer(x)

// Friends have similar smoking habits

0.8 Friends(x, y) => (Smokes(x) <=> Smokes(y))

Table A.2: smoking-train.db, an example training database for smoking.mln.

Friends(Anna, Bob)

Friends(Bob, Anna)

Friends(Anna, Edward)

Friends(Edward, Anna)

Friends(Bob, Chris)

Friends(Chris, Bob)

Friends(Chris, Daniel)

Friends(Daniel, Chris)

Smokes(Anna)

Smokes(Bob)

Smokes(Edward)

Cancer(Anna)

Cancer(Edward)
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Although not included in this example, Alchemy also supports user-defined func-

tions. Functions are declared in a .mln file, like predicates but with a return type, e.g.,

person MotherOf(person). Function values are specified in a .db file. Each line contains ex-

actly one definition of the form <returnvalue> = <functionname>(<constant1>, …,

<constantn>), e.g., Anna = MotherOf(Bob). The mappings given are assumed to be the only

ones present in the domain. It is also possible to link in externally defined functions and predicates.

Alchemy supports the + notation and ! notation described in Section 6.1. See the online user

manual for more information on Alchemy syntax and other features.

A.2 INFERENCE

To perform inference, run the infer executable, e.g.:

ALCHDIR/bin/infer -i smoking.mln -e smoking.db -r smoking.results

-q Smokes -ms -maxSteps 20000

-i specifies the input .mln file. All formulas in the input file must be preceded by a weight or

terminated by a period (but not both). -e specifies the evidence .db file; a comma-separated list can

be used to specify more than one .db file. -r specifies the output file, which contains the inference

results.

-q specifies the query predicates. You can specify more than one query predicate, and restrict

the query to particular groundings, e.g., -q Smokes(Anna),Smokes(Bob). (Depending on the

shell you are using, you may have to enclose the query predicates in quotes because of the presence

of parentheses.) You can also use the -f option to specify a file containing the query ground atoms

you are interested in (same format as a .db file without false and unknown atoms). Query atoms in

the evidence database are assumed to be known and will not be inferred.

The output from the example inference command looks something like this:

Smokes(Chris) 0.238926

Smokes(Daniel) 0.141286

The probability of Anna, Bob and Edward smoking is not computed since their smoking status is

already known in the database.

Alchemy supports two basic types of inference: computing conditional probabilities (using

MCMC or lifted belief propagation) and finding the most probable state of the world (MAP/MPE

inference).The current implementation includes three MCMC algorithms: Gibbs sampling (option

-p),MC-SAT (option -ms) and simulated tempering (option -simtp).-maxSteps is used to specify

the maximum number of steps in the MCMC algorithm. Belief propagation is specified with option

-bp. When MCMC inference or belief propagation is run, the probabilities that the query atoms

are true are written to the output file specified. To use MAP inference instead, specify either the -m

or -a option. The former only returns the true ground atoms, while the latter returns both true and

false ones. All inference options except belief propagation support the -lazy flag to avoid grounding



128 APPENDIX A. THE ALCHEMY SYSTEM

the entire domain (see Section 3.3). Belief propagation supports lifted inference (-lifted) instead

(see Section 3.4).

Type ALCHDIR/bin/infer without any parameters to view all options.

A.3 WEIGHT LEARNING

To learn the weights of formulas, run the learnwts executable, e.g.:

ALCHDIR/bin/learnwts -d -i smoking.mln -o smoking-out.mln

-t smoking-train.db -ne Smokes,Cancer

where ALCHDIR is the directory Alchemy is installed in. -d specifies discriminative learning; for

generative learning (pseudo-log-likelihood), use -g instead. -i and -o specify the input and output

.mln files. -t specifies the .db file that is to be used by weight learning. You can specify multiple

.db or .mln files in a comma separated list (e.g., -t smoking1.db,smoking2.db). By default,

constants are shared across databases.To specify instead that the constants in each .db file belong to a

separate database, use the -multipleDatabases option.The -ne option specifies the non-evidence

predicates, those that will be unknown and inferred at inference time.

During weight learning, each formula is converted to conjunctive normal form (CNF), and a

weight is learned for each of its clauses. If the formulas in the input MLN have weights, these can

be used as the means of Gaussian priors on the weights to be learned, with the standard deviation

specified by -priorStdDev <double>. A global prior mean can be specified by -priorMean

<double>; the default is 0.

After weight learning, the output .mln file contains the weights of the original formulas

(commented out), as well as those of their derived clauses. By default, unit clauses for all predicates

are added to the MLN during weight learning. (You can change this with the -noAddUnitClauses

option.)

Table A.3 shows the result of performing discriminative weight learning with the example

MLN and database from Tables A.1 and A.2. Note that the second formula has been split into two

clauses to capture both directions of the equivalence. The unit clause Friends(a1, a2) receives a

weight of zero because it was not specified as a non-evidence predicate, and is therefore assumed to

be known.

You can view all the options by typing ALCHDIR/bin/learnwts without any parameters.

One of the most important is -dNumIters <integer>, which sets the maximum number of iter-

ations for discriminative weight learning. Inference options (including -lazy) can also be used with

learnwts when embedded in the -infer option, e.g.: -infer "-ms -maxSteps 100 -lazy".

A.4 STRUCTURE LEARNING

To learn the structure (clauses and weights) of an MLN generatively, you use the learnstruct

executable, e.g.:
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Table A.3: smoking-out.mln, learned MLN for friends and smokers domain.

//predicate declarations

Cancer(person)

Friends(person,person)

Smokes(person)

//function declarations

// 1.51903 Smokes(x) => Cancer(x)

1.51903 !Smokes(a1) v Cancer(a1)

// 0.994841 Friends(x,y) => (Smokes(x) <=> Smokes(y))

0.49742 !Friends(a1,a2) v Smokes(a1) v !Smokes(a2)

0.49742 !Friends(a1,a2) v Smokes(a2) v !Smokes(a1)

// 0 Friends(a1,a2)

0 Friends(a1,a2)

// 0.86298 Smokes(a1)

0.86298 Smokes(a1)

// -1.0495 Cancer(a1)

-1.0495 Cancer(a1)

ALCHDIR/bin/learnstruct -i smoking.mln -o smoking-out.mln

-t smoking.db -penalty 0.5

learnstruct uses beam search to find new clauses to add to an MLN. It can start from both empty

and non-empty MLNs. Its options are similar to those of learnwts. In addition, it has options for

controlling techniques that speed up the search. You can also restrict the types of clauses created

during structure learning (see the developer’s manual online). Type ALCHDIR/bin/learnstruct

without any parameters to view all options.

FURTHER READING

For full documentation on Alchemy, see http://alchemy.cs.washington.edu. Many more

details about syntax and options are available in the user’s guide; information about the internal

http://alchemy.cs.washington.edu
http://alchemy.cs.washington.edu
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workings of Alchemy is in the developer’s guide; and a gentle tutorial (including MLN and database

files) covers much of Alchemy’s functionality through examples. Additional support is available

by email:alchemy@cs.washington.edu.Thealchemy-discuss@cs.washington.edumailing

list is dedicated to discussing topics related to Alchemy.
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