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Abstract We propose a simple approach to combining first-order logic and probabilistic

graphical models in a single representation. A Markov logic network (MLN) is a first-

order knowledge base with a weight attached to each formula (or clause). Together with a

set of constants representing objects in the domain, it specifies a ground Markov network

containing one feature for each possible grounding of a first-order formula in the KB, with the

corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset

of the ground network required for answering the query. Weights are efficiently learned

from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally,

additional clauses are learned using inductive logic programming techniques. Experiments

with a real-world database and knowledge base in a university domain illustrate the promise

of this approach.

Keywords Statistical relational learning . Markov networks . Markov random fields .

Log-linear models . Graphical models . First-order logic . Satisfiability . Inductive logic

programming . Knowledge-based model construction . Markov chain Monte Carlo .

Pseudo-likelihood . Link prediction

1. Introduction

Combining probability and first-order logic in a single representation has long been a

goal of AI. Probabilistic graphical models enable us to efficiently handle uncertainty.

First-order logic enables us to compactly represent a wide variety of knowledge. Many
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(if not most) applications require both. Interest in this problem has grown in recent

years due to its relevance to statistical relational learning (Getoor & Jensen, 2000, 2003;

Dietterich et al., 2003), also known as multi-relational data mining (Džeroski & De

Raedt, 2003; Džeroski et al., 2002, 2003; Džeroski & Blockeel, 2004). Current propos-

als typically focus on combining probability with restricted subsets of first-order logic,

like Horn clauses (e.g., Wellman et al., 1992; Poole, 1993; Muggleton, 1996; Ngo &

Haddawy, 1997; Sato & Kameya, 1997; Cussens, 1999; Kersting & De Raedt, 2001; Santos

Costa et al., 2003), frame-based systems (e.g., Friedman et al., 1999; Pasula & Russell,

2001; Cumby & Roth, 2003), or database query languages (e.g., Taskar et al., 2002;

Popescul & Ungar, 2003). They are often quite complex. In this paper, we introduce Markov

logic networks (MLNs), a representation that is quite simple, yet combines probability and

first-order logic with no restrictions other than finiteness of the domain. We develop efficient

algorithms for inference and learning in MLNs, and evaluate them in a real-world domain.

A Markov logic network is a first-order knowledge base with a weight attached to each

formula, and can be viewed as a template for constructing Markov networks. From the

point of view of probability, MLNs provide a compact language to specify very large

Markov networks, and the ability to flexibly and modularly incorporate a wide range of

domain knowledge into them. From the point of view of first-order logic, MLNs add the

ability to soundly handle uncertainty, tolerate imperfect and contradictory knowledge, and

reduce brittleness. Many important tasks in statistical relational learning, like collective

classification, link prediction, link-based clustering, social network modeling, and object

identification, are naturally formulated as instances of MLN learning and inference.

Experiments with a real-world database and knowledge base illustrate the benefits of

using MLNs over purely logical and purely probabilistic approaches. We begin the paper

by briefly reviewing the fundamentals of Markov networks (Section 2) and first-order logic

(Section 3). The core of the paper introduces Markov logic networks and algorithms for

inference and learning in them (Sections 4–6). We then report our experimental results

(Section 7). Finally, we show how a variety of statistical relational learning tasks can be cast

as MLNs (Section 8), discuss how MLNs relate to previous approaches (Section 9) and list

directions for future work (Section 10).

2. Markov networks

A Markov network (also known as Markov random field) is a model for the joint distribution

of a set of variables X = (X1, X2, . . . , Xn) ∈ X (Pearl, 1988), It is composed of an undirected

graph G and a set of potential functions φk. The graph has a node for each variable, and the

model has a potential function for each clique in the graph. A potential function is a non-

negative real-valued function of the state of the corresponding clique. The joint distribution

represented by a Markov network is given by

P(X = x) =
1

Z

∏

k

φk

(

x{k}

)

(1)

where x{k} is the state of the kth clique (i.e., the state of the variables that appear in that clique).

Z, known as the partition function, is given by Z =
∑

x∈X

∏

kφk(x{k}). Markov networks are
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often conveniently represented as log-linear models, with each clique potential replaced by

an exponentiated weighted sum of features of the state, leading to

P(X = x) =
1

Z
exp





∑

j

w j f j (x)



 (2)

A feature may be any real-valued function of the state. This paper will focus on binary

features, f j (x) ∈ {0, 1}. In the most direct translation from the potential-function form (Eq.

(1)), there is one feature corresponding to each possible state x{k} of each clique, with

its weight being log φk(x{k}). This representation is exponential in the size of the cliques.

However, we are free to specify a much smaller number of features (e.g., logical functions of

the state of the clique), allowing for a more compact representation than the potential-function

form, particularly when large cliques are present. MLNs will take advantage of this.

Inference in Markov networks is #P-complete (Roth, 1996). The most widely used method

for approximate inference in Markov networks is Markov chain Monte Carlo (MCMC) (Gilks

et al., 1996), and in particular Gibbs sampling, which proceeds by sampling each variable in

turn given its Markov blanket. (The Markov blanket of a node is the minimal set of nodes

that renders it independent of the remaining network; in a Markov network, this is simply

the node’s neighbors in the graph.) Marginal probabilities are computed by counting over

these samples; conditional probabilities are computed by running the Gibbs sampler with the

conditioning variables clamped to their given values. Another popular method for inference

in Markov networks is belief propagation (Yedidia et al., 2001).

Maximum-likelihood or MAP estimates of Markov network weights cannot be computed

in closed form, but, because the log-likelihood is a concave function of the weights, they can

be found efficiently using standard gradient-based or quasi-Newton optimization methods

(Nocedal & Wright, 1999). Another alternative is iterative scaling (Della Pietra et al., 1997).

Features can also be learned from data, for example by greedily constructing conjunctions

of atomic features (Della Pietra et al., 1997).

3. First-order logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-order logic

(Genesereth & Nilsson, 1987). Formulas are constructed using four types of symbols: con-

stants, variables, functions, and predicates. Constant symbols represent objects in the domain

of interest (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range over the objects in

the domain. Function symbols (e.g., MotherOf) represent mappings from tuples of objects to

objects. Predicate symbols represent relations among objects in the domain (e.g., Friends)

or attributes of objects (e.g., Smokes). An interpretation specifies which objects, functions

and relations in the domain are represented by which symbols. Variables and constants may

be typed, in which case variables range only over objects of the corresponding type, and

constants can only represent objects of the corresponding type. For example, the variable x

might range over people (e.g., Anna, Bob, etc.), and the constant C might represent a city

(e.g., Seattle).

A term is any expression representing an object in the domain. It can be a con-

stant, a variable, or a function applied to a tuple of terms. For example, Anna, x, and

GreatestCommonDivisor(x, y) are terms. An atomic formula or atom is a predicate symbol

applied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))). Formulas are recursively
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constructed from atomic formulas using logical connectives and quantifiers. If F1 and F2 are

formulas, the following are also formulas: ¬F1 (negation), which is true iff F1 is false; F1 ∧

F2 (conjunction), which is true iff both F1 and F2 are true; F1 ∨ F2 (disjunction), which is

true iff F1 or F2 is true; F1 ⇒ F2 (implication), which is true iff F1 is false or F2 is true; F1

⇔ F2 (equivalence), which is true iff F1 and F2 have the same truth value; ∀x F1 (universal

quantification), which is true iff F1 is true for every object x in the domain; and ∃x F1

(existential quantification), which is true iff F1 is true for at least one object x in the domain.

Parentheses may be used to enforce precedence. A positive literal is an atomic formula; a

negative literal is a negated atomic formula. The formulas in a KB are implicitly conjoined,

and thus a KB can be viewed as a single large formula. A ground term is a term containing no

variables. A ground atom or ground predicate is an atomic formula all of whose arguments

are ground terms. A possible world or Herbrand interpretation assigns a truth value to each

possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true. The basic

inference problem in first-order logic is to determine whether a knowledge base KB entails

a formula F, i.e., if F is true in all worlds where KB is true (denoted by KB |= F). This is

often done by refutation: KB entails F iff KB ∪ ¬ F is unsatisfiable. (Thus, if a KB contains

a contradiction, all formulas trivially follow from it, which makes painstaking knowledge

engineering a necessity.) For automated inference, it is often convenient to convert formulas

to a more regular form, typically clausal form (also known as conjunctive normal form

(CNF)). A KB in clausal form is a conjunction of clauses, a clause being a disjunction of

literals. Every KB in first-order logic can be converted to clausal form using a mechanical

sequence of steps.1 Clausal form is used in resolution, a sound and refutation-complete

inference procedure for first-order logic (Robinson, 1965).

Inference in first-order logic is only semidecidable. Because of this, knowledge bases are

often constructed using a restricted subset of first-order logic with more desirable properties.

The most widely-used restriction is to Horn clauses, which are clauses containing at most

one positive literal. The Prolog programming language is based on Horn clause logic (Lloyd,

1987). Prolog programs can be learned from databases by searching for Horn clauses that

(approximately) hold in the data; this is studied in the field of inductive logic programming

(ILP) (Lavrač & Džeroski, 1994).

Table 1 shows a simple KB and its conversion to clausal form. Notice that, while these

formulas may be typically true in the real world, they are not always true. In most domains it

is very difficult to come up with non-trivial formulas that are always true, and such formulas

capture only a fraction of the relevant knowledge. Thus, despite its expressiveness, pure

first-order logic has limited applicability to practical AI problems. Many ad hoc extensions

to address this have been proposed. In the more limited case of propositional logic, the

problem is well solved by probabilistic graphical models. The next section describes a way

to generalize these models to the first-order case.

4. Markov logic networks

A first-order KB can be seen as a set of hard constraints on the set of possible worlds: if a

world violates even one formula, it has zero probability. The basic idea in MLNs is to soften

1 This conversion includes the removal of existential quantifiers by Skolemization, which is not sound in
general. However, in finite domains an existentially quantified formula can simply be replaced by a disjunction
of its groundings.
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Table 1 Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm() for
Smokes(), and Ca() for Cancer()

English First-order logic Clausal form Weight

Friends of friends

are friends

∀x∀y∀z Fr(x, y) ∧

Fr(y, z) ⇒ Fr(x, z)

¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7

Friendless people

smoke

∀x (¬(∃y Fr(x, y)) ⇒

Sm(x))

Fr(x, g(x)) ∨ Sm(x) 2.3

Smoking causes

cancer

∀x Sm(x) ⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5

If two people are

friends, either both

smoke or neither

does

∀x∀y Fr(x, y) ⇒

(Sm(x) ⇔ Sm(y))

¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y),

¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y)

1.1

1.1

these constraints: when a world violates one formula in the KB it is less probable, but not

impossible. The fewer formulas a world violates, the more probable it is. Each formula has

an associated weight that reflects how strong a constraint it is: the higher the weight, the

greater the difference in log probability between a world that satisfies the formula and one

that does not, other things being equal.

Definition 4.1. A Markov logic network L is a set of pairs (Fi, wi), where Fi is a formula

in first-order logic and wi is a real number. Together with a finite set of constants C = {c1,

c2, . . . , c|C|}, it defines a Markov network ML,C (Eqs. (1) and (2)) as follows:

1. ML,C contains one binary node for each possible grounding of each predicate appearing

in L. The value of the node is 1 if the ground atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The value

of this feature is 1 if the ground formula is true, and 0 otherwise. The weight of the feature

is the wi associated with Fi in L.

The syntax of the formulas in an MLN is the standard syntax of first-order logic

(Genesereth & Nilsson, 1987). Free (unquantified) variables are treated as universally quan-

tified at the outermost level of the formula.

An MLN can be viewed as a template for constructing Markov networks. Given different

sets of constants, it will produce different networks, and these may be of widely varying size,

but all will have certain regularities in structure and parameters, given by the MLN (e.g., all

groundings of the same formula will have the same weight). We call each of these networks a

ground Markov network to distinguish it from the first-order MLN. From Definition 4.1 and

Eqs. (1) and (2), the probability distribution over possible worlds x specified by the ground

Markov network ML,C is given by

P(X = x) =
1

Z
exp

(

∑

i

wi ni (x)

)

=
1

Z

∏

i

φi

(

x{i}

)ni (x)
(3)

where ni(x) is the number of true groundings of Fi in x, x{i} is the state (truth values) of

the atoms appearing in Fi, and φi(x{i}) = ewi . Notice that, although we defined MLNs as

log-linear models, they could equally well be defined as products of potential functions, as
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Fig. 1. Ground Markov network obtained by applying the last two formulas in Table 1 to the constants
Anna(A) and Bob(B)

the second equality above shows. This will be the most convenient approach in domains with

a mixture of hard and soft constraints (i.e., where some formulas hold with certainty, leading

to zero probabilities for some worlds).

The graphical structure of ML,C follows from Definition 4.1: there is an edge between two

nodes of ML,C iff the corresponding ground atoms appear together in at least one grounding of

one formula in L. Thus, the atoms in each ground formula form a (not necessarily maximal)

clique in ML,C. Figure 1 shows the graph of the ground Markov network defined by the last

two formulas in Table 1 and the constants Anna and Bob. Each node in this graph is a ground

atom (e.g., Friends(Anna,Bob)). The graph contains an arc between each pair of atoms that

appear together in some grounding of one of the formulas. ML,C can now be used to infer the

probability that Anna and Bob are friends given their smoking habits, the probability that

Bob has cancer given his friendship with Anna and whether she has cancer, etc.

Each state of ML,C represents a possible world. A possible world is a set of objects, a

set of functions (mappings from tuples of objects to objects), and a set of relations that

hold between those objects; together with an interpretation, they determine the truth value

of each ground atom. The following assumptions ensure that the set of possible worlds for

(L, C) is finite, and that ML,C represents a unique, well-defined probability distribution over

those worlds, irrespective of the interpretation and domain. These assumptions are quite

reasonable in most practical applications, and greatly simplify the use of MLNs. For the

remaining cases, we discuss below the extent to which each one can be relaxed.

Assumption 1 Unique names. Different constants refer to different objects (Genesereth &

Nilsson, 1987).

Assumption 2 Domain closure. The only objects in the domain are those representable using

the constant and function symbols in (L, C) (Genesereth & Nilsson, 1987).

Assumption 3. Known functions. For each function appearing in L, the value of that function

applied to every possible tuple of arguments is known, and is an element of C.

This last assumption allows us to replace functions by their values when grounding

formulas. Thus the only ground atoms that need to be considered are those having constants

as arguments. The infinite number of terms constructible from all functions and constants

in (L, C) (the “Herbrand universe” of (L, C)) can be ignored, because each of those terms

corresponds to a known constant in C, and atoms involving them are already represented

as the atoms involving the corresponding constants. The possible groundings of a predicate
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Table 2. Construction of all groundings of a first-order formula under Assumptions 1–3

function Ground(F, C)

inputs: F, a formula in first-order logic

C, a set of constants

output: GF , a set of ground formulas

calls: CNF(F, C), which converts F to conjunctive normal form, replacing existentially quantified

formulas by disjunctions of their groundings over C

F ← CNF(F, C)

GF = ∅

for each clause Fj ∈ F

Gj = {Fj}

for each variable x in Fj

for each clause Fk(x) ∈ Gj

Gj ← (Gj \ Fk(x)) ∪ (Fk(c1), Fk(c2), . . . , Fk(c|C|)},

where Fk(ci) is Fk(x) with x replaced by ci ∈ C

GF ← GF ∪ Gj

for each ground clause Fj ∈ GF

repeat

for each function f (a1, a2, . . .) all of whose arguments are constants

Fj ← Fj with f (a1, a2, . . .) replaced by c, where c = f(a1, a2, . . .)

until Fj contains no functions

return GF

in Definition 4.1 are thus obtained simply by replacing each variable in the predicate with

each constant in C, and replacing each function term in the predicate by the corresponding

constant. Table 2 shows how the groundings of a formula are obtained given Assumptions

1–3. If a formula contains more than one clause, its weight is divided equally among the

clauses, and a clause’s weight is assigned to each of its groundings.

Assumption 1 (unique names) can be removed by introducing the equality predicate

(Equals(x, y), or x = y for short) and adding the necessary axioms to the MLN: equality is

reflexive, symmetric and transitive; for each unary predicate P, ∀x ∀y x = y⇒ (P(x) ⇔ P(y));

and similarly for higher-order predicates and functions (Genesereth & Nilsson, 1987). The

resulting MLN will have a node for each pair of constants, whose value is 1 if the constants

represent the same object and 0 otherwise; these nodes will be connected to each other and

to the rest of the network by arcs representing the axioms above. Notice that this allows us

to make probabilistic inferences about the equality of two constants. We have successfully

used this as the basis of an approach to object identification (see Section 8.5).

If the number u of unknown objects is known, Assumption 2 (domain closure) can

be removed simply by introducing u arbitrary new constants. If u is unknown but finite,

Assumption 2 can be removed by introducing a distribution over u, grounding the MLN with

each number of unknown objects, and computing the probability of a formula F as P(F) =
∑umax

u=0 P(u) P(F |Mu
L ,C ), where Mu

L ,C is the ground MLN with u unknown objects. An infinite

u requires extending MLNs to the case |C| = ∞.

Let HL,C be the set of all ground terms constructible from the function symbols in L and

the constants in L and C (the “Herbrand universe” of (L, C)). Assumption 3 (known functions)

can be removed by treating each element of HL,C as an additional constant and applying the

same procedure used to remove the unique names assumption. For example, with a function

G(x) and constants A and B, the MLN will now contain nodes for G(A) = A, G(A) = B, etc.

This leads to an infinite number of new constants, requiring the corresponding extension of
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MLNs. However, if we restrict the level of nesting to some maximum, the resulting MLN is

still finite.

To summarize, Assumptions 1–3 can be removed as long as the domain is finite. We

believe it is possible to extend MLNs to infinite domains (see Jaeger, 1998), but this is an

issue of chiefly theoretical interest, and we leave it for future work. In the remainder of this

paper we proceed under Assumptions 1–3, except where noted.

A first-order KB can be transformed into an MLN simply by assigning a weight to each

formula. For example, the clauses and weights in the last two columns of Table 1 constitute

an MLN. According to this MLN, other things being equal, a world where n friendless people

are non-smokers is e(2.3)n times less probable than a world where all friendless people smoke.

Notice that all the formulas in Table 1 are false in the real world as universally quantified

logical statements, but capture useful information on friendships and smoking habits, when

viewed as features of a Markov network. For example, it is well known that teenage friends

tend to have similar smoking habits (Lloyd-Richardson et al., 2002). In fact, an MLN like

the one in Table 1 succinctly represents a type of model that is a staple of social network

analysis (Wasserman & Faust, 1994).

It is easy to see that MLNs subsume essentially all propositional probabilistic models, as

detailed below.

Proposition 4.2. Every probability distribution over discrete or finite-precision numeric

variables can be represented as a Markov logic network.

Proof: Consider first the case of Boolean variables (X1, X2, . . . , Xn). Define a predicate

of zero arity Rh for each variable Xh, and include in the MLN L a formula for each pos-

sible state of (X1, X2, . . . , Xn). This formula is a conjunction of n literals, with the hth

literal being Rh() if Xh is true in the state, and ¬Rh() otherwise. The formula’s weight is

log P(X1, X2, . . . , Xn). (If some states have zero probability, use instead the product form

(see Eq. (3)), with φi() equal to the probability of the ith state.) Since all predicates in L

have zero arity, L defines the same Markov network ML,C irrespective of C, with one node

for each variable Xh. For any state, the corresponding formula is true and all others are false,

and thus Eq. (3) represents the original distribution (notice that Z = 1). The generalization

to arbitrary discrete variables is straightforward, by defining a zero-arity predicate for each

value of each variable. Similarly for finite-precision numeric variables, by noting that they

can be represented as Boolean vectors. �

Of course, compact factored models like Markov networks and Bayesian networks can

still be represented compactly by MLNs, by defining formulas for the corresponding factors

(arbitrary features in Markov networks, and states of a node and its parents in Bayesian

networks).2

First-order logic (with Assumptions 1–3 above) is the special case of MLNs obtained

when all weights are equal and tend to infinity, as described below.

Proposition 4.3. Let KB be a satisfiable knowledge base, L be the MLN obtained by assigning

weight w to every formula in KB, C be the set of constants appearing in KB, Pw(x) be the

2 While some conditional independence structures can be compactly represented with directed graphs but not
with undirected ones, they still lead to compact models in the form of Eq. (3) (i.e., as products of potential
functions).
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probability assigned to a (set of) possible world(s) x by ML,C, X KB be the set of worlds that

satisfy KB, and F be an arbitrary formula in first-order logic. Then:

1. ∀x ∈ XKB limw→∞ Pw(x) = |XKB|−1

∀x �∈ XKB limw→∞ Pw(x) = 0

2. For all F, KB |= F iff limw→∞ Pw(F) = 1.

Proof: Let k be the number of ground formulas in ML,C. By Eq. (3), if x ∈ XKB then

Pw(x) = ekw/Z , and if x /∈ X KB then Pw(x) ≤ e(k−1)w/Z . Thus all x ∈X KB are equiprob-

able and limw→∞ P(X \ XKB)/P(XKB) ≤ limw→∞(|X \ XKB|/|XKB|)e−w = 0, proving Part

1. By definition of entailment, KB |= F iff every world that satisfies KB also satisfies F.

Therefore, letting X F be the set of worlds that satisfy F, if KB |= F then XKB ⊆ XF and

Pw(F) =
∑

x∈XF
Pw(x) ≥ Pw(XKB). Since, from Part 1, limw→∞ Pw(XKB) = 1, this implies

that if KB |= F then limw→∞ Pw(F) = 1. The inverse direction of Part 2 is proved by noting

that if limw→∞ Pw(F) = 1 then every world with non-zero probability in the limit must

satisfy F, and this includes every world in XKB. �

In other words, in the limit of all equal infinite weights, the MLN represents a uniform

distribution over the worlds that satisfy the KB, and all entailment queries can be answered

by computing the probability of the query formula and checking whether it is 1. Even

when weights are finite, first-order logic is “embedded” in MLNs in the following sense.

Assume without loss of generality that all weights are non-negative. (A formula with a

negative weight w can be replaced by its negation with weight −w.) If the knowledge base

composed of the formulas in an MLN L (negated, if their weight is negative) is satisfiable,

then, for any C, the satisfying assignments are the modes of the distribution represented

by ML,C. This is because the modes are the worlds x with maximum
∑

i wi ni (x) (see Eq.

(3)), and this expression is maximized when all groundings of all formulas are true (i.e.,

the KB is satisfied). Unlike an ordinary first-order KB, however, an MLN can produce

useful results even when it contains contradictions. An MLN can also be obtained by

merging several KBs, even if they are partly incompatible. This is potentially useful in areas

like the Semantic Web (Berners-Lee et al., 2001) and mass collaboration (Richardson &

Domingos, 2003).

It is interesting to see a simple example of how MLNs generalize first-order logic. Consider

an MLN containing the single formula ∀x R(x) ⇒ S(x) with weight w, and C = {A}. This

leads to four possible worlds: {¬R(A),¬S(A)}, {¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}.

From Eq. (3) we obtain that P({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of each

of the other three worlds is ew/(3ew+1). (The denominator is the partition function Z; see

Section 2.) Thus, if w > 0, the effect of the MLN is to make the world that is inconsistent

with ∀x R(x) ⇒ S(x) less likely than the other three. From the probabilities above we obtain

that P(S(A) | R(A)) = 1/(1 + e−w). When w → ∞, P(S(A) | R(A)) → 1, recovering the logical

entailment.

In practice, we have found it useful to add each predicate to the MLN as a unit clause. In

other words, for each predicate R(x1, x2, . . .) appearing in the MLN, we add the formula ∀ x1,

x2, . . . R(x1, x2, . . .) with some weight wR. The weight of a unit clause can (roughly speaking)

capture the marginal distribution of the corresponding predicate, leaving the weights of the

non-unit clauses free to model only dependencies between predicates.

When manually constructing an MLN or interpreting a learned one, it is useful to have

an intuitive understanding of the weights. The weight of a formula F is simply the log odds

between a world where F is true and a world where F is false, other things being equal.
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However, if F shares variables with other formulas, as will typically be the case, it may

not be possible to keep those formulas’s truth values unchanged while reversing F’s. In this

case there is no longer a one-to-one correspondence between weights and probabilities of

formulas.3 Nevertheless, the probabilities of all formulas collectively determine all weights,

if we view them as constraints on a maximum entropy distribution, or treat them as empirical

probabilities and learn the maximum likelihood weights (the two are equivalent) (Della Pietra

et al., 1997). Thus a good way to set the weights of an MLN is to write down the probability

with which each formula should hold, treat these as empirical frequencies, and learn the

weights from them using the algorithm in Section 6. Conversely, the weights in a learned

MLN can be viewed as collectively encoding the empirical formula probabilities.

The size of ground Markov networks can be vastly reduced by having typed constants

and variables, and only grounding variables to constants of the same type. However, even in

this case the size of the network may be extremely large. Fortunately, many inferences do

not require grounding the entire network, as we see in the next section.

5. Inference

MLNs can answer arbitrary queries of the form “What is the probability that formula F1

holds given that formula F2 does?” If F1 and F2 are two formulas in first-order logic, C is a

finite set of constants including any constants that appear in F1 or F2, and L is an MLN, then

P(F1|F2, L , C) = P(F1|F2, ML ,C )

=
P(F1 ∧ F2|ML ,C )

P(F2|ML ,C )

=

∑

x∈XF1
∩XF2

P(X = x |ML ,C )
∑

x∈XF2
P(X = x |ML ,C )

(4)

where XFi
is the set of worlds where Fi holds, and P(x |ML ,C ) is given by Eq. (3). Ordinary

conditional queries in graphical models are the special case of Eq. (4) where all predicates

in F1, F2 and L are zero-arity and the formulas are conjunctions. The question of whether

a knowledge base KB entails a formula F in first-order logic is the question of whether

P(F |L K B, CK B,F ) = 1, where LKB is the MLN obtained by assigning infinite weight to all

the formulas in KB, and CKB,F is the set of all constants appearing in KB or F. The question

is answered by computing P(F |L K B, CK B,F ) by Eq. (4), with F2 = True.

Computing Eq. (4) directly will be intractable in all but the smallest domains. Since MLN

inference subsumes probabilistic inference, which is #P-complete, and logical inference,

which is NP-complete even in finite domains, no better results can be expected. However,

many of the large number of techniques for efficient inference in either case are applicable to

MLNs. Because MLNs allow fine-grained encoding of knowledge, including context-specific

independences, inference in them may in some cases be more efficient than inference in

an ordinary graphical model for the same domain. On the logic side, the probabilistic

3 This is an unavoidable side-effect of the power and flexibility of Markov networks. In Bayesian networks,
parameters are probabilities, but at the cost of greatly restricting the ways in which the distribution may be
factored. In particular, potential functions must be conditional probabilities, and the directed graph must have
no cycles. The latter condition is particularly troublesome to enforce in relational extensions (Taskar et al.,
2002).
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Table 3. Network construction for inference in MLNs

function ConstructNetwork (F1, F2, L, C)

inputs: F1, a set of ground atoms with unknown truth values (the “query”)

F2, a set of ground atoms with known truth values (the “evidence”)

L, a Markov logic network

C, a set of constants

output: M, a ground Markov network

calls: MB(q), the Markov blanket of q in ML,C

G ← F1

while F1 �= Ø

for all q ∈ F1

if q /∈ F2

F1 ← F1 ∪ ( MB(q) \ G)

G ← G ∪ M B(q)

F1 ← F1 \ {q}

return M, the ground Markov network composed of all nodes in G, all arcs between them in ML,C , and the

features and weights on the corresponding cliques

semantics of MLNs facilitates approximate inference, with the corresponding potential gains

in efficiency.

In principle, P(F1|F2, L, C) can be approximated using an MCMC algorithm that rejects

all moves to states where F2 does not hold, and counts the number of samples in which

F1 holds. However, even this is likely to be too slow for arbitrary formulas. Instead, we

provide an inference algorithm for the case where F1 and F2 are conjunctions of ground

literals. While less general than Eq. (4), this is the most frequent type of query in practice,

and the algorithm we provide answers it far more efficiently than a direct application of Eq.

(4). Investigating lifted inference (where queries containing variables are answered without

grounding them) is an important direction for future work (see Jaeger (2000) and Poole

(2003) for initial results). The algorithm proceeds in two phases, analogous to knowledge-

based model construction (Wellman et al., 1992). The first phase returns the minimal subset

M of the ground Markov network required to compute P(F1|F2, L, C). The algorithm for

this is shown in Table 3. The size of the network returned may be further reduced, and the

algorithm sped up, by noticing that any ground formula which is made true by the evidence

can be ignored, and the corresponding arcs removed from the network. In the worst case, the

network contains O(|C|a) nodes, where a is the largest predicate arity in the domain, but in

practice it may be much smaller.

The second phase performs inference on this network, with the nodes in F2 set to their

values in F2. Our implementation uses Gibbs sampling, but any inference method may be

employed. The basic Gibbs step consists of sampling one ground atom given its Markov

blanket. The Markov blanket of a ground atom is the set of ground atoms that appear in

some grounding of a formula with it. The probability of a ground atom Xl when its Markov

blanket Bl is in state bl is

P(Xl = xl |Bl =bl )

=
exp(

∑

fi ∈Fl
wi fi (Xl = xl , Bl =bl ))

exp(
∑

fi ∈Fl
wi fi (Xl =0, Bl =bl )) + exp(

∑

fi ∈Fl
wi fi (Xl =1, Bl =bl ))

(5)
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where Fl is the set of ground formulas that Xl appears in, and fi(Xl = xl, Bl = bl) is the value

(0 or 1) of the feature corresponding to the ith ground formula when Xl = xl and Bl = bl. For

sets of atoms of which exactly one is true in any given world (e.g., the possible values of an

attribute), blocking can be used (i.e., one atom is set to true and the others to false in one step,

by sampling conditioned on their collective Markov blanket). The estimated probability of a

conjunction of ground literals is simply the fraction of samples in which the ground literals

are true, after the Markov chain has converged. Because the distribution is likely to have

many modes, we run the Markov chain multiple times. When the MLN is in clausal form, we

minimize burn-in time by starting each run from a mode found using MaxWalkSat, a local

search algorithm for the weighted satisfiability problem (i.e., finding a truth assignment that

maximizes the sum of weights of satisfied clauses) (Kautz et al., 1997). When there are hard

constraints (clauses with infinite weight), MaxWalkSat finds regions that satisfy them, and

the Gibbs sampler then samples from these regions to obtain probability estimates.

6. Learning

We learn MLN weights from one or more relational databases. (For brevity, the treatment

below is for one database, but the generalization to many is trivial.) We make a closed world

assumption (Genesereth & Nilsson, 1987): if a ground atom is not in the database, it is

assumed to be false. If there are n possible ground atoms, a database is effectively a vector

x = (x1, . . . , xl, . . . , xn) where xl is the truth value of the lth ground atom (xl = 1 if the

atom appears in the database, and xl = 0 otherwise). Given a database, MLN weights can

in principle be learned using standard methods, as follows. If the ith formula has ni(x) true

groundings in the data x, then by Eq. (3). the derivative of the log-likelihood with respect to

its weight is

∂

∂wi

log Pw(X = x) = ni (x) −
∑

x ′

Pw(X = x ′) ni (x
′) (6)

where the sum is over all possible databases x′, and Pw(X = x′) is P(X = x′) computed using

the current weight vector w = (w1, . . . , wi, . . .). In other words, the ith component of the

gradient is simply the difference between the number of true groundings of the ith formula

in the data and its expectation according to the current model. Unfortunately, counting the

number of true groundings of a formula in a database is intractable, even when the formula

is a single clause, as stated in the following proposition (due to Dan Suciu).

Proposition 6.1. Counting the number of true groundings of a first-order clause in a

database is #P-complete in the length of the clause.

Proof: Counting satisfying assignments of propositional monotone 2-CNF is #P-complete

(Roth, 1996). This problem can be reduced to counting the number of true groundings of a

first-order clause in a database as follows. Consider a database composed of the ground atoms

R(0, 1), R(1, 0) and R(1, 1). Given a monotone 2-CNF formula, construct a formula � that is

a conjunction of predicates of the form R(xi, xj), one for each disjunct xi ∨ x j appearing in

the CNF formula. (For example, (x1 ∨ x2) ∧ (x3 ∨ x4) would yield R(x1, x2) ∧ R(x3, x4).)

There is a one-to-one correspondence between the satisfying assignments of the 2-CNF

and the true groundings of �. The latter are the false groundings of the clause formed by
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disjoining the negations of all the R(xi, xj), and thus can be counted by counting the number

of true groundings of this clause and subtracting it from the total number of groundings. �

In large domains, the number of true groundings of a formula may be counted approxi-

mately, by uniformly sampling groundings of the formula and checking whether they are true

in the data. In smaller domains, and in our experiments below, we use an efficient recursive

algorithm to find the exact count.

A second problem with Eq. (6) is that computing the expected number of true groundings

is also intractable, requiring inference over the model. Further, efficient optimization methods

also require computing the log-likelihood itself (Eq. (3)), and thus the partition function Z.

This can be done approximately using a Monte Carlo maximum likelihood estimator (MC-

MLE) (Geyer & Thompson, 1992). However, in our experiments the Gibbs sampling used

to compute the MC-MLEs and gradients did not converge in reasonable time, and using the

samples from the unconverged chains yielded poor results.

A more efficient alternative, widely used in areas like spatial statistics, social network

modeling and language processing, is to optimize instead the pseudo-likelihood (Besag,

1975)

P∗
w(X = x) =

n
∏

l=1

Pw(Xl = xl |MBx (Xl )) (7)

where MBx(Xl) is the state of the Markov blanket of Xl in the data. The gradient of the

pseudo-log-likelihood is

∂

∂wi

log P∗
w(X = x) =

n
∑

l=1

[

ni (x) − Pw(Xl =0|MBx (Xl )) ni

(

x[Xl=0]

)

−Pw(Xl =1|MBx (Xl )) ni

(

x[Xl=1]

)]

(8)

where ni(x[Xl=0]) is the number of true groundings of the ith formula when we force Xl = 0 and

leave the remaining data unchanged, and similarly for ni(x[Xl=1]). Computing this expression

(or Eq. (7)) does not require inference over the model. We optimize the pseudo-log-likelihood

using the limited-memory BFGS algorithm (Liu & Nocedal, 1989). The computation can be

made more efficient in several ways:

– The sum in Eq. (8). can be greatly sped up by ignoring predicates that do not appear in the

ith formula.

– The counts ni(x), ni(x[Xl=0]) and ni(x[Xl=1]) do not change with the weights, and need only

be computed once (as opposed to in every iteration of BFGS).

– Ground formulas whose truth value is unaffected by changing the truth value of any single

literal may be ignored, since then ni(x) = ni(x[Xl=0]) = ni(x[Xl=1]). In particular, this holds

for any clause which contains at least two true literals. This can often be the great majority

of ground clauses.

To combat overfitting, we penalize the pseudo-likelihood with a Gaussian prior on each

weight.

Inductive logic programming (ILP) techniques can be used to learn additional clauses,

refine the ones already in the MLN, or learn an MLN from scratch. We use the CLAUDIEN

system for this purpose (De Raedt & Dehaspe, 1997). Unlike most other ILP systems, which
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learn only Horn clauses, CLAUDIEN is able to learn arbitrary first-order clauses, making it

well suited to MLNs. Also, by constructing a particular language bias, we are able to direct

CLAUDIEN to search for refinements of the MLN structure. In the future we plan to more

fully integrate structure learning into MLNs, by generalizing techniques like Della Pietra

et al.’s (1997) to the first-order realm, as done by MACCENT for classification problems

(Dehaspe, 1997).

7. Experiments

We tested MLNs using a database describing the Department of Computer Science and

Engineering at the University of Washington (UW-CSE). The domain consists of

12 predicates and 2707 constants divided into 10 types. Types include: publication

(342 constants), person (442), course (176), project (153), academic quarter (20), etc.

Predicates include: Professor(person), Student(person), Area(x, area) (with x ranging

over publications, persons, courses and projects), AuthorOf(publication, person),

AdvisedBy(person, person), YearsInProgram(person, years), CourseLevel(course,

level), TaughtBy(course, person, quarter), TeachingAssistant(course, person,

quarter), etc. Additionally, there are 10 equality predicates: SamePerson(person,

person), SameCourse(course, course), etc. which always have known, fixed values that

are true iff the two arguments are the same constant.

Using typed variables, the total number of possible ground atoms (n in Section 6)

was 4,106,841. The database contained a total of 3380 tuples (i.e., there were 3380 true

ground atoms). We obtained this database by scraping pages in the department’s Web site

(www.cs.washington.edu). Publications and AuthorOf relations were obtained by extracting

from the BibServ database (www.bibserv.org) all records with author fields containing the

names of at least two department members (in the form “last name, first name” or “last name,

first initial”).

We obtained a knowledge base by asking four volunteers to each provide a set of

formulas in first-order logic describing the domain. (The volunteers were not shown

the database of tuples, but were members of the department who thus had a gen-

eral understanding about it.) Merging these yielded a KB of 96 formulas. The com-

plete KB, volunteer instructions, database, and algorithm parameter settings are online at

http://www.cs.washington.edu/ai/mln. Formulas in the KB include statements like: students

are not professors; each student has at most one advisor; if a student is an author of a pa-

per, so is her advisor; advanced students only TA courses taught by their advisors; at most

one author of a given publication is a professor; students in Phase I of the Ph.D. program

have no advisor; etc. Notice that these statements are not always true, but are typically

true.

For training and testing purposes, we divided the database into five sub-databases, one

for each area: AI, graphics, programming languages, systems, and theory. Professors and

courses were manually assigned to areas, and other constants were iteratively assigned to

the most frequent area among other constants they appeared in some tuple with. Each tuple

was then assigned to the area of the constants in it. Tuples involving constants of more than

one area were discarded, to avoid train-test contamination. The sub-databases contained, on

average, 521 true ground atoms out of a possible 58457.

We performed leave-one-out testing by area, testing on each area in turn using the model

trained from the remaining four. The test task was to predict the AdvisedBy(x, y) predicate

given (a) all others (All Info) and (b) all others except Student(x) and Professor(x) (Partial
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Info). In both cases, we measured the average conditional log-likelihood of all possible

groundings of AdvisedBy(x, y) over all areas, drew precision/recall curves, and computed

the area under the curve. This task is an instance of link prediction, a problem that has been

the object of much interest in statistical relational learning (see Section 8). All KBs were

converted to clausal form. Timing results are on a 2.8 GHz Pentium 4 machine.

7.1. Systems

In order to evaluate MLNs, which use logic and probability for inference, we wished to

compare with methods that use only logic or only probability. We were also interested in

automatic induction of clauses using ILP techniques. This subsection gives details of the

comparison systems used.

7.1.1. Logic

One important question we aimed to answer with the experiments is whether adding prob-

ability to a logical knowledge base improves its ability to model the domain. Doing this

requires observing the results of answering queries using only logical inference, but this is

complicated by the fact that computing log-likelihood and the area under the precision/recall

curve requires real-valued probabilities, or at least some measure of “confidence” in the

truth of each ground atom being tested. We thus used the following approach. For a given

knowledge base KB and set of evidence atoms E, let XKB∪E be the set of worlds that satisfy

KB ∪ E. The probability of a query atom q is then defined as P(q) =
|XKB∪E∪q |

|XKB∪E |
, the fraction

of XKB∪E in which q is true.

A more serious problem arises if the KB is inconsistent (which was indeed the case with

the KB we collected from volunteers). In this case the denominator of P(q) is zero. (Also,

recall that an inconsistent knowledge base trivially entails any arbitrary formula). To address

this, we redefine XKB∪E to be the set of worlds which satisfies the maximum possible number

of ground clauses. We use Gibbs sampling to sample from this set, with each chain initialized

to a mode using WalkSat. At each Gibbs step, the step is taken with probability: 1 if the new

state satisfies more clauses than the current one (since that means the current state should

have 0 probability), 0.5 if the new state satisfies the same number of clauses (since the new

and old state then have equal probability), and 0 if the new state satisfies fewer clauses. We

then use only the states with maximum number of satisfied clauses to compute probabilities.

Notice that this is equivalent to using an MLN built from the KB and with all equal infinite

weights.

7.1.2. Probability

The other question we wanted to answer with these experiments is whether existing (propo-

sitional) probabilistic models are already powerful enough to be used in relational domains

without the need for the additional representational power provided by MLNs. In order to

use such models, the domain must first be propositionalized by defining features that capture

useful information about it. Creating good attributes for propositional learners in this highly

relational domain is a difficult problem. Nevertheless, as a tradeoff between incorporating

as much potentially relevant information as possible and avoiding extremely long feature

vectors, we defined two sets of propositional attributes: order-1 and order-2. The former
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involves characteristics of individual constants in the query predicate, and the latter involves

characteristics of relations between the constants in the query predicate.

For the order-1 attributes, we defined one variable for each (a, b) pair, where a is an

argument of the query predicate and b is an argument of some predicate with the same

value as a. The variable is the fraction of true groundings of this predicate in the data.

Some examples of first-order attributes for AdvisedBy(Matt, Pedro) are: whether Pedro is a

student, the fraction of publications that are published by Pedro, the fraction of courses for

which Matt was a teaching assistant, etc.

The order-2 attributes were defined as follows: for a given (ground) query predicate

Q(q1, q2, . . . , qk), consider all sets of k predicates and all assignments of constants

q1, q2,. . ., qk as arguments to the k predicates, with exactly one constant per pred-

icate (in any order). For instance, if Q is AdvisedBy(Matt, Pedro) then one such

possible set would be {TeachingAssistant( , Matt, ), TaughtBy( , Pedro, )}. This

forms 2k attributes of the example, each corresponding to a particular truth assign-

ment to the k predicates. The value of an attribute is the number of times, in the

training data, the set of predicates have that particular truth assignment, when their

unassigned arguments are all filled with the same constants. For example, consider

filling the above empty arguments with “CSE546” and “Autumn0304”. The result-

ing set, {TeachingAssistant(CSE546, Matt, Autumn0304), TaughtBy(CSE546, Pedro,

Autumn0304)} has some truth assignment in the training data (e.g.,{True, True}, {True,

False}, . . .). One attribute is the number of such sets of constants that create the truth

assignment {True, True}, another for {True, False} and so on. Some examples of second-

order attributes generated for the query AdvisedBy(Matt, Pedro) are: how often Matt is a

teaching assistant for a course that Pedro taught (as well as how often he is not), how many

publications Pedro and Matt have coauthored, etc.

The resulting 28 order-1 attributes and 120 order-2 attributes (for the All Info case)

were discretized into five equal-frequency bins (based on the training set). We used two

propositional learners: Naive Bayes (Domingos & Pazzani, 1997) and Bayesian networks

(Heckerman et al., 1995) with structure and parameters learned using the VFBN2 algorithm

(Hulten & Domingos, 2002) with a maximum of four parents per node. The order-2 attributes

helped the naive Bayes classifier but hurt the performance of the Bayesian network classifier,

so below we report results using the order-1 and order-2 attributes for naive Bayes, and only

the order-1 attributes for Bayesian networks.

7.1.3. Inductive logic programming

Our original knowledge base was acquired from volunteers, but we were also interested

in whether it could have been developed automatically using inductive logic programming

methods. As mentioned earlier, we used CLAUDIEN to induce a knowledge base from data.

CLAUDIEN was run with: local scope; minimum accuracy of 0.1; minimum coverage of one;

maximum complexity of 10; and breadth-first search. CLAUDIEN’s search space is defined

by its language bias. We constructed a language bias which allowed: a maximum of three

variables in a clause; unlimited predicates in a clause; up to two non-negated appearances of

a predicate in a clause, and two negated ones; and use of knowledge of predicate argument

types. To minimize search, the equality predicates (e.g., SamePerson) were not used in

CLAUDIEN, and this improved its results.

Besides inducing clauses from the training data, we were also interested in using data to

automatically refine the knowledge base provided by our volunteers. CLAUDIEN does not

support this feature directly, but it can be emulated by an appropriately constructed language
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bias. We did this by, for each clause in the KB, allowing CLAUDIEN to (1) remove any

number of the literals, (2) add up to v new variables, and (3) add up to l new literals. We ran

CLAUDIEN for 24 hours on a Sun-Blade 1000 for each (v, l) in the set {(1, 2), (2, 3), (3,

4)}. All three gave nearly identical results; we report the results with v = 3 and l = 4.

7.1.4. MLNs

Our results compare the above systems to Markov logic networks. The MLNs were trained

using a Gaussian weight prior with zero mean and unit variance, and with the weights initial-

ized at the mode of the prior (zero). For optimization, we used the Fortran implementation of

L-BFGS from Zhu et al. (1997) and Byrd et al. (1995), leaving all parameters at their default

values, and with a convergence criterion (ftol) of 10−5. Inference was performed using Gibbs

sampling as described in Section 5, with ten parallel Markov chains, each initialized to a

mode of the distribution using MaxWalkSat. The number of Gibbs steps was determined

using the criterion of DeGroot and Schervish (2002, pp. 707 and 740–741). Sampling con-

tinued until we reached a confidence of 95% that the probability estimate was within 1%

of the true value in at least 95% of the nodes (ignoring nodes which are always true or

false). A minimum of 1000 and maximum of 500,000 samples was used, with one sample

per complete Gibbs pass through the variables. Typically, inference converged within 5000

to 100,000 passes. The results were insensitive to variation in the convergence thresholds.

7.2. Results

7.2.1. Training with MC-MLE

Our initial system used MC-MLE to train MLNs, with ten Gibbs chains, and each ground

atom being initialized to true with the corresponding first-order predicate’s probability of

being true in the data. Gibbs steps may be taken quite quickly by noting that few counts of

satisfied clauses will change on any given step. On the UW-CSE domain, our implementation

took 4–5 ms per step. We used the maximum across all predicates of the Gelman criterion R

(Gilks et al., 1996) to determine when the chains had reached their stationary distribution.

In order to speed convergence, our Gibbs sampler preferentially samples atoms that were

true in either the data or the initial state of the chain. The intuition behind this is that most

atoms are always false, and sampling repeatedly from them is inefficient. This improved

convergence by approximately an order of magnitude over uniform selection of atoms.

Despite these optimizations, the Gibbs sampler took a prohibitively long time to reach a

reasonable convergence threshold (e.g., R = 1.01). After running for 24 hours (approximately

2 million Gibbs steps per chain), the average R value across training sets was 3.04, with no

one training set having reached an R value less than 2 (other than briefly dipping to 1.5 in the

early stages of the process). Considering this must be done iteratively as L-BFGS searches

for the minimum, we estimate it would take anywhere from 20 to 400 days to complete the

training, even with a weak convergence threshold such as R = 2.0. Experiments confirmed the

poor quality of the models that resulted if we ignored the convergence threshold and limited

the training process to less than ten hours. With a better choice of initial state, approximate

counting, and improved MCMC techniques such as the Swendsen-Wang algorithm (Edwards

& Sokal, 1988), MC-MLE may become practical, but it is not a viable option for training in

the current version. (Notice that during learning MCMC is performed over the full ground

network, which is too large to apply MaxWalkSat to.)
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7.2.2. Training with pseudo-likelihood

In contrast to MC-MLE, pseudo-likelihood training was quite fast. As discussed in Section 6,

each iteration of training may be done quite quickly once the initial clause and ground atom

satisfiability counts are complete. On average (over the five test sets), finding these counts

took 2.5 minutes. From there, training took, on average, 255 iterations of L-BFGS, for a total

of 16 minutes.

7.2.3. Inference

Inference was also quite quick. Inferring the probability of all AdvisedBy(x, y) atoms in

the All Info case took 3.3 minutes in the AI test set (4624 atoms), 24.4 in graphics (3721),

1.8 in programming languages (784), 10.4 in systems (5476), and 1.6 in theory (2704). The

number of Gibbs passes ranged from 4270 to 500,000, and averaged 124,000. This amounts

to 18 ms per Gibbs pass and approximately 200,000–500,000 Gibbs steps per second. The

average time to perform inference in the Partial Info case was 14.8 minutes (vs. 8.3 in the

All Info case).

7.2.4. Comparison of systems

We compared twelve systems: the original KB (KB); CLAUDIEN (CL); CLAUDIEN with

the original KB as language bias (CLB); the union of the original KB and CLAUDIEN’s out-

put in both cases (KB+CL and KB+CLB); an MLN with each of the above KBs (MLN(KB),

MLN(CL), MLN(KB+CL), and MLN(KB+CLB)); naive Bayes (NB); and a Bayesian net-

work learner (BN). Add-one smoothing of probabilities was used in all cases.

Table 4 summarizes the results. Figure 2 shows precision/recall curves for all areas (i.e.,

averaged over all AdvisedBy(x, y) atoms), and Figures 3 to 7 show precision/recall curves

for the five individual areas. MLNs are clearly more accurate than the alternatives, showing

the promise of this approach. The purely logical and purely probabilistic methods often

suffer when intermediate predicates have to be inferred, while MLNs are largely unaffected.

Naive Bayes performs well in AUC in some test sets, but very poorly in others; its CLLs

are uniformly poor. CLAUDIEN performs poorly on its own, and produces no improvement

when added to the KB in the MLN. Using CLAUDIEN to refine the KB typically performs

worse in AUC but better in CLL than using CLAUDIEN from scratch; overall, the best-

performing logical method is KB+CLB, but its results fall well short of the best MLNs’. The

general drop-off in precision around 50% recall is attributable to the fact that the database

is very incomplete, and only allows identifying a minority of the AdvisedBy relations.

Inspection reveals that the occasional smaller drop-offs in precision at very low recalls are

due to students who graduated or changed advisors after co-authoring many publications

with them.

8. Statistical relational learning tasks

Many SRL tasks can be concisely formulated in the language of MLNs, allowing the algo-

rithms introduced in this paper to be directly applied to them. In this section we exemplify

this with five key tasks: collective classification, link prediction, link-based clustering, social

network modeling, and object identification.
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Fig. 2. Precision and recall for all areas: All Info (left graph) and Partial Info (right graph)

Fig. 3. Precision and recall for the AI area: All Info (left graph) and Partial Info (right graph)

Fig. 4. Precision and recall for the graphics area: All Info (left graph) and Partial Info (right graph)
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Fig. 5. Precision and recall for the programming languages area: All Info (left graph) and Partial Info (right
graph)

Fig. 6. Precision and recall for the systems area: All Info (left graph) and Partial Info (right graph). The
curves for naive Bayes are indistinguishable from the X axis

Fig. 7. Precision and recall for the theory area: All Info (left graph) and Partial Info (right graph)
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Table 4. Experimental results for predicting AdvisedBy(x, y) when all other predicates are known (All
Info) and when Student(x) and Professor(x) are unknown (Partial Info). CLL is the average conditional
log-likelihood, and AUC is the area under the precision-recall curve. The results are averages over all atoms
in the five test sets and their standard deviations (See http://www.cs.washington.edu/ai/mln for details on how
the standard deviations of the AUCs were computed)

All Info Partial Info

System AUC CLL AUC CLL

MLN(KB) 0.215 ± 0.0172 −0.052 ± 0.004 0.224 ± 0.0185 −0.048 ± 0.004

MLN(KB+CL) 0.152 ± 0.0165 −0.058 ± 0.005 0.203 ± 0.0196 −0.045 ± 0.004

MLN(KB+CLB) 0.011 ± 0.0003 −3.905 ± 0.048 0.011 ± 0.0003 −3.958 ± 0.048

MLN(CL) 0.035 ± 0.0008 −2.315 ± 0.030 0.032 ± 0.0009 −2.478 ± 0.030

MLN(CLB) 0.003 ± 0.0000 −0.052 ± 0.005 0.023 ± 0.0003 −0.338 ± 0.002

KB 0.059 ± 0.0081 −0.135 ± 0.005 0.048 ± 0.0058 −0.063 ± 0.004

KB+CL 0.037 ± 0.0012 −0.202 ± 0.008 0.028 ± 0.0012 −0.122 ± 0.006

KB+CLB 0.084 ± 0.0100 −0.056 ± 0.004 0.044 ± 0.0064 −0.051 ± 0.005

CL 0.048 ± 0.0009 −0.434 ± 0.012 0.037 ± 0.0001 −0.836 ± 0.017

CLB 0.003 ± 0.0000 −0.052 ± 0.005 0.010 ± 0.0001 −0.598 ± 0.003

NB 0.054 ± 0.0006 −1.214 ± 0.036 0.044 ± 0.0009 −1.140 ± 0.031

BN 0.015 ± 0.0006 −0.072 ± 0.003 0.015 ± 0.0007 −0.215 ± 0.003

8.1. Collective classification

The goal of ordinary classification is to predict the class of an object given its attributes. Col-

lective classification also takes into account the classes of related objects (e.g., Chakrabarti

et al., 1998; Taskar et al., 2002; Neville & Jensen, 2003). Attributes can be represented in

MLNs as predicates of the form A(x, v), where A is an attribute, x is an object, and v is the

value of A in x. The class is a designated attribute C, representable by C(x, v), where v is x’s

class. Classification is now simply the problem of inferring the truth value of C(x, v) for all

x and v of interest given all known A(x, v). Ordinary classification is the special case where

C(xi, v) and C(xj, v) are independent for all xi and xj given the known A(x, v). In collective

classification, the Markov blanket of C(xi, v) includes other C(xj, v), even after condition-

ing on the known A(x, v). Relations between objects are represented by predicates of the

form R(xi, xj). A number of interesting generalizations are readily apparent, for example,

C(xi, v) and C(xj, v) may be indirectly dependent via unknown predicates, possibly including

the R(xi, xj) may be indirectly dependent via unknown predicates, possibly including the

R(xi, xj) predicates themselves.

8.2. Link prediction

The goal of link prediction is to determine whether a relation exists between two objects

of interest (e.g., whether Anna is Bob’s Ph.D. advisor) from the properties of those objects

and possibly other known relations (e.g., Popescul & Ungar, 2003). The formulation of this

problem in MLNs is identical to that of collective classification, with the only difference

that the goal is now to infer the value of R(xi, xj) for all object pairs of interest, instead of

C(x, v). The task used in our experiments was an example of link prediction.

8.3. Link-based clustering

The goal of clustering is to group together objects with similar attributes. In model-based

clustering, we assume a generative model P(X) =
∑

C P(C) P(X|C), where X is an object,
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C ranges over clusters, and P(C|X) is X’s degree of membership in cluster C. In link-based

clustering, objects are clustered according to their links (e.g., objects that are more closely

related are more likely to belong to the same cluster), and possibly according to their

attributes as well (e.g., Flake et al., 2000). This problem can be formulated in MLNs by

postulating an unobserved predicate C(x, v) with the meaning “x belongs to cluster v,” and

having formulas in the MLN involving this predicate and the observed ones (e.g., R(xi, xj)

for links and A(x, v) for attributes). Link-based clustering can now be performed by learning

the parameters of the MLN, and cluster memberships are given by the probabilities of the

C(x, v) atoms conditioned on the observed ones.

8.4. Social network modeling

Social networks are graphs where nodes represent social actors (e.g., people) and arcs

represent relations between them (e.g., friendship). Social network analysis (Wasserman &

Faust, 1994) is concerned with building models relating actors’ properties and their links.

For example, the probability of two actors forming a link may depend on the similarity

of their attributes, and conversely two linked actors may be more likely to have certain

properties. These models are typically Markov networks, and can be concisely represented

by formulas like ∀x∀y∀v R(x, y) ⇒ (A(x, v) ⇔ A(y, v)), where x, where x and y are actors,

R(x, y) is a relation between them, A(x, v) represents an attribute of x, and the weight of

the formula captures the strength of the correlation between the relation and the attribute

similarity. For example, a model stating that friends tend to have similar smoking habits can

be represented by the formula ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (Table 1).

As well as encompassing existing social network models, MLNs allow richer ones to be

easily stated (e.g., by writing formulas involving multiple types of relations and multiple

attributes, as well as more complex dependencies between them).

8.5. Object identification

Object identification (also known as record linkage, de-duplication, and others) is the problem

of determining which records in a database refer to the same real-world entity (e.g., which

entries in a bibliographic database represent the same publication) (Winkler, 1999). This

problem is of crucial importance to many companies, government agencies, and large-scale

scientific projects. One way to represent it in MLNs is by removing the unique names

assumption as described in Section 4, i.e., by defining a predicate Equals(x, y) (or x = y

for short) with the meaning “x represents the same real-world entity as y.” This predicate

is applied both to records and their fields (e.g., “ICML” = “Intl. Conf. on Mach. Learn.”).

The dependencies between record matches and field matches can then be represented by

formulas like ∀x∀y x = y ⇔ fi(x) = fi(y), where x and y are records and fi(x) is a

function returning the value of the ith field of record x. We have successfully applied

this approach to de-duplicating the Cora database of computer science papers (Parag &

Domingos, 2004). Because it allows information to propagate from one match decision

(i.e., one grounding of x = y) to another via fields that appear in both pairs of records, it

effectively performs collective object identification, and in our experiments outperformed the

traditional method of making each match decision independently of all others. For example,

matching two references may allow us to determine that “ICML” and “MLC” represent

the same conference, which in turn may help us to match another pair of references where

one contains “ICML” and the other “MLC.” MLNs also allow additional information to be

incorporated into a de-duplication system easily, modularly and uniformly. For example,
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transitive closure is incorporated by adding the formula ∀x∀y∀z x = y ∧ y = z ⇒ x = z,

with a weight that can be learned from data.

9. Related work

There is a very large literature relating logic and probability; here we will focus only on

the approaches most relevant to statistical relational learning, and discuss how they relate to

MLNs.

9.1. Early work

Attempts to combine logic and probability in AI date back to at least Nilsson (1986). Bacchus

(1990), Halpern (1990) and coworkers (e.g., Bacchus et al., 1996) studied the problem in de-

tail from a theoretical standpoint. They made a distinction between statistical statements (e.g.,

“65% of the students in our department are undergraduate”) and statements about possible

worlds (e.g., “The probability that Anna is an undergraduate is 65%”), and provided methods

for computing the latter from the former. In their approach, a KB did not specify a complete

and unique distribution over possible worlds, requiring additional assumptions to obtain one.

Bacchus et al. considered a number of alternatives, all of them quite restrictive (e.g., all

worlds compatible with the KB should be equally likely). In contrast, by viewing KBs as

Markov network templates, MLNs can represent arbitrary distributions over possible worlds.

Paskin (2002) extended the work of Bacchus et al. by associating a probability with each

first-order formula, and taking the maximum entropy distribution compatible with those prob-

abilities. This representation was still quite brittle, with a world that violates a single ground-

ing of a universally quantified formula being considered as unlikely as a world that violates all

of them. In contrast, in MLNs a rule like ∀x Smokes(x) ⇒ Cancer(x) causes the probability

of a world to decrease gradually as the number of cancer-free smokers in it increases.

9.2. Knowledge-based model construction

Knowledge-based model construction (KBMC) is a combination of logic programming

and Bayesian networks (Wellman et al., 1992; Ngo & Haddawy, 1997; Kersting & De

Raedt, 2001). As in MLNs, nodes in KBMC represent ground atoms. Given a Horn KB,

KBMC answers a query by finding all possible backward-chaining proofs of the query and

evidence atoms from each other, constructing a Bayesian network over all atoms in the

proofs, and performing inference over this network. The parents of an atom in the network

are deterministic AND nodes representing the bodies of the clauses that have that node as

head. The conditional probability of the node given these is specified by a combination

function (e.g., noisy OR, logistic regression, arbitrary CPT). MLNs have several advantages

compared to KBMC: they allow arbitrary formulas (not just Horn clauses) and inference in

any direction, they sidestep the thorny problem of avoiding cycles in the Bayesian networks

constructed by KBMC, and they do not require the introduction of ad hoc combination

functions for clauses with the same consequent.

A KBMC model can be translated into an MLN by writing down a set of formulas for

each first-order predicate Pk(. . . ) in the domain. Each formula is a conjunction containing

Pk(. . . ) and one literal per parent of Pk(. . . ) (i.e., per first-order predicate appearing in a

Horn clause having Pk(. . . ) as the consequent). A subset of these literals are negated; there

is one formula for each possible combination of positive and negative literals. The weight of
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the formula is w = log [p/(1−p)], where p is the conditional probability of the child predicate

when the corresponding conjunction of parent literals is true, according to the combination

function used. If the combination function is logistic regression, it can be represented using

only a linear number of formulas, taking advantage of the fact that a logistic regression

model is a (conditional) Markov network with a binary clique between each predictor and

the response. Noisy OR can similarly be represented with a linear number of parents.

9.3. Other logic programming approaches

Stochastic logic programs (SLPs) (Muggleton, 1996; Cussens, 1999) are a combination of

logic programming and log-linear models. Puech and Muggleton (2003) showed that SLPs

are a special case of KBMC, and thus they can be converted into MLNs in the same way. Like

MLNs, SLPs have one coefficient per clause, but they represent distributions over Prolog

proof trees rather than over predicates; the latter have to be obtained by marginalization.

Similar remarks apply to a number of other representations that are essentially equivalent to

SLPs, like independent choice logic (Poole, 1993) and PRISM (Sato & Kameya, 1997).

MACCENT (Dehaspe, 1997) is a system that learns log-linear models with first-order

features; each feature is a conjunction of a class and a Prolog query (clause with empty head).

A key difference between MACCENT and MLNs is that MACCENT is a classification system

(i.e., it predicts the conditional distribution of an object’s class given its properties), while

an MLN represents the full joint distribution of a set of predicates. Like any probability

estimation approach, MLNs can be used for classification simply by issuing the appropriate

conditional queries.4 In particular, a MACCENT model can be converted into an MLN

simply by defining a class predicate (as in Section 8.1), adding the corresponding features

and their weights to the MLN, and adding a formula with infinite weight stating that each

object must have exactly one class. (This fails to model the marginal distribution of the

non-class predicates, which is not a problem if only classification queries will be issued.)

MACCENT can make use of deterministic background knowledge in the form of Prolog

clauses; these can be added to the MLN as formulas with infinite weight. In addition, MLNs

allow uncertain background knowledge (via formulas with finite weights). As described in

Section 8.1, MLNs can be used for collective classification, where the classes of different

objects can depend on each other; MACCENT, which requires that each object be represented

in a separate Prolog knowledge base, does not have this capability.

Constraint logic programming (CLP) is an extension of logic programming where vari-

ables are constrained instead of being bound to specific values during inference (Laffar &

Lassez, 1987). Probabilistic CLP generalizes SLPs to CLP (Riezler, 1998), and CLP (BN )

combines CLP with Bayesian networks (Santos Costa et al., 2003). Unlike in MLNs, con-

straints in CLP (BN ) are hard (i.e., they cannot be violated; rather, they define the form of

the probability distribution).

9.4. Probabilistic relational models

Probabilistic relational models (PRMs) (Friedman et al., 1999) are a combination of frame-

based systems and Bayesian networks. PRMs can be converted into MLNs by defining a

predicate S(x, v) for each (propositional or relational) attribute of each class, where S(x,

v) means “The value of attribute S in object x is v.” A PRM is then translated into an

4 Conversely, joint distributions can be built up from classifiers (e.g., Heckerman et al., 2000), but this would
be a significant extension of MACCENT.
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MLN by writing down a formula for each line of each (class-level) conditional probability

table (CPT) and value of the child attribute. The formula is a conjunction of literals stating

the parent values and a literal stating the child value, and its weight is the logarithm of

P(x|Parents(x)), the corresponding entry in the CPT. In addition, the MLN contains formulas

with infinite weight stating that each attribute must take exactly one value. This approach

handles all types of uncertainty in PRMs (attribute, reference and existence uncertainty).

As Taskar et al. (2002) point out, the need to avoid cycles in PRMs causes significant

representational and computational difficulties. Inference in PRMs is done by creating the

complete ground network, which limits their scalability. PRMs require specifying a complete

conditional model for each attribute of each class, which in large complex domains can be

quite burdensome. In contrast, MLNs create a complete joint distribution from whatever

number of first-order features the user chooses to specify.

9.5. Relational Markov networks

Relational Markov networks (RMNs) use database queries as clique templates, and have a

feature for each state of a clique (Taskar et al., 2002). MLNs generalize RMNs by providing

a more powerful language for constructing features (first-order logic instead of conjunctive

queries), and by allowing uncertainty over arbitrary relations (not just attributes of individual

objects). RMNs are exponential in clique size, while MLNs allow the user (or learner) to

determine the number of features, making it possible to scale to much larger clique sizes.

RMNs are trained discriminatively, and do not specify a complete joint distribution for the

variables in the model. Discriminative training of MLNs is straightforward (in fact, easier

than the generative training used in this paper), and we have carried out successful preliminary

experiments using a voted perceptron algorithm (Collins, 2002). RMNs use MAP estimation

with belief propagation for inference, which makes learning quite slow, despite the simplified

discriminative setting; maximizing the pseudo-likelihood of the query variables may be a

more effective alternative.

9.6. Structural logistic regression

In structural logistic regression (SLR) (Popescul & Ungar, 2003), the predictors are the output

of SQL queries over the input data. Just as a logistic regression model is a discriminatively-

trained Markov network, an SLR model is a discriminatively-trained MLN.5

9.7. Relational dependency networks

In a relational dependency network (RDN), each node’s probability conditioned on its

Markov blanket is given by a decision tree (Neville & Jensen, 2003). Every RDN has a

corresponding MLN in the same way that every dependency network has a corresponding

Markov network, given by the stationary distribution of a Gibbs sampler operating on it

(Heckerman et al., 2000).

9.8. Plates and probabilistic ER models

Large graphical models with repeated structure are often compactly represented using plates

(Buntine, 1994). MLNs subsume plates as a representation language. In addition, they allow

5 Use of SQL aggregates requires that their definitions be imported into the MLN.
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individuals and their relations to be explicitly represented (see Cussens, 2003), and context-

specific independencies to be compactly written down, instead of left implicit in the node

models. More recently, Heckerman et al. (2004) have proposed a language based on entity-

relationship models that combines the features of plates and PRMs; this language is a special

case of MLNs in the same way that ER models are a special case of logic. Probabilistic ER

models allow logical expressions as constraints on how ground networks are constructed, but

the truth values of these expressions have to be known in advance; MLNs allow uncertainty

over all logical expressions.

9.9. BLOG

Milch et al. (2004) have proposed a language, called BLOG, designed to avoid making the

unique names and domain closure assumptions. A BLOG program specifies procedurally

how to generate a possible world, and does not allow arbitrary first-order knowledge to be

easily incorporated. Also, it only specifies the structure of the model, leaving the parameters

to be specified by external calls. BLOG models are directed graphs and need to avoid

cycles, which substantially complicates their design. We saw in Section 4 how to remove

the unique names and domain closure assumptions in MLNs. (When there are unknown

objects of multiple types, a random variable for the number of each type is introduced.)

Inference about an object’s attributes, rather than those of its observations, can be done

simply by having variables for objects as well as for their observations (e.g., for books as

well as citations to them). To our knowledge, BLOG has not yet been implemented and

evaluated.

9.10. Other work

There are many more approaches to statistical relational learning than we can possibly cover

here. This section briefly considers some additional works that are potentially relevant to

MLNs.

Pasula and Russell (2001), Poole (2003) and Sanghai et al. (2003) have studied effi-

cient inference in first-order probabilistic models. While they focus on directed graphical

models, some of the ideas (e.g., different MCMC steps for different types of predicates, com-

bining unification with variable elimination, abstraction hierarchies) may be applicable to

MLNs.

MLNs have some interesting similarities with the KBANN system, which converts a

propositional Horn KB into a neural network and uses backpropagation to learn the network’s

weights (Towell & Shavlik, 1994). More generally, MLNs can be viewed as an extension

to probability estimation of a long line of work on knowledge-intensive learning (e.g.,

Bergadano & Giordana 1988; Pazzani & Kibler 1992; Ourston & Mooney 1994.

10. Future work

MLNs are potentially a tool of choice for many AI problems, but much remains to be done.

Directions for future work fall into three main areas:

Inference: We plan to develop more efficient forms of MCMC for MLNs, study the

use of belief propagation, identify and exploit useful special cases, and investigate the

possibility of lifted inference.
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Learning: We plan to develop algorithms for learning and revising the structure of MLNs

by directly optimizing (pseudo) likelihood, study alternate approaches to weight learn-

ing, train MLNs discriminatively, learn MLNs from incomplete data, use MLNs for

link-based clustering, and develop methods for probabilistic predicate discovery.

Applications: We would like to apply MLNs in a variety of domains, including information

extraction and integration, natural language processing, vision, social network analysis,

computational biology, etc.

11. Conclusion

Markov logic networks (MLNs) are a simple way to combine probability and first-order logic

in finite domains. An MLN is obtained by attaching weights to the formulas (or clauses)

in a first-order knowledge base, and can be viewed as a template for constructing ordinary

Markov networks. Each possible grounding of a formula in the KB yields a feature in the

constructed network. Inference is performed by grounding the minimal subset of the network

required for answering the query and running a Gibbs sampler over this subnetwork, with

initial states found by MaxWalkSat. Weights are learned by optimizing a pseudo-likelihood

measure using the L-BFGS algorithm, and clauses are learned using the CLAUDIEN sys-

tem. Empirical tests with real-world data and knowledge in a university domain illustrate

the promise of MLNs. Source code for learning and inference in MLNs is available at

http://www.cs.washington.edu/ai/alchemy.
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Lavrač, N., & Džeroski, S. (1994). Inductive Logic Programming: Techniques and Applications. Chichester,
UK: Ellis Horwood.

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45, 503–528.

Lloyd, J. W. (1987). Foundations of logic programming. Berlin, Germany: Springer.
Lloyd-Richardson, E., Kazura, A., Stanton, C., Niaura, R., & Papandonatos, G. (2002). Differentiating stages

of smoking intensity among adolescents: Stage-specific psychological and social influences. Journal of
Consulting and Clinical Psychology, 70.

Milch, B., Marthi, B., & Russell, S. (2004). BLOG: Relational modeling with unknown objects. Proceedings
of the ICML-2004 Workshop on Statistical Relational Learning and its Connections to Other Fields (pp.
67–73). Banff, Canada: IMLS.

Muggleton, S. (1996). Stochastic logic programs. In L. De Raedt (Ed.), Advances in inductive logic
programming (pp.254–264). Amsterdam, Netherlands: IOS Press.

Neville, J., & Jensen, D. (2003). Collective classification with relational dependency networks. Proceedings
of the Second International Workshop on Multi-Relational Data Mining (pp. 77–91). Washington, DC:
ACM Press.

Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic knowledge bases.
Theoretical Computer Science, 171, 147–177.

Nilsson, N. (1986). Probabilistic logic. Artificial Intelligence, 28, 71–87.
Nocedal, J., & Wright, S. J. (1999). Numerical Optimization. New York, NY: Springer.
Ourston, D., & Mooney, R. J. (1994). Theory refinement combining analytical and empirical methods.

Artificial Intelligence, 66, 273–309.
Parag, & Domingos, P. (2004). Multi-relational record linkage. In Proceedings of the Third International

Workshop on Multi-Relational Data Mining. Seattle, WA: ACM Press.
Paskin, M. (2002). Maximum entropy probabilistic logic (Technical Report UCB/CSD-01-1161). Computer

Science Division, University of California, Berkeley, CA.
Pasula, H., & Russell, S. (2001). Approximate inference for first-order probabilistic languages. In Proceed-

ings of the Seventeenth International Joint Conference on Artificial Intelligence (pp. 741–748). Seattle,
WA: Morgan Kaufmann.

Pazzani, M., & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine Learning, 9, 57–
94.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San
Francisco, CA: Morgan Kaufmann.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64, 81–129.
Poole, D. (2003). First-order probabilistic inference. Proceedings of the Eighteenth International Joint

Conference on Artificial Intelligence (pp. 985–991). Acapulco, Mexico: Morgan Kaufmann.
Popescul, A., & Ungar, L. H. (2003). Structural logistic regression for link analysis. In Proceedings of the Sec-

ond International Workshop on Multi-Relational Data Mining (pp. 92–106). Washington, DC: ACM Press.
Puech, A., & Muggleton, S. (2003). A comparison of stochastic logic programs and Bayesian logic programs.

Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from Relational Data (pp.
121–129). Acapulco, Mexico: IJCAII.

Richardson, M., & Domingos, P. (2003). Building large knowledge bases by mass collaboration. Proceedings
of the Second International Conference on Knowledge Capture (pp. 129–137). Sanibel Island, FL: ACM
Press.

Riezler, S. (1998). Probabilistic constraint logic programming. Doctoral dissertation, University of Tubingen,
Tubingen, Germany.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal of the ACM, 12,
23–41.

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82, 273–302.
Sanghai, S., Domingos, P., & Weld, D. (2003). Dynamic probabilistic relational models. Proceedings of the

Eighteenth International Joint Conference on Artificial Intelligence (pp. 992–997). Acapulco, Mexico:
Morgan Kaufmann.

Springer



136 Mach Learn (2006) 62: 107–136

Santos Costa, V., Page, D., Qazi, M., , & Cussens, J. (2003). CLP(BN): Constraint logic programming
for probabilistic knowledge. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (pp. 517–524). Acapulco, Mexico: Morgan Kaufmann.

Sato, T., & Kameya, Y. (1997). PRISM: A symbolic-statistical modeling language. In Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence (pp. 1330–1335). Nagoya, Japan:
Morgan Kaufmann.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (pp. 485–492).
Edmonton, Canada: Morgan Kaufmann.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial Intelligence,
70, 119–165.

Wasserman, S., & Faust, K. (1994). social Network Analysis: Methods and Applications. Cambridge, UK:
Cambridge University Press.

Wellman, M., Breese, J. S., & Goldman, R. P. (1992). From knowledge bases to decision models. Knowledge
Engineering Review, 7.

Winkler, W. (1999). The state of record linkage and current research problems. Technical Report, Statistical
Research Division, U.S. Census Bureau.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2001). Generalized belief propagation. In T. Leen, T. Dietterich
and V. Tresp (Eds.), Advances in neural information processing systems 13, 689–695. Cambridge, MA:
MIT Press.

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGSB, FORTRAN routines for large
scale bound constrained optimization. ACM Transactions on Mathematical Software, 23, 550–560.

Springer


