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Abstract Adverse drug events (ADEs) are a major concern and point of emphasis for the

medical profession, government, and society. A diverse set of techniques from epidemiology,

statistics, and computer science are being proposed and studied for ADE discovery from

observational health data (e.g., EHR and claims data), social network data (e.g., Google

and Twitter posts), and other information sources. Methodologies are needed for evaluating,

quantitatively measuring and comparing the ability of these various approaches to accurately

discover ADEs. This work is motivated by the observation that text sources such as the

Medline/Medinfo library provide a wealth of information on human health. Unfortunately,

ADEs often result from unexpected interactions, and the connection between conditions and

drugs is not explicit in these sources. Thus, in this work, we address the question of whether

we can quantitatively estimate relationships between drugs and conditions from the medical

literature. This paper proposes and studies a state-of-the-art NLP-based extraction of ADEs

from text.

Keywords Natural language processing · Adverse drug event extraction · Markov logic

networks · Statistical relational learning

1 Introduction

Adverse drug events (ADEs) have been receiving substantial national attention [1–6] since

an Institute of Medicine (IOM) report found serious gaps in pharmacosurveillance capacity,
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flagging this task as a top research priority and prompting a series of recommendations to the

FDA’s Center for Drug Evaluation and Research (CDER) [7]. The problem is felt worldwide,

with initiatives stemming from international entities such as the European union’s EU-ADR

[8] and PROTECT.1 Responses in US have included the FDA’s Sentinel Initiative and Mini-

Sentinel, the Observational Medical Outcomes Partnership (OMOP),2 the Reagan-Udall

Foundation (RUF), and the Innovation in Medical Evidence Development and Surveillance

(IMEDS)3 arm of RUF that incorporates and builds upon content from the earlier OMOP and

Mini-Sentinel. These organizations have driven, or currently are driving, significant research

into statistical and computational methodologies [9–12] for post-marketing surveillance of

drugs by analyzing observational clinical data in the form of claims and electronic health

record (EHR) databases, as well as in some cases social media and other semi-structured

data, e.g., text and natural language processing (NLP). Meanwhile, the problem of ADEs has

continued to grow in impact and importance. In 2012, the Office of Disease Prevention and

Health Promotion in the U.S. Department of Health and Human Services published a draft

National Action Plan for Adverse Drug Event Prevention,4 which notes that in the U.S. alone

ADEs are responsible for:

– one-third of all adverse events of any kind during hospital stays and affect two million

stays annually [13]

– over 3.5 million physician office visits [14] and 1 million ER visits

– $3.5 billion in U.S. health care costs [15]

To summarize, the primary contribution of our work is to present a probabilistic method for

summarizing what the research community knows about ADE pairs. The approach is a novel

application of recent advances in machine learning for information extraction and NLP. Our

approach builds upon the use of Markov Random Fields (MRF) that have been successfully

employed within the NLP community [16]. We use a template representation of these MRFs

using a formalism called Markov logic networks (MLN) [17]. Our second contribution is a

quantitative evaluation of the approach to the specific application of NLP for ADE discovery.

In addition to the quantitative evaluation, we also give a qualitative evaluation that examines

the strengths and weaknesses of the approach for this application. Based on this qualitative

evaluation, we extend our framework to incorporate training of these MLNs and subsequently

MRFs based on the data. The initial expert-based MLN exhibits competent performance but

can be improved when data are used to “refine” the MLN.

It must be mentioned clearly that the aim of this paper is to demonstrate that for OMOP

definitions and similar definitions, we can use the literature to verify complex definitions in

our case, OMOP. As far as we are aware, not many NLP techniques are proposed for these

definitions. Hence, we could not compare against any standard technique that uses NLP.

Also, as shown clearly in our empirical evaluations (and the citations in there), our results are

comparable or better than the current ADE methods that operate using OMOP definitions.

To summarize, we propose a probabilistic method that given a drug-effect pair searches

PubMed for abstracts and converts these abstracts to standard NLP features. These features

are then used in a probabilistic classifier based on MLNs to obtain a distribution over whether

the drug-effect pair is indeed an ADE. In the rest of the paper, we first discuss the prior work

and provide the required technical background on MLNs and NLP. We then present our

1 http://www.imi-protect.eu/.
2 http://omop.org/.
3 http://imeds.reaganudall.org/.
4 http://www.health.gov/hai/pdfs/ADE-Action-Plan-508c.
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approach in detail before the evaluation on OMOP ADE pairs. We next provide an in-depth

discussion of the salient features of the approach before concluding by presenting avenues

for future research.

2 Background

To make this paper self-contained, we begin with a discussion about the OMOP initiative,

followed by a brief tutorial on Information Extraction, MLNs and their use for NLP.

Initiative by OMOP: In 2009, FDA, PhRMA, and the Foundation for the NIH initiated

the Observational Medical Outcomes Partnership (OMOP)—which has now fed into the

Reagan-Udall Foundation (RUF), specifically Innovation in Medical Evidence Development

and Surveillance (IMEDS)—to evaluate and improve methods for discovering ADEs from

observational medical data, such as health insurance claims data, Medicare and Medicaid

data, or electronic health record (EHR) data [18]. To facilitate evaluation and comparison of

methods and databases, OMOP established: a Common Data Model so that disparate data-

bases could be represented uniformly; definitions for ten ADE-associated health outcomes

of interest (HOIs); and drug exposure eras for ten widely-used classes of drugs. OMOP’s

2010 evaluation had on average three different competing definitions for each HOI ranging

from a most- to a least-stringent definition. These definitions employed ICD9 codes and other

data types yielding a total of 30 HOI definitions. The end goal of this work was to encour-

age the development, quantitative evaluation, and comparison of methods for uncovering

new (previously unknown and perhaps even unanticipated) ADEs. To evaluate methods, it

is necessary to use known ADEs as ground truth and determine how well the new methods

could have uncovered these ADEs had they been unknown. At its initiation, OMOP took a

rigorous approach based on available drug label information to associate drug classes with

HOI definitions [19]. Methods were then evaluated by their ability to correctly rank the pairs

from most likely to least likely to be a true association. Ranking quality was evaluated by

area under the receiver operating characteristic (ROC) curve, or AUCROC.

We use the OMOP definitions for the quantitative evaluation of our approach. We first

evaluate our NLP approach on the 2010 OMOP ground truth and show that our approach yields

a high AUCROC with respect to that ground truth. We then look more closely at where our

system’s results disagree with OMOP’s ground truth. In some instances, this investigation

reveals probable errors in OMOP’s ground truth, owing either to OMOP’s high standard

of evidence (drug labels) for ADEs or to discoveries occurring after OMOPs initiative. In

other instances this investigation reveals shortcomings in our current approach that point to

directions for further research.

Information Extraction: Information extraction (IE) [20–23] is the process of auto-

matically extracting structured information from unstructured data, where unstructured data

consists of machine-readable documents. One of the tasks involving information extraction

is relation extraction, which consists of identifying instances of entities in text and the rela-

tionships between those instances. Adverse drugs events discovery is a relation extraction

problem, where the entities are drugs and health outcomes, and the relations indicate whether

a health outcome is an adverse effect associated with taking a drug.

Many approaches have been developed to extract adverse drug events from a large number

of diverse information sources. Gurulingappa et al. [24] used supervised learning methods,

such as Nave Bayes, Decision Trees, Maximum Entropy and Support Vector Machines, to

perform automatic identification of adverse drug event assertive sentences, by exploiting
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Fig. 1 An example of a MRF. A,
B, and C are the three variables
and φ are the potentials between
the cliques. Note that the largest
clique is of size 2. Given these
parameters, the final joint
distribution can be obtained by
the product of these potentials
(normalized)

lexical, syntactic and contextual features. Friedman [25] describes an approach that uses the

Electronic Health Records (EHR) to extract novel adverse drug events based on coded data

(structured) and narrative records (unstructured). Shetty and Dalal [26] performed dispropor-

tionality analysis on PubMed articles that mention a drug and adverse effect (AE) to discover

new drug-AE associations. Bian et al. [27] used Twitter data to mine drug-related adverse

events by building a classifier over textual and semantic features.

We use IE techniques in order to extract knowledge about text patterns and string simi-

larities and assign scores to the proposed ADEs. Consider an expert (say an epidemiologist)

that is evaluating a set of adverse events by scanning through a set of abstracts. He/she will

scan each abstract looking for patterns that mark the presence or absence of adverse events.

Only in very few cases can the expert have full confidence in a pattern. Instead, the expert

will rely on sets of patterns, where some definitely will be stronger than others. Moreover,

patterns may reinforce or weaken each other. The strength of a pattern thus depends both on

the context where it is applied and on the other patterns being considered.

We aim to quantify these mental patterns by using a descriptive language such as first-

order logic and model the uncertainty by weights (or probabilities). More precisely, we shall

assume that drugs and conditions are random variables that may be present or absent in a

empirical study. Patterns connect these random variables. We observe that the work of the

expert is based on the principle that the same patterns will repeat in different abstracts. In

other words, abstracts are not a random bunch of items, or random variables. Instead, the

items are connected through a set of applicable rules.

The most commonly used NLP methods are Conditional Random Fields (CRFs) [28]

which are essentially special cases of the more general Markov Random fields (MRFs). An

MRF is an undirected graphical model that consists of a set of nodes (V) and edges (E). They

factor the joint probability distribution over the variables as products of clique potentials.5

Assuming that each node in V is a random variable, the MRF defines a distribution over V

as a product of potentials. For example, in Fig. 1, there are three nodes A, B and C. Since

there is no clique of size 3 in the figure (i.e., no triangle), the joint distribution over the three

variables,

P(A, B, C) =
φ(A, B)φ(B, C)

Z
(1)

5 A clique in a graph is a fully connected sub-graph of the original graph. A triangle is a clique of size 3, an
edge is of size 2 and a fully connected square with both diagonals if of size 4.
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where φ is the potential of the clique and Z is the normalization term

(Z =
∑

A,B,C φ(A, B)φ(B, C)). Typically, the structure of the model (the cliques) are

defined Apriori and parameters (φ) are learned using data. While they are popular, designing-

specific MRFs for the problem at hand requires a machine learning expert. On the other

hand, elucidating knowledge from domain experts is more natural if the formalism employed

underneath is a general purpose one. First-order logic has been employed specifically in the

Artificial Intelligence community for this purpose.

Also, Random Fields are most often used when there is a regular relation between items:

a sequence of words in text CRFs or a pixel array in vision MRFs. They provide a very

effective approach to compute a collective probability. Unfortunately, the textual ordering in

the abstract is clearly not directly relevant to our task. This suggests that we need a flexible

representation well suited for irregular and structured problems.

Markov logic networks: Hence, we employ the first-order logic formalism of Markov

logic networks (MLNs) [17] to model the relationships described in the textual data. An

MLN consists of weighted first-order formulas where the first-order formula captures the

structural (qualitative) relationship between objects of interest, while the weight of the for-

mula quantifies the strength of the relationship. Each first-order formula is called a clause.

Consider the following two MLN clauses:

0.5 smokes(x) −→ cancer(x)

1.0 friends(x, y) ∧ smokes(x) −→ smokes(y)

The first clause expresses the knowledge that if a person (denoted by x), smokes, then

he/she is likely to have cancer. The second clause expresses the idea that if two persons are

friends and one of them smokes, the other is likely to smoke as well. Note that x and y are

variables that can be instantiated with values such as Ann, Bob, Cathy, etc. The numbers in

each of the MLN clauses are essentially log-odds and hence the probability of friends having

similar smoking habits is log(1/0.5) times more likely in the world compared to smoking

causing cancer.

In order to apply this technique, we need: the set of rules; the set of weights; and an

algorithm to compute probabilities.

One of the key reasons for using MLNs to capture relation extraction knowledge is that

MLNs provide an easy way for a domain expert to specify the background knowledge as

first-order logic clauses. We therefore assume that the rules were obtained from an expert.

Most algorithms learn the weights of these rules from data. Given the variety of possible

algorithms and how they depend on combinations of parameters, we asked our expert to

propose a set of weights, In order to simplify this task, all our rules have a simpler form:

implication statements of the form a(X) −→ b(X).

MLNs can be seen as MRF generators. Given a MLN and the set of possible values for

the variables, e.g., Ann and Bob in Fig. 2 (called groundings), most algorithms construct a

MRF. In the example shown in Fig. 1, there are two people Ann and Bob. Correspondingly,

there are two smoker nodes and four friends nodes in the MRF. Friends(x, y) denotes that

person x is a friend of person y. A person can be a friend of him/herself, thus, Ann is a friend

of her and Bob is a friend of himself. The weights are “shared” among all the instances of

the same clause. For instance, the potential on the MRF corresponding to all instances of

people smoking and being friends is the same and will be equal to 1 in this case. Similarly,

the weights of the cancer-smokes clique will all be the same and equal to 0.5.

We use MLNs as a template for constructing irregular MRFs, that are the standard in the

NLP literature. The use of MLNs allows us to generalize across multiple documents and
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Fig. 2 Example MRF generated from the MLN. We consider only the second clause with two groundings
Ann and Bob. Each predicate is instantiated with appropriate values for the variables leading to the MRF. This
example serves to provide the intuition that MLNs can be simply viewed as templates for constructing MRFs.
The cliques all share the same potential

ADE pairs. For instance, in our experiments, using 50 documents on 27 ADE pairs with 15

rules yielded a MRF of about 10,000 nodes. Constructing this 10k node MRF manually will

be extremely cumbersome and employing the use of MLNs allows us to bypass this issue and

achieve effective generalization. What we exploit is an automatic construction of the ground

MRF that requires minimal effort from the expert.

Most algorithms assume that an expert specifies the set of the rules and simply learn the

weights of these rules from data. This weight learning process must be distinguished from

query time inference where the set of rules, and the corresponding weights are provided and

the system can be queried for a particular situation. For instance, in the example, one can

query the probability of someone having a cancer given that his/her friend is a smoker.

It must be mentioned that while MLNs allow for the full first-order logic syntax to be

employed in sentences, for the purposes of this work, we only use implication statements

of the form a(X) −→ b(X) which essentially states that attribute b must be true whenever

attribute a is true for a particular object X . While in simple logic, this is a strong statement,

MLNs allow for a softer form that is more probabilistic. If the weight of this statement is

high, then b will mostly likely be true when a is true but if the weight is negative, it is mostly

likely to be false. We refer to the book by Domingos and Lowd [17] for more details. In

our work, we use the Tuffy system [29] to perform inference on the MLNs. One of the key

advantages of Tuffy is that it can scale up to millions of documents.

Using MLNs for NLP: Several approaches have been proposed for knowledge extraction

in general from biomedical literature. Riedel et al. [30] and Poon and Vanderwende [31] pro-

posed approaches based on Markov Logic to perform biomedical event extraction, getting

competitive results in the BioNLP09 Shared Task. These methods are shown to outperform

standard machine learning algorithms on NLP tasks. They employed MLNs that used syn-

tactic (word form) and semantic features (dependency paths) to capture the models for the

extraction of nested-bio-molecular events from research abstracts, and then performed joint

inference using these models. MLNs have become popular in biomedical extraction tasks,

as has been demonstrated in the BioNLP11 Shared Task, where the top systems [32,33]

employed approaches based on Markov Logic. One of the key attractive features of MLNs

is that they are based on first-order logic and hence allow for generalizable knowledge that

can be used across multiple tasks. Another attractive feature of these MLNs is that the expert
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can simply write as many rules in first-order logic and efficient learning algorithms exist that

can learn the weights (these weights reflect how true the rules are).

3 Extracting ADEs from text

We now provide the details of our proposed method.

3.1 Markov logic networks for ADE extraction

Our approach for evaluating adverse drug events is presented in Fig. 3. The system can be

defined as follows:

Given: A set of 〈drug(s), condition(s)〉 tuples

To Do: Determine P(drug(s) cause condition(s)) i.e., output the probability that a given

(possibly set of) condition(s) is an adverse event of (possibly a set of) drug(s) by using prior

published research as evidence.

The aim of our work is to quantify what the research community knows about the drug–

event (DE) pairs as a probabilistic function. Note that while we refer to the events as drug–

event pairs, our methods are not restricted to just pairs but can handle complex interactions

such as multiple drugs/conditions causing multiple adverse conditions. In this work, we

restrict ourselves to drug–event pairs (henceforth called as DE) only for simpler exposition

of the ideas and for comparison to OMOP ground truth.

3.1.1 Searching for relevant abstracts

Given this problem definition, the first step is to obtain the set of previously published

literature that provides evidence about the given drug–event pair, or DE. To this effect, we

query PubMed for a given set of DEs. An example query is “ACE Inhibitor Angioedema”.

For each DE, we obtain a set of articles. We consider only the abstracts of these articles in

this work (but our model can handle full articles). For this step,

Input: A set of DEs

Output: A set of K PubMed abstracts for each DE.

These top K articles serve as the natural language textual evidence for the pair. For each

article, we use two features to “weigh” the importance of the article: (1) Eigenfactor [34]

of the journal and (2) the recency of the article. We use the eigenfactor values for each

article directly. The articles in PubMed are in different stages of verification and to ensure

authenticity we only use the articles which are finally approved by PubMed. For recency,

we used a discount factor of 0.9. We experimented with several other discount factors in

the range of 0.6–0.95 and found that beyond 0.7, the results did not change significantly. If

the article is published within the last year, it has a weight of 1, and every preceding year

after that has its weight lowered by a multiplicative factor of 0.9 (i.e., 2-year old article has a

weight of 0.9, 3-year old article will have a weight of 0.81, 4-year old has a weight of 0.72).

The intuition is that most recent articles published in high-quality journals will have a higher

weight than more recent articles in low-quality journals and older articles in high-quality

journals.

The key idea is that we aim to model a human expert who does not rely on a single article

to infer a meaningful association between drugs and events but rather rely on a broad set

of articles. Not each of these articles are considered equally important by the expert and

hence we use the weights accordingly. The choice of the parameters, although made before
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Fig. 3 Steps involved in the evaluation of adverse drug events (ADEs)

the experiments started, seem reasonable for the task at hand. The parameter K indicates

how many publications will refer to the ADEs. Increasing K increases the sensitivity of the

algorithm, but will also reduce precision and is computationally expensive. We chose K = 50

before the experiments, in order to ensure the MLN system can compute the probabilities in

feasible time These abstracts serve as the input to the next stage.

The second stage of our approach has two distinct phases (1) string similarity phase and (2)

semantic relation extraction phase. We describe these two phases separately to demonstrate

that standard information retrieval measures may not suffice in the task of identifying ADEs

and that the task requires more semantic understanding of the text.

For each abstract obtained in the first step, we identify the sentences that contain the

corresponding DE pair, i.e., sentences that contain both the drug and the condition. Note that

we do not distinguish yet whether the DE is an adverse event or not, or simply if the drug and

the condition are related, we just keep the sentences plain text to be used in the next step.

3.1.2 String similarity

For the string similarity step,

Input: The given set of 50 abstracts and the current DE.

Output: The average string similarity scores between the DE and the considered abstracts.

In the string similarity phase, we use simple document matching metrics such as cosine

similarity, Jaccard similarity, Jaro-Winkler similarity and Sorensens similarity. The goal of

this phase is to obtain a syntactic measure of the similarity between the DE pair and the

abstract at hand. In other words, given a DE we find its support in the text. Note that this

measure simply searches for mentions and thus does not distinguish between whether a

given DE is an adverse event or not, or if there is no relationship between the drug and the

condition. Cosine similarity measures the cosine of the angle between two vectors, where

the vectors are the frequency of occurrence vectors of the documents. In our case, vectors

store the occurrence of letters. While in this step we only compute string similarities between

each DE and literature found on the web, these can also be seen as evidence in the MLN

constructed in the second step. Note that the use of string similarities gives us a good baseline.
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This is typically the approach used by many systems that do not explicitly parse the entire

medical abstract but compute some “distance” between the query and the abstract. The aim

of this step is to demonstrate the value of deeper understanding of text to better improve the

identification of ADE from text.

3.1.3 Semantic relation extraction

Semantic relation extraction on the other hand aims to identify features that can be employed

for a deeper analysis of the given text.

For the semantic similarity step,

Input: The given set of 50 abstracts and the current DE.

Output: Probability that the current DE is actually an ADE based on the 50 extracted

abstracts.

To obtain the relevant features, we run the sentences obtained in the previous step through

a standard NLP tool such as the Stanford NLP toolkit [35,36] to create relational linguistic

features. The created relational features are lexical, syntactic and semantic features, such as

part-of-speech tags, phrase types, word lemmas, parse trees and dependency paths, which

provide a representation of grammatical relations between words in a sentence. These are

standard features used in the natural language processing literature, and we find them to be

very useful in our problem as well. These features are used to identify a deeper interaction

between the drug and adverse event mentions in the text. For instance, it is useful to say that

if the drug and object has a dependency path between them and the word “causes” appears

in the dependency path, there is a chance that the drug causes the effect. Note that this is not

always true and hence this knowledge is treated as probabilistic (weighted and uncertain)

knowledge.

In addition to these features, we use an entity recognizer to identify drug and effect

mentions. For example consider the following text: “There is evidence that MI is caused by

the intake of Cox2ib”. This sentence would lead to the features drug(Cox2ib) and effect(MI).

These features (called as predicates in MLN literature) are then used as evidence to query

the MLN for probable adverse event.

These relevant features along with the similarity scores are together considered while

constructing the rules in the next step. A high-level flow of this step is presented in Fig. 4.

As can be seen, we run the 50 abstracts from PubMed through the NLP parser (Stanford

NLP in our case). These are then used to create NLP features (they are presented in detail in

“Appendix”). These features are then used in the MLN as we discuss below.

Drugs, effects, and the relationship between them form the evidence. Note that after having

the information about drugs and effects, we use the features drug and effect to define a MLN

clause that indicates that the drug d with word dw, and effect e with word ew, are present in

an ADE r:

effect(e), effectWord(e,ew), drug (d), drugWord(d,dw),

present(r,d), present (e,d) --> deADE(r,d,dw,e,ew)

dw and ew are variables and will be substituted by the corresponding values when per-

forming reasoning. If we add a weight of infinity to this rule, then it means that this rule is

always true. For the example in the above paragraph, dw could correspond to Cox2ib and ew

could correspond to MI. Then the rule simply states that if the same sentence has Cox2ib as

the effect and MI as the drug, then it is always true that the adverse effect of Cox2ib is M I . Of

course, since this is not always true for other drug and effect pairs, they are considered to be
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Fig. 4 Steps involved in the deeper semantic extraction phase that employs MLNs. The extracted 50 PubMed
abstracts are given as input to a NLP parser. The resulting parse trees, dependency graphs, parts of speech and
other NLP features are then converted to MLN format (first-order logic facts). They are then used as input
along with the current query DE to obtain the final posterior distribution

Table 1 A sample of the relation extraction knowledge. dpDE denotes that there is a dependency path between
the drug and effect in a proposed ADE (they are in the same sentence)

Weight Rules Type

wgt cosineSimilarityWeight(r, wgt) ⇒ adverse(r) Sim

1 dpDE(r) ⇒ adverse(r) Basic

3 deADE(r,d,dw,e,ew), preHW(wo,dw), postHW(wo,postwo), Basic

ws(postwo,“induced”), dt(ar,se,ew,wo,AMOD) ⇒ adverse(r)

1.5–3 deADE(r,d,dw,e,ew), dp(ar,se,ew,dw,dp), contains(dp Prep

(∝ l) “prep_after”), dpL(ar,se,ew,dw,l) ⇒ adverseC(r, l)

1.5–3 deADE(r, d, dw, e, ew), word(wo), ws(wo, “risk”) Prep

(∝ l) dp(ar, se, wo, ew, dp1), dp(ar, se, wo, dw, dp2)

dpL(ar, se, ew, dw, l), contains(dp1, “prep_of”)

contains(dp2, “partmod”) ⇒ adverseC(r, l)

Rules are classified into rule types based on the features used shown in Type column
deADE drug and effect are in a proposed ADE, dp dependency path between two words, dpL length of
the dependency path between two words, preHW prehyphen word, postHW posthyphen word, ws word string,
dt dependency type

probabilistic and hence we soften them using weights that are then used to create potentials

of the ground MRF.

adverseC is an intermediate target predicate that represents the length of the dependency

path between the drug and the effect. The shorter length indicates a stronger correlation

between the drug and the effect. Note that the weights are set based on the length of this

path. Shorter the path, higher the weight. Please refer to “Appendix” for more weights. The

weights simply indicate the relative importance of one rule over the other.

Once we have the drugs, effects, DE pairs, string similarities and textual evidence, we

employ an MLN that captures the relation extraction knowledge for identifying ADEs using

rules about text patterns and string similarities. Some of the example rules (out of the 15

rules that we use) that we used to capture text patterns and string similarities are shown in

Table 1. The first-order rules can be interpreted in English as,

Rule 1: If there is a cosine similarity between the DE pair and MEDLINE abstracts, the

proposed ADE is true with a weight relative to the cosine similarity
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Rule 2: If a drug and an effect are present in a proposed ADE and a sentence contains both

the drug and effect, the ADE is true

Rule 3: If a drug and an effect are present in a proposed ADE, and a sentence contains both

the drug and effect, and the sentence contains the pattern drug-induced effect, the

ADE is true

Rule 4: If a drug and an effect are present in a proposed ADE, and a sentence contains

both the drug and effect, and the sentence contains the pattern effect after drug,

the ADE is true

Rule 5: If a drug and an effect are present in a proposed ADE, and a sentence contains

both the drug and effect, and the sentence contains the pattern risk of effect and

drug is a participial modifier of the word risk, the ADE is true

We divide the rules into three types: (1) Text similarity based rule (Sim) (2) Dependency

path based rules that check for particular words occurring in a dependency path between the

drug and effect word (Basic) (3) Rules that check for dependency paths as well as specific

propositional dependencies in the paths (Prep). We evaluate the contribution of these rules

in the evaluation section. Note that all rules mentioned above are considered as soft rules,

and we manually assigned weights to the rules based on the lengths of the dependency paths

and the specificity of the rule. Of course, these weights can be learned using data. Once the

MLN is constructed and weights have been assigned, we query the MLN for the posterior

probability on the adverse relation, using as evidence the relational linguistic features from

the extracted abstracts, as well as drugs, effects, DEs and string similarities.

MLNs bring key advantages to this task. (1) We are able to specify rule relationships

in the data about dependency graphs, parse trees etc besides the standard features used in

NLP literature. This allows us to define richer MRFs than the ones typically employed in the

literature. (2) The use of the template based formalism allows us to write as many rules as

possible without worrying about the size of the grounded network. (3) The rules can be written

by “experts i.e., the researchers who typically read these papers, without having understand

the fundamentals of graphical models when writing these rules. Hence, to summarize our

algorithm for identifying DEs consists of the following key steps:

– For each DE pair:

1. Search through the list of abstracts and identify the top K relevant abstracts (K = 50).

2. Compute string similarity scores between the given DE and the retrieved abstracts.

3. Run each abstract through Stanford NLP parser and select the linguistic features

relevant to the given DE.

4. Query the MLN for the probability of the DE being an adverse drug event

pair(P(DE |evidence)). During this step, the MLN engine computes the number

of times (count) each rule is satisfied for the current DE pair across all these doc-

uments. Then, it multiplies the corresponding weights with the counts, sums these

weighted counts and normalizes them to obtain the final probability.

5. Store the probability and the DE pair to a global list

– Sort the global list and output the rankings of the DE pairs according to the posterior

probability.

This DE pairs order the different drug event pairs based on their likelihood of being an adverse

event.

123



446 S. Natarajan et al.

3.2 Bringing expert and data together: refined MLNs

As mentioned earlier, we rely on the expert to write the rules and we simply “soften” the

rules by assigning the weights. While reasonable, there is a burden on the expert to list all

the rules that he/she uses in identifying the ADE. We now propose to relax this requirement.

The key idea is that the expert writes as much rules as possible and the system discovers

more rules that rely on data to complement the contribution of the expert. To achieve this, we

require a learning algorithm to revise the expert’s theory as needed. We use a nonparametric

MLN learning algorithm based on functional gradient boosting [37] as this method has been

proven to be effective for complex data.

Functional-Gradient Boosting (FGB) is an iterative procedure where the mistakes com-

mitted in the previous step are “fixed” in the next step. For every positive example (i.e., a true

ADE), indicator value (say Ii for the current ADE i) is set to 1 else it is set to 0. Now, the

probability of every ADE being a true ADE (i.e., P(ADEi = 1) = Pi for the current ADE

i) is computed given the current model. The difference between the indicator value and the

computed probability (i.e., Ii − Pi ) is computed for each ADE, and this term becomes the

weight of the ADE. We refer to the prior work [38] for details of the derivation.

Intuitively, the weight reflects the error made by the current model for each example. If the

example is a positive ADE, then the model should predict this as positive with a probability

of 1. The difference between 1 and the current predicted probability is the magnitude of the

error and becomes its weight. If the example is a negative example, the model should predict

this as positive with probability 0 and the difference (negative number) is the magnitude of

the error of the negative examples. Hence, the positive example weights are always ≥ 0 and

negative example weights are always ≤ 0. Once the weights of the examples are set, this

method learns more clauses that focus on the higher weighted examples, i.e., examples that

have higher errors in the previous step. Then these clauses are added to the earlier set of

clauses, new predictions are made, new weights are computed and the process is repeated.

Thus, this method simply pushes all positive examples toward probability of 1 and negatives

toward 0 at each iteration.

So the next question is: how can we employ this iterative procedure to improve our

expert designed MLN? We essentially make predictions using the current MLN that the

expert provides. These predictions are used to compute the weights of the different ADEs

at iteration 0. Then functional gradient boosting is applied as described above to learn more

clauses in the next few iterations. We run the boosting algorithm for 5 more time steps since

the initial MLN (as we show in the next section) exhibits quite reasonable performance. The

hypothesis is that further refining the MLN (i.e., by adding more weighted clauses) can result

Fig. 5 Flowchart of the refinement approach. First the rules of the expert are evaluated on the training set to
identify potential errors. These errors are then fixed using an ensemble method that learns from textual data
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in a more robust model that can improve upon the errors of the human expert. Note that this

step requires learning as against our earlier step which only used the MLN for reasoning

about every ADE (Fig. 5). Subsequently, as we describe later, we need more examples than

the original approach for improving the expert specified MLN. As with the earlier case, given

a set of instantiations, this MLN is grounded to an MRF and then is used for ADE detection.

We call this approach as refinement of MLNs and present results for this approach in the

second half of the next section.

4 Results

In this section, we present the results of empirically validating our proposed approaches

by evaluating the proposed adverse drug events (ADEs). We aim to explicitly answer the

following questions:

Q1: Is the use of expert MLNs necessary? Will string similarities suffice for medical

abstracts?

Q2: Does the use of data improve the expert’s knowledge?

4.1 Evaluation of the basic approach

We evaluate our approach on the OMOP ground truth that can be obtained at OMOPs website.6

OMOP provided 9 ADE pairs, which are composed of widely-used drug classes and health

outcomes of interest (HOIs). We referred to these HOIs as effects in our earlier discussion.

These ADE pairs were classified by OMOP as positive risks. OMOP also provided 44 negative

control ADE pairs. When evaluating the algorithm, we simply queried for the probability

that the given HOI is actually an ADE of the given drug. While plotting the area under the

curve of the ROC curve (AUCROC), we used the ground truth values.

For each ADE, we extracted 50 MEDLINE abstracts by querying PubMed.7 Our exper-

iments showed that when considering different number of documents 10, 25, 50, 75, 100,

the results improved till 50 documents. Beyond 50, there were no significant improvements.

From these abstracts, we identified the sentences that contain both the drug class and the

HOI, resulting in a total of 2140 sentences. We ran these sentences through the Stanford

NLP toolkit to create relational linguistic features lexical, syntactic and semantic features,

which were used as evidence. We also stored the drug classes and HOIs, as well as their

relationships with ADE pairs, to be used as evidence when querying the MLN.

We compared the performance of different MLN rule types in this domain. We compared

five different set of MLN rules to evaluate the importance of each rule type. In the first setting,

we used the full relation extraction knowledge to evaluate the proposed ADEs (full MLN). In

the second setting, we only used the string similarity rules (Sim). In the third setting, we used

just the basic dependency rules to evaluate their contribution (Basic). In the fourth setting,

we used the full extraction knowledge except the string similarities (i.e., Basic + Prep). In

the fifth setting, we used just the basic dependencies with similarity rules to evaluate the

importance of prepositional features (Sim + Basic). Since the prepositional rules inherently

depend on the basic dependency rules, we do not evaluate on using prepositional rules without

the dependency rules.

6 http://omop.fnih.org/sites/default/files/ground%20truth.
7 If there are less than 50 abstracts for a particular ADE pair, we use only the returned set of documents.
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Table 2 AUC-ROC and
AUC-PR values for five MLNs
averaged over ten runs

For each run, we used 50
abstracts for each drug condition
pair

Rule type AUC-ROC AUC-PR

Mean Variance Mean Variance

Sim 0.69 0.0020 0.47 0.0073

Basic 0.73 0.0010 0.49 0.0010

Sim + Basic 0.80 0.0017 0.57 0.0013

Basic + Prep 0.83 0.0006 0.68 0.0008

Full MLN 0.83 0.0005 0.68 0.0010

Fig. 6 Sample Precision-Recall curves. We compare the results between SIM (String Similarity) and with
the expert designed MLN

We use Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves to

perform performance evaluation. In all settings, we performed ten runs, and averaged the area

under the ROC curve (AUC-ROC) and PR curve (AUC-PR). Since we employ an approximate

inference technique for obtaining the distribution over the drug condition pairs, we repeat

the experiment multiple times.

As shown in Table 2, using all the rules in the MLN performs the best with AUC-ROC

of 0.83 and AUC-PR of 0.68. It can be noted that adding the similarity metrics to the MLN

(Basic + Prep) is not improving the performance significantly. This shows that our method is

capable of going beyond simple mentions of the drug, condition pairs in the text. Just using

the similarity rules also performs reasonably well as it removes all the negative ADEs that

are never even mentioned together. As can be seen, the most effective method is the one that

uses all the different clauses and the similarity rules as well and has statistically significant

difference in the area under PR curves. The PR curves are considered to be a conservative

estimate over ROC curves and hence are considered as more rigorous estimators. Under this

estimation, the use of the entire MLN yields far superior results than any other combination.

We present two sample precision-recall curves from two of the runs in Fig. 6. The dashed

line represents the use of only similarity measures, while the other line is the full MLN. The

shapes of the curves are very similar in most of the runs. The key observation is that the

use of the entire MLN helps to identify the more complex negatives. For instance, if a drug

condition pair is mentioned in a sentence that uses complex word formations to explain the

negative correlation between them, simple similarity measures will not suffice, while the full
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Table 3 AUC-ROC and
AUC-PR values for different
number of abstracts across 10
runs

Number of abstracts (h) AUCROC AUCPR

20 0.73 ± 0.001 0.43 ± 0.001

30 0.79 ± 0.001 0.48 ± 0.001

50 0.83 ± 0.00 0.68 ± 0.001

100 0.75 ± 0.00 0.29 ± 0.001

MLN can possibly identify this as negatives. We discuss this in greater detail in the next

section.

We can answer Q1 affirmatively that the use of expert’s knowledge that encodes MRFs as

MLNs improves upon the use of simple string similarity metrics.

In addition, we also performed another experiment to understand the importance of the

number of articles. The key question that we aimed to understand was: do a small number of

strongly relevant articles exhibit higher performance or is their support further reinforced by

a few more weakly supportive documents. To this we extracted 20, 30, 50 and 100 articles

for each ADE pair. We ensured that the 20 documents is a subset of the 30 documents which

is a subset of the 50 which in turn is a subset of 100. We performed 10 different runs and

averaged the results over these 10 runs. As can be seen from Table 3, the method exhibits the

best performance using 50 documents which appears to be a sweet spot for the number of

articles. Using 100 documents introduces more noise and hence the performance decreases

drastically. Using lower number of documents do not provide sufficient evidence to obtain a

useful performance. Hence, we have chosen 50 documents for evaluation.

It must be mentioned that since we are simply performing inference using the documents,

our relation extraction method is quite effective. When using the OMOP ADE definitions and

50 documents per ADE pair, on a quad-core machine, the inference process was completed

in under 30 minutes. This is because of the fact that the rules are essentially horn clauses (of

the form if then) and the fact that the if part is observed, probabilistic inference is efficient.

4.2 Evaluation of the refinement approach

Note that the previous experiment evaluated whether the MLN was useful in identifying

OMOP specified ADEs from text. While the results showed improvement over standard

string based methods, they can still be improved. As mentioned earlier, we used refinement

of MLNs to improve upon the MLN created earlier. A key issue is that since we are learning,

we require more examples than the 9 positive ADE pairs from OMOP dataset. To this effect,

we used 30 more ADE pairs from literature (PubMed) as positive examples. 60 negative

examples were created randomly using these 30 drugs and event pairs. These were then used

as the training set along with the 9 OMOP ADEs as input to the refinement algorithm and

performed five-fold cross validation. It must be mentioned that the 2011–2012 version of

OMOP is much more restricted than the original dataset and has only 4 categories of drugs.

It did not provide any more information than what we have already, i.e., there is no statistical

significance in adding these definitions to our enhanced dataset. When refining, we learn 10

trees for the refinement. Using beyond 10 trees did not significantly improve the results and

we restricted ourselves to 10 trees.

Table 4 lists all the positive cases that we have considered in the current work. We con-

structed the negative controls from the positives by considering all possible drug–disease

combinations and removing the positive pairs from that list of combinations. This is called

123



450 S. Natarajan et al.

Table 4 List of all the positive
ADE pairs

Drug Adverse event

ADE inhibitor Angioedema

Amphotericin B Acute renal failure

Anesthesia Headache

Antibiotic Acute liver failure

Antibiotic Deafness

Antidepressant Erectile dysfunction

Antiepileptic Aplastic anemia

Antihistamine Drowsiness

Antipsychotic Myocardial infarction

Antipsychotic Diabetes

Aspirin Intenstine bleeding

Benzodiazepine Hip fracture

Benzodiazepine Seizures

Bisphosphonate Upper GI ulcer

Chemotherapy Anemia

Chemotherapy Hairloss

Contraceptive Melasma

Contraceptive Thrombosis

Corticosteroid Glaucoma

Corticosteroid Mania

Ephedrine Hypertension

Fluoxetine Suicide

Interferon Depression

Interferon Hepatic injury

Metformin Lactic acidosis

Methylphenidate Insomnia

Metoclopramide Tardive dyskinesia

Misoprostol Uterine hemorrhage

Orlistat Diarrhea

Paracetamol Liver damage

Propofol Death

Sildenafil Heart attack

Sildenafil Priapism

Statins Rhabdomyolysis

Stavudine Lactic acidosis

Tricyclic antidepressant Acute myocardial infarction

Vaccination Fever

Warfarin Bleeding
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Fig. 7 Results of using the refinement algorithm for MLNs on 39 ADE pairs using 5-fold cross validation

closed-world assumption, which means whatever that is not observed is false. This is a stan-

dard assumption in many machine learning/Artificial Intelligence algorithms, and we employ

the same assumption here (Table 4).

The results are presented in Fig. 7 using AUC-ROC and AUC-PR values for the two

algorithms—refined MLN and the original MLN. As can be seen from the figure, the use

of data on top of the expert knowledge provides significantly better results on the cross-

validated ADE pairs. The improvement in PR is significant (around 50 % with the PR). This

initially answers Q2 in that data can help improve upon the expert knowledge. We employ

AUC-PR for preliminary analysis as it has been shown to be a more conservative estimate

of the learning performance compared to AUC-ROC [39]. Further experimental evidence is

necessary, and this is an important direction that we will pursue in the future.

5 Discussion

The results on OMOP data show that the system performs significantly better than chance

and compares very well with systems designed to extract ADE information from EHRs (for

instance, see Ryan et al. [19]). While string similarities can be used to remove most of the

negative ADEs, the use of text patterns and semantic understanding improves the accuracy

further.

When considering string similarity only, we observed that several false positive ADEs have

high string similarities with literature found on the web. Several of these are even higher than

similarities of positive ADEs. Note that the string similarities are simply computing the

frequencies that the pair has been mentioned. In some cases, while the number of times the

given DE pair is mentioned could be high, these were essentially negative ADE mentions. The

similarity metric ignores phrases such as negative, not an effect, no association, etc. Using

text patterns on the other hand, we were able to make a better evaluation of the proposed

ADEs since they consider the type of the mention as positive or negative, resulting in a

performance improvement.

In Table 5, we show some examples of ADE pairs found in the MLN setting in three

categories: true positives, i.e., OMOP pairs that we also found to be positive (where the

probability of the event being an ADE is high), true negatives, i.e., negative OMOP pairs that

we found to be negative (where the probability of the event being an ADE is low), and false
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Table 5 Examples of ADE pairs

Category Adverse drug event Probability

Positive OMOP ADE pairs ACE inhibitor causes angioedema 1.000

Benzodiazepines cause hip fracture 0.997

Amphotericin B causes acute renal failure 0.986

Negative OMOP ADE pairs ACE inhibitor causes aplastic anemia 0.624

Typical antipsychotic causes upper GI ulcer 0.626

Warfarin causes aplastic anemia 0.617

Negative OMOP ADE pairs Bisphosphonates cause acute renal failure 0.998

but positive NLP ADE pairs Antibiotics cause bleeding 0.991

Warfarin causes acute renal failure 0.965

negatives, negative OMOP pairs that we found to be positive (where the probability of the

event being an ADE is high).

As expected, some of our results agree with the OMOP ground truth (the top two sets

of rows in the table). Note that some of our results have no perfect agreement with OMOP

ground truth. This means that some of the negative control ADEs given by OMOP are actually

found to be positive by our method. This disagreement reveals some probable directions of

investigation for OMOPs ground truth. For instance, consider the ADE

Bisphosphonate causes Acute Renal Failure.

This ADE is classified as negative control by OMOPs ground truth. However, it received

a high score in our method. When looking closely at the sentences related to this ADE,

we found that there is text to support the fact that the ADE is a positive risk, which may

contradict OMOPs ground truth. An example sentence that we found from PubMed article

(PMID 11887832) is:

Bisphosphonates have several important toxicities: acute

renal failure, worsening renal function, reduced bone

mineralization, and osteomalacia.

This may happen because of several reasons, such as OMOPs high standard of evidence

for ADEs or discoveries occurring after OMOP initiation. Results like this show that our

method can be used for ADE evaluation of the ground truth. More importantly, given that the

literature is vast, we can find with less human effort ADEs that are already known or have

been discovered previously.

A current limitation of our approach is that although it finds evidence for ADEs that were

not in the OMOP ground truth (such as a link between bisphosphonates and acute renal

failure and a link between antibiotics and increased risk of bleeding with warfarin use) it

also falsely interprets some other relationships. For example, it falsely assigns hip fracture

as a warfarin ADE on the basis of sentences such as this one from a PubMed Central article

(PMC3195383)

There is a need for a national policy for reversing warfarin

anticoagulation in patients with hip fractures requiring

surgery.

Another error occurs when our approach falsely interprets evidence for a protective

effect as evidence for an ADE, interpreting PubMed Central article with PMID 11826008
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as providing evidence that amphotericin B might cause aplastic anemia. Of the ten

highest-ranked false ADEs by our method from OMOPs ground truth, this is the lowest

ranked.

We describe a case of primary cutaneous mucormycosis

(zygomycosis) in a patient with idiopathic aplastic anemia

which responded to surgical debridement and therapy with

liposomal amphotericin B.

Other disagreements with OMOP ground truth among the top ten were actual positive

evidence for ADEs but with weak evidence in the form of single cases or animal studies.

Our primary goal in this work is to develop a nimble, general tool for evaluating a wide

variety of ADE discovery methods that might be based on search engine queries, social

network data, or observational medical data such as health insurance claims or electronic

health records. It is possible that the best approach will be an ensemble of all of these and

might itself include our scientific literature-based approach as well. Nevertheless, we see

the primary role of this literature-based approach as being for evaluation, since we expect

results confirmed and published in the scientific literature to necessarily lag behind the initial

signals of an ADE likely to appear in EHRs and claims data, in internet searches, and in social

media.

6 Conclusion

We present a novel approach for extracting adverse drug events (ADEs), a major social con-

cern that accounts for 770,000 injuries and deaths each year [40], from text. Our method

exploits publicly available biomedical literature to estimate the probability that a drug may

cause a certain event. We do so by using state-of-the-art text mining and multi-relational

machine learning techniques. We evaluate our performance on the reference OMOP ground

truth, find agreement better than state-of-the-art ADE discovery methods, and find that in

some of the cases of disagreement our method appears to be correct. Nevertheless, we find

that in an equal number of cases our method is incorrect. In the remaining cases of dis-

agreement our method has only weak evidence in support of its findings. We expect these

weaknesses in our method can be addressed in part by further improvements in its nat-

ural language processing and in part by performing parameter learning in its Markov logic

network.

Acknowledgements The authors gratefully acknowledge National Institute of Health Grant Number NIGMS
5R01GM097618 for the support.

Appendix

See Tables 6, 7 and 8.
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Table 6 List of predicates in
MLN

Predicates (!b)

adverse(rule)

rule(rule)

dpBetweenDrugAndEffect(rule)

dpH(rule, wo, subwostr, wordType)

dpRCount(rule, dp1, n, n)

dpWhileReceivingCount(rule, dp2, n, n)

dpWhileTakingCount(rule, dp3, n, n)

dpDirectCause(rule, dp4, dp44, n, n)

dpDirectIncrease(rule, dp5, dp55, n, n)

dpRisk(rule, dp6, dp66, n, n)

dpRiskAssociated(rule, dp7, dp77, n, n)

dpAssociated(rule, dp8, dp88, n, n)

dpConsequence(rule, dp9, n, n)

dpSideWithEffect(rule, dp11, dp11, n, n)

dpProduce(rule, dp12, dp12, n, n)

dpPromote(rule, dp12, dp12, n, n)

adverseC(rule, n, n)

cosineSimilarityWeight(rule, float_ wgt)

Table 7 Rules to deduce adverseC predicates, which subsequently influence the posterior probability of the
adverse predicate

Rules

// effect after drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_AFTER”) OR contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect on xxxx following drug

dpRCount(r, dp, up, down), [contains(dp, ”PREP_ON”) AND contains(dp, ”PREP_FOLLOWING”)] =
>adverseC(r, up, down).

// effect prep_while <receiving—taking>drug

dpWhileReceivingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

dpWhileTakingCount(r, dp, up, down), [contains(dp, ”PREPC_WHILE”)] =>adverseC(r, up, down).

// drug nsubj <cause—increase>dobj effect

dpDirectCause(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”DOBJ”)] =>
adverseC(r, up, down).

dpDirectIncrease(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJ”) AND contains(dp2, ”PREP_OF”)] =>
adverseC(r, up, down).

// risk prep_of effect partmod drug
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Table 7 continued

Rules

dpRisk(r, dp1, dp2, up, down), [contains(dp1, ”PREP_OF”) AND contains(dp2, ”PARTMOD”)] =
>adverseC(r, up, down).

// risk <prep_of—prep_for>effect associated prep_with drug

dpRiskAssociated(r, dp1, dp2, up, down), [(contains(dp1, ”PREP_OF”) OR contains(dp1, ”PREP_FOR”))
AND contains(dp2, ”PREP_WITH”)] =>adverseC(r, up, down).

// drug nsubjpass associated prep_with effect

dpAssociated(r, dp1, dp2, up, down), [contains(dp1, ”NSUBJPASS”) AND contains(dp2, ”PREP_WITH”)]
=>adverseC(r, up, down).

// effect consequence prep_of drug

dpConsequence(r, dp, up, down), [contains(dp, ”PREP_OF”)] =>adverseC(r, up, down).

//effect side effect of drug

dpSideWithEffect(r, dp1, dp2, up, down), [contains(dp1, ”PREP_OF”)] =>adverseC(r, up, down).

//drug promotes effect

dpPromote(r, dp1, dp2, up, down) =>adverseC(r, up, down).

//drug produced effect

dpProduce(r, dp1, dp2, up, down) =>adverseC(r, up, down).

Table 8 Final MLN Rules

Weight Rules

wgt cosineSimilarityWeight(r, wgt) =>adverse(r)

1 dpBetweenDrugAndEffect(r) =>adverse(r)

3 dpH(r, wo, str, str1), [(str = ”induced” OR str =
”associated”) AND (contains(str1, ”AMOD”))]
=>adverse(r)

3 adverseC(r, up, down), [up+down = 1] =>adverse(r)

2.5 adverseC(r, up, down), [up+down = 2] =>adverse(r)

2 adverseC(r, up, down), [up+down = 3] =>adverse(r)

1.5 adverseC(r, up, down), [up+down >= 4] =>adverse(r)

−0.5 !adverse(r)
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