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MARKOV MAPS ASSOCIATED WITH FUCHSIAN GROUPS

by RUFUS BOWEN (1) and CAROLINE SERIES

Introduction.

There is a well known relation between the action x\-^(ax-}-b)l(cx-}-d) ofSL(2, Z) onR

and continued fractions, namely if x,ye[o, i) and x= i , y= i 5

^ + i ^i + i

TZg + . . . ^2 + . . .

then x=gy for ^eSL(2, Z) if and only if there exist k, I, such that (—i)^^! and

n^^^m^^ for r^o, cf. [14]. If we define h: Ru{oo}->Ru{oo} by h(x)=—ilx for

xe[—1,1)', h{x)==x—i for x^ i; A(^)==x+i for ^—i, then it is not hard to check using

the above that x ==gy, ^-eSL(2, Z), if and only if there exist n, m^o such that

^(x) ̂ ^{y). Ergodic properties of continued fractions are usually studied using the first

return map h^: (o, i)—^(o, i) induced on (o, i) by h, ^o(^)=(i/^)—[i/A:], [i]. The

important properties of Ap are that it is expanding, Markov (see below), and satisfies

Renyi's condition sup \ft'{x)\|\f\x)\2<^.
•re (o,i)

In this paper we shall show that if SL(2, Z) is replaced by any finitely generated

discrete subgroup F ofSL(2, R) which acts on R with dense orbits, then one can associate

to r a map f==fr : Ru{oo}—^Ru{oo} with properties analogous to those of h. For

convenience we apply a conformal change of variable and replace the upper half plane

by the unit disc D and R by the unit circle S1, so that fy : S1-̂ 1. The mapVp is orbit

equivalent to r on S1; more precisely, except for a finite number of pairs of points

x, jyeS1, x==gy with geF if and only if there exist n, m^o such that VM^/^jO.

The map f has the Markov property with respect to a finite or countable partition

^=={IJ^ of S1 into intervals I,, namely:

(Mi) /is strictly monotonic on each \^8^ and extends to a C
2 function on 1 .̂ (In

fact, / is equal to some fixed element of F on 1^.)

(Mii) If /(I,) nl^ 0 then /(I,) D I,.

(1) Partially supported by NSF MCS74-19388. Aoi.
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154 R U F U S B O W E N A N D C A R O L I N E S E R I E S

The map f also satisfies a transitivity condition:

(Miii) for all i, j, ^U/W 31,,

and a finiteness condition:

(Miv) if intl,=(^), then {Ljm/(^+A), Ljm/^-A)}^, is finite.

The groups F we are considering fall into two classes; F always has a fundamental

region R in D consisting of a polygon bounded by a finite number of circular arcs

orthogonal to S1. If, as we are assuming, F has dense orbits on S1, then RnS1 consists

of a finite set of points called cusps which correspond to the parabolic elements

of r (cf. § i). The partition Sft defined above is finite if and only if F has no cusps.

If there are no cusps, /p satisfies two additional properties:

(Ai) there exists N>o such that inf K/^'W^^ i

and

(Aii) sup|//'(;c)|/|//(^)|2<oo (Renyi's condition).
rces1

If r has cusps, 8ft is countable and/p has periodic points x, f^(x)=x, (./?)'(^)==i.

Therefore (Ai) fails. Also (Aii) is no longer trivial. In this situation we show that

there is a subset K C S1, consisting of a finite union of sets in ^, minus the countable

set of points which eventually map onto one of the cusps, such that the induced

map /K:K->K, f^{x)=fm{x\x), m{x)==mf{m>o -./^eK}, satisfies all the condi-

tions (Mi)-(Miv), (Ai), (Aii) above.

We can now deduce results about the ergodic properties of/, and hence of F.

We shall prove a modified version of a result due to Renyi (cf. [i]):

Theorem. — Suppose f: S1-^1 satisfies (Mi)-(Miv), (Ai), (Aii) above. Then/admits

a unique finite invariant measure equivalent to Lebesgue measure.

As a corollary, we obtain the well known result that F is ergodic with respect

to Lebesgue measure. Since F and/are orbit equivalent on S1 it follows from a result

of Bowen [4] that the F action is hyperfinite, that is the F orbits can (up to sets of

measure zero) be generated by the action of a single invertible map T.

For the F we are considering, the quotient space D/F is a Riemann surface of

finite area, with possibly a finite number of ramification points P^, P^, . . ., Py, with

ramification numbers V i ^ V g ^ . . . ^ ^ . At P, the total angle is 271 /v,, corresponding

to an elliptic (^<oo) or parabolic (^=00) element of F. The system {g; n', v^, . . ., ̂ }

is called the signature of Sp, where g is the genus. The signature is restricted only by

the topological constraint
n

2g-2+ S(l-(l/V.))>0.
i=l
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MARKOV MAPS ASSOCIATED WITH FUCHSIAN GROUPS 155

If Sr and Sp/ are Riemann surfaces with the same signature, then there is a quasi-

conformal map Sp->Sp. which induces an isomorphism j: r->r' and a homeomor-

phism h:Sl->Sl such that h{gx)=j(g)h(x), xeS1, geF, cf. [3, 3 a]; h is called the

boundary map ofj. By a result of Mostow [12] and Kuusalo [10], h is absolutely conti-

nuous if and only if it is a linear fractional transformation. This result, at least in the

case when F has no cusps, follows from the theory of Gibbs states applied tof^yf^,,

cf. [6].

§ i contains preliminaries on Fuchsian groups (i.e. discrete subgroups ofSL(2, R))

and Markov maps. For more details on Markov maps, see [i] and [5]. In § 2 we

construct the maps^? subject to a certain geometric constraint (*) on the fundamental

domain of F. In § 3 we show that, for a given signature {g; n\ v^, . . ., \} there is a

Riemann surface with this signature whose fundamental domain in D can be taken

to have property (*). In § 4, by using the boundary map h introduced above, we

construct fy, for any Sp. with the same signature as Sp.

The idea of using continued fractions to study r==SL(2, Z) occurs in [2] and [8].

The case in which F has as fundamental domain a regular 4^-sided polygon, corres-

ponding to a surface of signature {g'y o; o}is treated in [13, 9]. The ideas of this paper

appear in [6] for the special case n == o. We are indebted to Dennis Sullivan for some

useful remarks.

The preparation of this paper has been overshadowed by Rufus5 death in July.

We had intended to write jointly: most of the main ideas were worked out together

and I have done my best to complete them. In sorrow, I dedicate this work to his

memory.

Caroline SERIES,

Berkeley, September 1978.

i. Preliminaries on Fuchsian Groups and Markov maps

A linear fractional transformation C->C is a map of the form z\->g(z)= ———
cz+d

with ad—bc=i. We have g\z)=(cz +d)~2. The circle C ={z : \cz+d\ = i } is

called the isometric circle of g since g expands lengths within C and contracts outside.

A linear fractional transformation is either parabolic (conjugate in the group of linear

fractional transformations to z \-> z +1)5 elliptic (conjugate to z\->\z, | X | = = i ) , or loxo-

dromic (conjugate to z\->\z, | X [ 4 = i ) . A loxodromic transformation is hyperbolic if X is

real and >o.

A discrete group F of linear fractional transformations is Fuchsian if its limit set

(the set of accumulation points of orbits) is contained in the unit circle S^^^-j^ : \z\ =i},

if the only loxodromic elements are hyperbolic, and if F maps the unit disc D =={ z : [ z \ <^ i}

to itself, r is of the first kind if its limit set is all of S1, otherwise it is of the second kind.
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156 R U F U S B O W E N A N D C A R O L I N E S E R I E S

A parabolic element in F has a unique fixed point on S1, a hyperbolic element has two

fixed points on S1, and an elliptic element has one fixed point inside S1 and one outside.

The isometric circles of elements of F are circular arcs orthogonal to S1.

We think ofD as endowed with the Poincare metric ds== ———- . The geodesies
i — H 2

for this metric are circular arcs orthogonal to S1. Most of the geometry we use is based
n

on the fact that the Poincare area of an 72-sided geodesic polygon is n(n—2)— S o^,
i= 1

where a, are the interior angles. In particular, two geodesies can intersect at most

once, and if two geodesies make interior angles summing to more than TT with a third,

then the geodesies do not meet on the side of the interior angles. A polygon P is

geodesically convex if the geodesic arc joining any two points in P lies in P.

Elements of F act as isometrics of D with the Poincare metric. A fundamental

region for F is a set R^D whose boundary has measure zero, such that no two interior

points of R are conjugate under F and every point in D is conjugate to a point in R.

If r is finitely generated and of the first kind then it always has a fundamental region

bounded by a finite number of geodesic arcs with vertices in or possibly on S1. The

images of R under F exactly fill up D. One way to construct such a region is to take

the region outside all the isometric circles ofF ([7], § 20). One can always assume that

none of these circles are diameters of S1. Each side s of R is identified with another

side j-', by a corresponding element g[s)eT.

The set {g{s) : s a side of R} forms a set of generators for F ([7], § 23).

Let <7i be a vertex of R and s-^ an adjacent side; then v^=g(s-^{v-^ is another

vertex and ^==g{s^(s^) an adjacent side. Let ^ be the other side of R adjacent to ^.

Let v^=g{s'^(y^), s^ ==g(s^) (^), and define v^ s^ . . . similarly. Eventually we will

have (^+1, ^n+i)^^!? ^i) ([7], § 26); ^, ^, . . ., ^ is called the vertex cycle at ^ and

^1=^(^1)5 §2 ==^2)^ " ' ^ g n ^ g ^ n ) is the cvcle of generators at ^i. Now g^_^. . . g^
fixes ^i. If y^eint D, then g^. . . g-^ is elliptic and necessarily (^.. .g^y==i for some

integer v. Such a point is called an elliptic point of order v. If v^eS1 then g ^ . . .^ is

necessarily parabolic ([7], § 27). The relations (^ . . . ̂ y==i, for all elliptic vertices v,

form a complete set of relations for F [n]. Elliptic points of order v in D correspond

to ramification points with ramification number v on the Riemann surface D/F. By

convention, v=oo for vertices yeS1, and these vertices correspond to parabolic cusps

on D/r.

Suppose conversely^ is a geodesic polygon with a finite number of sides identified

in pairs. Conditions can be given for ffi to be the fundamental region of a Fuchsian

group, essentially that the angles at each vertex should after identification sum to an

integral fraction of 271. This result is due to Poincard; for a precise statement, see [n].

When describing arcs on S1, we always label in an anticlockwise direction, so

that PQ^ means the points lying between P and Q^ moving anticlockwise from P to Q.

We write (PQJ, [PQJ, etc., to distinguish open and closed arcs on S1.
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MARKOV MAPS ASSOCIATED WITH FUCHSIAN GROUPS 157

We conclude this section with a proof of the theorem on Markov maps stated

in the Introduction. In what follows, X will denote Lebesgue measure on S1.

Lemma ( 1 . 1 ) . — Let f: S1-^1 satisfy conditions (Mi)-(Miv), (Ai), (Aii) of the

Introduction. Let W={Ljm/(^-A), Ljm/(^+A)}^, and let A,, ..., A, be the intervals

defined by the partition points W'. Let ECS1 be/invariant. Then X(A,nE)>o, isis^p.

00

Proof. — Fix s, i^sfip. Since U^f(A,) = S1, there exists r such that

\(f\A^))>o.

Now A, is partitioned into at most countably many intervals, on each of which/r is C2

with derivative bounded away from zero. Choose one such interval B with

X(/'-BnE)>o.

Then ^Bn/'-'-Epo since /r: K^fB is G2 with non-vanishing derivative. Thus,

a fortiori, X(EnA,)>o.

Theorem (1 .2) . — Let f: S1-^ satisfy conditions (Mi)-(Miv), (Ai) and (Aii) of

the Introduction. Then there is a unique finite invariant measure [A for f equivalent to X.

Proof. — We use the notation of Lemma (1.1) and the Introduction. Let
N-l

^=^/ N^- An dem^ Fe^ is divided into (possibly empty) intervals 1 ,̂

!<?•</», where I^y-^A^nl^

Suppose \(EnA,)>o and ^)>o. Since /N: I^A, is a diffeomorphism:

XC^EnI?)/^) (/N)'^)
X(EnA,) "/^(^(TN)^) forsome ^'^eIN

Making use of the conditions (Ai), (Aii) on the derivatives of/, we obtain by a standard
argument (cf. [i])

M-1-^-
for some M>o independent of E, N and r. Thus

(1.2.1) M-^E A^^y-^EII^M^EIA,).

Now suppose E is/invariant and o<X(E)<i. By Lemma (1.1) , X(EnA,)>o,

isir^p. Choose a<—_^mn X(E|A,) . Because of the expanding condition (Ai),^ is

a generator (cf. [i]) and so there is Fe^ such that ^Ell^a. Since F == U Is,

we have X(E|IN)<a for some r with ^(I^o. By (1.2.1)
U

r=l

2a<M-1 min X(E A,)^X(/-NE 11?)=^ | IN)<a,
l^r^p

which is impossible. Hence X(E)=o or i, so X is ergodic.
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We wish to find an invariant measure for /. It is sufficient to show that there

is D>o, so that Hf-^E) mE)e[D-\ D] independent of N, E. For we can then

define ^(E)=UM ̂ /^E), where LIM is a Banach limit, and it follows as in [i]

that |i is invariant and equivalent to X. Ergodicity and uniqueness of ^ follow from
ergodicity of X and invariance of [JL.

Using the same type of estimates as above we find

(1 .2 .2 ) ^X(En^F) ;X(/-NEnlN) x(En l̂N)
1 ' Hf^) " x(F) <M x^F) •

Suppose EC A,, so that En/^I^O or E C/^P. Since min X(A )>o
ls;r5;p v •" '

M'-^E^I^^/^Enr^XM'^E)^)

with M'>o, whenever /NINnA^. Thus

(1.2.3) M"-^S^^(IM)^X(/-NE)/X(E)^ S X(P) with M">o.

Write P^I^...^) if/^ci^, r = i , . . . , N . Then

2 ^P^ S S x(I(^...^ ,,))
/--•L'.=A, 0-:/Ij=A,.} .i,...,.^_i v v l S - - U ) )

and . 2:. Wr.^-J))=. S '(^-^x .̂..̂  ,))
*1 '••••*N-1 n,...,iN-i X(I(zi. . .;N_i) N- iy /

_ v (V-1)'^) X(I,) .

-^..-^(/ '̂(^^(Ti^ wlth ^1> ^2el(zl- • -^-i)

and hence, applying the usual type of estimates to (/N-l)',

(1.2.4) D-IX(I,)< 2 X(I(^.. .^_j))<DX(y, D>o.
n , . . . , zN- i •'

Since o<6< S ^(Ij)<i for all r, on substituting in ( 1 . 2 . ^ ) we obtain
{j:/(I/)=)Ay} - ' V7/

D'-^X(/-NE)/X(E)^D', D'>o,

as required.

2. Construction of the maps f.

Let r be a finitely generated Fuchsian group of the first kind, acting in the unit

disc D. Let R be a fundamental domain for F in D, with a finite set of sides S ={^}r=r

Let A(j-) be the side of R identified with s, by an element g{s)er, and let C{s) be\he

circle containing s orthogonal to S1. Let N be the net in D consisting of all images of

sides of R under elements of F. We will say R satisfies property (*) if:

(i) C(s) is the isometric circle of g{s).

(ii) C{s) lies completely in N.
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Theorem (a.i). — Let T be a finitely generated Fuchsian group of the first kind, with a

fundamental region R satisfying (*). Then there is a Markov map /p: S1-^1 which is orbit

equivalent to T on S1. Moreover:

(a) IfSr has no parabolic cusps, the Markov partition is finite andf^ satisfies properties (Miii),

(Miv), (Ai), (Aii) of the introduction.

(b) If Sp has parabolic cusps, the Markov partition is countable. There is a subset K <= S1

consisting of a finite union of sets in the partition, minus the countable set of points which

eventually map onto one of the cusps, such that the first return map induced by fy on K has

properties (Miii), (Miv), (Ai) and (Aii).

For convenience we shall exclude for the moment the cases in which R is a triangle
or has elliptic vertices of order 2; but see Remark following Lemma (2.5) below.

Lemma (a. a). — Suppose R is not a triangle. Then, if s, s' are non-consecutive sides

of R, C(s) and C{s') do not intersect.

Proof (see Figure i).

Suppose that C(s), G(j') intersect in a point P. Let the sides of R between s
and s\ on the side of R closest to P, be labelled consecutively s=Sy, s^, .. ., s =s'.

Let the vertices of R on s, s ' closest to P be A, B respectively. Let y be the geodesic

407
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containing the arc joining A, B. Since R is geodesically convex, j^, . . ., s _i lie within

the geodesic triangle APB. The circle G(^) intersects at least one of C(s), €;(/), since

the endpoints of Cf^) lie outside APB (possibly with one endpoint at P) and C{s^) can

intersect y at most once. Proceeding inductively we see that without loss of generality

we may assume that s and s ' are separated by exactly one side ^.

Let cp(R) be the copy of R adjoining on the side ^ of R. Let t, t ' be the sides

of <p(R) adjacent to s^ By (*), AP and BP are in N and so t, t ' must either coincide

with AP, BP or lie properly within APB. Moreover they must meet at a point P^ within

or on the boundary of APB, for otherwise one of t, t ' would cut a side of APB twice,

which is impossible. <p(R) is not all of APB, since R is not a triangle.

Now repeat the argument within the triangle ABP^ to obtain a copy ^(R) of R,

adjacent to <p(R), lying properly within ABP^, and with non-adjacent sides u, u' meeting

within ABPi. Continuing in this way we obtain an infinite set of disjoint copies of R

lying within the region ABP, which is impossible since ABP has finite (non-Euclidean) area.

Definition o//p. — Let j-i, . . ., ^ be the sides of R, labelled in anti-clockwise order

around the circle, and let g,=g(s,) be the corresponding elements of F. Label the

^-i^i'Lof^) _ , ,
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MARKOV MAPS ASSOCIATED WITH FUCHSIAN GROUPS 161

end points of G{s,) on S1, P,, Q^+i (with Q,n+i==Q.i)^ with ^ occurring before CL+i

in the anti-clockwise order. By Lemma (2.2), these points must occur in the order Pi,

Qi ,P2,Q2, . . . , P n . Q . n (see Figure 2). Define /rW-^) on the arc [P.P^i).

Lemma (2.3). — There is a finite or countable set WCS1 with y^W^W which

partitions S1 into intervals^ W is finite if and only ifR has no parabolic vertices.

Proof. — Let ^ be the vertex ofR which is the intersection of ^_i, ^. Let N(^)

be the arcs in N which pass through y,; by property (*) these are complete geodesies.

Let W(^) be the set of points where the arcs in N(^) meet S1, and let 2^==|W(^)|,

i ̂ ^^oo, with ^==00 if and only if ^ is a parabolic cusp. Label the arc [P^Q^)

as L^.(^). Label the half-open arcs of S1 cut off by successive points of W(^) and

proceeding in anti-clockwise order from Q^, as L^.__;i(^), L^._g(^), .. ., L^), and

let T, be the point of W(y,) immediately preceding Q^+i, so that Li(^)=[T^Q^i).

Label the arcs proceeding clockwise from P,, as R^(^), R^-i(^)? • • ^RI^ ) - Let

S^ be the point of W(^) immediately preceding P^_i in the clockwise order, so that

^(^^E^-i^) and Ri(^)==[CL+iPz-i). If Vi is parabolic, start the numbering

with [Q^iP,-i)=Ri(^) and [T.Q^-L^), see Figure 2.

Notice that T, immediately precedes but does not coincide with S^i in the

anti-clockwise order of the points of W== .U W(y,) on S1. This is because y,T, and

y<+iS^i are arcs through non-consecutive sides of R, and so do not intersect by

Lemma (2.2).

Now pick AeW and suppose Ae[P,P^i), so that /p(A)==^A. Then

AeW(^)uW(^).

If AeW(^), then &(^A) is an arc of N emanating from ^(yj and since g^) is a

vertex of R, &(A)eW(^)) cW. Similarly, if AeW(y,+i), ^(^+iA) is an arc of N

emanating from ^(y,+i) which is also a vertex of R, so that ^(A) cW.

We have shown that /(W) cW, which completes the proof.

Lemma (2.4). — The map fy and the group F are orbit equivalent on S1, namely, except

for the pairs (Q,,, ̂ _iQJ, for i==i, ..., w:

,v==^ x,jyeS1, for some geF o there exist n,m^o such that ^{^^^{y).

Proof. — By definition of/r? lt: ls clear that ./^W'^/^jQ => ^^^ ^^ <?e^•
Since ro=={&}^i generates F, it is enough to show that x==gy,geFo ̂ f^^f"1^),

for some n.m^o. Since either \g\y)\>_i or \g~l'{x}\>_l, either y lies within the

isometric circle of g or x lies within the isometric circle of g~1. If g=gi^^o, then

g^-g^ and so either ^[P^.Q^J or ^e[P,Q^i]. If ^e[P,P^i) then

/rW-^W^

and if^e[P,P^i), /rW-^W-^

4^9
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It remains to consider the case .^[Pj+iQ^+i] or J^CP^+iQ^+i]; in other words

it is enough to show that if A:e[P,QJ, then there are p., q>_o such that f13^) ==fq(g^_^x).

We will call a pair [x, gi-^{x)), where ^e[P»QJ, a badly matched pair at v^

Using the fact that all the mappings in F are conformal, and that L^y,) c [P.P^i),

for 2<^r<_k^ and Rg(^) c [P^-iPi), for 2<_s<k^—i, we see that

(2 .4 .1 ) fr\w=gi, f^^r{Vi))=^r-l{gi{vi)^ for 2^r^,

and fr^M-gi-i. fr^s{Vi))=^-i{gi-iW), tor 2<^s<k,.

Let (^&-i(^)) be a badly matched pair at ^. Write /==/r? w=w^=v^ g=gi,

h==g^_-^, k==k^ Let the cycle of vertices starting with w and the side ^_^ be w^

w ^ , . . . , W y and let the corresponding elements of I^ be h==h^ h^ . . ., hy. Let

a==h h -^ . . .Ai. Then ^=15 where v is a positive integer, and by (*) pv is even and

^k =pv. Moreover h —g~1 and the cycle starting from w with the side ̂  is w, w^ . . ., w^

with corresponding generators g = h y ' 1 , ^p"-1!? . . .3 ^F1 ==h~1.

Suppose v is even. By repeated applications of (2.4.1) we obtain

f{x)=h,\x), f2W=h,l,{x)h,l{x), . . .,

f^^h^. . .^-l(^-l. . .h,l)^-l(x)=h,a-^x),

and /(^M)=^(^W), fWx))=h,h,h,{x), . . .,

^-i(^(^))=^. . .^(A^. . .^)W-1(^W)=^2W.

Moreover either

^ ./'̂ (•'OeLT.P,.,.!), where Wa=y» ce{ i , . . . , »} , or

^ /"-^^eEP.+iQ,^!].

In case aj, fk(x)=h]~lfk~\x)=a-vl2(x) and so, since a"=i, fk{x)=f'c-l{h^x). In

case &;, J/=/'t-lW=^-v/2Me[P^lQ^J and g^)=h^y)=a-^{x•}^fk-\h,x)

and hence {f1c~l(x),fk~'i{h•^x)) are badly matched at Oc+i.

If v is odd, we use a similar argument. We now have

fk-l{x)=h,l . ..h,\h^.. •V1)^^)
i^

-l^}
=h,l...h,la ^M

I^2

and fk~l{ht{x))=h,... h,{h^... ̂ )~^(^))

v-1

=h,...h,a 2 M.

4^0



MARKOV MAPS ASSOCIATED WITH FUCHSIAN GROUPS 163

Therefore either

a) f^We^^,^), where Wy=v^ be{ i , . . . ,n } , or

b) f^W^^O.^].

In case a),

fkW=h,lfk-l{x)=h,l ... h^a'^W
2 ' 2'1'

=h,...h,a^^(x)
2

rk - i /=fk~l{W)
and in case b),

j^-^elT^Q^J and g,==h,1 ,

2^

g^=h,1 . . . Ar-^'^W-^-1^^))
2+l

so that (/^(A:),./^-1^)) are badly matched at ^+1.

Now write F,=/^-1, and observe F,|^^=Y, for some y^r. Let (^ x ' )

be a badly matched pair at a vertex ^ of R. Then by the above, either

a ) ^(^[T^-i, P,,) for some ^{i, • . .^}, or

^ ^W^P^^J.

Moreover in case a), there exist p, q^o such that f^x)^/'1^), and in &;, there

exist p.q^o such that (/^(A:),/^^')) are badly matched at y, .

It is therefore enough to see that there exists d>o such that

^A-X'-'^W6^-!^).

Now provided F,̂  ... F,^)e[P^Q^J, i^r^^, then

^•••^'^r^"-^15

and there exists (JL>I such that |Y^(J;)|^(Jl->I for i^r^j-, J^F^ . . . F, ([>;Q^]).

Hence if A:+Q^, there exists d such that F^.. . F^O^]) is longer than [P^ ^Q^J,

.̂ such that F^...F^(A:)6[T^_iP^). This completes the proof.

Notice that if v, is a parabolic vertex, P, and Q, coincide and so there are no
badly matched pairs at v^,

Lemma (2.5). — Suppose T has no cusps. Thenf^ satisfies conditions (Miii) and (Miv)
of the Introduction.
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Proof. — Denote the intervals [T.P^i) and [QA+i) of Figure 2 by A,, B,

respectively. Observe that by (2.4.1), if ly is any interval in the partition defined

by W, then there exists p>o such that/^I,.) contains an interval of the form A, or B^.

Using the fact that f^=g^=f^ one sees that/(A,) covers all but two of the

intervals {B^i, B,(^ and B,.,(,), say. Similarly /(B,.) covers all of {AJ^ except A^.)

and A^.). Moreover if z'4=z', then {r(z) , r{i)}^{r{i'), r'(z')}, and similarly for s(j),

j'(j'). Thus for each z, f2^) covers all except possibly one of the A.'s and similarly

for/^B^.). Suppose /2(A,) does not cover A,. Pick k^ij. Then A^C/2(A,) and

/2(A,)u/2(A,) covers U A,. Similarly f^uf^A,) covers U B,.

Now/(A^) also covers all but the part ofS1 which lies inside the circular arcs C(j) ,

^(^+1)3 ^(^+2) corresponding to three consecutive sides s^ ^p+i, ^+2 °f R- Since
n

R has at least four sides one sees that f{ U B^) = S1.

We have shown that f satisfies (Miii), and (Miv) is clear.

Remark. — If R has elliptic vertices of order two, we may proceed with the above

construction omitting these vertices. If s is the side containing the elliptic vertex and g

the elliptic element then we associate g to the entire side s.

If R is a triangle, the order of the points W(^), W(^+i) around S1 is altered if

one of the angles is TC/2. However a similar method to the above applies.

Neither of these two cases is involved in our construction of (< canonical" fun-

damental regions below; they do however occur in the classical case r=SL(2,Z)

acting on the upper half-plane.

Since all the circles C(^), i^^^, are isometric circles for elements of F, it is

clear that l/'^)] is bounded away from i on all intervals of the Markov partition

formed by W except those of the form [P^QJ. If ^ is not parabolic, we have

/([^QJ)-^,--!^ and hence

Lemma (2.6). — If Sp has no parabolic cusps, then fy satisfies properties (Ai), (Aii),

with N=2.

Proof. — This follows by the above and the fact that W is finite.

This completes the proof of Theorem (2.1) ( a ) .

Suppose now R has parabolic vertices ^- , . . . , z ^ ; v^. is a periodic point of

order r^ for/p, and (/r7)'^-)^1- The conditions of [5] apply and one may deduce

(2.1) (b). It is however not hard to verify this result directly, as follows:

Let K=S1- U(( UL,(y,))u(UR,(y,)))- U U/p-̂ ,). It is clear that
j = l v x s = 2 s v V7 ^=3 ( v V 7 7 j == ln=1 1 7 1 v V

inf I (F2)' {x) I ̂  X > i where F =f^ is the map induced by/p on K. Thus/g satisfies (Ai).
a;£ S1

To prove (Aii) we use the following:
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Lemma (2.7). — The most general parabolic transformation T:D->D with a fixed

point ^eS1 is of'the form z ^ 0 ^ 0 , where aa-cc=i and a+a=±2, z^-^. Thereisa
cz-\-a ^

linear fractional transformation P: C->C so that P(^) ==o, P(S1) =R and S^PTP-^ ( I °\
V i/

Proof. — The first part follows from [7], Chapter i, Theorem (2.3) and (1.5).

We may clearly assume without loss of generality that z^=i. Then, if a==x+iy, we

have x = ± i and y = c. Without loss of generality assume x =I. Let P = (
1 ~1}

Then P(z)=o, P(S1)=R and PTP-1^1 °\ as required
U i/ 4

Lemma (2.8). — There is a point XeS1, so that if

I=pX]cS1 and n{x)=sup{n: T^)el}, A;el,

^ sup(|T^"(^[/[Tn^(^)|2)<oo.
a;ei

Proo/. — By Lemma (2.7), it is enough to show that if J= f—-^, o1 and

^(^)=sup{m:SWMeJ} x e ] , then supdS^"^)! /|SW(a;)'M|2)<oo. L 2y ]

/ \ xe 3

Now SOT=^ ^ and S-^-^-^-^+aly)-1). Therefore mW^m

precisely when xe[—((m+i)y)-\ —((m+a)^)-1)

S'»'(^)=(TO^+l)-2

and SOT"M/SOT'^)=(log ̂ '{x^^-^myx+i)-1.

Thus is^'^l/IS'"'^)!2^ -2^(OT^+i)j.

If xe[—((m+i)_y)-1, —((m+2)j')-1), then we get

|SOT"M|/|S')l'(^)|2^4OT|^|(7n+2)-l.

The result follows.

To complete the proof of Theorem (2.1) (b) it remains to verify the condi-

tions (Mi)-(Miv) for/K. Label the intervals formed by the partition points W, {I,}",i.

By (2.4.1) the only intervals in K mapped outside K by / are those of the^form

J—n^.+i)? i=i, . .., n (see Figure 2). TheJ; are divided into a countable number

of subintervals {J.,^, J.,^/-1^)^.. Let ^={T,};,, be the partition of K
formed by the J<, and the 1̂ . in K but not in [T,S.+i) for any (. On each T,., f^ is

equal to some fixed element of F and it is clear that ̂  satisfies conditions (Mi) and (Mii)

for/K. If/(J(,,)nK=0 then f(J,^)==L^v) or /(J.,,)=R,(f) for some k>o and

some parabolic vertex v. Therefore, by (2.4.1) again and the definition of K,

/K(J*,r)=Li(w) or ./Kji,,^1^^)) where w is again a parabolic vertex. Therefore

/K^i) ^A, or f^Tj) DB( for some r and some s, t. By exactly the same argument

as in Lemma (2.5) we see that (Miii) holds for/K. (Miv) is also clear from the above
discussion.
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3. Construction of Fundamental Domains.

In this section we construct, for any given signature {g'y n; v^, . . ., \} with
n ( A

2^—24- S i — - >o, a fundamental domain for a surface of this signature which
1=1 \ \]

satisfies property (*). We begin with some lemmas:

Lemma (3.1). — Let C, G' be non-intersecting circular arcs in D orthogonal to S1 and

equidistant from the centre o. Let P, Q^and P', Q^ be points on G, C' symmetrically placed with

respect to o. Then there is a unique linear fractional transformation g : D->D carrying C, P, Q^

to C', P', Q' respectively, and C is the isometric circle of g.

Proof. — It is clear that the unique transformation carrying P to P' and Qto Q'

fixing S1 carries C to C'. P, Q and P', Q '̂ divide C and G' each into three arcs and

the corresponding lengths are equal. If C were not the isometric circle of g, then, in

order for these lengths to be preserved, the isometric circle would cut G on each of these

arcs, which is impossible.

It is well known how to construct a regular 4^-sided polygon with interior angles —,
2gv

v^o. Namely, if 4^ symmetrically placed arcs are drawn orthogonal to S1, and if their

distance from o is allowed to increase from zero until the circles are touching, the angle

between them decreases from ————— to zero, so that at some point it is —. This
2g 2gv

polygon satisfies the conditions of Poincare's theorem [n], and is a fundamental region

for a surface of signature {g'y o; o}; moreover it satisfies property (*).

Notice that the same construction gives a regular 4^-sided polygon of angle P,

for any (B, o^(B<7r(2^—1)/2^.

Lemma (3.2). — Let G, C' be any two non-intersecting circular arcs orthogonal to S1 and

let angles ^J^E0? 7r/2] ^ given. Then there is an oriented geodesic arc ^.joining C to C'

making angles XQ , y^ with C, C' respectively on the right hand side, and whose points of intersection

with G, G' lie to the left of the mid-points of C, C'.

Proof. — Let T, T' be the endpoints of the radii ofS1 through the mid-points ofC, C'

and let M be the geodesic arc joining T and T'. Let L be an arc in a general position

cutting C, G' to the left of M, and let x, y be the angles cut off by M on G, C' on the

right hand side. Let p, p' be the (Euclidean) distances along C, C' from the left end

points to the points of intersection with L, and let ly i ' be the distances to the points

of intersection with M. Clearly M makes angles greater than 71/2 with C, C' on the

right hand side.

Fix p and vary p'. When p'==o, y=o and when p'==^', J^7r/2. Therefore

there exists p' such that y=y^. Let the corresponding value of x be F(p).
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Now vary p. When p=o, F(p)==o and when p==^ F(p)2l^/2. Therefore

there exists p such that F(p)==^o.

Lemma (3.3). — Let G be a geodesic arc in S1, and let y be a geodesic arc cutting C at a

point P and making an angle p, o<(B^7r/2, z^A C on the side nearest the origin. Let T be

the point of intersection of C with S1 inside y, and let p &^ ̂  distance from T to f along G.

Let E ̂  ̂  endpoint of y outside C. T^TX ^ p->o, E approaches T.

Proo/. — For convenience we will apply a conformal map so that we are working

on the upper half plane. We label the points as before. Let Y be the centre of the

semicircular arc y? ly^g on tne rea! axls ®- Let S be the foot of the perpendicular
from P to R. It is clearly enough to see YP->o as p->o. But p>PS, and <PYS>o,

and YP=PS(sin<PYS)-1.

Notice that if (B = o, we can draw arbitrarily small arcs y touching C on S1.

We are now ready to construct the required fundamental domains. We have

already noted above the construction in case n==o, ^>i.

If T Z = = I , ^>o, we construct similarly a regular 4^-sided polygon with interior

angle ——. Label the sides in consecutive anti-clockwise order a^ ^, a^'1, b^~1, .. .,
2^i

Og, bg, a ' g ' 1 , b~g1. Let A^ B^ be the transformations identifying a^ with a^1 and ^ with

b^~1 respectively. Identifying the sides gives a surface of signature (g; i; v^). Moreover,

by Lemma (3.1) the sides are isometric circles of the corresponding transformations;

and the polygon has property (*) by symmetry.

Now suppose n>i, ^>o. Since —<—————, we can construct a regular
^ 2^ 2{g+l)

4(^+1) -sided polygon of angle —. Let G^, Gg, . . . , Cg be geodesies through eight
^g

consecutive sides, oriented in an anticlockwise direction.

Remove arcs €3 and €7. Cg, €4 and Cg, Cg do not intersect by Lemma (2.2).

We will join Cg to €4 by a chain of arcs making successive interior angles — , — , .. .,
^i ^

— (see Figure 3). Let S, T be the endpoints of Cg, €4 respectively lying inside 03.
\
Divide the arc ST on S1 into n—i equal parts, at points S, P^, . . ., P^_g, T. By

Lemma (3.3) find a point Q^ on Cg close to S so that the arc YI through Q^ making

an interior angle — with Cg has an end point within SPr Find Q^ on yi so that the
vl 7T

arc Y2 through Q^ at an angle — to y2 has an endpoint within SPg. Repeat this to
Vo

7T 7T

obtain arcs y^, • - 5 Tn-2 "making successive interior angles — 5 . . . , ——. Finally apply
^l ^n-2

Lemma (3.2) to construct an arc Yy,_i making interior angles —— with Yn-2 ^d —

with 04.
 vn-1 vn
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Case ^=2.n=3
FIG. 3

Join Cg and Gg by a symmetrical sequence of arcs yL • • • ? Yn-r Identify Cg

and Cg'1, YI anc
^ Yi"1? - • - 3 Yn-i ^d Yn^L ^4 B^ C^S Cg and C^1. Also identify C^

and Gfi1, G^o and G^1, ..., €4^1 and €4^3, and €4^2 and C^^.

The polygon thus formed satisfies the conditions of Poincard's theorem [n].

The resulting surface has signature {g'y n\ Vi, ..., \}. Moreover, by Lemma (3.1)

all sides of the fundamental polygon formed by C^, Cg, y^, . .., Yn-i? ^4, Cg, Cg, Yn-i? • • • >

y^, Gg, ..., C4^+4 are isometric circles of the corresponding transformations, and by

symmetry the polygon satisfies (*).

If %>3, g=o, draw non-intersecting geodesies C^, D^ and their reflections Cg, D^
2TC 27T

in a diameter T of S1, so that C^, Ca intersect at an angle — and D^, Dg at — . Proceed
vl va TC

as above to join €3 to D^ by arcs YI? • • • ? Yn-3 making successive interior angles — , . .. ^
Vq

— , and let yL • • • 5 Yn-3 be the reflections ofy^, . .., Yn-s in T. Identify the sides C^, Cg;
^
Yi? Y^ • • • 5 Yn-3? Yn-3^ I^i? ^2- ^ne resulting polygon has all the required properties.

Finally, if ^==3, g==o, we have —4----4-—<i. Draw geodesies Gi; D^ and
Vl Vn Vq

. STC
their reflections Cg, Dg in a diameter T, so that C^ and Cg intersect at an angle — at

^i
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27C

a point R on T, and D^, Dg at an angle — at a point S on T. When R, S are close
^2

to S1 then G^ and D^, Cg and Dg do not intersect. As R, S move along T towards the

centre o, G^ and D^ intersect at an angle which increases from o to n\i——-——1, as
V v! ^

follows from a simple computation with C^, Gg, D^, Dg in their limiting positions as

diameters through o. Since T T J I — — — — l ^ — ? there is an intermediate point where
^ V v! ^ ^3

the angle of intersection is — , and the resulting polygon is the desired figure.
^3

4« Boundary Maps

Now let S be an arbitrary Riemann surface with signature { ^ a ^ V i , . . .5^},
n I i\

2^r_2-j_ ̂  i—-l>o. Let S' be a "canonical59 surface of the same signature cons-
^V vj

tructed as in § 3, with corresponding group F'. As in [3 a], p. 582 or [3], p. 2683 there

is a quasi-conformal map g : S'—^S. Pulling back the Beltrami differential of this map

to D gives a symmetric Beltrami coefficient [L for F'. Let c^ be the associated pi-conformal

automorphism of C. Then F == (o^T^c^)"1 is a Fuchsian group defining the surface S

and j^r '—^r, J\g)==^§{^)~1) is an isomorphism, co^ restricts to a homeomor-

phism A : S1—^1 such that h{gx)==j{g)h{x). h is the boundary map described in the

introduction.

We can now define the map fy associated to F. Namely, fr^hf^h'1. It is

clear thatVp satisfies (Mi)-(Miv). (Ai) for/p follows exactly as in ([6], Lemma 3).

(Aii) is immediate for compact Sp; in the non-compact case it follows from Lemmas (2.7)

and (2.8).

This completes the construction described in the Introduction. The result of

Mostow and Kuusalo mentioned in the Introduction follows from the existence of^p,

exactly as in [6].
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