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Abstract

In this paper we study a family of representations of the Cuntz al-
gebras Op where p is a prime. These algebras are built on generators
and relations. They are C*-algebras and their representations are a part
of non-commutative harmonic analysis. Starting with specific generators
and relations we pass to an ambient C*-algebra, for example in one of
the Cuntz-algebras. Our representations are motivated by the study of
frequency bands in signal processing: We construct induced measures at-
tached to those representations which turned out to be related to a class
of zeta functions. For a particular case those measures give rise to a
class of Markov measures and q-Bernoulli polynomials. Our approach is
amenable to applications in problems from dynamics and mathematical
physics: We introduce a deformation parameter q, and an associated fam-
ily of q-relations where the number q is a ”quantum-deformation,” and
also a parameter in a scale of (Riemann-Ruelle) zeta functions. Our rep-
resentations are used in turn in a derivation of formulas for this q-zeta
function.

Key words: commutator, quantum theory, signal processing, zeta functions,
Hilbert space, spectrum.
2000 Mathematics Subject Classification. 47B47, 81P15, 60G35, 33D50, 46C05,
46L52.

1 Introduction

In recent papers, there is a renewed interest the use Markov measures; but now
in a context of p-adic numbers. An earlier real analysis approach by one of the
co-authors and collaborators is motivated by multiresolutions. It makes uses a
derivation of Markov measures based on scale-similarity (see e.g., ([16], [25]).
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By contrast, the more recent p-adic extensions are motivated in turn by an en-
tirely different set of questions: problems in number theory, in error-correction
codes, and in physics; see e.g., [43]. As a result, there is now a need for Markov
measures in this rather different context of p-adic analysis; for recent work, see
[38], [43]. In section 4 below, we develop Markov measures in the p-adic con-
text, making use of four tools: selfsimilarity, Kolmogorov consistency, a family
of representations of the Cuntz algebra Op, and a scale of q-Bernoulli polyno-
mials (definitions below). In Theorem 12 (section 4) we give a new formula for
the p-Markov measure on p-adic ”intervals.” We then show that Kolmogorov
consistency holds. And using this, in Theorem 15 we compute an associated
stochastic process, as well as its joint probability distribution.
Below we offer an overview of the general idea, and we will then turn to the
details in the subsequent sections in the paper.
The framework for our results is at the crossroads of the theory of Markov mea-
sures, extended zeta functions, and q-zeta functions. The three are the subject
of recent interesting and interrelated research papers: Markov measures [51],
[52], [7], [9] are used in representation theory as well as in statistical mechan-
ics. Extended zeta functions [47] are used in related problems in dealing with
quasi-invariant measures. The third, the q-zeta functions [38], are also related,
and they play a separate role both in number theory and in approximation the-
ory. The use of probability in the study of zeta functions has precursors in the
literature; for example it is easy to derive Euler’s product formula for the clas-
sical zeta function ζ via an associated probability space, defined directly from
ζ in such a way that all the separate primes define independent events. The
extended zeta functions and q-zeta functions we consider here will rely on anal-
ogous tools; only we will have to resort to non-commutative measure theory:
Hence the role played below by algebras of bounded linear operators on Hilbert
space; C*-algebras, especially Cuntz algebras and their representations.

The measures we consider here are motivated in part by Jessen and Wintner
([20]); assigning distribution functions (or rather measures) to infinite products
and related Zeta functions. However here, a direct approach will not work.
The indirect approach which we take is this: Following Riesz and Radon, we
view measures as positive linear functionals on a suitably chosen algebra of
continuous functions. In our setting, this algebra is naturally embedded as an
abelian subagebra of an ambient non-abelian C*-algebra. In our construction,
the ambient C*-algebra will be one of the Cuntz algebras. We then proceed to
get the our Markov measure as restrictions of states on the Cuntz algebra, the
states in turn correspond to representations (of independent interest) via the
GNS construction, see sections 3 and 4 below.

The literature. Our paper combines ideas from operator algebras, mul-
tiresolutions, Zeta functions, and Markov measures. To make our paper more
accessible, we offer below a few pointers to the relevant literature. Readers fa-
miliar with one of these areas, but perhaps not the others, may wish to check
the following references covering aspects of these areas used below: operator
algebras, Cuntz algebras and their representations ([13], [4],[10], [8], [16], [31],
[22], [24], [25], [26], [40]) ; multiresolutions and their diverse uses ([1], [12], [3],
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[23], [2], [14] , [27] ) ; Zeta functions ([6], [39], [20], [38], [37], [36]); and Markov
measures ([32], [33], [21], [5], [51], [52], [7], [9]). We further use results from
harmonic analysis, such as ( [19], [29], [15], [17], [18], [49]).

Details. Here our algebraic approach helps: By an iteration scheme applied
to the initial generators, we are able in turn to generate sequences of such fam-
ilies; generation by repeated subdivision. We thereby produce such families of
projections in a recursive scheme. Depending on the chosen state, we get scalar
measures, and these measures in turn will have specific fractal dimensions, or
will have q-scaling laws. In the first section below, we make precise these corre-
spondences: representations, the specific C*-algebras, our subdivision schemes,
projection valued measures, and our specific states on the C*-algebras.

2 Fundamentals

In this section we present some material which is needed later. In particular
we give some basic definitions from p-adic analysis see ([35]) we are going to
use in the following sections. A construction of a projection-valued measure as
it was done in ([21]) will be recalled. The induced measure attached to that
construction is a crucial step throughout the whole paper.

2.1 The p-adic numbers, p-adic distributions, Bernoulli
distributions

This material is presented below in the form we need it later, and our presen-
tation further serves to establishes our notation.

2.2 Fourier duality and p-adic completions. The p-adic
integers Zp and the dual Zp∞

Our connections regarding p-adic numbers are as follows. Let p ∈ Z+ be a prime
p ∈ {2, 3, 5, . . .} , and let Zp = Z/pZ be the corresponding cyclic groups. We
then have two systems of natural mappings:

Zpn → Zpn−1 mult. by p,

where Zpn = Z/pnZ.
The second system consists of the inclusions:

Zpn−1 → Zpn .

Combining the two systems we then get:

0← Zp ← Zp2 ← Zp3 ← . . . , (1)
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and

0→ Zp → Zp2 → Zp3 → . . . . (2)

As a result, for (1), we get the compact projective limit:

Zpn ← Zp,

and for (2) the inductive limit

Zpn → Zp∞ .

The first group Zp is the p-adic integers (note compact), and the second Zp∞ =
Z[ 1

p ]/Z is the (discrete) Pointrjagin-dual. We will use Zp as a compact abelian
group with its p-adic Haar measure µp.

Hence L2-functions f(.) on Zp will allow Fourier series expansions with
Fourier coefficients c(.) indexed by Zp∞ , i.e.,

c(χ) =

∫
Z(p)

χ̄(x)f(x)dµ(p)(x) (3)

where χ ∈ Zp∞ , and∑
χ∈Zp∞

|c(χ)|2 =

∫
Z(p)

|f(x)|2dµ(p)(x). (4)

Let us introduce the p-adic norm, i.e. a map: | . |p: Q→ R+ defined as follows:

| x |p= pordp(x) (5)

if x 6= 0 and zero otherwise, where ordp is the p-adic order. We denote by Qp

the field of p-adic numbers as the completion of the field Q with respect to the
p-adic norm. Thus the ring Zp of p-adic integers is a subring of the ring Qp, i.e.
Zp = {x ∈ Qp :| x |p≤ 1}. The metric given by

ρp (x, y) =| x− y |p x, y ∈ Qp (6)

makes Qp a complete metric space and since the corresponding metric is non-
Archimedean, the corresponding metric ρp satisfies the strong triangle inequal-
ity:

ρp (x, y) ≤ max (ρp(x, z), ρp(z, y)) x, y, z ∈ Qp. (7)

This is called an ultrametric. The p-adic norm has a discrete set of values
{pr : r ∈ Z} ∪ {0}, thus we need to consider balls of radiuses pr, where r ∈ Z.
Let us denote by Br(a) = {x :| x− a |p≤ pr} the closed ball of radius pr with
the center at a point a ∈ Qp, the corresponding open ball is denoted by B−r (a) =
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{x :| x− a |p< pr}, and by Sr(a) = {x :| x− a |p= pr} the sphere of radius pr

with the center at a point a ∈ Qp, r ∈ Z. Therefore

∪rBr(a) = Sr(a) = Qp, (8)

and

∩rBr(a) = {a} . (9)

Let us note that B0 = Zp is the set of p-adic integers, S0 = Z? is the group of
invertible elements (i.e. multiplicative group) in Zp, and B−1 = pZp is a unique
maximal ideal of the ring Zp. A typical interval in Qp is of the form:

a+ pnZp =
{
x ∈ Qp :| x− a |p≤ p−n

}
(10)

The following lemma gives a characterization of a measure on a p-adic interval.

Lemma 1 Let [x]q = 1−qx
1−q . For d a fixed positive integer with (p, d) = 1 let

X = Xd = lim←N
Z/dpNZ, X1 = Zp, X? =

⋃0<a<dp
(a,p)=1

(
a+ dpNZp

)
, and

a+ dpNZp =
{
x ∈ X/x ∼= a(mod dpN )

}
,

a ∈ Z, 0 < a < dpN .
Then for any positive integer N ,

µq
(
a+ dpNZp

)
=

qa

[dpN ]
(11)

is a distribution function on X.

Proof. (see [36]).
2

This distribution yields an integral for each non-negative integer m such that

∫
Zp

[a]mdµq(a) = lim
N→∞

pN−1∑
a=0

[a]m
qa

[pN ]
.

Then for f an uniformly differentiable function UD (Zp,Cp) at a ∈ Zp we have:∫
Zp

f([x])dµq(x) = lim
N→∞

1

[pN ]

∑
0<x<pN−1

f([x])qa.

2.3 Projection-valued measures

The purpose of this subsection is to show that certain representations of the
Cuntz algebras Op, where p is a prime, and associated projection-valued mea-
sures, offer insight into some classical questions regarding distribution functions.
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Assigning of distribution functions (or rather measures) to infinite products
and Zeta functions dates back to Jessen and Wintner ([20]). Here we are con-
cerned with construction of a related family of measures. As it turns out, in
some cases, a direct approach will not work.

An indirect approach which we take is this: Recall that by Riesz, a measure
is a positive linear functional on some suitably chosen algebra of continuous
functions, and often this algebra is naturally embedded as an abelian subalge-
bra of an ambient non-abelian C*-algebra. We use this fact to advantage below;
and in our construction, the ambient C*-algebra will be one of the Cuntz al-
gebras. We will then get the desired measure as a restriction of a state on the
Cuntz algebra, the state in turn corresponding to a representation via the GNS
representation.
We recall that one denotes by Op the C∗-algebra generated by p ∈ N, isometries
S0, . . . , Sp−1 satisfying

S∗i Sj = δij1 (12)

and

p−1∑
i=0

SiS
∗
i = 1. (13)

where i, j = 0, . . . , p− 1.

We construct certain projection-valued measures by studying subdivisions
of compact metric spaces and subdivisions of projections in Hilbert spaces.

Definition 2 Let (X, d) be a compact metric space. For subsets A ⊂ X, define
the diameter

|A| := sup {d (x, y) /x, y ∈ A} .

A partition of X is a family {A (i)}i∈I , where I is some index set, such that⋃
i

A (i) = X,

and
A (i)

⋂
A (j) = ∅, if i 6= j.

Let p ∈ Z+, N ≥ 2 and Γp := {0, . . . , p− 1}. Suppose that for each k ∈ Z+ we
have a partition into Borel subsets Ak (a) indexed by a ∈ Γkp = Γp × . . . × Γp
k−times and |A| = 0

(
p−ck

)
, c > 0. If every Ak+1 (a) is contained in some

Ak (b), we say that {Ak (a)} is a p-adic system of partitions of X.

Definition 3 Let H be a complex Hilbert space. A partition of projections in
H is a system {P (i)}i∈I of projections, i.e.,

P (i) = P (i)
?

= P (i)
2
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such that
P (i)P (j) = 0 (orthogonality)

if i 6= j, and ∑
P (i) = 1H(completeness)

where 1H is the identity operator in H. Suppose that for every k ∈ Z+ we have
projections {P (a)}a∈Γk

p
such that every P (a)k+1 is contained in some P (b)k,

i.e. P (b)k P (a)k+1 = P (a)k+1 then the combined system {P (a)k}k∈Z+,a∈Γk
p

is

a system of partitions of 1H forming, by p-adic subdivisions, an p- adic system
of projections.We call such system a p-adic system of partitions of 1H into
projections.

Definition 4 Denote by B (X) the Borel subsets of the compact metric space
X. A positive operator-valued function E defined on B (X) is called a σ additive
measure if, given a sequence B1, B2 . . . , in B (X) such that Bi

⋂
Bj = ∅, i 6= j,

then

E

(⋃
i

Bi

)
=
∑

E (Bi) .

Note that the values E (Bi) are positive operators (or non-negative,
i.e. < ξ,E(B)ξ >≥ 0) so we may take the summation on the right hand side to
be convergent in the strong operator topology.

Definition 5 A σ−additive function E : B (X)→ (positive operators) is called
a positive operator measure (PVOM). We say that a PVOM E is an orthogonal
projection valued measure if one of the two equivalent conditions (a) and (b) is
satisfied

• (a) E (A
⋂
B) = E (A)E (B), for all A,B ∈ B (X)

• (b) E (A)E (B) = 0 if A,B ∈ B (X) and A
⋂
B = ∅.

Note that (b) enables us to state the σ-additive property for countable disjoint
families of Borel sets: ∑

i

E(Ai) = E(
⋃
i

Ai). (14)

From ([21]) we have the following lemma:

Lemma 6 Let p ∈ Z+, N ≥ 2. Let (X, d) be a compact metric space and
let H be a complex Hilbert space. Let {Ak (a)}k∈Z+,a∈Γk

p
be a p-adic system of

partitions of X and let {Pk (a)}k∈Z+,a∈Γk
p

be the corresponding p-adic system

of projections. Then there is a unique normalized orthogonal projection-valued
measure E (.) defined on the Borel subsets of X and taking values in the orthog-
onal projections in H such that:

E (Ak (a)) = Pk (a) (15)

for every k ∈ Z+, a ∈ Γkp.
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Proof. see ([21]) 2

Let the operators Pk (a) be defined by

Pk (a) := Sa1Sa2 . . . SakS
?
ak
. . . S?a1 (16)

where a = (a1, a2, . . . , ak) ∈ ΛkA are total set in the abelian algebra C (ΛA).
For every k ∈ Z+, the finite sums

∑
a∈Λk

A
caχAk(a) form an algebra of functions

Uk on X and from the definition of the partition system {Ak (a)}k∈Z+,a∈Γk
p

it follows that there are natural embeddings Uk → Uk+1. Thus the mapping
defined for every k ∈ Z+ by∑

a∈Γk
p

caχAk(a) →
∑
a∈Γk

p

caPk (a) , k →∞,

extends to the algebra U :=
⋃
k∈Z+

Uk. The algebra U is closed under the ?.
Denote by π the mapping defined above. By the definitions 1 and 2 we have
that π (f1f2) = π (f1)π (f2) with f1, f2 ∈ U and π

(
f̄
)

= π (f)
?
, with f ∈ U .

We observe that any function f ∈ C (X) may be uniformly approximated with
sequences in U since the sets Ak (a) satisfy |A| = 0

(
p−ck

)
, c > 0. Then the map

π by a standard argument from function theory extends from C (X) to all the
Baire functions and the extension preserves products and adjoints. Call such
extension π̃. Define a projection-valued measure by the following:

E (B) := π̃ (χB) (17)

where χB is the indicator function of the set B. The measure π̃ is obtained as
unique extension from the measure π so it follows that E (.) satisfies the prop-
erties of definition 2 and it is countably additive. Also it satisfies E (Ak (a)) =
Pk (a) for every k ∈ Z+, a ∈ Γkp.

Lemma 7 Let p ∈ Z+, N ≥ 2 and let S0, S1, . . . , Sp−1 be a representation of
Op on a Hilbert space H. For k ∈ Z+ and a = (a1, a2, . . . , ak) ∈ Γkp set

Sa := Sa1Sa2 . . . Sak (18)

and Pk (a) = SaS
?
a. Then the system {Pk (a)} is a system of partitions of 1H

into projections.

Proof. The projections Pk (a) generate an abelian subalgebra of operators.
If two operators S, T are positive on a Hilbert space H then we say S ≤ T if
〈x, Sx〉 ≤ 〈x, Tx〉. For a pair of projections P and Q in a Hilbert space H, we
have P ≤ Q if an only if ||Ph||2 ≤ ||Qh||2 for all h ∈ H. Orthogonality holds if
an only if PQ = QP = 0. Then ∑

i

Pk+1 (ai) =
∑
i

Si1 . . . SikSiS
?
i S

?
ik

. . . S?i1 = Si1 . . . Sik
∑

SiS
?
i S

?
ik
. . . S?i1 = Si1 . . . SikS

?
ik
. . . S?i1 = Pk (a)

using the defining relations of the Cuntz algebra. Thus, Pk+1 (ai) ≤ Pk (a), i.e.
Pk (a)Pk+1 (ai) ≤ Pk+1 (a) . 2
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3 Gelfand spaces

The realization of the representations of the Cuntz algebras Op we have obtained
in Section 2 above leads to projection valued measures, and to an important fam-
ily of abelian C?-algebras. Here we study the Gelfand space of these algebras.
They occur naturally as C?-subalgebras of the Cuntz algebra Op, here we want
to look at them in connection with the system of projections as in Lemma 7.

Let us recall that a finite system of continuous functions σi : X → X in a
compact metric space X is said to be an iterated function system (IFS) if there
is a mapping σ : X → X, onto X, such that

σ ◦ σi = idX .

Given an iterated function system (IFS) such that the system is complete, i.e.
limk→∞ diameter (σi1 ◦ . . . ◦ σik(X)) = 0 and non-overlapping if for each k the
sets

Ak(i1, . . . , ik) := σi1 ◦ . . . ◦ σik(X) (19)

are disjoint, i.e. the sets Ak(i1, . . . , ik) are mutually disjoint for different multi-
indices. Then from ([24]) there is a unique projection-valued measure P defined
on the Borel subsets of X such that

P (Ak(i1, . . . , ik)) = Si1 . . . SikS
?
ik
. . . S?i1 , (20)

see (16). Let C (Ω) the canonical abelian C?-algebra inside Op. Specifically,
we let Ω be the Gelfand space of the C?−subalgebra in Op generated by the
elements Sk1 . . . SkmS

?
km

. . . S?k1 as the multi-indices k = (k1, . . . , km) vary. We
use the following:

Lemma 8 Let Ω be the Gelfand space of the abelian C?−subalgebra A in Op
generated by the monomials
{SkS?k : k varying over all multi-indices formed from the alphabet {1, 2, . . . , p}} .
Then for every i ∈ {1, . . . , p}, the mapping:

A ∈ A 7−→ SiAS
?
i ∈ A

induces an endomorphism σ̃i of Ω.
Proof. An easy computation. 2

Remark If (Si) are isometries in an Hilbert space H generating a copy of the
Cuntz- C?- algebra

σ (A) :=
∑
i

SiAS
?
i (21)

defines an endomorphism σ of B (H) = all the bounded operators on H. In fact,
modulo an action by unitary matrices

Si →
∑
j

ujiSj (22)
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this is a bijection between End (B(H)) and Rep (Cuntz,H). The number of
generators for the particular Cuntz algebra is called the Powers-index of the
endomorphism σ.

In particular we take Ω = Ẑ. We should think of the Ẑ as projective limit
of Zp, p prime. The abelian C?-algebra is generated by words of the form
S{k}S

?
{k} where {k} = (1, . . . , k) for some k ∈ N. Denote by E the projection-

valued measure constructed in ([21]) onto the abelian C? algebra C (Ω) such
that

E (Ak(a1, . . . , ak)) = S{k}S
?
{k}.

In particular if the induced measure is given by the following formula:

µf (.) :=< f |E (.) f >= ||E (.) f ||2 (23)

where f ∈ H, ||f || = 1 and X = [0, 1], then µf is a probability measure. By
choosing the partition system such that the subdivisions are given by the p-adic
fractions α1

p + . . .+ αk

pk
where αi ∈ Zp.

Then it follows that both the projection valued measure P (.) and the indi-
vidual measures µf (.) = ||P (.)f ||2 are defined on Borel subsets of [0, 1).

4 Cuntz algebras and p-adic distributions

In this section we study commutation relationship between the cases with S?

on the left vs on the right in operator monomials. It will be governed by a
deformation parameter. It is of interest in two ways: a quantum deformation
and a parameter in a Riemann zeta function. In([1]) we used the q-integration
in a wavelets construction depending on a parameter q via representations of
the Cuntz algebra. Throughout the paper Q, C, Qp and Cp will respectively
denote the field of rational numbers, the complex number field, the field of
the p-adic rational numbers and the completion of the algebraic closure of Qp.
When we talk about q we consider the parameter as a complex number and
we assume that |q| ≤ 1 We consider a class of representations of the Cuntz
algebra in the space of (complex-valued) functions on the q p-adic interval as in
Lemma 1. These representations are unitarily equivalent to the representations
constructed by Bratteli and Jorgensen in ([4]). Let L2 (Zp, dµq) be the space of
L2-integrable functions.

Definition 9 We define the characteristic function of a p-adic interval I by
χI(t) such that χ(t) = 0 if t /∈ 1 and χ(t) = 1 if t ∈ I. .

Remark. Note that in Lemma 9 below, we use a measure on Zp different
from the p-adic Haar measure, i.e. a measure dµq, see ([36]).

Lemma 10 Let p be fixed; Op the Cuntz algebra with p generators S0, S1, . . . , Sp−1;
let Zp be the p-adic integers and dµq the measure from Lemma 1 ; and let
L2(Zp, dµq) be the corresponding Hilbert space; see section 2.1. For ξ ∈ L2(Zp, dµq)),
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x ∈ Zp, and 0 ≤ i ≤ p− 1.
Set Ip,1 be a p-adic interval given by {sup(a) + pnZp, a ∈ {0, . . . , p− 1}} and

(Siξ) (x) =
√
qpχ1(x− i)ξ([1

p
x]). (24)

Then these operators Si define a representation of Op, i.e., the formula for the
adjoint operator S?i is given by (26) below, and we have{

S?i Sj = δi,jIL2(Zp,dµq), and∑
i=0,...,p−1 SiS

?
i = IL2(Zp,dµq)

(25)

Proof. The generators Si in L2(Zp) have the following form:

Siξ(x) =
√
qpχ1(x− i)ξ([1

p
x]).

Then, by using the inner product and the generators Si we find the expression
for the adjoint operator S?i as follows:∫
Zp

Siξ(x)η(x)dµq(x) =

∫
Zp

√
qpχ1(x− i)ξ([1

p
(x− i+ i)])η(x− i+ i)dµq(x)∫

Zp

√
qpχ1(x− i)ξ([1

p
(x− i)])η(i+ x− i)dµq(x) =∫

Zp

√
qpχ1(x− i)ξ([1

p
(x− i)])η(i+ p

x− i
p

)q−pdµq(
x− i
p

)∫
Zp

√
qpχ1(x− i)ξ([1

p
(x− i)])η(i+ p

x− i
p

)dµq(x) =∫
Zp

1√
qp
ξ(x)η(i+ px)dµq(x) =

∫
Zp

ξ(x)S?i η(x)dµq(x)

since dµq(px) = qpdµq(x). This follows from the fact that the the measure of
B0 is qp of the measure of pB0, where B0 is the ball Zp union of disjoint balls
B−1(k) = k + pB0, k = 0, . . . , p− 1. Thus

S?i ξ(x) =
1√
qp
ξ(i+ px). (26)

The operators defined by (24) and (26) satisfy the Cuntz algebra relations thus
they give a representation of Op.
2

By using the above p-adic representation of the Cuntz algebra we can write

SiS
?
i ξ(x) = χ1(x− i)ξ(x).

Thus, by iterating, we have

< 1, SIS
?
I 1 >=

∫
Zp

χIp,k (x− I) dµq(x)

11



where Ip,k =
{
sup

(
i1 + . . .+ ikp

k−1
)

+ pnZp
}

, where n ≥ k and χIp,k (x− Ip,k)
is the corresponding characteristic function.

It is a fact that the p-adic representation is equivalent to those permutative
representations as in ([4]). Then by considering the iterated function system
(IFS) given by σi(x) = x+i

p , we have

σi1 ◦ . . . ◦ σik [0, 1) =

[
i1
p

+ . . .+
ik
pk
,
i1
p

+ . . .+
ik
pk

+
1

pk

)
(27)

and by (19) we set Ak(i1, . . . , ik) = σi1 ◦ . . . ◦ σik [0, 1).

We recall that the induced measure µf when f = 1 is given by :

µ1 (Ak(i1, . . . , ik)) (28)

=< 1, Si1 . . . SikS
?
ik
. . . S?i11 > . (29)

Compare with (23) above.
Thus on

(
L2([0, 1], dµq

)
and for k = 1 we have

µ1 (A1(i1)) =< 1, Si1S
?
i11 >=∫

Zp

χIp,1(x− i)dµq =
qp−1

[p]q
.

Observe that by iterating, we have

< 1, SIS
?
I 1 >=

∫
Zp

χIp,k (x− I) dµq(x)

where Ip,k = (i1, . . . , ik) and χIp,k (x− Ip,k) the characteristic function of the
p-adic interval Ip,k.

For any k > 1 (see Cor 3.5 ([4]):

µ1(Ak(i1, . . . , ik)) =
(qp−1)k

[p]kq
.

Thus we have proven the following Lemma:

Proposition 11 Given a representation of Op on
(
L2([0, 1), dµq

)
and let Ak(i1, . . . , ik)

be the above set, then we have

µ1 (Ak(i1, . . . , ik))) =
(qp−1)k

[p]kq
.

Then the measure for every k of the interval Ak(i1, . . . , ik) is a product of
Bernoulli type measures, e.g. µ1(A1(i)).

12



Proof. We observe that with the Hilbert space and the inner product 〈·, ·〉 as
before, from the above calculation of the induced measure written in terms of
the Si and S?i , we have:

||Si1S?i11|| . . . ||SikS?ik1|| = µ1(Ak(i1, . . . , ik))).

Thus it follows

||Si1S?i11|| . . . ||SikS?ik1|| = ||S?ik . . . S
?
i11||

which, in a probabilistic setting, it is a condition of independence when the
random variable are the SiS

?
i .

2

Let us then observe that the measure µ1 constructed in Lemma 7 has analo-
gies with the case of the probability of Bernoulli generated numbers. To see
that let us recall then a few known facts about p-divisibility and q-Riemann zeta
functions, see ([49]). For p a prime an s-tuple (n1, . . . , ns) of natural numbers
is said to be p-divisible if p divides each nj . Using this notion of p-divisibility
for the case of Bernoulli trials a q- Riemann zeta function arises. For m ∈ Z+,
let 1̄, . . . , m̄ be the set of congruences classes modulo m. Since [m]q = 1−qm

1−q it
follows for 0 ≤ q < 1 that the probability of a Bernoulli generated number n
belonging to the class r̄ is

Pq (n ∈ r̄) :=
∑
k

qr−1+km (1− q) = (1− q) qr−1
∑
k

(qm)
k

=
(1− q)qr−1

1− qm
=
qr−1

[m]

since qr−1

[m] is continuous from the left at q = 1 then Pq may be continuously

extended on congruences classes to q = 1 by defining P1 (n ∈ r̄) = 1
m for

r = 1, . . . ,m.
Hence the extended Pq is a q-analog of the equiprobable measure since all num-
bers Z+ are equally likely to come up.
For n ∈ Z+, let n = pα1

1 pα2
2 . . . pαk

k , where p1, . . . , pk are distinct primes and
α1, . . . , αk are positive integers.
Thus the q canonical factorization of n is defined to be {n} = [p1]α1 [p2]α2 . . . [pk]αk .
Set ν(n) = α1(p1 − 1) + α2(p2 − 1) + . . .+ αk(pk − 1) with the convention that
ν(1) = 1. For s > 1 and 0 ≤ q < 1 a q analog of the Riemann zeta function is
defined by

ζq (s) =
∑
n

qsν(n)

{n}s
. (30)

Then for s > 1 and 0 ≤ q < 1 the zeta function ζq (s) is convergent and it has
the form

ζq (s) =
∏
p

(
1− qs(p−1)

[p]s

)−1

(31)

13



where the product is over all primes.
If we consider repeating the Bernoulli scheme s times for every p then this will
result in a sequence of s- tuples each of the form (n1, n2, . . . , ns)p. Since the
components of such an s-tuple are determined independently it is known that
the probability of n not being divisible is

1−
∏
j

Pq(nj ∈ p̄) = 1−
∏ qp−1

[p]
= 1− qs(p−1)

[p]s
.

Provided that s > 1 the probability of {n1, . . . , ns} not being p divisible for

every prime p is given by
∏(

1− qs(p−1)

[p]s

)
and this infinite product converges

to 1

ζ
(s)
q

. Observe that by the above construction the induced measure for k = 1

and f = 1 where A1(i) is the p-adic interval is :

µ1(A1) :=< 1, Si1S
?
i11 >=

qp−1

[p]q

it agrees with the value of the probability of a Bernoulli generated number.
Then it is a standard fact that it is related to the q- zeta function introduced
above. Let us denote the measure constructed above by µ1 to denote the de-
pendence on the choice of the prime p.
For a prime p, let (n1, n2, . . . , ns) be an s-tuple of natural numbers where p
divides each nj and A1 (ni) and As (n1, n2, . . . , ns) are as above.
Then, for every ni, the measure is:

µ1(A1(ni)) =
1

[p]q
qp−1

for each i = 1, . . . , s.
Thus,

1−
∏

i=1,...,s

µ1(A1(ni)) = 1−
∏

i=1,...,s

1

[p]q
qp−1

= 1− 1

[p]sq
qs(p−1)

for every p and µ1(As(n1, n2, . . . , ns)) = 1
[p]sq

qs(p−1) from Proposition 11. We

apply the construction of the infinite product measure see ([23]) since the Kol-
mogorov compatibility condition is satisfied. Then it follows that µ1 is a prob-
ability measure.
Denote by µ1(As (n1, n2, . . . , ns)) = µ1(s) since it depends on the variable s
appearing in the p-adic interval As(n1, n2, . . . , ns).

Thus we have:

14



Theorem 12 For every prime p there is a probability measure µ1 induced from
operator projection-valued measure associated to the Cuntz algebra Op such that:∏

p

(1− µ1 (As(n1, . . . , ns)))

converges to 1
ζq(s) where ζq(s) is a q-Riemann zeta function.

Proof. For a prime p an r−tuple (n1, n2, . . . , nr) of natural numbers is said
to be p-divisible if p divides each ni. Thus the notion of p-divisibility applied
in the context of Bernoulli trials gives rise to a probabilistic application of the
q- Riemann zeta function, see ([49]). The measure constructed above from an
operator theoretic approach via Cuntz algebras is a probability measure. It is a
p-divisible measure since p divides each ni by construction of the maps σi. Let∏

i

µ1

be the product measure constructed from the family of measures µ1 constructed
above.
Therefore by standard results there exists an independent product measures
space such that the product measure of µ1 is a probability measure. Since from
Theorem 2([49]) we get that the infinite product∏

p

(
1− qr(p−1)

[p]r

)
converges to 1

ζq(s) . This proves the statement of the theorem. 2

In the language of probability we can see this formula as the statement that the
ζ-probability on the events {pN : p ∈ all primes 2, 3, 5, . . .} are independent.

5 Markov measures

In this section we look into the construction of a Markov measure via the induced
measures introduced in Section 2. A Markov measure is built out of the induced
measure µf of the previous section for a particular choice of the functions f .
This turns out to be a p-adic distribution giving rise to Bernoulli polynomials
and having a Markovian behaviour. When we choose the function f = 1, m = 0
we get the results of the previous section. We want to point out that in this
construction we use the definition of the Bernoulli polynomials as in ([36]) and
the measure in the integral definition of the Bernoulli polynomials is the q-
measure µq which we have defined on Section 2.
Set Ip,i to be the p-adic interval (i+ pZp) for every p prime. From Lemma 1
we have

µq (Ip,i) =
qi

[p]q
. (32)
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Iterating (32) we get the following:

µq
(
i1 + i2 + . . .+ ik + pkZp

)
=
qi1+i2+...+ik

[pk]q
.

Let us recall that any open-closed subset in Z? is a disjoint union of some
family of finite intervals Ia,n = a + pnZp, as defined in the previous section.
Let us denote by I(K) the p-adic interval where K = {i1 . . . ik} . Consider the
functions

fm,q(Ii1,...,ik,n) = [pn]m−1Bm

(
i1 + . . .+ ik

pn
: qp

n

)
where Bm (x : q) are the p-adic q-Bernoulli polynomials given in the integral

representation by

Bm (x : q) =

∫
Zp

[x+ t]mq−tdµq(t).

In particular when m = 1, we have

B1 (x : q) =

∫
Zp

[x+ t]q−tdµq(t).

Lemma 13 Let the functions νm,q be defined on a p-adic interval Ia,n = {a+ pnZ}
by

νm,q (Ia,n) = [pn]m−1Bm

(
a

pn
: qp

n

)
. (33)

Then fm,q is a Qp(q)- measure on Z?.

Proof.
See ([36]). 2

Let Im,,ij ,f = {fm(ω, i1), ω ∈ Zp}, where the functions f are taken as fm(ω, ij) =
[ω + ij ]

m. We consider a sequence of random variables Xij such that

Xi1(ω) ∈ Im,i1,f , . . . , Xik(ω) ∈ Im,ik,f .

The next corollary shows that the distribution of the process
{
Xij

}
is given

by Bernoulli polynomials with respect to the induced measure of Section 4.

Corollary 14 Let Im,i1,f be defined as

Im,i1,f = {fm(ω, i1), ω ∈ Zp} . (34)

Then there exists a measure P such that:

P (Xi1(ω) ∈ I1,i1,f ) = B1

(
i1
pn

: qp
n

)
. (35)
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Proof. We take the induced measure µf constructed in Section 4. Let the
function fm be given by f1 : f(ω, i1) = [ω + i1] when m = 1
Then

P (Xi1(ω) ∈ I1,i1) = | < f1, SωS
?
ωf1 > |

=

∫
Zp

χI1,i1 (t− i1)[(i1 + t)]q−tdµq(t) (36)

where we denote by [x]q = 1−qx
1−q . 2

Using the measure P as in the previous corollary, we define the joint probability
to be:

P
(
Xi1(ω) ∈ I(1,i1,f1),, . . . , Xik(ω) ∈ I(1,ik,f1)

)
=

µf1 (A1(i1)) . . . µf1 (A1(i1, . . . , ik)) = B1 ([i1 : q]) . . . B1 ([i1 + . . .+ ik : q]) .

Thus we get the following:

Theorem 15 Given the measure as in Corollary 14 then we have

P
(
Xi1(ω) ∈ I(1,i1,f1) | Xi2(ω) ∈ I(1,i2,f1), . . . , Xik(ω) ∈ I(1,ik,f1)

)
= P

(
Xi1(ω) ∈ I(1,i1,f1

)
.

Therefore the measure P is a Markov measure.

Proof. This can be seen by the following:

P
(
Xi1(ω) ∈ I(1,i1,f1) | Xi2(ω) ∈ I(1,i2,f1), . . . , Xik(ω) ∈ I(1,ik,f1)

)
B1 ([i1 : q]) = P (Xi1(ω) ∈ I1,i1,f1) .

Thus the statement holds. 2
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