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Markov Modeling of Minimally Invasive Surgery
Based on Tool/Tissue Interaction and Force/Torque

Signatures for Evaluating Surgical Skills
Jacob Rosen, Blake Hannaford*, Member, IEEE, Christina G. Richards, and Mika N. Sinanan

Abstract—The best method of training for laparoscopic surgical
skills is controversial. Some advocate observation in the operating
room, while others promote animal and simulated models or a com-
bination of surgery-related tasks. A crucial process in surgical ed-
ucation is to evaluate the level of surgical skills. For laparoscopic
surgery, skill evaluation is traditionally performed subjectively by
experts grading a video of a procedure performed by a student.
By its nature, this process uses fuzzy criteria. The objective of the
current study was to develop and assess a skill scale using Markov
models (MMs). Ten surgeons [five novice surgeons (NS); five expert
surgeons (ES)] performed a cholecystectomy and Nissen fundopli-
cation in a porcine model. An instrumented laparoscopic grasper
equipped with a three-axis force/torque ( ) sensor was used
to measure the forces/torques at the hand/tool interface synchro-
nized with a video of the tool operative maneuvers. A synthesis
of frame-by-frame video analysis and a vector quantization algo-
rithm, allowed to define signatures associated with 14 dif-
ferent types of tool/tissue interactions. The magnitude of ap-
plied by NS and ES were significantly different ( 0 05) and
varied based on the task being performed. High magnitudes
were applied by NS compared with ES while performing tissue ma-
nipulation and vise versa in tasks involved tissue dissection. From
each step of the surgical procedures, two MMs were developed
representing the performance of three surgeons out of the five in
the ES and NS groups. The data obtained by the remaining two
surgeons in each group were used for evaluating the performance
scale. The final result was a surgical performance index which rep-
resented a ratio of statistical similarity between the examined sur-
geon’s MM and the MM of NS and ES. The difference between
the performance index value, for a surgeon under study, and the
NS/ES boundary, indicated the level of expertise in the surgeon’s
own group. Using this index, 87.5% of the surgical procedures were
correctly classified into the NS and ES groups. The 12.5% of the
procedures that were misclassified were performed by the ES and
classified as NS. However in these cases the performance index
values were very close to the NS/ES boundary. Preliminary data
suggest that a performance index based on MM and signa-
tures provides an objective means of distinguishing NS from ES.
In addition, this methodology can be further applied to evaluate
haptic virtual reality surgical simulators for improving realism in
surgical education.
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I. INTRODUCTION

T HE USE OF minimally invasive surgical (MIS) techniques
has become widespread only within the last ten years. Al-

though the technology has been available in some form for over
100 years, only recently has the instrumentation developed to
an extent that makes the performance of laparoscopic general
surgical procedures possible. Using a miniature video camera
and instruments inserted through small portals, operations pre-
viously performed through large incisions that required long re-
covery times are now performed with a much shorter recovery.
The use of this new technology has also presented a new set of
problems; namely, the training of individuals to perform tech-
niques that require a new set of skills. One of the more difficult
tasks in surgical education is to teach the optimal application
of instrument forces and torques necessary to conduct an oper-
ation. This is especially problematic in the field of MIS where
the teacher is one step removed from the actual conduct of the
operation.

Surgical skills of MIS performed by senior surgeons and
surgeons during their residency were evaluated objectively by
using mechanical models, animal models and virtual reality
(VR) simulators with or without haptic interface. The surgical
tasks used for skill evaluation have varied from simple actions
like peg transfers, pattern cutting, clip and divide, endolooping,
mesh placement, fixation [1], drilling [2], transferring small
inanimate objects [5], making multiple defined incisions [6],
suturing with intracorporeal or extracorporeal knots [1]–[5],
[7], [8], and palpation [9], [10] to full surgical procedure
[8], [11]. The quantitative parameters for skill evaluation in
these tasks were in some cases only single measures such as
completion time, and other multiple parameter indexes, virtual
position, virtual force, and a checklist.

The development of a surgical simulation system to achieve
the goals of safe and adequate training in a cost-effective
manner is a very real necessity. Such a system holds promise
for providing a less stressful learning environment for the
surgical student while eliminating risks to the patient. It would
permit training outside of the operating room and could also
support a measurement of competence—much akin to a pilot
training in a flight simulator. The use of VR models for teaching
these complex surgical skills has been a long-term goal of
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Fig. 1. The human machine interface in several surgical systems
setups—General overview.

numerous investigators [14]–[16]. Many of these simulators
under development couple the VR computer graphics with
haptic ( reaction) feedback devices in order to provide a
fully immersed virtual environment, combining both visual and
haptic feedback of the tool/tissue interaction during the surgical
procedures [7], [11], [13], [17]–[19]. In parallel to the VR
in medical training stations, the use of robotic technology to
aid surgeons has been actively studied [20]–[26]. Commercial
surgical robotic systems, like ZEUS by Computer Motion and
the daVinci system by Intuitive Surgical, Inc., which are still in
clinical trials, may redefining the operating room of the future.

What both MIS, the VR/haptic surgical training stations,
and surgical robots have in common is a new human/machine
interface (HMI)—Fig. 1. This HMI may be subdivided into
human/tool and tool/tissue interfaces. While other studies have
focused on the tool-tip/tissue interaction [10], [27], [28], our
research is aimed at analyzing the human/tool interface in MIS.

The methodology developed in the current study was based
on Markov modeling (MM) and a subset of hidden Markov
modeling (HMM). HMM were extensively developed in the
area of speech recognition [29], [32]–[34]. Based on the theory
developed for speech recognition HMMs were emerged in
the field of human operator modeling in general, and robotics
in particular. HMMs were applied for studying teleoperation
[35]–[37], human manipulation actions [38], human skills
evaluation for the purpose of transferring human skill to robots
[39]–[41], and manufacturing applications [42], [43]. Gesture
recognition with HMMs has also received increasing recent
attention from the rehabilitation technology community (see
[44] for review). They are also being applied to the recognition
of facial expressions from video images [45]. Moreover,
HMMs may well prove useful in many of the other emerging
applications beyond human computer interfaces, e.g., DNA and
Protein modeling [46], fault diagnosis in nuclear power plants
[47], and detection of pulsar signals [48]. Clearly, there is a
flowering of research in the last few years in this area indicating
a wide appreciation of the potential of HMMs to provide better
models of the human operator in complex interactive tasks with
machines.

The goal of this study was to create new quantitative knowl-
edge of the forces and torques applied by the surgeons on their
instruments during minimally invasive surgery. This goal was
pursued through several objectives: 1) developing a modified

surgical grasper containing embedded sensors that were capable
of measuring the forces and torques ( ) applied by the sur-
geons duringin-vivoMIS; 2) creating a database of signals
during actual operating conditions on experimental animals; and
3) developing statistical models (MMs) of the data, which
can be used to characterize surgical skills. Statistical models of
this database can be used to objectively evaluate surgical skills
for training advanced laparoscopic surgical procedures and veri-
fying surgical training systems in addition to optimizing designs
for surgical simulators and robots.

II. M ATERIALS AND METHODS

A. Experimental System Setup

The experimental setup, shown schematically on Fig. 2(a) in-
cludes two sources of information which were acquired while
performing the MIS procedures: 1) data measured at the
human/tool interface and 2) visual information of the tool tip in-
teracting with the tissues. The two sources of information were
synchronized in time and recorded simultaneously for off-line
analysis.

The forces and torques at the interface between the surgeon’s
hand and the endoscopic grasper handle were measured by two
sensors. The first sensor was a three-axis sensor (modified
ATI—Mini model) which was mounted into the outer tube
(proximal end) of a standard reusable 10-mm endoscopic
grasper (Karl Storz)—Fig. 3(a). The sensor was capable of
simultaneously measuring three components of force (,

, ) and three components of torque (, , ) in the
Cartesian frame [Fig. 3(b)]. The sensor orientation was such
that and axes generated a plane that was parallel to the end
effector’s internal contact surface when closed, and theand

axes defined a plane which was perpendicular to this surface.
The second force sensor (Futek—FR1010) was mounted on

the endoscopic grasper handle measuring the forces applied by
the surgeon’s thumb on the grasper’s handle. Due to the sensor’s
two beam parallel structure, it measured only the force compo-
nent that was perpendicular to the handle. This force component
( ) generates the moment on the handle which in turn creates
the grasping/spreading interactions between the tissue and the
tool tip.

The seven channels of data ( , , , , , , )
were sampled at 30 Hz using a laptop computer with a PCMCIA
12 bit A/D card (National Instruments—DAQCard 1200). Pre-
liminary measurements at 1 kHz showed that 99% of the
signals’ energy (PSD) was included in the 0–10 Hz bandwidth.
In addition to the data acquisition, a LabView (National Instru-
ments) application was developed incorporating a graphical user
interface for visualizing the data in real-time superimposed
with the view from the endoscopic camera monitoring the move-
ment of the grasper while interacting with the internal tissues
and organs [Fig. 2(b)]. This synchronized visual integration was
achieved by using a video mixer in a picture-in- picture mode.
The integrated interface was recorded during the surgical oper-
ation for off-line analysis.

One of the grasper’s mechanical features enabled the sur-
geon to rotate the grasper’s outer tube, using a joint located
near the handle, in order to change the orientation of the tool
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Fig. 2. Experimental setup: (a) Block diagram of the experimental setup integrating theF=T data and the view from the endoscopic camera, (b) Real-Time user
interface ofF=T information synchronized with the endoscopic view of the procedure using picture-in-picture mode.

tip relative to the grasped tissue without changing the handle
orientation. The alignment between the tool tip origin and the
sensor remained unchanged since the outer tube and the tool tip
were linked mechanically. Moreover, due to the grasper’s in-
ternal mechanism and the location of the sensor, whenever
a grasping force was applied to the handle (), the grasper’s
outer tube was compressed. This tube compression was sensed
by the sensor ( ). The internal force coupling was de-
fined by a transfer function in the frequency domain, evaluated
based on preliminary measurement (Kinematic analysis of this
mechanism was performed in [10]). This transfer function was
further used to decouple the force measurements included in the
database.

B. Surgical Experiment Setup and Clinical Trial Protocol

Ten surgeons [five novice surgeons (NS) and five experienced
surgeons (ES)] participated in the experiment following a clin-
ical protocol that included three major steps. During the first
step each one of the subjects watched a video of the surgical pro-
cedures guided by an experienced surgeon. In the second step,
each one of the subjects performed a laparoscopic cholecystec-
tomy and laparoscopic Nissen fundoplication in a porcine model
(pig). During the third step all the subjects performed each one
of the 14 different pre-defined tool movements (Table II) in a re-
peatable fashion for one minute while interacting with the same
organs and soft tissues as in the surgical procedures. During
these interactions the typical involved in manipulating and
dissecting the soft tissue were recorded.

In laparoscopic cholecystectomy, the gallbladder is re-
moved due to pain and inflammation from gallstone, whereas
laparoscopic Nissen Fundoplication is performed to correct
gastroesophageal reflux. Each operation was divided into steps
(Table I). Although all the steps were performed for each pro-
cedure, data were recorded only when the instrumented grasper
was used with the following tool tips: atraumatic grasper,
curved dissector, and Babcock grasper [Fig. 3(c)]. During the
surgical procedure, the endoscopic camera was held by the
same experienced surgeon who also served as an assistant
throughout the whole surgery. A template was used for deter-
mining the port location of the tools and the camera. All the
surgical procedures were performed by the ten surgeons using
the same tools, port locations, and approximately the same

animal size. Protocols for anesthetic management, euthanasia,
and survival procedures were reviewed and approved by the
Animal Care Committee of the University of Washington and
the Animal Use Review Division of the U.S. Army Veterinary
Corps.

C. Data Analysis

Three types of analysis were performed on the raw data:
1) video analysis (VA) encoding the type of tool-tip/tissue
interaction; 2) vector quantization (VQ) encoding the
data into clusters (signatures); and 3) Markov modeling (MM)
for evaluating surgical skill level. Using the human language
as an analogy, the VA was performed by an expert surgeon to
identify the basic “words” of the MIS “language” for creating
a “dictionary.” In the same way as a single word is pronounced
differently by different people, the same tool/tissue interaction
is performed differently by different surgeons, yet they all
share the same meaning, or outcome, as in the realm of surgery.
The VQ was used to identify the typical associated
with each one of the tool/tissue interactions in the surgery
“dictionary,” or using the language analogy, it characterized
different pronunciations of a word. Utilizing the “dictionary”
of surgery, the MM was then used to define the process of each
step of the surgical procedure, or in other words, “dictating
chapters” of the surgical “story.”

1) Video Analysis:The VA was performed by two expert
surgeons encoding the video of each step of the surgical
procedure frame by frame (NTSC—30 frames/s). The en-
coding process used a code-book of 14 different discrete
tool maneuvers in which the endoscopic tool was interacting
with the tissue (Table II). Each identified surgical tool/tissue
interaction, had a unique pattern. For example, in the
laparoscopic cholecystectomy, isolation of the cystic duct and
artery involves performing repeated pushing and spreading
maneuvers (PS-SP—Table II), which are accomplished by
applying pushing forces mainly along the axis ( ) and
spreading forces ( ) on the handle.

The 14 tool/tissue interactions can be further divided into
three types based on the number of movements performed si-
multaneously. The fundamental maneuvers are defined as Type
I. The “idle” state was defined as moving the tool in space
(abdominal cavity) without touching any internal organ. The
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(a)

(b)

(c)

Fig. 3. The instrumented endoscopic grasper: (a) The grasper with the three axisF=T sensor implemented on the outer tube and a force sensor located on the
instrument handle. (b) The tool tip andX , Y , Z frame aligned with the three axisF=T sensor. (c) Tool tips used in the surgical procedure (from left to right):
Atraumatic Grasper, Babcock grasper, Curved dissector.

forces and torques developed in this state represent mainly the
interaction with the trocar and the abdominal wall, in addition

to the gravitational and inertial forces. In the “grasping” and
“spreading” states, compression and tension were applied to the
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TABLE I
DEFINITIONS OF SURGICAL PROCEDURESTEPS AND TYPES OF THETOOL TIPS THAT WERE USED(SHADED STEPSPERFORMED BUT NO

FORCE/TORQUEDATA WERE RECORDED)

TABLE II
DEFINITION OF TOOL/TISSUEINTERACTIONS AND THECORRESPONDINGDIRECTIONS OFFORCES ANDTORQUESAPPLIED DURING MIS

tissue by closing and opening the grasper handle, respectively.
In the “pushing” state, the tissue was compressed by moving the
tool along the axis. “Sweeping” consisted of placing the tool
in one position while rotating it around the and/or axes

(trocar frame). The rest of the tool/tissue interactions in Types
II and III were combinations of the fundamental ones in Type I.

2) Vector Quantization:The second type of analysis used
the -mean VQ algorithm to encode the continuous multi-
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dimensional data ( , , , , , , and ) into
discrete symbols representing cluster centers (signatures).
This step of the data analysis was essential for using the
discrete version of MM. During the first step of VQ analysis
the seven-dimensional data vector was reduced to a
five–dimensional (5-D) vector by calculating the magnitude of
the force and torque in the plane ( , ). Although it
may appear that information about the direction of the in
the plane was lost during this data reduction, this process
actually canceled out differences between surgeons due to
variations in standing position relative to the animal.

Given patterns contained in the pat-
tern space , the process of clustering can be formally stated as
seeking the regions such that every data vector

( ) falls into one of these regions and no
is associated in two regions, i.e.,

(1a)

(1b)

The -means algorithm, is based on minimization of the sum
of squared distances from all points in a cluster domain to the
cluster center,

(2)

where was the cluster domain for cluster centersat the
th iteration, and was a point in the cluster domain.
The pattern spaces in the current study were composed

from the applied on the surgical tool by the surgeon for
different tool/tissue interactions. A typical data vector was
a 5-D vector defined as . The cluster
regions represented by the cluster centers, defined typ-
ical signatures associated with a specific tool/tissue inter-
action (e.g., PS, PL, GR, etc.). The number of clusters iden-
tified in each type of tool/tissue interaction was based on the
squared-error distortion criterion [see (3)]. As the number of
clusters increased the distortion decreased exponentially. Fol-
lowing this behavior, the number of clusters was constantly in-
creased until the squared-error distortion gradient as a function
of k decreased below a threshold of 1%

(3)

The cluster centers for each tool/tissue interaction (Table II)
forming a code-book were then used to encode the entire data-
base of the actual surgical procedures converting the continuous
multidimensional data into a one-dimensional (1-D) vector of fi-
nite symbols representing signatures.

3) Markov Model (MM): The third and final step of the data
analysis was to develop the MM and the methodology for eval-
uating surgical skill in MIS. The MM was found to be a very
compact method to statistically summarize a relatively complex
task such as a step of a MIS procedure. Moreover, the skill level
was implemented into the MM by developing different MMs
based on data acquired for expert surgeons and NS performing
the different steps of the MIS procedures.

Fig. 4. Fully connected three-state MM architecture. The observation
symbols of each state were selected based on theF=T magnitudes (H—High,
M—Medium,L—Low).

a) Hidden Markov Model Definitions (HMM):From the
mathematical perspective, the model developed in the current
study was a MM. However, some of the mathematical notations,
used for developing the surgical skill scale, were inspired by
the HMM theory. For that reason a short review based on [29]
was given for providing the basic terminology and defining the
problems associated with the HMM.

Five elements should be defined in order to specify a HMM
[29]: 1) the number of states in the model—;

2) the number of distinct observation symbols per state—; 3)
the state transition probability distribution—; 4) the observa-
tion symbol probability distribution— ; and 5) the initial state
distribution— .

Given the HMM architecture, there are three basic problems
of interest [29]: 1) the evaluation problem; 2) uncover the hidden
states problem; and 3) the training problem. Out of the three
problems only the evaluation, problem i), was applicable to the
MM model developed in the current study. This is due to the
fact that the MM states were not hidden and could be identi-
fied by the VQ analysis. The evaluation problem 1) involves
computing the probability of the observation sequence

given the model and the
observation sequence.

b) Markov Model (MM) Architecture:For reasons that
would be further discussed in Section III-C, the selected MM
had a fully connected three-state architecture. The VQ cluster
centers, representing the signatures of each one of the 14
tool/tissue interaction (Table II), were divided into three groups
according to their magnitudes ( —high, —medium,

—low). All the signatures out of the 14 tool/tissue
interactions associated with the, , and groups were then
lumped to form the three states of the MM.

One of the fundamental requirements regarding the MM ar-
chitecture was that MMs representing surgeons with different
skill level should share the same model architecture (Fig. 4).
This feature allowed quantitative comparison of MMs repre-
senting different skill level in terms of statistical similarities.
Moreover, the three-state architecture was based on the assump-
tion that magnitudes were one of the major differences be-
tween surgical skill levels, an assumption that was further sup-
ported by the experimental results (Section III-C).

Each state in the MM had a unique set of observation sym-
bols ( signatures). Under this condition, each sig-
nature corresponded only to a specific state of the MM and,
therefore, the VQ encoding analysis alone was sufficient for
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identifying the MMs’ states. Therefore the matrices
(problem ii) and the states sequence (problem iii) could be com-
puted in a straightforward manner rather then using the training
algorithms. However, the evaluation problem (problem i) still
had to be solved by using the Forward–Backward procedure in-
corporating the scaling process [29].

As described in Section II-C, ten subjects (two groups: NS,
and ES) performed two MIS procedures which were further di-
vided into steps. Using the given MM architecture and the en-
coded signals, two MMs were trained for each step of the
surgical procedures, representing the performances of three sub-
jects out of five in each group (NS and ES), and further referred
to as the NS-MM ( ) and the ES-MM ( ), respectively.
The MMs developed based on the data of the two remaining
subjects in each group () and their encoded signals (ob-
servation vectors— ) were used to define the skill scale based
on the statistical similarity to the main groups ( , ). This
procedure is schematically described in Fig. 5.

Two statistical similarity factors were defined as follows:

(4)

The defined the statistical similarity between the per-
formances of the subject under study and the NS group, whereas
the indicated the statistical similarity relative to the ES
group. These two factors provided the major classification pa-
rameters for evaluating surgical skill in MIS. The and

form a two-dimensional (2-D) subspace with values in
the range of . In this subspace, an absolute NS would be
represented by and , and vice versa for an
absolute ES. In this 2-D subspace, the line repre-
sented the boundary between the expert region ( )
and the novice region ( ). The line
was only one line out of a group of lines representing iso-per-
formances. It is possible to define an iso-performance line such
that all the points ( , ) on the line have a constant
ratio ( ) between the squared distance to the points (0, 1) (ab-
solute NS) and the squared distance to the point (1, 0) (absolute
ES) (5). This transforms the 2-D subspace into a 1-D scale

(5a)

(5b)

III. RESULTS

A. Tool/Tissue Interaction States and Transition—Expert
Analysis

Analyzing videotapes of the surgical procedures incorporated
the visual view of the tool/tissue interaction and graphs of the

at the tool/hand interface frame by frame allowed to de-
fine the primary tool/tissue interactions in the two MIS proce-
dures and the direction of forces and torques associated with
them [Table II, Fig. 3(b)]. Once these tool/tissue interaction
archetypes were defined, each step of the surgical procedure
could be manually analyzed into a list of tool/tissue interaction.

Fig. 5. Skill evaluation using Markov model classification—Comparing
statistical similarities between the performance of a surgeon with an undefined
skill level to the experts and novices surgeon groups.

Fig. 6. State transitions diagram of placing wrap around the esophagus during
laparoscopic Nissen fundoplication (solid line: ES; dashed line: NS; doubled
line: both).

This list was further transformed into a more compact diagram
(as shown in Fig. 6) defining a typical tool/tissue transition dia-
gram of a surgical procedure in MIS. The tool/tissue transition
diagram depicted in Fig. 6 represented the surgical step in which
a wrap was placed around the esophagus during a laparoscopic
Nissen fundoplication (Table I, LNF-4). Although Fig. 6 illus-
trates a unique/tool tissue transition diagram of a MIS procedure
step, the star-shaped architecture was similar to all the other MIS
steps under study.

The center state of the star shaped tool/tissue transition di-
agram (Fig. 6) included the idle state. This state, in which no
tool/tissue interaction was performed, was mainly used by both
ES and NS to move from one operative state to the other. How-
ever, the expert surgeons used the idle state only as a transition
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(a) (b)

Fig. 7. Forces and torques measured at the human/tool interface while dissecting the gallbladder fossae during laparoscopic cholecystectomy. For the definitions
of theX , Y , andZ directions, see Fig. 3(b). (a) Forces and (b) torques.

state while the novices spent significant amount of time in this
state planning the next tool/tissue interaction. Another major
difference between ES and NS was related to the tool/tissue in-
teraction and tool/tissue transitions used by these two groups.
Essentially Fig. 6 was composed from two separate models rep-
resenting the ES model (double line and solid line) and the NS
(double line and dashed line). For the purpose of evaluating sur-
gical skills, the model representing the NS and the one repre-
senting the ES must share the same architecture. This require-
ment led to redefining the model states and architecture as de-
scribed previously in Section II-C3.

B. Force/Torque Signatures

Typical raw data of forces and torques were plotted in a 3-D
space showing the loads developed at the sensor location while
dissecting the gallbladder fossae for 425 sec by an expert sur-
geon during laparoscopic cholecystectomy (Fig. 7). The black
ellipsoid is a region that includes 95% of the samples.
The forces along the axis (in/out of the trocar) were higher
compared with the forces in the plane. On the other hand,
torques developed by rotating the tool around theaxis were
extremely low compared with the torques generated while ro-
tating the tool along the and axis while sweeping the tissue
or performing lateral retraction. Similar trends in terms of the

magnitude ratios between the, , and axes were
found in the data measured in other steps of the MIS procedures.

Fig. 7 provided a general overview of the magnitudes
applied during MIS, however, gaining a deeper insight into
the processes of MIS was obtained by using the VQ analysis.
Following the protocol described in Section II-C2, 87 different

signatures (cluster centers) were identified for the dif-
ferent tool/tissue interactions. For example, Fig. 8 represented
nine signatures (VQ code words) associated with the
pushing-sweeping-spreading (Table II—PS-SW-SP) tool/tissue
interaction. These nine signatures were dominated by negative
values of (pushing), (sweeping the tissue in the
plane) and negative values of (spreading). These nine
pentagonal cluster centers found in the PS-SW-SP data

Fig. 8. A typicalF=T signatures (cluster centers) measured at the human/tool
interface and associated pushing-sweeping-spreading tool/tissue interaction in
MIS.

may represent the entire at this specific tool/tissue inter-
action. The rest of the data associated with PS-SW-SP might
be considered as a variation of these nine themes and can be
correlated to one of these signatures using the criterion defined
by (3). Moreover, further analysis of entire code-book (87
signatures) showed no overlap between signatures. There was
at least one dimension (out of the five) that differentiated each
signature from the others.

Once the code-book was defined, the entire database was en-
coded into the 87 signatures. This encoding process al-
lowed exploration of a new aspect regarding the differences be-
tween NS and ES. This new aspect was related to the magnitudes
of applied by NS and ES during each step of the MIS pro-
cedures for the different tool/tissue interactions (Table II).
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Fig. 9. F=T magnitude distributions at different tool/tissue interactions
applied by NS and ES during steps of an endoscopic surgical procedures (For
details see Table I). The pie bar on the left-hand side shows the distribution of
tool/tissue interactions in which significant differences (p < 0:05)—dotted
sector, and nonsignificant differences (p > 0:05) gray sector in terms of the
F=T magnitudes were applied by NS and ES. In tool/tissue, interactions were
significant differences were identified between NS and ES (Dotted sector), the
pie diagram on the right-hand side shows the correspondence between high
F=T magnitudes and the group of surgeons who applied them (black sector:
NS; and white sector: ES).

The entire database was lumped into two groups e.g.,
the NS group and ES group. The distribution of the sig-
nature for each tool/tissue interactions were then calculated for
the NS and ES groups performing the different steps of the MIS
procedures. The distributions of the signatures applied by
the NS and the ES were tested using the median test (nonpara-
metric method) combined with the fourfold point statistical pro-
cedure [30] to identified tool/tissue interactions in which the

magnitude distributions of the two groups were signifi-
cantly different. This analysis showed that the magnitudes
applied by the NS and ES in most of the tool/tissue interactions
were significantly different ( ) (Fig. 9).

Each one of the magnitude distribution for two different
surgical steps were represented in Fig. 9 by two pie diagrams.
The pie diagram on the left-hand side defined the tool/tissue in-
teractions in which no significant difference was found (gray
sector) between NS and ES and cases where significant differ-
ence was observed (dotted sector). When a significant difference
was identified, the pie diagram on the right-hand side showed
which group (NS—black sector, or ES—white sector) applied
higher magnitudes of in each one of the tool/tissue inter-
actions. For example, in laparoscopic cholecystectomy Step 3
(Fig. 9—LC-3) no significant difference in the magnitude

Fig. 10. Time spent at each tool/tissue interaction by NS and ES while
performing suture wrap and intracorporeal knot tying with needle holder. The
time distribution in each tool/tissue interaction of the ten subjects is represented
by a notch box plot. The lower and upper lines of the box are the 25th and 75th
percentiles of the sample representing the interquartile range. The line in the
middle of the box is the sample median. The notches in the box depicts the
95% confidence interval about the median of the sample. The lines extending
above and below the box define the 95 percentiles of the sampled data.

was identified in SW-SP which was 8% of all the tool/tissue in-
teractions. In all the other 92% of tool/tissue interactions, signif-
icant difference was identified (left-hand pie chart). Out of the
cases where significant difference was observed, in 23% of the
tool/tissue interactions (e.g., SW, GR-SW, and PS-SW-SP) the
NS applied higher magnitudes compare with the ES and in
69% of the cases (e.g., GR, SP, PS, GR-PL, etc.) the ES applied
higher magnitudes compare with the NS (right-hand pie
chart).

In general, a significant difference was identified in most
of the tool/tissue interactions. Moreover, when the six surgical
steps were divided according to the nature of the tool/tissue in-
teractions—e.g., 1) tissue dissection (LC-2, LC-3, and LNF-3);
2) tissue manipulation (LC-1, LNF-4)—the results showed that
higher magnitudes of were applied by the ES compared
with the NS when dissecting the tissues, whereas lower mag-
nitudes of were applied by the ES compared with the NS
when manipulating the tissues.

Completion time of each surgical step was another criterion
of surgical skill. Studying the median completion time of the
NS group and ES group showed a significant difference between
these groups ( ). The surgical procedure’s completion
time was longer for the NS by a factor of 1.5–4.8 compared
with the ES. The difference between NS and ES was more pro-
found in steps requiring higher dexterity and manual skill (e.g.,
LNF-5) compared with steps where a specific organ was placed
in a specific position (e.g., LC-1). Moreover, the VA and VQ en-
coding allowed evaluation of the time intervals spent performing
different tool/tissue interaction (Fig. 10). The main factor con-
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Fig. 11. Graphical representation of a three-state fully connected MM defining
the step of positioning gallbladder during Laparoscopic Cholecystectomy
performed by NS.

tributing to the significant difference in the completion times
between NS and ES was the time spent in the “idle” state. The
NS spent significantly more time in the idle state compare with
the ES.

C. MM and the MIS Skill Scale

A typical MM representing the step of positioning the gall-
bladder (LC-1) performed by NS was depicted in Fig. 11. This
plot rendered the probability of each element of the matrices

as a color values, defining the three states of a fully-
connected MM. Similar MMs were developed for the NS group,
the ES group, and the four remaining subjects (two NS and
two ES) for each step of the surgical procedures. According to
the vector, defining the initial state distribution, it was more
likely the surgeon would start with state 1 (—Low in Fig. 4),
which was associated with the highest probability (). Once
the surgeon was in a certain state (, , or ) it was more
likely that he or she would stay in the same state rather then
move to another state. This phenomenon was demonstrated by
the high probability values along the diagonal () compared
with the nondiagonal probability values () of the state tran-
sition probability matrix . Moreover, transitions from the
state to the state — and from the state to the

— were more frequent than the reverse state
transitions— and . Thus, once the surgeon was in state

, the probability of moving to state ( ) was almost equal
to the probability of moving to state ( ). Using a unique
subset of symbols from the 87 symbols code-book for each MM
state was exhibited by the fact that there was no overlap between
the rows of the matrix.

The skill analysis performed by using MMs of two NS and
two ES performing LC and LNF was summarized as a scatter
plot in Fig. 12(a) representing the and the proba-
bility [see (5)]. The solid line ( ) represented the
boundary between the NS (top-left) and the ES (bottom-right).

Except for three cases, where ES were misclassify as NS, the
MMs were capable of classifying NS and ES correctly in terms
of statistical similarity into their respective groups.

Dotted lines in Fig. 12(a) indicate iso-performances (in addi-
tion to the solid line indicating the boundary between NS and
ES). Each iso-performance line was defined by a different
value [see (5)], and therefore all the points along this line had
the same squared distance ratio between the points: (0, 1) and
(1, 0) [see (5)]. Using the iso-performance parameter, the 2-D
performance domain [Fig. 12(a)] was mapped into a 1-D per-
formance scale [Fig. 12(b)] such that each iso-performance line
defined by the parameter was converted into a point along
the 1-D performance scale. On thescale the ES region and
NS region were defined as and correspondingly,
whereas the value one represents the boundary between ES and
NS. Although the range of the scale by definition was from
0 to infinity, practically all the data points lay between 0.65 and
1.6. As demonstrated in Fig. 12(b), theskill scale differenti-
ates the performance of the NS from the ES for the MIS proce-
dure under study.

IV. CONCLUSION

Minimally invasive surgery is a complex task that requires
a synthesis between visual and haptic information. Analyzing
MIS in terms of these two sources of information is a key
step toward developing objective criteria for training surgeons
and evaluating the performance of a master/slave robotic or
teleoperated system and VR simulations with haptic devices.
Synthesizing the visual and haptic information indicates five
areas in which the novice surgeon (NS) group was different
from the expert surgeon (ES) group when performing MIS:
1) types of tool/tissue interaction being used, 2) transitions
between tool/tissue interactions being applied, 3) time spent
while performing each tool/tissue interaction (especially the
idle state), 4) overall completion time, and 5) magnitudes
being applied by the surgeons on the endoscopic tools.

All the criteria differentiating skill level between NS and ES
described above were found to be related. In general, it took
the expert surgeon less time to perform a typical MIS compared
with the novice surgeon, who spent most of the extra time in
the “idle” state. This probably results from a number of fac-
tors including advanced knowledge of the anatomy, higher level
of hand-eye coordination, and/or greater experience in handling
the endoscopic surgical instrument. The magnitude of ap-
plied by NS and ES varied based on the task being performed.
Higher magnitudes were applied by NS compared with
ES when performing tissue manipulation. This might be a re-
sult of insufficient dexterity of the NS that might represent a po-
tential for tissue damage and time consumption. However, low

magnitudes were applied by the NS compared with the ES
during tissue dissection, which might indicate excessive caution
to avoid irreversible tissue damage. More dissection movements
were required to be performed by the NS in order to tear the
tissue, a process which substantially decreases the efficiency of
the MIS procedure and increases the completion time. More-
over, using the information in real-time during the course
of learning as feedback information to the NS may improve the
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(a)

(b)

Fig. 12. Performance scales of two expert surgeons (ES-1 and ES-3: hollow icons) and two novice surgeons (NS-1 and NS-2: filled icons) performing laparoscopic
Cholecystectomy (: LC-1; : LC-2; and�: LC-3) and laparoscopic Nissen Fundoplication (: LNF-3; : LNF-4; and : LNF-5). (a) Scatter plot of the
performance parameters NSF as a function of ESF [see (4)]. (b) One-dimensional performance scale representing theC parameter [see (5)].
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learning process, reduce soft tissue injury, and increase the effi-
ciency during endoscopic surgery.

The multidimensional information acquired during MIS was
integrated into a single model using the MM approach. The MM
was found to be a very compact yet comprehensive and powerful
tool to model the complexity of MIS. Incorporating MM in the
surgical skill analysis allowed objective quantification of skill
defined as the statistical similarity of a data measured from a
subject with apparently unknown skill level to the NS and ES
models. Using these techniques, 87.5% of the surgical proce-
dures were correctly classified into the NS and ES groups. The
12.5% of the procedures that were misclassified were performed
by the ES and classified as NS. However, in these cases the per-
formance index values were very close to the NS/ES boundary.

The approach outlined in this study could be extended by in-
creasing the size of the database to include more surgical pro-
cedures performed by more surgeons. Our ongoing research in
this field is focused on evaluating and tracking skill level of sur-
geons during their residency using the proposed method. This
information, combined with other feedback data (e.g., tool po-
sition), may be used as a basis to develop teaching techniques for
optimizing tool usage in MIS. A well-established methodology
for evaluating skill level would allow NS to practice outside of
the operating room on animal models or using realistic VR sim-
ulators until they had achieved a desired level of competence
and compare themselves to norms established by experienced
surgeons and licensing organizations.
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