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Markov Models for
 
Biogeography-Based Optimization
 

Dan Simon, Senior Member, IEEE, Mehmet Ergezer, Member, IEEE, Dawei  Du, and Rick Rarick  

Abstract—Biogeography-based optimization (BBO) is a 
population-based evolutionary algorithm that is based on the 
mathematics of biogeography. Biogeography is the science and 
study of the geographical distribution of biological organisms. 
In BBO, problem solutions are analogous to islands, and 
the sharing of features between solutions is analogous to the 
migration of species. This paper derives Markov models for 
BBO with selection, migration, and mutation operators. Our 
models give the theoretically exact limiting probabilities for each 
possible population distribution for a given problem. We provide 
simulation results to confirm the Markov models. 

Index Terms—Biogeography-based optimization (BBO), evolu­
tionary algorithms (EAs), Markov models. 

I. INTRODUCTION 

EVOLUTIONARY algorithms (EAs) are a growing field, 
commonly used for global optimization. Biogeography-

based optimization (BBO) is a new EA and was first presented 
in [1] as an application of the mathematics of biogeography [2], 
[3] to evolutionary computation. BBO is an example of how a 
natural process can be modeled to solve general optimization 
problems. Ongoing research provides empirical evidence of the 
potential of BBO compared to other evolutionary computing 
algorithms [4]–[7]; however, as with most other EAs, there are 
limited theoretical results for BBO [8]. This paper derives a 
Markov chain model for BBO that can help in understanding 
its convergence and performance properties. 

Markov models have already been developed for other EAs, 
such as simple genetic algorithms [9], [10] and simulated 
annealing [11]. Due to the unique migration mechanism in 
BBO (discussed in Section II), we need to use the generalized 
multinomial theorem [12] in this paper to derive a Markov 
model for BBO’s selection, migration, and mutation operators. 

A Markov chain is a random process that has a discrete 
set of possible state values si (i = 1, . . . , T ) [13, Ch. 11]. 
The probability that the system transitions from state si to sj 

is given by the probability pij , which is called a transition 
probability. The T × T matrix P = [pij ] is called the transition 
matrix. A Markov chain is called regular if it is possible to go 
from any state to any other state (not necessarily in one step). 

The authors are with the Department of Electrical and Computer En­
gineering, Cleveland State University, Cleveland, OH 44115 USA (e-mail: 
d.j.simon@csuohio.edu). 

The fundamental limit theorem for regular Markov chains states 
that if P is regular, then 

lim Pn = Pss (1) 
n→∞ 

where each row pss of Pss is the same. The ith element of 
pss denotes the probability that the Markov chain is in state 
si after an infinite number of transitions. pss is independent of 
the initial state. 

As applied to BBO, a Markov state represents a BBO popu­
lation distribution. The probability pij is the probability that the 
population transitions from the distribution si to the distribution 
sj after one generation. If the mutation rate is nonzero, this 
probability is greater than zero, which means that the transition 
matrix is regular. This means that there is a unique nonzero 
limiting probability for each possible population distribution as 
the number of generations approaches infinity. 

If BBO does not incorporate mutation, then it may converge 
to a uniform population, i.e., a population in which each 
individual is identical. This type of Markov chain is called 
absorbing [13, Ch. 11]. In this case, we can calculate the 
probability that the population will converge to each state, 
and the expected time to convergence. We do not consider 
BBO with zero mutation in this paper, but the mathematical 
foundation that we lay allows this variation to be explored in 
future research. 

Section II gives an introduction to BBO. Section III derives 
Markov models for BBO, which allows us to obtain the limiting 
probability (as the generation count approaches infinity) of 
all possible populations. Section IV gives a simple simulation 
to confirm the Markov model. We provide some concluding 
remarks and directions for future work in Section V. The ap­
pendices give a review of generalized multinomial probability, 
and three different expressions for the dimension of the BBO 
population transition matrix. 

II. BBO 

Suppose that we have a set of candidate solutions to some 
problem. Each candidate solution is defined by specific fea­
tures. BBO is based on the idea of probabilistically sharing fea­
tures between solutions based on the solutions’ fitness values. 
In BBO, if a copy of feature s from solution x replaces one of 
the features in solution y, we say that s has emigrated from x 
and immigrated to y. 

The probability that solution x shares its features with some 

of x. The probability that solution y receives a feature from 
some other individual in the population decreases with the 

other individual in the population is proportional to the fitness 

mailto:d.j.simon@csuohio.edu


Fig. 1. Illustration of two candidate solutions to some problem using symmet­

solution. S1 has high immigration and low emigration, which means that it is 
likely to receive features from other solutions but unlikely to share features with 
other solutions. S2 has low immigration and high emigration, which means that 
it is unlikely to receive features from other solutions but likely to share features 
with other solutions. 

fitness of y. We base these migration probabilities on curves, 
such as those shown in Fig. 1. For the sake of simplicity, we 
assume that all solutions have identical migration curves. Fig. 1 
shows two solutions in BBO. S1 represents a poor solution, and 
S2 represents a more fit solution. The immigration probability 
for S1 will therefore be higher than the immigration probability 
for S2. The emigration probability for S1 will be lower than the 
emigration probability for S2. 

As with every other EA, each solution might also have some 
probability of mutation. In this paper, mutation is implemented 
in a standard way. We deal with discrete optimization problems, 
so each solution feature is either a 0 or a 1. The probability of 
mutation for BBO is defined as a constant pm ∈ [0, 1]. At each 
generation and for each feature in each solution, we generate 
a uniformly distributed random number r ∈ [0, 1]. If  r <  pm, 
then we mutate (i.e., complement) the bit under consideration. 

Also, similar to other population-based algorithms, we often 
incorporate elitism in BBO in order to retain the best solutions 
in the population from one generation to the next. This prevents 
the best solutions from being corrupted by immigration or mu­
tation. Elitism can be implemented by setting the immigration 
rate λ equal to zero for the α best solutions, where α is a user-

definition, independent of how the system reached state si. All  
of the transition probabilities can be used to form the transition 
matrix P = [pij ]. In this section, we derive a Markov model of 
BBO based on its selection, migration, and mutation operators. 

Suppose that we have a problem whose solutions are in a 
binary search space. The possible solutions are represented by 
all bit strings xi consisting of q bits each. Therefore, the car­
dinality of the search space is n = 2q . We use  N to denote the 
population size, and we use v to denote the population vector, 
where vi is the number of xi individuals in the population. We 
see that 

ric migration curves. S1 is a relatively poor solution, and S2 is a relatively good n 
vi = N. (2) 

i=1 

We use yk to denote the kth individual in the population. The 
population of the search algorithm can be depicted as 

Population 

= {y1, . . . , yN } 

}, x2, x2, . . . , x2, . . . , xn, xn, . . . , xn  = {x1, x1, . . . , x1          
v1 copies v2 copies vn copies 

(3) 

where the yi’s have been ordered to group identical individuals. 
We use λi to denote the immigration probability of xi, and 
μi to denote the emigration probability of xi. Note that μi 

is proportional to the fitness of xi, and λi decreases with the 
fitness of xi. We use the notation xi(s) to denote the sth bit 
of solution xi. We use the notation Ji(s) to denote the set of 
population indices j such that the sth bit of xj is equal to the 
sth bit of xi. That is 

Ji(s) = {j : xj (s) = xi(s)} . (4) 

We order yk in the same order as xi. That is ⎧ ⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

x1, for k = 1, . . . , v1 

x2, for k = v1 + 1, . . . , v1 + v2 
selected elitism parameter. Elitism is not used in this paper but 
was modeled in [14]. 

There are several different ways to implement the details yk 
x3, for k = v1 + v2 + 1, . . . , v1 + v2 + v3= (5) 
. . . . . .of BBO, but in this paper, we use the original BBO formu­  n−1 

i=1 vi + 1, . . . , N .lation [1], which is called partial immigration-based BBO in xn, for k =
[8]. In this approach, for each feature in each solution, we 
probabilistically decide whether to immigrate. If immigration 
is selected for a given feature, then the emigrating solution is 
probabilistically selected based on fitness (e.g., using roulette 
wheel selection). This gives the algorithm shown in Fig. 2 as a 
description of one generation of BBO. Migration and mutation 
of the entire population take place before any of the solutions 
are replaced in the population, which requires the use of the 

This is also shown in (3) and can be written more com­
pactly as 

yk = xm(k), for k = 1, . . . , N  (6) 

where m(k) is defined as 

r
temporary population z in the algorithm. m(k) = min r, such that 

 
vi ≥ k. (7) 

i=1 

III. MARKOV MODELS FOR BBO 
If we need to denote the generation number of the algorithm, 

A Markov chain model provides us with the probability pij we use an additional subscript. For example, yk(s)t is the value 
of transitioning from state si to sj . This probability is, by of the sth bit of the kth individual at generation t. 



  

  

Fig. 2. One generation of the BBO algorithm. y is the entire population of candidate solutions, yk is the kth candidate solution, and yk(s) is the sth feature 
of yk . 

Example: Suppose that we have a two-bit problem (q = 
2, n = 4)  with a population size N = 3. The search space con­
sists of the bit strings x = {x1, x2, x3, x4} = {00, 01, 10, 11}. 
Suppose that the three individuals in the current population 
are y = {x2, x2, x4} = {01, 01, 11}. Then, we have v1 = 0, 
v2 = 2, v3 = 0, and v4 = 1. 

Let us consider the derivation of J1(1). We arbitrarily num­
ber bits from left to right, i.e., in any given bit string, bit 1 is the 
leftmost bit, and bit 2 is the rightmost bit. From (4), we see that 

J1(1) = {j : xj (1) = x1(1)} . (8) 

Since x1 = 00, we see that x1(1) = 0 (i.e., the leftmost bit). 
Then, (8) can be written as 

J1(1) = {j : xj (1) = 0} . 

However, xj (1) = 0 for xj ∈ {00, 01}, which, in turn, indi­
cates that j ∈ [1, 2]; therefore, J1(1) = {1, 2}. Continuing this 
process, we see that 

J1(1) = {1, 2}, J1(2) = {1, 3} 

J2(1) = {1, 2}, J2(2) = {2, 4} 

J3(1) = {3, 4}, J3(2) = {1, 3} 

J4(1) = {3, 4}, J4(2) = {2, 4}. 

A. Migration 

We make some assumptions in the Markov model develop­
ment in this section. First, all of the new BBO solutions are 
created before any solutions are replaced in the population, i.e., 
we use a generational BBO algorithm rather than a steady-state 
BBO algorithm. This is clear from the use of the temporary 
population z in Fig. 2. 

Second, a solution can emigrate a bit to itself. This means 
that, in the statement “use the μ values to probabilistically select 
the emigrating solution yj ” in Fig. 2,  j might be chosen to be 
equal to k. That is, when a bit is replaced via migration in a 
given solution zk, the new bit might be chosen to come from 
zk itself. In this case, the bit is not actually replaced in zk. 

However, the probabilistic choice of the emigrating solution 
allows this to happen on occasion. 

Third, the migration rates λ and μ are independent of the 
population distribution, i.e., absolute fitness values are used to 
obtain λ and μ, as opposed to a rank-based fitness. Alternatives 
to these assumptions will change the Markov model develop­
ment of this section, but this is left for future work. 

If the sth feature of yk is not selected for immigration during 
generation t, then 

yk(s)t+1 = xm(k)(s) (immigration did not occur). (9) 

That is, yk(s) does not change from generation t to gen­
eration t + 1. However, if the sth feature of yk is selected 
for immigration during generation t, then the probability that 
yk(s)t+1 is equal to xi(s) is proportional to the combined 
emigration rates of all individuals whose sth feature is equal 
to xi(s). This probability can be written as 

Primm (yk(s)t+1 = xi(s)) 

j∈Ji(s) vj μj 
= (immigration occurred). (10)n 

j=1 vj μj 

We can combine (9) and (10), along with the fact that the 
probability of immigration to yk(s) is equal to λm(k), to obtain 
the total probability 

Pr (yk(s)t+1 = xi(s)) 

= Pr(no immigration) 

× Pr (yk(s)t+1 = xi(s)|no immigration) 

+ Pr(immigration) 

× Pr (yk(s)t+1 = xi(s)|immigration)     
= 1 − λm(k) 10 xm(k)(s) − xi(s)

j∈Ji(s) vj μj
+ λm(k) n (11) 

j=1 vj μj 

where 10 is the indicator function on the set {0}. 



    
  

 
 

 

 

 

Now, recall that there are q bits in each solution. Use Pki(v) 
to denote the probability that immigration results in yk = xi, 
given that the population is described by the vector v. This  
probability can be written as 

Pki(v) =  Pr  (yk,t+1 = xi)  
qg

= 1 − λm(k) 10 xm(k)(s) − xi(s) 
s=1  

j∈Ji(s) vjμj
+ λm(k) n . (12) 

j=1 vjμj

Pki(v) can be computed for each k ∈ [1, N ] and each i ∈ 
[1, n] in order to form the N × n matrix P (v). The  kth row 
of P (v) corresponds to the kth iteration of the outer loop in 
Fig. 2. The ith column of P (v) corresponds to the probability 
of obtaining island xi during each outer loop iteration. 

The BBO algorithm entails N trials (i.e., N iterations of the 
outer loop in Fig. 2), where the probability of the ith outcome 
on the kth trial is given as Pki(v). We use  ui to denote the 
total number of times that outcome i occurs after N trials have 
been completed, and define u = [u1 · · ·  un]T. Then, the 
probability Pr(u|v) that we obtain a population vector u after 
one generation, given that we start with a population vector v, 
can be derived from the generalized multinomial theorem [12]. 

The generalized multinomial theorem gives the probability 
of obtaining a certain set of experimental outcomes when the 
probability of each trial is dependent on the trial number. See 
Appendix A for an overview. The reason that the generalized 
multinomial theorem applies to BBO is that the probability of 
obtaining a specific individual xi in the population depends on 
the migration trial number k, as shown in (12). We can therefore 
use the generalized multinomial theorem to find Pr(u|v) as 

N n g g 
Pr(u|v) =  [Pki(v)]Jki 

J∈Y k=1 i=1  
n 

Y = J ∈ RN×n : Jki ∈ {0, 1}, Jki = 1  for all k, 
i=1  

N 

Jki = ui for all i . (13) 
k=1 

In order to find the probability that the BBO population 
transitions from v to u after one generation, we find all of the 
J matrices that satisfy the conditions of (13). For each of these 
J matrices, we compute the product of products given in (13). 
We then add up all the product of products to obtain the desired 
probability. 

B. Mutation 

The previous section considered only migration. In this sec­
tion, we add the possibility of mutation. We use U to denote 
the n × n mutation matrix, where Uij is the probability that 
xj mutates to xi. The probability that the kth immigration trial 

followed by mutation results in xi is denoted as P (2)(v). This  ki 
can be written as 

n 

P
(2)(v) =  UijPkj(v)ki 

j=1 

P (2)(v) =  P (v)UT (14) 

where the elements of P (v) are given in (12). P (v) is the 
N × n matrix containing the probabilities of obtaining each of 
n possible individuals at each of N trials, where only migration 
is considered. P (2)(v) contains those probabilities when both 
migration and mutation are considered. In this case, we can 
write the probability of transitioning from population vector v 
to u after one generation as 

N n g g   Jki(2)Pr(2)(u|v) =  P (v) (15)ki 
Y k=1 i=1

where Y is given in (13). Equation (15) can be used to find the 
transition matrix for BBO with migration and mutation. 

The Markov transition matrix Q is obtained by computing 
(15) for each possible v and each possible u. The element Qij 

will give the probability of transitioning from population vector 
v to u after one generation. The matrix Q is therefore a T × T 
matrix, where T is the total number of possible populations. 
That is, T is the number of possible n × 1 integer vectors v 
whose elements sum to N and each of whose elements vi ∈ 
[0, N ]. The number T can be calculated in several different 
ways, as discussed in Appendix B. After we calculate the 
transition matrix, we can apply a wealth of Markov tools [15] 
to the transition matrix to find the statistical properties of BBO 
populations, including the limiting probability of each possible 
BBO population. 

IV. SIMULATION RESULTS 

This section confirms the BBO Markov model with simu­
lation. We use the 3-b one-max problem with a search space 
cardinality of eight and a population size of four. The one-max 
problem has a fitness function that is proportional to the number 
of ones in the population member, and is a popular test function 
in EA research [16]. From (22) in Appendix B, we calculate the 
total number of possible populations as     

n + N − 1 8 + 4  − 1 
T = = = 330. 

N 4

Equation (15) can be used to find the limiting population 
distribution of BBO. This is the probability, in the limit as the 
generation count approaches infinity, that the BBO population 
consists of any particular set of individuals. 

The fitness values of the 3-b one-max problem are given as 

f(000) = 1, f(001) = 2 

f(010) = 2, f(011) = 3 

f(100) = 2, f(101) = 3 

f(110) = 3, f(111) = 4. (16) 



TABLE I
 
BBO MARKOV MODEL AND SIMULATION RESULTS FOR THE 3-B
 

ONE-MAX PROBLEM . THE TABLE SHOWS THE MOST PRO BA B L E
 

POPULATIONS , AND THE COMBINED PROBABILITY OF CONVERGENCE
 

TO POPULATIONS THAT CONTAIN NO OPTIMAL SOLUTIONS
 

(∗= “don’t care” bit). SIMULATION RESULTS ARE THE
 

AVERAGE OF 100 MONTE CARLO RUNS
 

Table I shows the most probable populations, along with the 
combined probabilities of the populations that do not contain 
any optimal solutions. The population vector {v1, v2, . . . , v8}
in Table I indicates the numbers of individuals that are equal to 
{000, 001, . . . , 111}, respectively. The Markov model and sim­
ulation results match well, which confirms the model. Table I 
shows that a high mutation rate of 10% per bit results in too 
much exploration, so the uniform optimal population is not one 
of the most probable populations—in fact, it is only the seventh 
most probable population with a probability of 2.5% (not shown 
in the table). With this high 10% mutation rate, the probability 
that the population does not have any optimal individuals is 
30%, as shown in the table. However, as the mutation rate 
decreases to the more reasonable values of 1% and 0.1%, the 
probabilities that the population is composed entirely of optimal 
individuals increase to 53% and 86%, respectively, and the 
probabilities that the population has no optimal individuals 
decrease to 11% and 9%, respectively. 

Fig. 3 shows typical simulation results of 20 000 generations 
of BBO for the 3-b one-max problem with a mutation rate of 
1% per bit. It is seen that the uniform optimal population occurs 
just over 50% of the time, in agreement with Table I. 

Our second benchmark is a 3-b deceptive problem, again 
with a search space cardinality of eight and a population size 
of four. The fitness values were the same as that of the one-max 
problem shown in (16), except that the bit string of all zeros had 
the highest fitness, i.e., f(000) = 5. Table II shows the most 
probable populations, along with the combined probabilities 
of the populations that do not contain any optimal solutions. 
Once again, the Markov model and simulation results match 
well. Table II shows that a high mutation rate of 10% per bit 
results in too much exploration, resulting in a probability of no 
optima in the population of over 50%. However, as the mutation 
rate decreases to the more reasonable values of 1% and 0.1%, 
the probabilities that the population is composed entirely of 
nonoptimal individuals decrease to 12% and 6%, respectively. 

Fig. 3. Typical BBO simulation results for a 3-b one-max optimization 
problem with a mutation rate of 1% per bit. The three most probable populations 
are shown, along with the cumulative probability of all populations that have 
no optimal individuals. 

TABLE II
 
BBO MARKOV MODEL AND SIMULATION RESULTS FOR A 3-B
 

DECEPTIVE PROBLEM . THE TABLE SHOWS THE MOST PRO BA B L E
 

POPULATIONS , AND THE COMBINED PROBABILITY OF CONVERGENCE TO
 

POPULATIONS THAT CONTAIN NO OPTIMAL SOLUTIONS. SIMULATION
 

RESULTS ARE THE AVERAGE OF 100 MONTE CARLO RUNS
 

Note that the migration curves that we used to derive these 
results were linear, as shown in Fig. 1. An optimization problem 
with a search space size of eight and linear migration curves, 
like the problems explored in this section, could have the 
following migration values, listed in order from least fit to 
most fit: 

λ = { 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 } 

μ = { 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 }. 

If nonlinear migration curves are used in BBO, as suggested 
in [17], the migration values would change, but the Markov 
model derived in this paper would remain the same. 

V. CONCLUSION 

We have derived a Markov model for BBO. The model gives 
the theoretical probability of the occurrence of each possible 
population as the generation count goes to infinity. The theory 
was confirmed with simulation results. 



  
  

 

 

  

  

 

The Markov model development in this paper is computa­
tionally expensive because the size of the Markov transition 
matrix is (n + N − 1)-choose-N , where n is the cardinality of 
the search space and N is the population size. Computational 
savings can be obtained by grouping Markov states together and 
then computing the probability that the population transitions 
from one group of populations to another group, as discussed in 
[15], but this is left for further research. Computational savings 
could also be obtained by not allowing duplicate individuals in 
the population. This would require an adjustment to the Markov 
model and would reduce the size of the transition matrix to 
n-choose-N . 

Other future work includes extending the Markov model to 
variations of BBO. This paper focused on the original BBO 
algorithm, which is called partial immigration-based BBO. An 
extension of the Markov model in this paper to BBO variations 
would analytically show their advantages or disadvantages. 
Some of these variations include partial emigration-based BBO, 
total immigration-based BBO, total emigration-based BBO [8], 
and BBO with different migration curve shapes [17]. Also, the 
Markov model in this paper could be extended to other EAs 
so that comparisons could be made between EAs theoretically 
rather than based only on simulations. 

The Markov model development in this paper has been 
restricted to binary problems, i.e., problems in which each so­
lution feature is a bit. Future work could explore the extension 
of this paper to problems in which the solution features are 
integers, as in the original BBO paper [1], or to problems in 
which the solution features are real numbers. 

Our current work involves the comparison of BBO and GA 
Markov models and the use of the Markov model developed 
here to develop a dynamic system model of BBO. Dynamic 
system analysis of EAs is used to find the proportion of each 
possible individual in a population as the population size tends 
to infinity. This is exemplified by the extension of GA Markov 
models to dynamic system analysis [15]. 

APPENDIX A 
GENERALIZED MULTINOMIAL PROBABILITY 

Suppose that an experiment has n possible outcomes 
{a1, . . . , an} and that the experiment is repeated N times. 
Suppose that the probability of obtaining outcome ai on the 
kth trial is equal to Pki. Let  C = [C1, . . . , Cn] be a vector 
of random variables, where Ci denotes the total number of 
times that ai occurs in N trials, and let γ = [γ1, . . . , γn] be a 
realization of C. Define 

n 

Y (γ) = J ∈ RN×n : Jki ∈ {0, 1}, Jki = 1 for all k, 
i=1 

N 

Jki = γi for all i . (17) 
k=1 

Note that the cardinality of Y (γ) is 

|Y (γ)| = 
N ! 

γ1! · · · γn!
. (18) 

Then, the generalized multinomial theorem [12] gives the 
following probability that the repeated experiment results in the 
outcome vector γ: 

N n gg
P JkiPr(C = γ) =  . (19)ki 

J∈Y (γ) k=1 i=1 

Example: Prof. Smith submits three papers to three different 
journals. Each journal has a probability Pa of acceptance, Pm of 
acceptance with major revisions, Pn of acceptance with minor 
revisions, and Pr of rejection. The probabilities are given as 

Journal 1 :  P1a = 0.1, P1m = 0.3, P1n = 0.5, P1r = 0.1 

Journal 2 :  P2a = 0.1, P2m = 0.1, P2n = 0.1, P2r = 0.7 

Journal 3 :  P3a = 0.1, P3m = 0.3, P3n = 0.1, P3r = 0.5. 

Of Prof. Smith’s three papers, we want to calculate the 
probability that one paper will be accepted, one paper will be 
accepted with major revisions, and one paper will be rejected. 
In order to calculate this probability, we use γ1 = 1, γ2 = 1, 
γ3 = 0, and γ4 = 1 in (19) to obtain 

3 4 gg
P JkiPr(C1 = 1, C2 = 1, C3 = 0, C4 = 1) =  ki 

J∈Y (γ) k=1 i=1 

(20) 

where 

4 

Y (γ) = J ∈ R3×4 : Jki ∈ {0, 1}, Jki = 1 for all k, 
i=1 

3 

Jki = γi for all i . (21) 
k=1 

J belongs to Y if it satisifies all of the following conditions. 

1) J is a 3 × 4 matrix. 
2) Each element of J is either 0 or 1. 
3) The elements in each row of J add up to 1. 
4) The elements in the ith column of J add up to γi. 

There are a total of N !/(γ1! · · · γn!) = 3!/(1! 1! 0! 1!) = 
6 matrices J (t) that satisfy these conditions, and they are 
found as ⎡ ⎤ ⎡ ⎤ 

1 0 0 0  0 1 0 0  
J (1) J (2)⎣ ⎦ ⎣ ⎦= 0 1 0 0  = 1 0 0 0  

0 0 0 1  0 0 0 1  ⎡ ⎤ ⎡ ⎤ 
0 0 0 1  1 0 0 0  

J (3) J (4)⎣ ⎦ ⎣ ⎦= 1 0 0 0  = 0 0 0 1  
0 1 0 0  0 1 0 0  ⎡ ⎤ ⎡ ⎤ 
0 1 0 0  0 0 0 1  

J (5) J (6)⎣ ⎦ ⎣ ⎦= 0 0 0 1  = 0 1 0 0 . 
1 0 0 0  1 0 0 0  



   
    

  

 
    
 
  

   

 

    
 

   

  

    
 
   

nSubstituting these matrices into (20) gives Now, consider the polynomial (x0 + x1 + x2 + · · · + xN ) . 
From the multinomial theorem (25), we see that the coefficient Pr(C1 = 1, C2 = 1, C3 = 0, C4 = 1)  

k2of [(x0)k0 (x1)k1 (x2) · · · (xN )kN ] is given by 
6 (t) (t) (t) (t)

J J J J11 12 13 14= P P P P N i11 12 13 14 kj 

i=0

g
j=0 (26)t=1 . 
ki(t) (t) (t) (t) (t) (t) (t) (t)

J J J J J J J J21 22 23 24 31 32 33 34P P P P P P P P× 21 22 23 24 31 32 33 34 

If we sum up these terms for all kj such that 
= P11P22P34 + P12P21P34 + P14P21P32
 

+ P11P24P32 + P12P24P31 + P14P22P31 
N
 

jkj = N (27)= 0.066. 
j=0 

APPENDIX B 
then we obtain the coefficient of xN . However, (24) shows that TRANSITION MAT R I X DIMENSION 
T is equal to the coefficient of xN . Therefore 

The elements of Q are the probabilities of transitioning from 
N i kjone BBO population to another. Q is a T × T matrix, where g

i=0 

k ∈ RN+1 : kj ∈ {0, 1, . . . , n}, 

j=0T = 
T is the total number of possible population distributions. That ki

S'(k)
is, T is the number of possible n × 1 integer vectors v whose 
elements sum to N and each of whose elements vi ∈ [0, N ]. 

S '(k) =
This number can be calculated in several different ways. In [18], 
it is shown that N N 

n + N − 1 kj = n, jkj = n . (28)
T = . (22) 

j=0 j=0N 

We can also use the multinomial theorem [19] to find T . The  Equations (22), (24), and (28) give three different expres­
multinomial theorem can be stated in several ways, including 
the following. Given K classes of objects, the number of 
different ways that N objects can be selected (independent of 
order) while choosing from each class no more than M times is 
the coefficient qN in the polynomial 

K q(x) = (1 + x + x 2 + · · · + x M )
MK= 1 + q1x + q2x 2 + · · · + qNx N + · · · + x . (23) 

Recall that the population vector v is an n-element vector 
such that each element is an integer between 0 and N (inclu­
sive), and the sum of its elements is N . T is the number of 
unique population vectors v. Thus, T is the number of ways that 
N objects can be selected (independent of order) from n classes 
of objects while choosing from each class no more than N 

sions for the dimension of the Markov transition matrix Q. 
Example: Suppose that our population consists of 2-b indi­

viduals (q = 2, n = 4) and a population size N = 4. Equation 
(22) gives 

T = 
7 
4 

= 35. 

Equation (24) gives 

4 q(x) = (1 + x + x 2 + x 3 + x 4)
16= 1 + · · · + 35x 4 + · · · + x 

T = q4 = 35. 

Equation (28) gives 

times. Applying the multinomial theorem to this problem gives 4 i kj
g
i=0 

k ∈ R5 : kj ∈ {0

j=0T = 
kiT = qN S'(k) 

n q(x) = (1 + x + x 2 + · · · + x N )
Nn= 1 + q1x + q2x 2 + · · · + x . (24) S '(k) =  , 1, . . . , 4}, 

A different form of the multinomial theorem can also be used 4 4 
to find T . The multinomial theorem can be stated as kj = 4, jkj = 4  

N j=0 j=0 n! g
j=0 

N i N 

kjn(x1 + x2 + · · · + xN ) = = {( 3 0 0 0 1 ), ( 2  1 0 1 0 )
( 2  0 2 0 0 )

x N j ,
kj !j=0S(k) , ( 1  2 1 0 0 ), 

kj kj ( 0  4 0 0 0 )}
j 

4 + 12 + 6 + 12 + 1 = 35
j=0

gg
i=0 j=0 

S(k) =  k ∈ RN : kj ∈ {0, 1, . . . , n}, 
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