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Abstract Since their first inception more than half a
century ago, automatic reading systems have evolved sub-
stantially, thereby showing impressive performance on
machine-printed text. The recognition of handwriting can,
however, still be considered an open research problem due to
its substantial variation in appearance. With the introduction
of Markovian models to the field, a promising modeling and
recognition paradigm was established for automatic offline
handwriting recognition. However, so far, no standard pro-
cedures for building Markov-model-based recognizers could
be established though trends toward unified approaches can
be identified. It is therefore the goal of this survey to provide a
comprehensive overview of the application of Markov mod-
els in the research field of offline handwriting recognition,
covering both the widely used hidden Markov models and
the less complex Markov-chain or n-gram models. First, we
will introduce the typical architecture of a Markov-model-
based offline handwriting recognition system and make the
reader familiar with the essential theoretical concepts behind
Markovian models. Then, we will give a thorough review of
the solutions proposed in the literature for the open problems
how to apply Markov-model-based approaches to automatic
offline handwriting recognition.
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1 Introduction

A major goal of pattern recognition research is to recreate
human perception capabilities in artificial systems. As a spe-
cial aspect of visual perception, the ability to read machine-
printed or handwritten text is one such remarkable ability of
humans that is—even today—hardly matched by machine
intelligence. Since the very first efforts to achieve opti-
cal character recognition (OCR), i.e., to automatically read
machine-printed texts, the research field dealing with arti-
ficial reading systems has undergone significant changes in
methodology and made substantial progress toward its ulti-
mate goal.

For example, the problem of reading machine-printed
addresses in a mail-sorting machine—especially with the
impressive speed of the commercial systems available—can
be considered solved. The availability of more general com-
mercial solutions for OCR demonstrates that the technol-
ogy is quite mature in this field already. However, as soon
as the variability in the script to be read becomes more
prominent, as it is the case for degraded documents or—
even more severely—for handwritten text, current technol-
ogy reaches its limits. Consequently, the task of automati-
cally reading handwriting with close-to-human performance
is still an open problem and the central issue of an active field
of research.

In almost all endeavors to build artificial perception sys-
tems, research focuses on methods that automatically learn
from sample data. For learning models of sequential data—
as text can be considered to be with some approxima-
tion—approaches based on Markovian models proved very
successful, especially in the field of automatic speech recog-
nition. Today, systems based on Markov models (MM) are
also successfully used for automatic handwriting recognition
(HWR). Since their first introduction into the field almost
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two decades ago, considerable progress has been made in
adapting MM-based techniques to this new domain. How-
ever, in contrast to the field of automatic speech recognition,
where quasi-standard procedures are established, researchers
are still exploring a wide range of possibilities in applying
MM-based methods to the challenging problem of reading
handwritten text.

1.1 Scope

The goal of this survey is to provide a comprehensive over-
view of the application of Markov models in the research
field of offline handwriting recognition. The term “Markov
model” here refers to both the widely used hidden Markov
models (HMMs) and the less complex Markov-chain mod-
els. To some limited extent general foundations of automatic
HWR not explicitly related to the application of Markov
models will be discussed here as well. However, for more
detailed treatments of this general state-of-the-art, the reader
is referred to the broader surveys, which have been published
in recent years (e.g., [2,22,54,99,115]).

Techniques for automatic handwriting recognition can be
distinguished as being either online or offline, depending on
the particular processing strategy applied. Online recognition
is performed as the text to be recognized is written. There-
fore, the process of handwriting has to be captured online,
e.g., using some pressure sensitive devices. They provide rich
sequences of sensor data including geometrical positions of
the stylus as well as temporal information about the writing
process, which is the big advantage of online approaches. In
contrast, offline recognition is performed after the text has
been written. For this purpose, images of the handwriting
are processed, which are captured, e.g., using a scanner or a
camera.

It is commonly agreed that online handwriting recogni-
tion corresponds to the easier problem. Consequently, at
least for certain application domains like pen-based input
interfaces substantial progress has been achieved. In fact,
commercially available products suggest that the problem
of online HWR can be considered as being close to solved
(cf., e.g., [98]). Various groups developing online recogniz-
ers have now already moved toward much more complicated
tasks like, e.g., online sketch recognition (cf., e.g., [34] for a
very impressing physics simulator). This paper emphasizes
approaches addressing the challenging task of offline hand-
writing recognition. In order to keep the argumentation as
focussed as possible, we concentrate on the most widely used
variants of Markov modeling. Thus, modeling approaches
that currently are rather rarely used for handwriting recog-
nition like Markov random fields (MRF, cf., e.g., [25]) or
conditional random field models (CRF, cf., e.g., [46]) are not
covered by this article.

Although offline HWR shows parallels to classical opti-
cal character recognition (OCR), i.e., the analysis of machine
printed text, the scope of this paper is limited to handwriting
recognition. If not absolutely necessary, we do not cover spe-
cialties of OCR applications. The recognition of handwrit-
ing data is addressed, which exhibits unconstrained writing
style in mainly Roman or Arabic scripts.1 More precisely,
the recognition of non-alphabetic scripts (like Kanji) is not
covered by this survey. Reasonable exceptions, where cer-
tain substantial similarities to alphabetic scripts recognition
exist, will be discussed though.

1.2 History

The application of Markov models has a fairly long history
in various domains. At the beginning of the past century,
the Russian mathematician Andrej Andrejewitsch Markov
first applied such a type of statistical model for the analy-
sis of character sequences [83]. Honoring his fundamental
developments, statistical models that share the same basic
properties were named after Markov.

The basic technology of hidden Markov models—the
most prominent variant of Markov models—was originally
used for speech recognition applications. Fundamental devel-
opments in the late 1960s started to allow the robust and
efficient automatic analysis of time-dependent signal data
for real life scenarios (cf., e.g., [5,6,120]). After substan-
tial research efforts, Markovian models can today be consid-
ered the state-of-the-art technology in the area of automatic
speech recognition (cf., e.g., [128]). In the last 20+ years,
this concept has also been transferred to the domain of
handwriting recognition—initially, however, with limited
success only (cf., e.g., [69]). According to the literature
in the early and mid-1990s, research activities in the area
of Markov-model-based handwriting recognition increased
substantially. Apparent reasons for this were the grown com-
mercial interest in the topic and that, probably due to this
reason, more researchers—often from the speech recogni-
tion domain—turned toward the field. Consequently, the
number of publications increased significantly (cf., e.g.,
[23,65,107]). Today, the field can be considered being mature
and powerful recognition systems exist (see Sect. 5).

Markov models are used for both online and offline
handwriting recognition. Especially relevant for the lat-
ter, the application of the sliding window principle can
be understood as an important ’milestone’ for success-
ful Markov-model-based handwriting recognition [65,105].
Its application allows for the effective linearization of

1 Interestingly, techniques for the recognition of Latin and Arabic script
are more similar than one might expect when only visually comparing
documents written in, e.g., English or an Arabic language [104].
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handwriting data, which can be considered as the pre req-
uisite for the successful application of Markov models for
offline recognition.

During the last few years, research w.r.t. Markov-model-
based handwriting recognition has made substantial progress.
Comparable to their application in the speech recognition
domain, certain procedures have been established now serv-
ing as quasi-standard for offline HWR-based on Markov
models. Just to mention two examples practically all cur-
rent recognizers are derived by applying (variants of) Baum–
Welch training on sample data (see Sect. 3.3.1 for details)
resulting in most cases in (semi-) continuous output mod-
els. They are usually based on Gaussian mixture densi-
ties. Furthermore, and again similar to speech processing,
the integration of Markov-chain models into HWR sys-
tems is very promising. According to recent publications,
combined recognizers integrating both HMMs as script
appearance models and statistical n-grams as language
models represent one of the latest trends in handwriting
recognition (cf., e.g., [99,117]).

1.3 Applications

Markov-model-based approaches are today widely used in
the application field of automatic offline HWR. In addition
to their use in academic research, they also play an important
role in commercial applications in industrial contexts.

Although certain publications regarding Markov-model-
based recognition of isolated characters exist (cf., e.g.,
[21,56,57,95]), it is at least questionable whether the use
of these models is appropriate for such data. Instead, the
approach shows its strength especially for sequences. Thus,
at least words should be addressed to benefit from the
properties of Markov models. The actual recognition is
either performed for isolated words or for connected words.
The latter is the more complicated but the more realistic
use case since, e.g., full sentences can be treated without
relying on prior—successful—segmentation. Consequently,
actual document analysis based on text recognition becomes
possible.

Certainly one of the most important applications is address
reading, e.g., for mail sorting. In recent years, tremendous
efforts have been directed toward this issue (cf., e.g., [17,
68,97,114]). It has resulted in powerful recognition systems,
which are successfully applied by major postal service com-
panies (cf., e.g., [54,90,103]).

Another important application field of Markov-model-
based handwriting recognition is the automatic processing
of bank cheques and official forms as regularly considered
by insurance companies, banks, governmental organizations,
etc. Various recognizers for different languages have been
developed and are applied (cf., e.g., [91,126]).

In addition to the aforementioned “killer applications”
of Markov models for automatic HWR, numerous further
application fields exist. Just to mention some examples, digit
recognition (with the special case of analyzing touching dig-
its) and offline signature verification play important roles for
legal issues (cf., e.g., [31,30,64]). Markov models have also
been used for explicit segmentation of handwritten texts at
word level [86,129]. Furthermore, a special case of text rec-
ognition recently gained importance: whiteboard reading. By
means of either a special infrared / ultrasonic tracking device
for online recognition or a video camera for offline record-
ing, images from a whiteboard containing handwriting data
are captured. Markov models are used in both cases for text
recognition (cf., e.g., [74,124]).

1.4 Structure

The remainder of this article is organized as follows. In the
following section, we will first give a qualitative overview of
the architecture of a typical HWR system based on Markov
models. Key references will be given for only those aspects
that are not integral parts of an MM-based system and will be
treated in more detail in subsequent sections. The concepts
and algorithms behind the MM-based recognition paradigm
will then be presented in Sect. 3. Subsequently, in Sect. 4,
we will review the different methods applied and solutions
proposed for solving the key problems in MM-based HWR
systems. Markov-model-based handwriting recognition has
already become a mature research field with important appli-
cations in both academic and industrial context. For these
purposes, integrated recognition systems have been and are
still being developed. Section 5 provides an overview of such
major recognition systems including their particular key fea-
tures.

Finally, in Sect. 6, we will give a concluding discussion
on the state-of-the-art of Markov-model-based handwriting
recognition. We will present the latest technological trends,
some remarks on benchmarking and reporting results, and
a short discussion of future challenges we identified for the
field of MM-based HWR.

2 General architecture

Any handwriting recognition system is usually embedded
into a larger document analysis framework, e.g., a mail-
sorting machine. Necessarily, as a first step of document
understanding a digital image of the document to be analyzed
needs to be captured by some device, e.g., a scanner or a cam-
era. As, in general, the captured image may show, besides the
desired text, other document structures (e.g., tables, figures,
or images) or even non-document parts of the scene back-
ground, the relevant document elements (e.g., text lines or
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Fig. 1 Example of classical HWR approach relying on explicit seg-
mentation and subsequent classification (inspired by [55])

paragraphs) need to be segmented2 from the captured input
image. As soon as regions of handwritten text have been
identified in the input image, these can be further segmented
into text-line or even word images. These are then subject
to a number of preprocessing steps that aim at reducing the
variability in the appearance of the writing by applying a
sequence of normalization operations.

A classical HWR system would then proceed by attempt-
ing to segment the normalized text into candidates of prim-
itives (e.g., strokes or characters, see Fig. 1). The potential
primitives would then be classified, and the best segmentation
result would be selected—usually according to some heuris-
tic. In contrast to this approach, MM-based HWR systems
can avoid carrying out segmentation3 at the level of character
sequences and subsequent classification separately. The only
requirement for their application is that the data to be pro-
cessed must be representable as a sequence of items without
making decisions about potential segmentations.

Therefore, after normalization text-line images are con-
verted to a sequential representation and local features are
computed. The feature vector sequences obtained are then
fed to an MM-based decoder that produces a hypothesis for
the segmentation and classification of the analyzed portion

2 Especially, when processing machine-printed documents where it is
usually clear that the document image only shows the document to be
analyzed, this initial segmentation of relevant document structures is
referred to as layout analysis (cf., e.g., [80]).
3 As any document analysis system needs to extract relevant textual
items, e.g., words or lines, from the document image prior to rec-
ognition, several preprocessing steps are necessary. These perform
tasks which can also be termed “segmentation.” Though there are first
approaches to perform, e.g., line separations using HMMs [78], in this
respect, traditional and MM-based systems are still quite similar. There-
fore, in this article, we focus on the segmentation at the level of char-
acter or word sequences where MM-based approaches can show their
strengths.

of handwritten text—usually, as a sequence of word or char-
acter hypotheses.

The complete pipeline of processing steps applied in a
state-of-the-art HWR system based on Markov models is
shown in Fig. 2. It largely follows a standard pattern recogni-
tion approach comprising preprocessing, feature extraction,
and classification (cf., e.g., [39]). What is special for MM-
based HWR systems is that a serialization of the patterns to
be recognized is carried out prior to feature extraction and
that segmentation and classification are achieved in an inte-
grated manner by the joint decoding of HMMs and n-gram
models.

2.1 Text-line extraction

In most applications of HWR, it is ensured that the document-
capturing process delivers an image of the desired document
only. Within this document image, paragraphs of text need
to be localized and lines of text need to be extracted. The
methods applied usually rely on the assumption that hand-
written text is oriented approximately horizontally and is
organized in line structures. Individual lines of text can then
be extracted by, for example, analyzing horizontal projection
histograms or by applying probabilistic segmentation tech-
niques (cf. [71]). A good overview of algorithms for text-line
extraction is given in [72].

2.2 Preprocessing

Images of handwritten text lines or words usually vary with
respect to baseline orientation (frequently also referred to
as skew), slant angle, and size of the handwriting. There-
fore, almost all HWR systems apply preprocessing opera-
tions that attempt to normalize the appearance of the writing
with respect to these three aspects (cf., e.g., [53]). Usually,
in some phase of preprocessing, the word or text line images
are binarized separating dark ink pixels from the document’s
background (cf., e.g., [113]).

To compensate for an unknown baseline orientation or
skew angle, either the baseline orientation itself or a suitable
approximation thereof is usually computed and subsequently
compensated by appropriately rotating the line image. The
methods applied are somewhat script dependent. For exam-
ple, computing a baseline estimate by interpolating local con-
tour minima (cf. [13]) works well for Roman script, but will
be likely to fail for Arabic. More widely applicable is the
implicit estimation of the baseline orientation by maximiz-
ing the entropy of the horizontal projection histogram (cf.,
e.g., [119]).

The slant angle, i.e., the tilt of individual handwritten
characters with respect to the vertical, is compensated by
applying a shear transform to the text-line image. The crucial
part here is the reliable estimation of the slant angle. Many
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Fig. 2 Schematic overview of a typical architecture for an HMM-based handwriting recognition system. Example whiteboard data, preprocessing,
and recognition results shown are taken from [125]

successful methods rely on gradient information extracted
from the text-line image (cf., e.g., [9,38]), which is often
binarized in advance.

No generally accepted methodology exists so far for the
normalization of the apparent size of handwriting in image
data. HWR systems that compute the baseline and other writ-
ing lines often rely on an estimate of the so-called core size,
i.e., the size of lower-case letters in Roman script (cf., e.g.,
[26,84]). However, as size normalization is quite crucial, any
error in estimating the writing lines will lead to an inappropri-
ate size normalization and consequently to the almost inev-
itable failure of the subsequent recognition process. A quite
robust method for normalizing the size of Roman script was
proposed in [79] which uses an estimate of average character
width.

2.3 Serialization and feature extraction

MM-based recognizers require the data to be analyzed to
be sequentially or temporally ordered. Therefore, a suitable
technique for converting two-dimensional images of hand-
written words or text lines to a sequential representation is
an integral part of any MM-based offline HWR system. The
most prominent and widely used method for serialization of
text-line images—the so-called sliding-window approach—
was first and independently proposed by researchers at
Daimler-Benz research center for offline handwriting
recognition [65] and at BBN for offline recognition of
machine-printed text [105]. It consists of sliding a small anal-
ysis window, which is usually only a few pixels wide (i.e.,
much narrower than a character image), along the text-line
image, i.e., in the direction of the writing. Thus, small vertical
stripes are extracted from the text-line image, which usually
overlap to some degree (see Fig. 3). This sequence of image
stripes forms the basis of the subsequent feature extraction.

Fig. 3 Example of the sliding-window approach: Above, the text line
to be analyzed is shown with the implicit sequencing direction assumed
and some of the overlapping analysis windows superimposed. Below,
the extracted image stripes are shown for part of the text line

Feature extraction methods building on the sliding-
window analysis-framework usually compute some local
characteristics of the extracted image stripes as, e.g., image
moments or—after binarization of the image data—simple
geometrical properties. Taken together, the sliding-window
technique and the feature extraction applied to each window
compute a local feature representation of the text-line image
to be analyzed. The procedure can principally be compared
to the short-time analysis and feature computation as applied
for the purpose of speech recognition, though it lacks a clear
justification from a signal-theoretic point of view.

2.4 Modeling and decoding

For reasons that will be detailed in the following section,
recognition systems based on Markov models use two dis-
tinct modeling components. The appearance of the hand-
writing as defined by its local characteristics captured in the
feature representation is described by hidden Markov mod-
els. We will refer to this modeling component as the writing
model. The second modeling component describes long term
sequencing restrictions within the data, i.e., on the level of
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word or character sequences. This so-called language model
is usually realized by Markov chain models.

The writing model usually defines basic models for ele-
mentary units like, e.g., characters. By simple combina-
tion operations, more complex model structures for, e.g.,
arbitrary sequences of words from a given lexicon, can be
constructed from these basic entities quite easily. In such a
complex model, the language model component provides a
probabilistic model for long-term dependencies.

In combination, the writing and the language model form
a powerful statistical description of handwriting. The param-
eters of the models can be estimated automatically on sample
data. The so-called decoding of the integrated model—i.e.,
the search for the optimal path through the combined state
space—provides the optimal segmentation and classification
of the data in an integrated framework.

3 Markov model concepts: the essence

For the analysis of sequential data, the use of hidden Markov
models (HMMs) as statistical models can be considered the
state-of-the-art. In combination with Markov-chain models
that describe restrictions of possible hypotheses sequences,
powerful classification systems can be realized. For online
recognition, handwriting data is of sequential type by its
nature since it is recorded as the text is written and, thus, cor-
responds to time series. Images of handwriting, as processed
by offline recognizers, can be transferred into a sequential
representation by moving a sliding window along the par-
ticular text lines (cf. Sect. 2.3). Thus, Markov models is a
perfect fit for handwriting recognition.

The following summary of the theoretical concepts behind
Markov models is mainly adopted from the argumentation
in [51]. An abridged, tutorial-style version thereof with
focus on handwriting recognition can be found in [50]. The
interested reader will find an in-depth treatment of MM-based
pattern recognition methods in [47].

3.1 Recognition paradigm

Markov-model-based recognition approaches are, generally,
based on the assumption of a statistical model for the gen-
eration of the data to be analyzed. A sequence of symbols
w—characters or words—generated by some source, i.e., the
writing process, is coded into a signal representation (for off-
line HWR, this means images of handwritten text) and later
observed as a sequence of feature vectors X. Formally, the
goal of the recognition process is then to find the sequence
ŵ that maximizes the posterior probability P(w|X) of the
symbol sequence given the data.

ŵ = argmax
w

P(w|X) = argmax
w

P(w)P(X|w)

P(X)

= argmax
w

P(w)P(x|w) (1)

When applying Bayes’ rule P(w|X) can be rewritten into
a form, where the two modeling components of typical
Markov-model-based recognition systems become mani-
fest. P(w) denotes the language model probability for the
sequence of symbols w. Technically, stochastic n-gram
models represent the usual realization of language models.
P(X|w) represents the probability of observing the sequence
of symbols as features X according to the writing model,
namely the HMM.

The fundamental advantage of Markov-model-based rec-
ognizers is that they do not require an explicit segmenta-
tion of the data prior to its classification. The recognition is
thus performed in a segmentation-free manner, which means
that segmentation and classification are integrated. Thus, the
application of Markov models to presegmented input data, as
described in some publications, appears to make sense only
for very rare special cases, if any.

3.2 Hidden Markov models

3.2.1 Definition

Hidden Markov models describe a two-stage stochastic pro-
cess with hidden states and observable outputs. The first stage
represents a discrete stochastic process, which produces a
series of random variables that take on values from a dis-
crete set of states. This process is stationary, which means
that its statistical properties do not change over time, and
it is also causal and simple. The last two properties taken
together restrict the dependency of the probability distribu-
tions of states generated by the random variables to be depen-
dent on the immediate predecessor state only. The Markov
process is then said to be of first order.

P(st |s1, s2, . . . , st−1) = P(st |st−1)

Basically, this first stage represents a finite state automaton,
which behaves probabilistically. In the second stage, then at
every time t , an output Ot is generated depending on the
current state st only:

P(Ot |O1 . . . Ot−1, s1 . . . st ) = P(Ot |st )

Since only these outputs Ot , and not the associated internal
states st , can be observed, the overall model is referred to as
hidden Markov model.

In summary, a first-order hidden Markov model λ is for-
mally defined as consisting of:
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– a finite set of states {s|1 ≤ s ≤ N },
– a matrix of state transition probabilities4 A = {ai j |ai j =

P(st = j |st−1 = i)},
– a vector of start probabilities π = {πi |πi = P(s1 = i)},

and
– state-specific output probability distributions

{b j (Ot )|b j (Ot ) = p(Ot |st = j)} for discrete emissions
or {b j (x)|b j (x) = p(x|st = j)} for continuous model-
ing, respectively (see below).

3.3 Modeling emissions

Depending on the type of input data, the output elements
generated per state can be either symbolic—i.e., of discrete
type—or continuous. The latter representation is better suited
for handwriting recognition purposes, as usually real-valued
vectors x from some high-dimensional feature-space R

N ,
which is derived from the original handwriting (image) data,
are processed. Consequently, the probability distributions
p(x|st = j) of the statistical outputs of the model need to
be able to define continuous distributions over R

N . Since no
general parametric families of such distributions are known,
in the continuous case, probability distributions are usually
approximated via state-specific mixtures of Gaussians:

p(x|st = j) =̂
∞∑

k=1

c jkN (x|µ jk, C jk)≈
M∑

k=1

c jkN (x|µ jk, C jk)

where N (x|µ jk, C jk) denotes a Gaussian normal distribu-
tion with mean vector µ jk and covariance matrix C jk , and
c jk represents the prior probability of the k-th mixture.

As for continuous HMMs, the number of parameters is
drastically increased with respect to the discrete case, several
techniques were developed to reduce the number of param-
eters by jointly using parts of the model. Such methods are
usually referred to as the tying of parameters. The most well-
known of these approaches are the so-called semicontinuous
HMMs—also frequently referred to as tied-mixture models
[62,63]. In such models, only a single set of component den-
sities is used to construct all state-specific output probability
densities:

b j (x) =
M∑

k=1

c jk N (x|µk, Ck)

3.3.1 Algorithms

The attractiveness of HMMs is to a large extent justified by
the fact that efficient algorithms for estimating the model
parameters as well as for decoding the model on new data

4 For practical applications, the actual model topology—i.e., the con-
nectivity between states of a certain model—is usually limited using
specific, non-ergodic model architectures (e.g., linear or Bakis type).

exist. Decoding corresponds to the integrated segmentation
and classification of the associated data.

A variant of the well-known expectation maximization
(EM) technique [37], namely the so-called Baum–Welch
algorithm is commonly used for training the model. The
method applies an iterative growth transformation to the
model parameters such that the generation probability of
the data given the model is improved:

P(O|λ̂) ≥ P(O|λ)

Here, λ̂ denotes the adapted HMM derived from the previous
model λ by applying one re-estimation step to the parame-
ters. Model training is iterated until convergence is reached,
i.e., until P(O|λ̂)− P(O|λ) ≤ ε for some small threshold ε.

The basis of model decoding is formed by the so-called
Viterbi algorithm, which is used to—in the statistical sense—
“infer” the hidden state sequence s∗ that with maximum prob-
ability generates an available sequence of outputs given the
model:

s∗ = argmax
s

P(O, s|λ)

As states can be associated with basic segmentation units—
for offline HWR usually this corresponds to characters—
decoding yields the segmentation of the data considered on
the basis of the current model.

3.3.2 Practical issues

The efficiency in both evaluating and decoding the model
arises from the fact that HMMs store only one internal
state as context for future actions, which is also called
the Markov property. Therefore, computations necessary
to obtain the production probability P(O|λ) and the opti-
mal state sequence s∗ can be performed in a dynamic pro-
gramming style with linear complexity in the length of the
sequence considered and quadratic complexity in the number
of model states. Still, the algorithms are usually not efficient
enough in practice. Hence, especially for decoding model
pruning strategies like the beam-search algorithm [77] are
applied.

In almost all current implementations of HMM-based rec-
ognizers (negative), logarithmic representations of proba-
bilities are used. Thus, products of probabilities are turned
into sums. Due to the reduced dynamic range of these addi-
tive costs, computations involving very small probabilities
become numerically feasible even if such quantities are accu-
mulated within large model architectures or for extremely
long observation sequences.
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3.4 N -gram models

In addition to the analysis of local context within sequential
data, which is covered by HMMs, it is desirable in many
applications to be able to describe long-term dependencies
within the statistical modeling framework. For HWR appli-
cations, restrictions concerning the potential co-occurrences
of subsequent characters or words (depending on the model-
ing basis) cannot be captured reasonably using HMMs alone.
This is where Markov-chain models come into play.

3.4.1 Definition

Markov-chain models can be used to statistically describe the
probability of the occurrence of entire symbol sequences.
Formally speaking (cf. Eq. 1) the probability P(w) of a
sequence of symbols w = w1, w2, . . . , wT is calculated.
In order to make things mathematically tractable, P(w) is
first factorized using Bayes’ rule according to

P(w) = P(w1)P(w2|w1) . . . P(wT |w1, . . . , wT −1)

=
T∏

t=1

P(wt |w1, . . . , wt−1)

Since the context dependency increases arbitrarily with the
length of the symbol sequence, in practice the “history” of a
certain symbol is limited:

P(w) ≈
T∏

t=1

P(wt | wt−n+1, . . . , wt−1︸ ︷︷ ︸
n symbols

)

This means that the probability of the complete sequence is
defined on the basis of the conditional probabilities of some
symbol—or word—wt occurring in the context of its n − 1
predecessor words wt−n+1, . . . , wt−1. Markov-chain mod-
els are therefore often referred to as n-gram models.

3.4.2 Algorithms

For the evaluation of n-gram models on unknown data, usu-
ally the perplexity P

P(w) = 1
|w|√P(w)

= 1
T
√

P(w1, w2, . . . , wT )

= P(w1, w2, . . . , wT )−
1
T

is exploited as the evaluation criterion. Formally, the per-
plexity of some unseen data w is the cross-entropy between
the symbol distribution defined by the probabilistic model
and the one defined empirically by the data. The smaller the
perplexity the better the n-gram model is able to predict the
unseen data.

Parameter estimation for stochastic language models, i.e.,
training of n-gram models, is based on the determination of
n-gram occurrences c in sample data. Conditional probabili-
ties are calculated as the ratios of n-gram—or event—counts
c(w1, w2, . . . , wn) and those obtained for the respective con-
texts c(w1, w2, . . . , wn−1).

P(wn|w1, w2, . . . , wn−1) = c(w1, w2, . . . , wn)

c(w1, w2, . . . , wn−1

3.4.3 Practical issues

Even for moderate sizes of n (e.g., two for bi-gram models
or three for tri-gram models), most n-gram events necessary
for deriving robust statistical estimates will not be observed
in a typical set of training data due to its limited size. If
performing naive training as described in the previous sec-
tion, conditional probabilities for events not observed in the
training data (so-called unseen events) will erroneously be
determined as being zero. However, zero-probabilities are
only valid in very rare cases. Certain events being unseen gen-
erally needs to be attributed to the fact that too few samples
are available for parameter estimation. Therefore, for robust
estimation of n-gram models, it is of fundamental importance
to appropriately smooth the raw probability estimates. Note
that typically not some, but most n-gram counts will be zero.

Thus, in practical applications, n-gram counts are
modified and some “probability mass” for unseen events is
gathered, e.g., by certain discounting techniques. The result-
ing zero-probability is then redistributed to unseen events
according to a more general distribution. Widely used exam-
ples of smoothing techniques are Backing-Off and Interpo-
lation (cf., e.g., [27]).

3.5 Combination of writing and language model

As HMMs and n-gram models are quite similar to each other,
they can be combined rather easily into an integrated model
(cf. Eq. 1). However, as HMM and n-gram models usually
describe the data on widely different levels of granularity—
i.e., in units of words for the language model and in sub-char-
acter units for the writing model—the different scores need
to be combined in a weighted manner:

P(w)ρ P(X|w)

The optimum weight ρ for a certain model configuration
needs to be determined experimentally in practice. Some-
times, an additional bias term is also used to control the num-
ber of word or character hypotheses generated.

Furthermore, as n-gram models span considerably longer
contexts than HMMs, the search procedures used for inte-
grated model decoding also become more complex (cf., e.g.,
[47, Chap. 12]). Unfortunately, there is no formal way to
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predict the performance improvement to be expected from
the use of a language model. However, when comparing rec-
ognition results achieved by applying language models with
different perplexities on the test data, the word error rates—
according to a rule-of-thumb—will be roughly proportional
to the square root of the perplexities. A substantial violation
of that relation always indicates a problem with the integra-
tion of the language model evaluation into the overall decod-
ing procedure.

4 Markov-model-based handwriting recognition

The attractiveness of Markov models for various pattern
recognition applications is mainly reasoned by the clear and
reliable statistical framework they are based on. Efficient
algorithms for parameter estimation and model evaluation
exist, which is an important prerequisite for their practical
use in real-world applications.

The popularity of Markov models also for handwriting
recognition is based on these very arguments. However,
recognizers that can be applied successfully to real handwrit-
ing recognition tasks require substantially more know-how
than the basic concepts as described in the previous section.
In the following we will discuss respective practical issues
including reviews of the particular state of the art as described
in the literature.5

4.1 Segmentation-free versus segmentation-based
recognition

The process of automatic handwriting recognition can be
considered as a classical pattern classification task. Sensory
data is automatically assigned to those pattern classes to
which it most likely belongs. Thereby, the evaluation of sto-
chastic models is performed on the level of distinguished
basic modeling units from some limited inventory (words,
characters, or graphemes). Because of its creation process,
handwritten script corresponds to time-series data. Charac-
ters are written one after another, thereby exhibiting mutual
dependencies and touching each other. Consequently, hand-
writing recognition especially needs to address segmentation
issues.

The importance of the segmentation aspect is—inde-
pendent of actually focusing on Markov-model-based
handwriting recognition or on some other recognition
approach—considered in the vast majority of related doc-
ument analysis literature. Unfortunately, so far no consistent

5 Unfortunately, in the literature, the important technical aspects of the
modeling and algorithms used are quite frequently not given in suffi-
cient detail. Therefore, we concentrate on those publications that make
this information explicit.

terminology has been established that is commonly used by
the community. Since segmentation can be considered at var-
ious levels of document analysis certain clarification is nec-
essary to avoid misunderstandings. As an example, it needs to
be clarified whether segmentation is considered at the doc-
ument-, word-, or character-level—which does not always
become clear in the particular argumentations.

In this respect, Arica and Yaman-Vural in [2] discuss a
kind of taxonomy very thoroughly. Comparable arguments
can, for example, also be found in [22,108,115], just to men-
tion some examples. They discriminate between external and
internal segmentation. The first is considered as being the
most critical part of document analysis in general. By sub-
dividing a document into text and non-text regions external
segmentation is a necessary step prior to the offline HWR
process. Markov models have meanwhile also been applied
successfully for even more general document analysis tasks
w.r.t. layout segmentation (cf., e.g., [78]). However, external
segmentation is not directly related to the actual handwrit-
ing recognition process and will thus not be covered by this
survey. As the basis for offline HWR systems, in this survey,
we assume words or text lines (not characters) that have suc-
cessfully been isolated by means of some appropriate layout
analysis technique.

The direct application of the classical pattern classification
approach to isolated words, i.e., word-based recognition of
handwritten script, leads to so-called holistic approaches (cf.,
e.g., [22] and the references therein). The captured image of
some word to be recognized is considered as an “entity in its
whole” [22] and based on some lexicon the actual recognition
is performed. Despite its attractiveness, due to its simplicity,
this procedure has one serious drawback. In most realistic
applications, not enough sample data will be available for
robust modeling, which usually prevents its application to
real-world recognition tasks.

The alternative to the aforementioned holistic word-based
recognition approaches is the analysis of handwritten script at
the level of individual characters, i.e., character-based mod-
eling. Based on a limited set of building blocks—character
models—word-models are created by concatenation of these
basic units.6 Character-based modeling corresponds to the
standard approach for state-of-the-art MM-based handwrit-
ing recognition. There are, however, two variants of the basic
procedure.

In the first case, an explicit segmentation of the word
image into smaller units, usually the characters it consists
of, is performed. In the literature, respective approaches
are referred to as segmentation-based or as relying on
some explicit segmentation. It is commonly agreed that
it is extremely difficult, if not impossible, to correctly

6 Note that the recognition of isolated characters corresponds to some
very special application, which lies not in the focus of this survey.
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segment a word into its characters without knowing the word
itself. Consequently, the basic dilemma of such procedures
(cf., e.g., [1,3,67,68,92]) is that the subsequent classification
step will be doomed if this explicit segmentation step fails.
This problem is especially critical when processing noisy
input data—as handwriting often is. Certain approaches have
been proposed to alleviate the strict dependency of segmen-
tation-based HWR on correctly subdividing words into the
characters they consist of. As one example, explicit over-seg-
mentation is performed (cf., e.g., [70]) and based on some
alignment technique (as, e.g., dynamic programming), the
optimal “segmentation path” through the word to be rec-
ognized is extracted [44,58,91,110]. Alternatively, multiple
segmentation solutions are generated by variants of the seg-
mentation technique and the “best” solution w.r.t. the overall
recognition results is chosen [21].

By means of the aforementioned segmentation-based pro-
cedures, Markov models have been applied rather success-
fully to handwriting recognition tasks. Various strategies
were developed that allows one to cope with the criti-
cal dependency of such recognition systems on reasonable
segmentation results. However, if processing presegmented
data one of the fundamental strengths of Markov models
is ignored. As known from different application fields of
MM-based recognizers, most notably automatic speech rec-
ognition, the basic advantage of Markov models is to perform
pattern classification in a segmentation-free manner. Respec-
tive procedures are also referred to as implicit segmentation
approaches.

For segmentation-free recognition, all base models, i.e.,
HMMs modeling the respective characters, are integrated
into one large recognition model. Technically, this corre-
sponds to a parallel connection of base models by integrating
their respective states into a global state-space (see Fig. 4)
and adding connections between the HMMs. Viterbi decod-
ing of this global state-space for handwriting data results in
the most probable path through all base models. Transitions
between modeling units along the path through the global
state space correspond to the desired segmentation which is,
thus, performed implicitly while classifying.

The standard approach for MM-based segmentation-free
HWR is based on some variant of the sliding window
technique as described in Sect. 2.3. Features, that are con-
secutively calculated while moving the analysis window
along the image of the particular handwritten word, are fed
into the recognition system, and Viterbi decoding is per-
formed for simultaneous classification and implicit
segmentation (cf., e.g., [16,42,94,100,103,117,125]). Seg-
mentation-free recognition based on the sliding-window
principle has recently even been applied to offline Chinese
handwriting recognition [109], which emphasizes the impor-
tance of implicit segmentation-based HWR using Markov
models.

.  
 . 

  .

unit

unit

unit

Fig. 4 Parallel connection of HMMs corresponding to certain basic
modeling units, e.g., characters or words, for implicit segmentation dur-
ing Viterbi decoding. Transitions between modeling units represent seg-
ment boundaries

4.2 Serialization and feature extraction

Basically, there is a discrepancy between MM-based mod-
eling and the “nature” of the images of handwritten data to
be analyzed. Markov models are most suitable for sequen-
tial data. However, handwriting data as analyzed by off-
line recognition approaches corresponds to two-dimensional
images. In order to overcome this mismatch, input data need
to be serialized appropriately. The most commonly used
approach is the application of some variant of a sliding-
window technique. In its standard version, a small anal-
ysis window is moved along the handwritten text (in the
writing direction), and features are calculated serving as
sequential representation of the handwriting. Differences
exist in the particular configurations of the method, for
example, regarding the width and height of the analysis
window, or the overlap between adjacent positions. Further
variations comprise, e.g., the integrated analysis of multi-
ple analysis windows for automatic slant correction [43].
The basic principle of local analysis, however, remains the
same and most major recognition systems are based on it
[16,41,87,94,100,103,117].

In virtually all applications, HWR using Markov models
is based on certain feature representation of the input data.
The motivation for this is twofold. First, some data-reduction
is required since otherwise the number of parameters to be
estimated during training is far too large for robust model-
ing based on usual sample sets. Second, despite the appli-
cation of sophisticated preprocessing techniques that aim at
some normalized version of the image data to be analyzed,
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handwriting data usually still exhibits substantial variance,
which is due to, e.g., the capturing process. In order to focus
on the essentials of handwriting, deriving reasonable features
is mandatory.

Features for Markov-model-based handwriting recogni-
tion can broadly be classified into the following categories:
analytic features computed directly on the raw pixel inten-
sities or on intensity distributions; heuristic features usu-
ally based on the analysis of certain geometrical properties.
Combinations of these types of features—so-called hybrid
approaches—aim at maximally benefiting from both kinds.
Feature extraction methods not fitting into this classification
scheme can hardly be found in the literature. The majority of
current feature extraction techniques, however, can be clas-
sified into one of these types.

According to the literature, the calculation of certain sta-
tistical features directly on the particular pixel intensities,
usually preprocessed, i.e., normalized, in some reasonable
way, appears to be rather attractive (also) for Markov-model-
based handwriting recognition. Often (local) pixel intensities
or pixel density distributions—optionally their average or
median values—are considered as some sort of basic fea-
tures (as, e.g., in [3,40,45,87,117]). Quite frequently, start-
ing from some raw feature set optimized representations are
computed by some standard analytic transforms like PCA
[28,40,58,95,97,117] LDA [16,58] or function transforms
(DCT, FFT, Wavelet, Radon, etc.) [16,30,45]. Based on raw
pixel intensities, appearance-based features like Eigen pro-
jections can be derived as well [48].

In addition to analytic approaches, various features have
been proposed that are based on certain heuristic consider-
ations. Many of them describe structural properties of hand-
writing like loops, ascenders, descenders [44], slopes [36],
directional information [112], or concavity features [41].
In [125], a combination of several geometrical properties of
the analysis windows are used as features.

Independently of the basic principle used for feature
extraction, feature sets are frequently complemented by
adding discrete approximations of the time-derivative of the
individual vector components (cf., e.g., [94,125]). This tech-
nique, which is also widely used in automatic speech recog-
nition, improves the ability of the final statistical sequence
model to capture dynamic aspects of the data representation.

The process of feature extraction is critical for auto-
matic handwriting recognition. This is especially the case for
Markov-model based approaches. If the feature represen-
tation of handwritten data misses important properties, the
recognition itself is likely to fail. In contrast, if too much
redundancy is included by some feature representation,
robust modeling becomes complicated when only limited
sample sets are available for classifier training—as it is usu-
ally the case. According to the literature, analytical and
heuristic—most notably structural—features are currently

used in virtually equal shares. Since successful recognition
systems have been developed based on both types of features,
it appears to be some sort of matter of taste which features
to use.

4.3 Building the writing model

In MM-based recognition systems, the appearance of
handwriting is analyzed using HMMs serving as writing
models. Thereby, the regular case is the use of character mod-
els, which are concatenated to word models. For example,
recognizers for Roman script contain models for upper and
lower case letters, numerals, and those for punctuation sym-
bols, which results in 70+ base models in total (c.f., e.g.,
[16,94,125]). For Arabic recognizers, substantially more
models have to be used since Arabic uses 28 basic character
shapes, which can appear realized quite differently in four
types of contexts (cf. [76]).

The use of character models can limit the recognition per-
formance of an HWR system. Therefore, some recognizers
are based on an alternative modeling approach using graph-
emes as basic modeling units. Graphemes represent more
fundamental units in handwriting ranging from single strokes
to actual characters [33, p. 3f]. They are used for both Roman
and Arabic script recognizers (cf., e.g., [58,89,112,126]).

In some approaches, different variants of graphemes—so-
called allographs—are combined in multipath letter models
with parallel state paths (cf., e.g., [102]). The advantage of
this type of modeling units lies in the increased robustness
of the resulting HMMs regarding writing style variations.
As Arabic characters have different representations, depend-
ing on their particular contexts (isolated, initial, medial, and
final), a similar type of modeling can be used for Arabic
recognizers [104].

4.3.1 Modeling output behavior

A fundamental question to be answered for HMM-based
models is how the data is represented with respect to the sta-
tistical outputs generated by the HMM. The simplest way of
specifying output distributions is by defining discrete prob-
ability distributions over some finite set of symbols. It is,
however, quite cumbersome to define a coding of the inher-
ently numeric feature representations of offline handwrit-
ing data into a symbol set. Therefore, today, only very few
approaches still make use of discrete HMMs operating on
either discretely modeled distributions in feature space [70]
or a hand-crafted symbolic coding of the data [3]. Very rarely,
discrete symbols are combined with continuous attributes for
output modeling [127].

As the HMM-internal modeling is greatly simplified
for discrete models, quite a number of approaches have
been proposed that combine discrete HMMs with a vector
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quantization (VQ) step in order to be able to handle con-
tinuous feature representations (cf. [44,45]). However, most
methods of this type that are still in use today try to compen-
sate the inherent limitations that arise from splitting up the
model into two separate components. In [36], a fuzzy VQ
is used to reduce the negative effects of quantization errors.
Other approaches combine discrete HMMs and neuronal net-
works (NN). In [20] and related publications, the NN-based
VQ offers the advantage that it can be optimized jointly with
the parameters of the HMM. In [89], the NN is used to directly
compute the output probabilities of the HMM.

The majority of current offline handwriting recogni-
tion systems is based on continuous HMMs that describe
output probability density distributions by mixtures of
Gaussians [41,57,61,87,109,111,117]. An important param-
eter of continuous density HMMs is the number of Gaussi-
ans used per state. As the sets of Gaussians are state specific
and are not shared across the overall model, this number
is usually quite small. With the exception of [111] where
64 diagonal covariance Gaussians are used, the number of
Gaussians per state ranges between 3 and 12.

In order to construct more compact HWR systems and to
use limited training data more effectively, instead of con-
tinuous HMMs with state-specific mixtures, tied-mixture
HMMs are also frequently used [7,15,97,100,125]. In these
systems, the shared codebooks contain between several hun-
dred component densities (e.g., 300 full-covariance Gaus-
sians in [15]) and some thousand distributions (e.g., 1.5k
diagonal-covariance Gaussians in [100]). Several more spe-
cific variants of mixture-tying with large numbers of over-
all densities used (up to approximately 150k) are explored
in [94].

Even more parameter tying in a complex configuration
of mixture density models can be exploited by using shared
codebooks for multiple lower-dimensional sub-spaces of the
original feature space [12]. This approach was used suc-
cessfully in [57] to compress the storage requirements of a
large-vocabulary Chinese handwritten character recognition
system by a factor of ten without sacrificing recognition
accuracy.

4.3.2 Model architecture

According to the sequential structure of handwriting data,
the most obvious topology for hidden Markov models, as
applied in HWR, is the linear architecture. Here, every state
is connected to itself and to its immediate successor state
to the right. Note that for Arabic HWR the same holds but,
as Arabic is written from right to left, here linear topolo-
gies with reversed directionality represent the methodology
of choice [41]. Since larger contexts are typically not relevant
for modeling handwriting, the number of neighbors that are

Fig. 5 Most common model topologies used for elementary units in
HMM-based writing models (upper: linear; lower: Bakis)

directly connected to some particular HMM state is usually
restricted to more or less directly adjacent states. In order
to allow for more variability in the length of the segments
described by some basic model, the skipping of the imme-
diate successor state is frequently allowed. Consequently, in
this so-called Bakis topology every state has three potential
successors (see Fig. 5). Most major recognition systems are
based on either the linear or the Bakis topology (cf., e.g.,
[16,41,87,94,100,102,125].

The number of states per character model is usually fixed
according to certain heuristics. Often the average lengths of
characters to be modeled (optionally determined on outlier-
reduced sample sets) in combination with the chosen model
architecture determine the number of states used (see Sect. 5).
There are, however, also approaches for model optimization,
e.g., with respect to the number of states (individually) used
per character model (cf., e.g., [60,130]), that allow for minor
improvements in classification accuracy. For example, Bakis
models with n states could cover characters with a minimum
length of n/2 frames, thereby—due to self-transitions—not
implying an upper limit for the sequence length.7

According to the literature, linear (or Bakis) modeling
represents the basis for the majority of current HWR sys-
tems. However, in addition to this, certain specialized archi-
tectures for character models have been developed. In [44],
a rather complicated topology is described, which is based
on eight internal states. However, the necessity of some spe-
cialized model architecture is in this case certainly justified
by the segmentation-based nature of the overall approach
(see Sect. 4.1). The same holds for the “handmade” model
architecture in [91]. For signature verification in [30], a ring-
topology of HMMs is successfully applied.

For standard HMMs, the duration that a model can spend
in a particular state is implicitly modeled by a geometric

7 A potentially differing number of states does usually not affect the
parallel and competitive evaluation of HMMs (see again Fig. 4) since
HMM scores are normalized over the particular sequence’s length.
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probability distribution. However, in some (rare) cases, it
can be beneficial to explicitly model the probability of con-
secutively observing some number of states in a particular
state. In [7], experiments with explicit state duration mod-
eling for MM-based HWR are described. It is shown that
explicit state duration modeling can best be achieved using
Gamma distributions.

4.3.3 2D-extensions of the writing model

The predominant approach for making HMMs cope with
handwriting data in the form of offline captured images is
the aforementioned serialization of the images by means
of the sliding window technique. Despite its popularity
and its doubtless effectiveness, alternative approaches for
directly dealing with two-dimensional handwriting data have
also been developed. Basically, these techniques address the
direct treatment of the data by the HMM without the need
for explicit “conversion.”

In [112], the use of planar HMMs, i.e., writing models
whose emissions are also modeled using HMMs, for Arabic
handwriting recognition is described. The five
(horizontal) writing zones are directly covered by 1D-HMMs
whose combined evaluation allows for directly analyzing
image data without the need for explicit serialization. Alter-
natively, by means of the integration of Markov random fields
(MRF) into MM-based handwriting recognition systems,
handwriting images can be processed (cf., e.g., [29,114]).
Although 2D-extensions of the writing model are reasonable
for certain applications, explicit serialization of handwriting
images is, apparently, more promising.

4.3.4 Adaptation

The ultimate goal of automatic handwriting recognition sys-
tems is their independence of any constraints regarding the
handwriting analyzed. Among others this includes writer
independence as well as robustness with respect to differ-
ent writing styles, or lexicon changes. In order to reach this
level of independence for practical applications, certain tech-
niques for model adaptation have been proposed.

In [19], transformation-based model adaptation using EM,
MAP, MLLR, and SLLR is described. Similar experiments
have also been reported in [49,73,116]. It has been shown
that model adaptation w.r.t. writer changes or regarding lex-
icon restrictions (relevant for mail sorting applications) can
be realized very effectively.

4.4 The role of language models

In the statistical recognition paradigm, the writing model rep-
resented by the HMM needs to be complemented by the lan-
guage model component for the representation of long-term

sequencing constraints. As such long term constraints are
not essential for all applications of HWR, the use of a lan-
guage model is not as widespread as in the field of automatic
speech recognition. However, in recent years, the applica-
tion of language models for handwritten text recognition and
the so-called lexicon-free recognition of virtually unlimited
vocabularies have become quite popular.

4.4.1 Word-based language models

In applications of handwritten text recognition where seq-
uences of words are fed into a statistical recognizer without
the prior attempt to perform a segmentation, word-based lan-
guage models are used in much the same way as in automatic
speech recognition. Probably, the first report involving the
use of statistical language models for handwritten text rec-
ognition is given in [85]. The authors investigated the relation
between uni- and bi-gram language models of different per-
plexities in detail, and their impact on recognition quality in
writer-independent experiments. In [8], a bi-gram language
of similar origin is combined in different parameterizations
with a writing model to create alternative recognizers. The
perplexity of the model, however, is not given. The consid-
erable performance gains to be achieved by using a bi-gram
language model were confirmed by [125] for a quite similar
task. Recently, a tri-gram model was used in experiments on
the same database [94].

A slightly different use of language models is reported
in [111]. There the primary goal is not the recognition of the
written text but the classification of spontaneous handwriting
obtained from survey forms into a small number of seman-
tic classes. Preliminary results for uni- and bi-gram models
are given, which, due to the unique nature of the task, can,
however, not be put into perspective.

Unquestionably, the most detailed account of the impact
of word-based language modeling on HWR performance is
given in [117]. The authors create uni-, bi-, and tri-gram lan-
guage models on different text corpora and use them in recog-
nition experiments on three different corpora of handwritten
text (including a writer independent task). As expected, the
use of a language model considerably improves recognition
accuracy. However, it does not become completely clear why
the perplexities obtained for bi-, and tri-gram models—and
consequently the recognition accuracies achieved—remain
relatively close in all configurations investigated.

4.4.2 Character-based language models

A quite interesting method for using n-gram models in HWR
is to apply them at the character level. Thus, the explicit use of
a lexicon can—to some degree—be avoided and recognition
is performed in so-called lexicon-free mode.
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Character-based language models were first proposed
for the recognition of degraded machine-printed documents
in [20] and later applied to handwriting recognition in [14].
Experiments on a small (four writers) word-segmented data-
base are reported for 3-, 5-, and 7-gram models including
perplexities. In [17], the same methodology is applied to the
problem of address recognition. Quite promising results have
been obtained for back-off smoothed n-gram models up to
length 7.

The lexicon-free approach has also been applied suc-
cessfully to text recognition tasks, i.e., without relying on
word presegmentation. Character tri-gram models were used
in [94], whereas n-gram model lengths from 2 to 5 were
investigated in [123] and later in [125].

4.4.3 Integration

Especially, for the use of long-span statistical language mod-
els as presented earlier, the correct integration of the writing
and the language model during decoding is of fundamental
importance. Unfortunately, details about the solutions used
can rarely be found in the literature.

In both [111] and [117], the combination of HMM and n-
gram model is compiled into a combined finite state autom-
aton usually referred to as a word network.

Research groups that entered the field of HWR from the
area of automatic speech recognition usually apply the same
decoder as previously developed for automatic speech recog-
nition, which is then referred to via bibliographic reference
only. Thus, in [14], a stack decoder and in [125], a time-
synchronous decoder applying beam-search and time-based
copies of search trees is used, whereas the system described
in [94] applies a two-pass decoding strategy [4].

4.5 Multi-classifier combination

Probably due to the growing popularity of multi-classi-
fier systems and methods for combining classifiers, several
researchers also explored such techniques in the context of
MM-based offline HWR. In [15], different classifiers are
derived from different feature representations. The combi-
nation of the different hypotheses obtained is then achieved
by a slight variant of the ROVER framework [52], which
was originally proposed in the context of automatic speech
recognition. On a small (six writers) proprietary datasets,
significant performance improvements are reported.

A rather unusual combination method is proposed in [59].
HMMs for word models are assumed to result from a concat-
enation of character models. Different such models are built
by different training methods, namely, boosting and bagging.
Finally, combined models are formed by allowing the charac-
ter sequences within a word model to switch freely between

model variants. Results reported on a small task (only six
writers) show a minor improvement which might, however,
not be significant.

The multi-classifier system reported in [8] is constructed
by varying the parameters for combining HMMs and n-gram
models used. The combined result is then obtained by simply
applying ROVER. Significant improvements are reported on
a large vocabulary recognition task for a combination of 18
individual configurations.

An interesting application of a multi-classifier approach is
reported in [43]. The three baseline classifiers for recognition
of Arabic handwriting are constructed by compensating for
different slant angles during feature extraction. As only the
recognition of isolated words is considered, the combination
of the results can be achieved by a second classification stage
which is most successfully realized as an MLP.

At a more abstract level, multi-pass recognition techniques
are also related to multi-classifier approaches. As, for exam-
ple, described in [21,121,122], MM-based HWR systems
have been developed that combine the results of at least two
consecutive recognition stages.

The combined use of HMMs and neuronal networks for
HWR reported in [68] and refined in [67] can be considered
a mixture between a multi-pass recognition and parallel clas-
sifier combination. First, HMM-based classifiers are used for
character segmentation. Then NN-based character classifiers
produce local recognition scores that are finally combined by
a NN classifier with the scores obtained from the HMMs.

5 Markov-model-based offline handwriting recognition
systems for practical applications

The theoretical foundations of Markov models are, basi-
cally, independent of their specific application domain. How-
ever, when aiming at fully functional MM-based recognition
systems that can actually be used for practical tasks, domain-
specific know-how is the key prerequisite for their success-
ful application. Consequently, the majority of this kind of
HWR research effort performed in the last 20+ years has been
devoted to the development of techniques for the adoption of
Markov models to offline handwriting recognition.

Aiming at a comprehensive overview of Markov-model-
based HWR as it is actually performed in current practi-
cal applications, in the following, the focus of this article is
shifted toward the description of recognition systems. After
the theoretical aspects and key developments in the field have
been surveyed, integration aspects and concrete evaluations
of recognition capabilities are now discussed. Reviewing the
literature, seven major recognition systems were identified,
thereby concentrating on those systems that, according to
recent publications and to the authors’ knowledge, are still
being maintained and developed by the particular authors.
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For most of the systems, detailed system descriptions exist.
Furthermore, numerous refinements are often described in
the particular follow-up publications.

5.1 Datasets

The evaluation of HWR systems is usually performed
by means of practical experiments. Therefore, parameter
estimation for the particular statistical models (HMMs and
n-gram language models, respectively) is performed on
(annotated) training data and the recognition capabilities are
measured on more or less well-defined test-sets.

The description of the HWR systems, which is given in
this section, also includes summaries of their most important
recognition results. In the following, the databases that are
most frequently used are briefly described. The documents
contained by the particular databases are usually scanned
with 300 dpi at a grey level resolution of 8 bit (exceptions
will be denoted).

5.1.1 IAM-DB

The IAM dataset represents a handwritten English sentences
database for offline HWR [88]. It is based on the LOB corpus,
a collection of texts that comprise about one million word
instances. In its version 3.0, the database includes images of
1,539 forms that were produced by 657 writers, which results
in a total of more than 115k word instances. Overall, a total
number of 10,841 word tokens is included in the database.

5.1.2 IAM-OnDBCam

This set of images corresponds to a side-product of the IAM
online database captured for whiteboard reading applications
(IAM-OnDB [75]). It consists of color images of whiteboard
texts that have been taken with a digital camera with a resolu-
tion of 3,264×2,448 pixels each. The database contains 491
documents written by 62 subjects without any constraints
w.r.t. writing style. Similar to IAM-DB, the text written on
the whiteboard is based on prompts from the LOB-corpus. In
total, the database comprises a dictionary of 11,059 words.
Unfortunately, unlike the other IAM databases this database
is not yet publicly available.

5.1.3 IFN/ENIT

The IFN/ENIT database represents a standardized set of
handwritten Arabic town/village names [96]. It consists of
scanned forms of more than 400 writers with about 26,400
city names containing 210k+ characters. In addition to the
images and their annotation, further information as for exam-
ple the correct baseline of the cropped and preprocessed
words are also provided.

5.1.4 Cambridge

The Cambridge database contains handwritten documents—
353 handwritten text lines are split into training (153 lines),
validation (83 lines), and test (117 lines) sets [106]. In total,
the database contains images of 2,360 training words, 675
validation words, and 1,016 test words. The overall vocabu-
lary consists of 1,334 words.

5.2 Systems

According to the reviewed literature and to the criteria for
selection as defined earlier, seven major recognition systems
are considered that focus on offline Markov-model-based
HWR. In the following, their key features and recognition
results are described. For the reader’s convenience and for
easier comparability of the particular systems, Table 1 sum-
marizes the main characteristics of these MM-based hand-
writing recognizers together with key references.

5.2.1 BBN

BBN Technologies Cambridge, USA, can be considered as
one of the pioneers in transferring Markov-model-based tech-
niques from the domain of automatic speech recognition to
the field of optical character recognition. Since the mid-1990s
BBN worked extensively on various aspects of statistical
modeling for optical character recognition (cf., e.g., [93]).
BBN’s recognition framework is based on the BYBLOS
engine, which was originally developed for automatic speech
recognition purposes (cf., e.g., [32] for a system descrip-
tion). Recently, BBN has successfully applied its OCR frame-
work to the recognition of handwritten texts in different
scripts [94]. Although BBN as a company mainly addresses
commercial applications, which usually implies certain non-
disclosure of technical details, an astonishingly large num-
ber of publications exists that very thoroughly describe the
recognition system(s).

The BBN handwriting recognition system follows the
classical architecture of Markov-model-based recognizers
for general sequential data. It integrates both HMMs and sta-
tistical n-gram language models. Apparently, the BBN sys-
tems, which includes both OCR and handwriting recognition
utilizing Markov models, aim at universal applicability with-
out language or script dependent restrictions. As an example,
the OCR system has already been used for the recognition
of numerous script types even including such “exotic” lan-
guages as Pashto (main language in Afghanistan) [35]. In the
same way, multi-linguality is addressed by BBN’s research
activities in Markov-model-based handwriting recognition.

The offline HWR system includes modules for complete
document layout analysis that segments each input image
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into single column text zones. After normalization (de-skew-
ing and line finding, plus some preliminary—according to
[94]—slant correction) the latter represents the input for
the recognition system. Serialization is performed using the
sliding window technique where overlapping frames are
extracted for every line of text. Thereby, the height of the
analysis windows equals to the height of the particular line,
the width is 1/15 of the height and adjacent frames over-
lap by 2/3 of window width. In these frames, “percentile
features” (patent pending) are calculated on binarized pix-
els. The blackness of a frame is integrated from top to
bottom. After normalizing by the sum of black pixels, a
monotonically increasing function encodes the amount of
blackness up to any particular position within the frame.
By sampling the function equidistantly, 20 features are cal-
culated. In addition to this, horizontal and vertical deriva-
tives, respectively, complement the feature vectors. Together
with angle and correlation features (ten each) that are
calculated from scatter plots of the text pixels, 80-dimen-
sional vectors are extracted for every frame. In the
description of their OCR system [93], which represents the
origin of the BBN HWR system, the authors describe 80 com-
ponents. However, for the HWR system in [94], 81 features
are mentioned. Unfortunately, it remains unclear how the
missing component is calculated. The resulting 81-dimen-
sional feature vectors are then reduced to 15 dimensions by
applying LDA.

The BBN recognizer uses tied-mixture character HMMs
as elementary writing models with 14-state Bakis topol-
ogy. Different variants of mixture tying (classical global
tied mixtures over all states, character-tied mixtures where
Gaussians are shared by states of single characters, and some
mixture form of both types—state tied mixtures with a total
of approximately 150k Gaussians) are integrated for most
effective exploitation of sample data for model estimation.
The latter is performed using classical Baum–Welch train-
ing, whereas the recognition itself is a two-pass beam-search
process combining a fast forward match with a more detailed
backward search [4]. Optionally, a lexicon is used during
recognition, and statistical n-gram language models (word-
based tri-grams) are integrated.

Apparently, it is especially the large number of mixtures,
which are used for emission modeling, that enables truly
multi-lingual handwriting recognition. Experimental evalua-
tions have been described that address the recognition of Eng-
lish, Arabic, and Chinese script [94]. It needs to be mentioned
that, generally, very detailed descriptions of the BBN recog-
nizer’s configuration for the particular experimental evalu-
ations are given. For the first set of experiments the IAM-
DB is used. By means of a tri-gram language model word
error rates of approximately 40% have been achieved. Exper-
iments for Chinese HWR have been conducted, for example,
on the ETL9B dataset (200 instances each of 71 Hiragana

and 2,965 Kanji characters—in total 3,036 unique charac-
ters). Here, character-based error rates of approximately 17%
were reported. Finally, the system has been evaluated on the
IFN/ENIT database. Word error rates of 10.6% indicate the
suitability of the BBN recognition system also for Arabic.

5.2.2 CENPARMI

Document analysis in general represents one of the major
working fields of the research group of Ching Suen at
the Centre for Pattern Recognition and Machine Intelli-
gence (CENPARMI) at Concordia University, Montréal,
Canada including associated scientists from other institu-
tions. Among others their activities are focused on HMM-
based offline handwriting recognition. Over the years a rec-
ognition system has been developed that is successfully being
used for various applications including signature verifica-
tion, postal address reading, recognition of (Brazilian) bank
cheques, and so forth. A general system description has been
published in [44]. Additionally, numerous papers address-
ing applications and enhancements of the basic system exist
(cf., e.g., [58,67,68]). The base system was also used for
hybrid recognition approaches or for classifier Ensembles
[66,68].

The CENPARMI system for Markov-model-based offline
HWR differs from most of the systems described in this sur-
vey in certain aspects. First, recognition relies on explicit
segmentation of extracted words into (pseudo-) characters.
Second, compared to other approaches, a radically differ-
ing strategy regarding feature extraction is pursued. Accord-
ing to [44] “lexicon-driven word recognition approaches
do not require features to be very discriminative at the
character or pseudo character level because other informa-
tion, such as context […], word length, etc., are available
and permit high discrimination of words. Thus, [they] con-
sider features at the segment level with the aim of clus-
tering letters into classes.” Furthermore, the CENPARMI
system is based on discrete hidden Markov models using
emissions calculated on string encoding of different feature
sets.

After preprocessing word images by applying skew com-
pensation, lower case letter area (upper-baseline) normaliza-
tion, character slant correction, and smoothing, an explicit
segmentation of the input data is computed. The procedure
explicitly performs over-segmentation by generating a high
number of possible segmentation points (SP) that sub-divide
words into units that not necessarily correspond to actual
characters but to some smaller portions. In this way, sev-
eral segmentation options are offered, the best ones to be
validated during recognition. At every segmentation point,
the neighborhood is divided into writing zones that repre-
sent small analysis windows centered at the particular SP.
Based on this, three different sets of features are calculated.
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The first set comprises global features (loops, ascenders, and
descenders). For the second set of features, bi-dimensional
contour transition histograms of each segment in the horizon-
tal and vertical directions are analyzed and certain statistics
are derived that serve as discrete feature values (from a set of
14 symbols). Furthermore, segmentation features that reflect
the way segments are linked together are considered. Option-
ally, an LDA transformation is applied to the resulting feature
vectors aiming at the introduction of “class information dur-
ing feature extraction” [58].

CENPARMI’s writing models (HMMs) are based on
graphemes as modeling units. A special model topology has
been developed that consists of eight segment specific states
and a rather complicated transition scheme. The rationale is
to explicitly map the over-, under-, or correct segmentation of
a letter to the model architecture. Additionally, the recognizer
uses separate space models with modified linear left-to-right
architecture without self-transitions. Parameter estimation is
performed using a slightly modified version of Baum–Welch
training. Recognition itself is performed using a rather com-
plex decoding procedure that apparently allows an implicit
detection of the writing style (no further details given).

Since the CENPARMI recognizer together with variants
and enhancements of the base system has been used for
various application domains, the results reported for exper-
imental evaluations of its recognition capabilities are rather
diverse. Addressing postal address reading experiments in
recognizing unconstrainedly handwritten French city names
were performed on proprietary data. Depending on the lex-
icon size (varying from 10 to 1,000) results between almost
perfect recognition and approximately 12% word error rate
have been reported for test sets containing between 4k and
11k images [44,58]. For the analysis of bank cheques, hand-
written month words, i.e., a lexicon of 12 entries, are recog-
nized. Here, recognition results of about 10% word error rate
have been achieved for a set of 402 test images [44].

5.2.3 IAM

The group of Horst Bunke at the Institute of Informatics and
Applied Mathematics (IAM) at the University of Bern, Bern,
Switzerland can without doubt be called one of the most pro-
ductive teams with substantial influence on general research
in handwriting recognition. In fact, one of the earliest papers
on Markov-model-based recognition of unconstrained cur-
sive script, i.e., handwriting, was published by them in 1995
[23]. Over the years, numerous scientists affiliated or asso-
ciated to this group (including the group at the swiss IDIAP
institute) have contributed to the research field of (Markov-
model-based) handwriting recognition. Consequently, today
IAM maintains a mature handwriting recognition system,
which has successfully been applied to both online and off-
line recognition tasks.

The IAM system for offline reading of unconstrained
handwritten pages has, for example, been described in
detail in [87,117]. Additionally, a multitude of refine-
ments, enhancements, and specialties have been described in
numerous papers published in the last few years. Basically,
the system follows the classical architecture of a Markov-
model-based recognition system as summarized in Sect. 2.
Handwritten documents are presegmented regarding single
text lines, which are then fed into the recognition system that
proceeds in a segmentation-free manner, i.e., not relying on
further segmentation. The IAM system integrates continuous
HMMs as writing models and statistical n-grams as language
models. The first step in the processing chain comprises suit-
able preprocessing that addresses skew and slant correction,
text line normalization and horizontal scaling.

For feature extraction, text line images are serialized by
means of a sliding window technique. Thereby the analysis
window, which is moved from left to right along the text line,
is one column wide, i.e., there is no overlap between consec-
utive frames. The height of the sliding window is identical to
the text line’s height. For every frame, nine local geometrical
features are computed. On the one hand, these features cover
the characteristics of the analysis window from a global point
of view (weight of the window, center of gravity and so forth).
On the other hand, the features also describe details about
the writing itself by considering positions and orientations
of contours and certain pixel statistics. Note that variants
of the feature extraction process have been described where
only local grid-based pixel counts were used [117,118]. The
IAM system is based on character models with linear topol-
ogy that each consist of a fixed number of 14 states (empir-
ically found) with continuous emissions. Identical models
are used for capital and and small letters and word mod-
els are obtained by simple concatenation of character mod-
els. Parameter estimation is performed using Baum–Welch
training, and for recognition, Viterbi decoding is applied. The
IAM system also integrates statistical n-gram language mod-
els (up to tri-grams), which are estimated using discounting
and backing-off.

The effectiveness of the overall IAM system as well as
of its recent enhancements is usually documented by the
results of experimental evaluations based on the IAM data-
base. Depending on the actual configuration of the particular
experiments and the recognizer used, word error rates
between 37.3% [9] and approximately 53% [117] have been
achieved. Furthermore, in [117] results for evaluations on the
Cambridge database (≈9% WER) were reported.

5.2.4 SIEMENS

The primary field of activity of the department of logis-
tics and assembly systems—postal automation—at Siemens
AG in Konstanz, Germany is address reading. Most notably,
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automatic recognition systems for mail sorting as applied by
major postal companies are being developed. The beginnings
of the recognition system lie in developments that have been
pursued already in the early 1990s—at this time at Daimler-
Benz research center in Ulm, Germany [24,65]. It evolved
from a framework that had originally been developed for
automatic speech recognition. Recently, the system, which
is created to analyze Roman script, has even been used for
Arabic handwriting recognition—requiring minor modifica-
tions only [104]. Since Siemens mainly addresses commer-
cial applications, not all details regarding the recognizer have
been published, some developments might even have been
patented. However, in various papers, the key components of
the system are described, which provides an overview of the
contributions.

The Markov-model-based address reading system of
Siemens is applied to those automatically extracted portions
of some scanned image that are relevant for mail routing (zip
code, city, street, and so on). Prior to actual recognition, shear
angle, rotation, and stroke width and size, respectively, are
normalized using (undocumented) standard procedures. Fur-
thermore, sceletonization is applied. Handwriting is modeled
by means of semicontinuous (tied mixture) hidden Markov
models with full covariance matrices. The script model of the
Siemens system is defined by a set of graphemes, namely, let-
ters, numbers and special characters. Variants of these graph-
emes—allographs—then represent the final modeling units
for character HMMs that are composed to word-HMMs. The
character models consists of various “paths” that can also be
dynamically adapted during training. All paths are jointly
followed by an optional pause state. Apparently, the number
of states per character model is somehow determined auto-
matically (no details given). The models exhibit the classical
linear left-to-right topology for Roman script, and right-to-
left model architecture for Arabic, respectively.

The Siemens recognizer uses the standard sliding window
approach for serialization of the two-dimensional image data.
The concrete parametrization of the procedure has, however,
only been documented for the most recent developments at
Siemens toward offline HWR for Arabic scripts [104], and
it can be assumed that the parameters for the analysis of
Roman script are comparable. A window width of 11 pix-
els together with an overlap of two thirds between adjacent
frames seems to be optimal. Thereby, the height of the ana-
lyzed text lines determines the vertical size of the sliding win-
dow. Feature extraction is based on the analysis of binary con-
nected components (BCC)—black or white contour-poly-
gons, the surrounding rectangle, and a reference to inner
context areas—that are extracted on normalized and approx-
imated word skeletons. Frames are divided into five hori-
zontal zones where geometric features are calculated that
mainly describe upstrokes and cross-lines. Additionally, cur-
ves, strokes, and cusps are described by the 20-dimensional

features used [24]. In some publications, an LDA-transfor-
mation is applied but, unfortunately, no further details are
given.

In postal address reading, the variability of putative
addresses is extremely large. For practical applications of
such an automatic recognition system very large vocabular-
ies that typically contain more than 20k words need to be
considered. Efficient recognition, therefore, requires sophis-
ticated model decoding techniques. Among others, a two-
stage decoding strategy was developed for the Siemens sys-
tem [103]. In the first phase, lexicon-free recognition is per-
formed that produces sequences of characters. Following
this, a breadth-first search on a lexicon tree including prun-
ing is performed. It operates on intermediate results of the
first step to estimate likelihoods for character paths. The latter
corresponds to an effective restriction of character sequences
apart from the popular use of statistical n-gram language
models.

Because of its commercial background, most of the exper-
iments performed to evaluate the recognition capabilities of
the Siemens system are based on proprietary data from the
company. Here, for example, word error rates for city name
recognition between 6 and 12% (depending on the lexicon
size of either 1,000 or 100 city names) on address reading
tasks with more than 1,000 images have been achieved [103].
Since these data-sets are not publically available, direct com-
parisons to other recognition systems are difficult to perform.
However, since the Siemens system recently won the ICDAR
2007 Arabic HWR competition [82], the recognition capabil-
ities of the system can also be compared more objectively. On
the IFN/ENIT database of Tunisian city names, the system
achieved approximately 12% word error rate [104].

5.2.5 TPar/UoB

Another Markov-model-based offline HWR system is being
developed and maintained by a group of researchers around
Laurence Likforman-Sulem at Telecom ParisTech (former
GET-Ecole Nationale Supérieure des Télécommunications
/ TSI), Paris, France, and the University of Balamand,
Faculty of Engineering, Tripoli, Lebanon, respectively. So far,
the TPar/UoB system has been applied exclusively to Ara-
bic handwriting recognition tasks. The superior recognition
capabilities of the system—in its state at that time [41]—for
the analysis of Arabic script were impressively demonstrated
when it has won the ICDAR 2005 Arabic HWR competition
[81]. The handwriting recognition system is derived from a
general purpose HMM toolkit that was originally developed
for speech recognition applications. A most recent descrip-
tion of the TPar/UoB system can be found in [42]. The
basic system has been enhanced toward a hybrid recogni-
tion approach, i.e., utilizing multiple classifier combination
techniques (cf. also [43]).
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The recognition system uses character-based HMMs that
are concatenated to word models, which are evaluated in
parallel. No further restrictions (like, for example, language
models) are applied to the hypotheses generated. According
to the literature, there is hardly any preprocessing applied
to binarized input images, which stands in contrast to most
alternative recognizers. The authors argue that normaliza-
tion may introduce image distortions which apparently has
negative influence on the overall recognition process. The
only preprocessing, as it is documented in the literature, is
restricted to proper baseline detection.

Input images are serialized using a standard sliding win-
dow technique. Further details regarding the concrete param-
etrization are not given. Since Arabic script is addressed, the
analysis window is shifted along the word image from right
to left. At every position, vertical zones are created using the
lower and upper baselines as previously extracted. Thereby,
the middle zone does not contain ascenders and descenders,
whereas in the remaining zones, ascenders and descenders
can be found, respectively [41]. For every frame, 24-dimen-
sional feature vectors are extracted. They consist of distri-
bution features that are based on foreground pixel densities,
one derivative feature, and concavity features. The authors
claim (but do not proof) that the features can universally be
used for any script, which can be decomposed into the afore-
mentioned three zones.

The TPar/UoB system uses continuous HMMs for
modeling Arabic characters in their particular context varia-
tions (159 models in total). Every model contains four states
and a mixture of three Gaussians (presumably with full covar-
iances) for emission modeling. Although it is not explicitly
denoted as such, the model topology of the HMMs corre-
sponds to a (1D) Bakis right-to-left architecture. Parame-
ter estimation is performed using a segmental version of the
standard EM algorithm. In this so-called Viterbi training pro-
cedure, the most probable state sequence is integrated into
the estimation (for details cf., e.g., [47, p. 80f]). Recently,
the base system has been enhanced with the explicit goal of
increased robustness against inclination, overlap, and shifted
positions of diacritical marks. Therefore, a combination of
three homogeneous HMM-based classifiers is proposed that
all have the same topology as described here and differ only
in the orientation of the sliding window [42].

For the evaluation of the recognition capabilities of the
TPar/UoB systems, results of recognition experiments on the
IFN/ENIT database have been reported. By means of the rec-
ognition framework, word error rates of approximately 13%
have been achieved.

5.2.6 TUDo

At TU Dortmund University (TUDo) in Dortmund, Germany,
research in automatic offline handwriting recognition is pur-

sued with special emphasis on camera-based approaches
(cf. [100]). At the maintainers’ former affiliation, Biele-
feld University, Bielefeld, Germany, considerable effort was
already devoted to MM-based handwriting recognition (cf.,
e.g., [125]) addressing for the first time the task of automatic
whiteboard reading using a camera-based approach [124].
The HWR system is based on a general Markov model toolkit
(ESMERALDA8 [51]), which has originally been developed
for automatic speech recognition purposes.

The general task considered by the TUDo system is
writer-independent offline recognition of handwritten texts.
Therefore, an integrated recognition framework is being
developed, which quite closely follows the general archi-
tecture for MM-based handwriting recognizers. It uses semi-
continuous HMMs as writing models and statistical n-gram
models as language models. In order to allow for its appli-
cation to “real-world” scenarios like the aforementioned
camera-based whiteboard reading task, the TUDo system
includes a text-detection module that extracts lines of text
from image data. Prior to the actual recognition stage, stan-
dard preprocessing operations are applied (skew, slant, and
size normalization). For serialization of the two-dimensional
handwriting data, a sliding window approach is applied to
normalized text lines. They are subdivided into a sequence of
overlapping stripes of 8 pixels width (overlapping each other
by 75%) and the height of the line. For each of these frames, a
set of nine geometric features that describe the coarse shape
of the writing within the local analysis window plus their
first derivatives are computed. The resulting feature vectors
are fed into the recognition system, which consists of word
models that are built by concatenation of separate models for
upper and lower case letters plus numerals and punctuation
symbols (75 in total). All models have Bakis topology and
share a codebook of 1.5k Gaussians with diagonal covari-
ance matrices. The number of model states is automatically
determined depending on the length of the respective unit in
the training material (30 on average). Parameter estimation
is performed using standard Baum-Welch training. Plausi-
ble word sequences, determined by the HMM decoding pro-
cess (Viterbi), are restricted by word based statistical n-gram
models that are estimated by applying absolute discounting
and backing-off.

For the judgment of the overall recognition capabili-
ties of the TUDo system, word error rates obtained in
experimental evaluations have been reported in various
publications (cf., e.g., [100,124,125]). The basis for these
experiments are either images of the IAM-DB or those from
the IAM-OnDBCam. For the first task, word error rates of
28.9% were reported (perplexity of bi-gram used is 645) and
for the whiteboard images of IAM-OnDB, 39.8% error rate
are achieved (perplexity of the bi-gram used is 310).

8 http://sourceforge.net/projects/esmeralda.
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5.2.7 TUM

Another system for offline Markov-model-based handwrit-
ing recognition is being developed and maintained at the
Institute for Human-Machine Communication at the Tech-
nische Universität München (TUM) in Munich, Germany.
Already back in the mid-1990s, Gerhard Rigoll and his group
(at this time at Gerhard-Mercator-University, Duisburg,
Germany) successfully worked on aspects related to Mar-
kov-model-based offline HWR (cf., e.g., [101]). After more
than a decade of intensive research, a mature recognition
system has evolved that, among others,9 has widely been
used for offline postal automation tasks (cf. [16] for the most
recent description of the overall system). Comparable to other
Markov-model-based HWR systems, the origins of the TUM
framework lie in speech recognition research.

Automatic address reading requires robust, writer-indep-
endent recognition of unconstrained handwriting with a
virtually unlimited vocabulary. In order to tackle this chal-
lenging problem, the core of the TUM system consists of
semicontinuous hidden Markov models serving as the writ-
ing models combined with character-based n-gram language
models where n ranges from 3 to 7. Preprocessing of scanned
documents to be recognized includes localization and seg-
mentation of the address words plus the usual stages of
image enhancement (denoising) and normalization (w.r.t.
skew, slant, and height).

Input images of successfully localized handwriting are
first binarized, and binary connected components (BCC) that
are comparable to those used by the Siemens system are
analyzed for the automatic extraction of ruler lines. These
lines (baseline and the line above lowercase letters) are used
for rotation normalization and shearing, detection of ascend-
ers and descenders, and height normalization. For feature
extraction, a small local analysis window is shifted from
left to right over the normalized BCCs of some extracted
word. Consecutive analysis windows overlap to some pro-
portion. Unfortunately, no further details about the concrete
parameterization of the sliding window approach have been
reported. However, it can be assumed that the window width
is substantially smaller than some typical character whereas
the height of the sliding window corresponds to the height of
the extracted words. For the majority of applications consid-
ered, geometrical features are calculated within the sliding
window. Therefore, frames are divided horizontally by the
ruler lines in five overlapping areas, in which dashes, dots,
cusps, upstrokes, curves, and horizontal or vertical lines are
detected to determine 20 features. Finally, a linear discrimi-
nant analysis (LDA) is performed on three adjacent frames.

9 The Duisburg handwriting recognizer (now TUM) also has a fairly
long history in online recognition applications.

The resulting feature vectors are then reduced from 60 to 30
dimensions.

The TUM system is based on character models (77 in
total) with linear topology, “mostly three states (except for
the special characters depending on their lengths)” [17] and
tied-mixture modeling with 300 Gaussians (full covariances).
Parameter estimation is performed using Baum–Welch train-
ing and recognition utilizes Viterbi decoding as usual. In
addition to the classical procedure, certain specialties have
been integrated into the TUM-system. First, it also utilizes
model adaptation techniques for specialization of the writing
models. According to [19], the application of scaled likeli-
hood linear regression (SLLR) corresponds to the most effec-
tive adaptation method. Furthermore, confidence measures
are used for hypotheses rejection if the recognition accuracy
becomes too low [18]. More exotically, the TUM system has
also been enhanced by optionally integrating a multi-pass
HMM approach utilizing extended feature sets for a combina-
tion of horizontal and vertical HMMs [121,122]. TUM inte-
grates statistical n-gram language models for restricting char-
acter sequence hypotheses as provided by the open-vocabu-
lary HMM recognition subsystem. Compared to competing
systems, rather large contexts of up to n = 7 are here con-
sidered in n-grams that are estimated using discounting and
backoff techniques [14].

In earlier publications, the capabilities of the TUM system
have been judged by means of experimental evaluations on
the SEDAL database (cf., e.g., [14]). In most recent papers,
however, results of experiments on proprietary databases of
handwritten addresses are reported. These datasets consist of
scanned images of address fields from letters (envelopes) as
they have been scanned in real German post offices. For a
test set that consists about 2,000 words, error rates of 14%
for the recognition of city names using a 20k dictionary, and
36.1% for the recognition of street names (also using a 20k
dictionary) are reported.

6 Discussion

In the last few years, Markov models have been applied very
successfully to the research field of (offline) handwriting
recognition. In this article, the research field of MM-based
offline HWR in its current state has been surveyed.

In order to draw conclusions in the following, we will
first summarize the state of the field, followed by the descrip-
tion of methodological trends and future challenges that have
been identified while analyzing the literature. Since the par-
ticular approaches as they were described in the literature are
still difficult to compare objectively some general remarks on
reporting results will be given additionally.

The practical outcome of this section is a set of guide-
lines and hints that, at least to the authors’ minds, should be
considered for future research and development in the field.
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6.1 General state of the field

Tackling the problem of offline handwriting recognition does
not necessarily require the application of Markovian mod-
els. In fact, over the years, virtually all major techniques
from the wealth of pattern recognition methods have been
applied to the task (including Neural Networks, Support
Vector Machines, Graphical Models, etc.). Markov-model-
based recognizers, however, gained special importance since
they are apparently extremely suitable for the analysis of
handwriting data (images)—once they have been trans-
formed into a proper sequential representation. Today the
field of Markov-model-based HWR can be considered being
mature according to the large number of related publications
and the existence of several competing recognition systems.
In this article, the state of the art of Markov-model-based off-
line handwriting recognition has been surveyed with special
focus on the most widely used hidden Markov models and
statistical n-gram models. Although being highly desirable,
a comparison of the general MM-based approach with other
offline HWR techniques at that level of detail, which would
be necessary for a truly objective judgment, is far beyond
the scope of this survey. In fact, this would be the subject
of another major article (good starting points for this are,
e.g., [22,54]). The clear focus of this survey is on Markov
models—more precisely on related theoretical and practical
aspects for their use in offline HWR applications.

Certainly, the most critical aspect of MM-based offline
HWR approaches is the serialization of the two-dimensional
input images. HMMs and n-gram models are eminently
suited for sequential data—but strictly speaking, images orig-
inally do not correspond to this kind of data. Applying the
sliding window technique is, basically, sort of a work around
that converts image data into sequences. However, there is
no theoretical justification for this since humans do usu-
ally not perform something similar while reading (cf. [10]),
and there is no physical image-formation mechanism behind.
Nevertheless, it works very well in practice. By means of the
“short-time” analysis underlying the sliding window proce-
dure actual sequences of features are derived. This allows
the use of Markovian models—the de facto standard for the
analysis of sequential data.

The superiority of hidden Markov models for the analy-
sis of sequential data lies in the fact that segmentation and
classification are performed simultaneously in an integrated
procedure. HMMs are able to cope with input data that var-
ies substantially in length. On the other hand, there is not
much motivation for applying HMMs to more or less sta-
tic data with only little length variation. More precisely and
being a bit provocative, there are better suited classification
approaches in the field than HMMs for, e.g., isolated charac-
ter recognition. As long as segmentation is not the most crit-
ical issue, HMMs might not necessarily outperform alterna-

tive classification approaches (cf. [11] for a general treatment
of what “HMMs can/cannot do”).

Similar to the majority of statistical pattern recognition
approaches, the theory of Markov models alone is not suf-
ficient for setting up recognizers that can successfully be
applied to practical tasks. There is always some sort of exper-
tise within the particular application domain required to prop-
erly make necessary design decisions, e.g., regarding the
choice of the basic modeling units, model topologies, model
combination, etc. (cf. [47, part II—Practice]).

6.2 Methodological trends

When analyzing recent publications related to the field of
Markov-model-based offline HWR, certain methodological
trends can be identified. In the following, we will briefly
describe the most important ones and discuss their impact on
future research in the area.

6.2.1 Segmentation-free recognition

Basically, offline handwriting recognition analyzes two-
dimensional data, namely, images of cursive script that are
recorded either using scanners or using cameras. Although
there are exceptions, today the standard approach for pro-
cessing this kind of data is based on a transformation of the
images into a sequential representation by the sliding win-
dow approach. Currently, practically all major MM-based
HWR systems integrate modules that explicitly transform
(word) images into one-dimensional sequential data prior
to recognition. Subsequently, the majority of these systems
performs segmentation free recognition. To sum up, the
segmentation-free paradigm for building the writing model
can be considered the most successful approach to date for
offline handwritten text recognition.

6.2.2 “Simple structure – lots of parameters”

Similar to alternative application domains of hidden Markov
models (cf. speech recognition tasks or bioinformatics
applications) model topologies of HMMs that are success-
fully applied for robust handwriting recognition tend to
have simple structures. The majority of writing models is
based on classical linear left–right (Roman) / right–left
(Arabic) HMMs where every state is connected to itself (self-
transition) and to its immediate neighbor in writing direction
only. A slightly modified version—the Bakis architecture—
also introduces skips of adjacent states. Apparently, compli-
cated model architectures are used only very rarely. Instead of
focusing on complex model architectures, researchers rather
concentrate on the estimation of lots of parameters for emis-
sion modeling. Most notably, the multi-lingual HWR system
by BBN consists of HMMs with simple Bakis topology but
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with (roughly estimated) 150k mixtures. The latter allows for
very robust recognition of unconstrained handwriting.

6.2.3 Integration of language models

The use of language models is more and more becoming
the standard for general handwriting recognition. This sur-
vey shows that this is especially the case for offline HWR.
In fact, five of the seven recognition systems reviewed inte-
grate language models for effectively restricting hypotheses
of recognized sequences of characters or words that are gen-
erated by the particular writing models. Furthermore, it can
be concluded that n-gram models represent the state of the
art for statistical language modeling. However, details about
the language models actually used (method for smoothing
probability estimates, perplexity achieved, integration with
the writing model and so forth) are frequently not reported in
the literature, which sometimes complicates comparability
and potential adoption.

6.2.4 Use of classifier ensembles

The use of hybrid classification techniques for handwriting
recognition has a rather long history. Various approaches
have been proposed to integrate, for example, artificial neu-
ral networks and hidden Markov models into handwriting
recognition frameworks. Recently, this concept of combin-
ing multiple classifiers has been studied more extensively
and it has been generalized with rather encouraging results.
The integration of Markov models (both HMMs and n-gram
models) into Ensemble classification approaches thus rep-
resents another recent methodological trend. Especially, for
the analysis of unconstrained handwriting with potentially
numerous different writing styles or for huge vocabularies,
parallelization to multiple diverse classifiers is promising.

6.2.5 Multi-linguality script-independency

Another recent trend clearly indicates the matureness that the
research field of offline handwriting recognition meanwhile
has reached. After more or less explicitly focusing on fun-
damental recognition problems (like, for example, how to
treat two-dimensional data using statistical models that are,
without substantial modification, suitable for 1-D data only),
the community now has also turned toward other practical
application problems like multi-linguality and script-inde-
pendency. In fact, some of the reviewed systems have actually
been used for the recognition of multiple different scripts and
languages. The Siemens recognizer—originally developed
for the recognition of Roman scripts—has been adapted to
process Arabic handwriting, apparently requiring only minor

modifications. The BBN recognizer has even been designed
explicitly to cope with multiple languages and script types.
Especially, for a successful commercial application, script-
independency and multi-linguality can be considered to be
important properties of HWR systems.

6.2.6 Camera-based HWR

Offline handwriting recognition is usually performed on
images of handwritten data that have been recorded by means
of scanners. As one prominent example, for postal auto-
mation applications large, sophisticated scanning appliances
have been installed in major logistics centers of postal com-
panies aiming at optimal image quality. Recently, the general
field of document analysis has been extended toward camera
based input. The reason for this is the almost ubiquitous avail-
ability of cameras integrated into the latest generations of cell
phone technology that allows spontaneous image capturing.
Moreover, the emergence of new application domains like
automatic whiteboard reading for smart conference rooms
requires more flexible input devices than bulky scanners. In
the last few years, certain approaches for both online and
offline HWR based on camera images have been proposed
and have already been applied successfully. Although cam-
era based input cannot yet be considered an actual trend for
offline handwriting recognition it corresponds, however, to a
very promising and at the same time challenging application
field.

6.2.7 Universal toolkits

Reconsidering the survey of handwriting recognition sys-
tems, it can be concluded that most of those systems that
are applied to practical tasks in both industrial and academic
context are based on more general Markov model frame-
works. Often these toolkits originally were developed for
their use in alternative application domains—most promi-
nently, e.g., for automatic speech recognition. When ana-
lyzing the general architecture of the systems, it becomes
clear that the recognizers from BBN, IAM, TUM, and TUDo
are principally comparable. They follow—each more or less
strictly—the classic approach of Markov-model-based rec-
ognition for sequential data.

Unfortunately, so far most Markov-model-based HWR
systems are not publicly available including all the parame-
ters and configurations necessary to set up handwriting recog-
nizers from scratch. At least in some cases (Siemens, BBN),
this might be reasoned by commercial interests. There are,
however, publicly available HMM toolkits (HTK, ghmm,
ESMERALDA, etc.) that can freely be (and infact have been)
used at least for non-commercial research.
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6.3 Some remarks on reporting results

Ideally, other researchers should be able to reproduce results
achieved by a proposed method. Therefore, when reporting
results, besides the understandable desire to show the advan-
tages of one’s own method over others, it should be a primary
goal to be as precise as necessary in documenting the param-
eters of the experiments. Such documentation comprises the
datasets used as well as the parametrization and configura-
tion of the recognizer. In the following, we will discuss the
problems related to these aspects and give some recommen-
dations for producing “valuable” results.

6.3.1 Use well-defined benchmarks!

Comparability of results is only possible when working on
datasets that are rather widely used in the research commu-
nity. This almost immediately implies that this data either
needs to be publicly available or at least available for
reasonable costs. Unfortunately, the field of handwriting
recognition is extremely diverse with respect to tasks con-
sidered—e.g., touching numerals versus handwritten text,
Roman versus Chinese script. Therefore, there probably
will never be the universal handwriting recognition bench-
mark. Within the different sub-disciplines one can, however,
observe a tendency of researchers working on well-defined
and well-known datasets—as, e.g., the results published for
the recognition systems described in the previous section.
Fortunately, fewer and fewer groups today still publish results
on crudely defined or proprietary data.

However, a dataset does not make a benchmark. For exam-
ple, the quite common practice to just subdivide the data
“randomly” into training and test sets cannot be reproduced
by anybody and makes the largely optimistic assumption that
the complexity and variability in the data is homogeneous.
Therefore, fixed subdivisions into training, validation, and
test data should be used10 as they are sometimes already pre-
defined for certain databases (cf., e.g., IAM-DB).

For a complete handwriting recognition benchmark, now
only the inventory of recognition units is missing. On the
character level, this might seem obviously defined. However,
punctuation symbols and other special characters—just to
give two examples—can augment a character set consider-
ably and make a big difference in recognition accuracy. On
the word level, the problem becomes even more severe as it
is not clearly defined what a “word” is supposed to be. For
example, “Mr.” seems to rightfully be a word including the
period. However, at the end of a sentence, the final word and
the punctuation symbol would clearly be considered separate
units. This situation becomes more complicated if numerals

10 Though fixed subdivisions are good, there is no reason to prove one’s
creativity by defining yet another one without giving clear reasons for it.

and other special characters come into play. Obviously, these
problems can be completely avoided on presegmented data—
on IFN/ENIT, for example, it is sufficient to map the word
image to the zip code of the corresponding Tunisian town.
As, however, the real challenges lie beyond such tasks, it
will be important for the definition of future benchmarks to
address these problems properly.

6.3.2 Give all necessary technical details!

Though the HMM technology constitutes a rather well-
defined modeling and recognition paradigm, the devil is still
in the details. Every reasonable HMM for HWR that is worth
reporting on will contain quite a number of free parameters
and configuration options that usually decide about either
success or failure on a certain task. Therefore, it is abso-
lutely necessary to report what basic type of HMM is used
(discrete, semicontinuous/tied-mixture, or continuous mix-
ture). For HMMs based on mixture densities, it is further-
more important to tell whether the Gaussians used have full
or only diagonal covariances (or use some even more sophis-
ticated method of parameter tying). Additionally, the basic
model topology (linear, Bakis, or hand-crafted), the type of
elementary units (strokes, characters, or words), and the num-
ber of states used per unit are of fundamental importance.
Though the algorithms for creating and decoding HMMs
are pretty much standard, it is better to also state explic-
itly how model parameters are estimated and how the model
is decoded. The latter information is crucial as soon as a
language model is incorporated into the overall recognition
model.

For the language model part, which will most probably
be an n-gram model, the type of smoothing applied (e.g.,
absolute discounting in combination with either backing-off
or interpolation) and the perplexity achieved on the test set
considered need to be given. Especially, the model’s per-
plexity is a crucial figure as without it there is absolutely no
chance to either judge the achieved model quality or com-
pare results reported on otherwise identical tasks but using
different language models.

6.3.3 Use hard tasks!

It is a quite common misconception that high accuracy figures
or close to zero error rates are good per se without consider-
ing the underlying task. There are two main problems with
such figures. First, when operating in regions of ninety-nine-
point-something accuracies an improvement in the second
decimal is hardly statistically significant given the limited
size of current databases. Therefore, improvements reported
should always be checked for being significant at a level of
at least 95%. All other minor changes in the results achieved
are just noise and not worth reporting. The second and more
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severe problem of close-to-zero error rates is that any per-
formance figure approaching its theoretical limit—i.e.,100%
accuracy or 0% error rate—renders the underlying task use-
less. In such situations, it is completely clear that the task
considered has become too easy for the recognition meth-
odology used. Therefore, as soon as improvements become
marginal or even potentially impossible it is about time to
move on to a more challenging experimental setup. The best
thing to do to convince the reader that reporting on error
rates ten times as high as in your previous publication is to
make clear with a rigorous account of all details of the task
addressed that you are really working on a hard and, there-
fore, interesting problem.

6.4 Future challenges

For the automatic recognition of handwriting, the application
of Markovian models has become a standard procedure. In
our review of the field that covered both theoretical aspects as
well as practical and integration issues, we identified several
mature recognition systems that are being used for non-trivial
recognition tasks in both industrial and academic contexts.
According to the literature, quite diverse research directions
are still being explored and standard procedures for building
Markov-model-based offline handwriting recognizers could
not be established so far. However, some trends toward uni-
fied approaches can be identified as, for example, the quite
widely used sliding-window approach for obtaining sequen-
tial representations from images of handwriting.

Although substantial progress has already been made
toward the ultimate goal of automatic reading systems for
handwritten script, challenging problems still need to be tack-
led. The most prominent one, which can be considered a uni-
versal problem of any area of statistical pattern recognition,
is the problem of limited data. Though some notable data col-
lection efforts exist and some quite substantial datasets have
also been made publicly available already, these sample sets
are still far too small—and probably will be for the foresee-
able future—for training a statistical recognizer that might
be able to show close to human performance in automatically
reading handwritten script. Consequently, robust parameter
estimation on limited sample sets remains an open research
issue for MM-based handwriting recognizers. Extensions of
classical model adaptation techniques or methods for dis-
criminative training might provide the ingredients for solu-
tions to this fundamental problem.

Major challenges can also be identified for the feature
extraction process. Although the sliding-window technique
has become a quasi-standard, it has serious drawbacks, too.
Most prominently, the dynamics of the process of handwrit-
ing is captured to a quite limited extent only. More impor-
tantly, however, there is no real biological justification for a
small analysis window that is moved along the text-line as it

is, e.g., for acoustic signal analysis in the speech recognition
domain. From a theoretical point of view, holistic recognition
approaches match the reading process performed by humans
more appropriately. Current approaches are, however, not
yet as effective as the classical sliding-window-based tech-
niques. Hence, further research on the convergence of meth-
ods is necessary.

Generally, the features as they are currently used for hand-
writing recognition applications are purely heuristic. In con-
trast to other domains, there is no clear theory behind them,
which justifies the feature representation used based on some
underlying domain-specific knowledge about the signal data
(the script images) and its origin (handwriting performed by a
human). Especially, for more challenging recognition tasks
aiming at the analysis of truly unconstrained handwriting
with virtually no lexicon restrictions, further research needs
to be devoted to alternative feature representations.

Finally, there is still only a limited overlap between meth-
ods applied to OCR and those used for handwriting recogni-
tion, which is understandable as OCR (as the easier problem)
can be solved without putting the same effort into normaliza-
tion, feature extraction, and modeling as is currently done in
the handwriting recognition community. However, as demon-
strated, for example, by the BBN recognizer a convergence of
methods is quite promising. HWR systems could, for exam-
ple, in the future also be trained on machine printed text and
later only be adapted to handwritten data. The problem of
limited datasets for handwritten script would then be largely
alleviated.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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