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Markov state models of molecular kinetics (MSMs), in which the long-time statistical dynamics of

a molecule is approximated by a Markov chain on a discrete partition of configuration space, have

seen widespread use in recent years. This approach has many appealing characteristics compared to

straightforward molecular dynamics simulation and analysis, including the potential to mitigate the

sampling problem by extracting long-time kinetic information from short trajectories and the ability

to straightforwardly calculate expectation values and statistical uncertainties of various stationary and

dynamical molecular observables. In this paper, we summarize the current state of the art in genera-

tion and validation of MSMs and give some important new results. We describe an upper bound for

the approximation error made by modeling molecular dynamics with a MSM and we show that this

error can be made arbitrarily small with surprisingly little effort. In contrast to previous practice, it

becomes clear that the best MSM is not obtained by the most metastable discretization, but the MSM

can be much improved if non-metastable states are introduced near the transition states. Moreover, we

show that it is not necessary to resolve all slow processes by the state space partitioning, but individ-

ual dynamical processes of interest can be resolved separately. We also present an efficient estimator

for reversible transition matrices and a robust test to validate that a MSM reproduces the kinetics of

the molecular dynamics data. © 2011 American Institute of Physics. [doi:10.1063/1.3565032]

I. INTRODUCTION

Conformational transitions are essential to the function

of proteins and nucleic acids. These transitions span large

ranges of length scales, timescales, and complexity, and

include folding,1, 2 complex conformational rearrangements

between native protein substates,3, 4 and ligand binding.5

Experiments have borne out the decade-old proposal that

biomolecular kinetics are complex, often involving tran-

sitions between a multitude of long-lived, or “metastable”

states on a range of different timescales.6 With the ever

increasing time resolution of ensemble kinetics experiments

and the more recent maturation of sensitive single-molecule

techniques in biophysics, experimental evidence sup-

porting the near-universality of the existence of multiple

metastable conformational substates and complex kinetics

in biomolecules has continued to accumulate.7–13 Enzyme

kinetics has been shown to be modulated by interchanging

conformational substates.14 Protein folding experiments have

found conformational heterogeneity, hidden intermediates,

and the existence of parallel pathways.15–20

While laboratory experiments can resolve both fast

kinetic processes and, in the case of single-molecule exper-

iments, heterogeneity of some of these processes, the obser-

vations are always indirect; only spectroscopically resolvable

probes can be monitored, and inherent signal-to-noise is-

sues generally require sacrificing either time resolution (in

a)Author to whom correspondence should be addressed. Electronic mail:
frank.noe@fu-berlin.de.

single molecule experiments) or the ability to resolve het-

erogeneity of populations (in ensemble experiments). As a

result, molecular dynamics (MD) simulations are becoming

increasingly accepted as a tool to investigate structural de-

tails of molecular processes and relate them to experimentally

resolved features.21–23

Traditionally, MD studies often involved “look and see”

analyses of a few rare events via molecular movies. Although

visually appealing, these analyses may be misleading as they

do not supply the statistical relevance of such observations

in the ensemble, and may miss rare but important events

altogether. Another frequent approach, especially common in

protein folding analyses, is to project the dynamics onto one

or two user-defined order parameters (such as the root mean

square distance [RMSD] to a single reference structure, ra-

dius of gyration, principal components, or selected distances

or angles) with the notion that these order parameters allow

the slow kinetics of the molecule to be resolved. While the

ability to directly visualize the results of such projections

on chemically intuitive order parameters is appealing, these

projection techniques have been shown to disguise the true

and often complex nature of the kinetics by artificially

aggregating kinetically distinct structures and hiding barriers,

thus creating a distorted and often overly simplistic picture

of the kinetics.24–26

In order to resolve complex kinetic features such as

low-populated intermediates, structurally similar metastable

states, or structurally distinct parallel pathways, it is essential

to employ analysis techniques that are sensitive to such de-

tails. While some reduction of high-dimensional biomolecular

0021-9606/2011/134(17)/174105/23/$30.00 © 2011 American Institute of Physics134, 174105-1
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dynamics, perhaps obtained from large quantities of MD tra-

jectory data, is certainly necessary to generate a humanly

understandable analysis, such reduction must be guided by

the specific structural or kinetic information in these data,

rather than by the subjectivity of the analyst. A natural ap-

proach toward modeling the kinetics of molecules is by first

partitioning the conformation space into discrete states.25–35

Although this step could still disguise information when

lumping states that have an important distinction, it is clear

that a “sufficiently fine” partitioning will be able to resolve

“sufficient” detail.36 Subsequent to partitioning, transition

rates or probabilities between states can be calculated, either

based on rate theories,4, 27, 37 or based on transitions observed

in MD trajectories.24, 26, 34, 35, 38–40 The resulting models are

often called transition networks, master equation models or

Markov (state) models (MSM), where “Markovianity” means

that the kinetics are modeled by a memoryless jump process

between states.

This paper focuses on “Markov models” (abbreviated

here by “MSM”41), which model the kinetics with an n × n

transition probability matrix that contains the conditional

probabilities that the system will, given that it is in one of its

n discrete substates, be found in any of these n discrete sub-

states a fixed time τ later. An essential feature of a MSM is

that it abandons the view of the single trajectories and replaces

it by an ensemble view of the dynamics.42, 43 Consider an ex-

periment that traces the equilibrium dynamics of an ensemble

of molecules starting from a distribution that is out of equilib-

rium, such as a laser-induced temperature-jump experiment.44

Here the sequence of microscopic events occurring during

the trajectory of any individual molecule may be of little rele-

vance, as these individual trajectories all differ in microscopic

detail. Instead, the relevant physical details are statistical

properties of this ensemble: time-dependent averages of spec-

troscopically observable quantities, statistical probabilities

quantifying with which conformationally similar states are

populated at certain times and probabilities of how many tra-

jectories follow similar pathways. All of these statistical prop-

erties can be easily computed from Markov models, as these

models already encode the ensemble dynamics.22, 45 At the

same time, because it is sometimes helpful in aiding the devel-

opment of human intuition, individual realizations of almost

arbitrary length can be easily obtained, simply by generating

a random state sequence according to the MSM transition

probabilities.

Because only conditional transition probabilities be-

tween discretized states are needed to construct a Markov

model, the computational burden can be divided among many

processors using loosely coupled parallelism, facilitating a

“divide and conquer” approach. Trajectories used to estimate

these transition probabilities only need to be long enough

to reach local equilibrium within the discrete state, rather

than exceed global equilibrium relaxation times that may be

orders of magnitude longer. In other words, the dependency

between simulation length and molecular timescales is

largely lost; microsecond- or millisecond-timescale processes

can be accurately modeled despite the model having been

constructed from trajectories orders of magnitude shorter.22, 46

Moreover, assessment of the statistical uncertainty of the

model can be used to adaptively guide model construction,

reaching the desired statistical precision with much less

total effort than would be necessary with a single long

trajectory.22, 47, 48

Finally, computation of statistical quantities of interest

from Markov models is straightforward, and includes:

• Time-independent properties such as the stationary, or

equilibrium, probability of states or free energy differ-

ences between states.22, 25, 49

• Relaxation timescales that can be extracted from ex-

perimental kinetic measurements using various tech-

niques such as laser-induced temperature jumps, flu-

orescence correlation spectroscopy, dynamic neutron

scattering, or NMR.22, 25

• Relaxation functions that can be measured with

nonequilibrium perturbation experiments or correla-

tion functions that can be obtained from fluctuations

of single molecule equilibrium experiments.22, 45

• Transition pathways and their probabilities, e.g., the

ensemble of protein folding pathways.22, 50

• Statistical uncertainties for all observables.45, 47, 48, 51

• The precision and accuracy with which MSMs repro-

duce the true kinetics can be tested to verify the mod-

eling error and remains small.22, 52

In this paper we summarize the current state of the art of

theory and methodology for MSM generation and validation,

and fill some important methodological gaps.

Section II discusses the essential properties of the

true full-dimensional continuous dynamics and how these

properties may be affected by details of the simulation.

Section III examines the effect of discretizing the state space

to produce a discrete-state Markov chain approximation to

the true dynamics. This is the key numerical approximation

step, and we give a detailed analysis of the error incurred

in doing so, as well as ways this error can be controlled.

Finally, Section IV describes strategies for estimation of

the Markov model with finite quantities of MD simulation

data, the statistical step in building a Markov model. Sec-

tions II and III develop Markov models from a theoretical

perspective, and practitioners may wish to skip directly to

Sec. IV, where generation and validation of Markov models

from actual trajectory data are discussed.

The main novelty of the present study is a detailed analy-

sis of the discretization error (Sec. III), i.e., the effect of lump-

ing state space points into discrete sets on the accuracy of re-

producing quantities of the original continuous dynamics. We

give quantitative upper bounds for the approximation error of

the time evolution and the relaxation timescales of the slow

dynamical processes. It is shown that this error can be made

arbitrarily small with surprisingly little effort. In contrast to

previous practice,38–40, 52 it is seen that the best MSM, in the

sense of minimizing this discretization error, is not obtained

by the most metastable discretization; instead the accuracy of

the MSM can be improved if nonmetastable states are intro-

duced near the transition states. Moreover, it is shown that

it is not necessary to resolve all slow processes by the state

space partitioning, but individual dynamical processes of in-

terest can be described separately. These insights provide a
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theoretical basis for the development of efficient adaptive dis-

cretization methods for MSMs.

Additionally, we provide a new estimator for transition

matrices for reversible dynamics, i.e., Markov models that

fulfill detailed balance, which is more efficient than the

reversible estimators presented previously.49, 51, 53 Detailed

balance is expected for molecular processes taking place in

thermal equilibrium54 and using this property in the estima-

tion of MSMs will generally enhance the model quality as

unphysical models are excluded. Finally, we take up the topic

of validating MSMs. Several past studies have attempted to

find robust tests for the “Markovianity” of the true dynamics

projected onto the discrete state space,40, 55 a concept which

has been proven problematic both formally and practically.

Here, we instead suggest a simple and robust direct test of

the error of the model in reproducing the observed dynamics.

II. ANALYSIS OF THE CONTINUOUS DYNAMICS

This section reviews the continuous dynamics of a molec-

ular system in thermal equilibrium, and introduces the dynam-

ical propagator, whose approximation is our primary concern.

While this section is important for understanding the subse-

quent formal theory of discretization (Sec. III), practitioners

wishing only to learn how to construct such models may

skip directly to the discussion of Markov model estimation

(Sec. IV).

A. Continuous dynamics

A variety of simulation models that all yield the same

stationary properties, but have different dynamical behaviors,

are available to study a given molecular model. The choice

of the dynamical model must therefore be guided by both a

desire to mimic the relevant physics for the system of interest

(such as whether the system is allowed to exchange energy

with an external heat bath during the course of dynamical

evolution), balanced with computational convenience (e.g.,

the use of a stochastic thermostat in place of explicitly

simulating a large external reservoir).56 Going into the details

of these models is beyond the scope of the present study, and

therefore we will simply state the minimal physical properties

that we expect the dynamical model to obey.

Consider a state space � which contains all dynamical

variables needed to describe the instantaneous state of the

system. � may be discrete or continuous, and we treat the

more general continuous case here. For molecular systems, �

usually contains both positions and velocities of the species

of interest and surrounding bath particles. x(t) ∈ � will de-

note the dynamical process considered, which is continuous

in space, and may be either time-continuous (for theoreti-

cal investigations) or time-discrete (when considering time-

stepping schemes for computational purposes). For the rest

of the paper, we will assume that x(t) has the following

properties:

1. x(t) is a Markov process in the full state space �, i.e.,

the instantaneous change of the system (dx(t)/dt

in time-continuous dynamics and x(t + �t) in

time-discrete dynamics with time step �t), is cal-

culated based on x(t) alone and does not require the

previous history. As a result of Markovianity in �, the

transition probability density p(x, y; τ ) is well defined:

p(x, y; τ ) dy = P [x(t + τ ) ∈ y + dy | x(t) = x]

x, y ∈ �, τ ∈ R0+, (1)

i.e., the probability that a trajectory started at time

t from the point x ∈ � will be in an infinitesimal

region dy around a point y ∈ � at time t + τ . Such a

transition probability density for the diffusion process

in a one-dimensional potential is depicted in Fig. 1(b).

When p(x, y; τ ) is a smooth probability density the

stochastic transition probability to a set A ⊆ � is also

well defined and formally given by integrating the

transition probability density over region A:

p(x, A; τ ) = P [x(t + τ ) ∈ A|x(t) = x]

=
∫

y∈A

dy p(x, y; τ ). (2)

2. x(t) is ergodic, i.e., the space � does not have two or

more subsets that are dynamically disconnected, and

for t → ∞ each state x will be visited infinitely often.

The fraction of time that the system spends in any of

its states during an infinitely long trajectory is given

by its unique stationary density (invariant measure)

μ(x) : � → R0+ that corresponds to the equilibrium

probability density for some associated thermodynamic

ensemble (e.g., NVT, NpT). For molecular dynamics

at constant temperature T , the dynamics above yield a

stationary density μ(x) that is a function of T , namely,

the Boltzmann distribution

μ(x) = Z (β)−1 exp (−βH (x)) , (3)

with Hamiltonian H (x) and β = 1/kB T where kB is

the Boltzmann constant and kB T is the thermal energy.

Z (β) =
∫

dx exp (−βH (x)) is the partition function.

By means of illustration, Fig. 1(a) shows the stationary

density μ(x) for a diffusion process on a potential with

high barriers.

3. x(t) is reversible, i.e., p(x, y; τ ) fulfills the condition of

detailed balance:

μ(x) p(x, y; τ ) = μ(y) p(y, x; τ ), (4)

i.e., in equilibrium, the fraction of systems transition-

ing from x to y per time is the same as the fraction

of systems transitioning from y to x. Note that this

“reversibility” is a more general concept than the

time-reversibility of the dynamical equations, e.g.,

encountered in Hamiltonian dynamics. For example,

Brownian dynamics on some potential are reversible

as they fulfill Eq. (4), but are not time-reversible in

the same sense as Hamiltonian dynamics are, due to

the stochasticity of individual realizations. Although

detailed balance is not essential for the construction of

Markov models, we will subsequently assume detailed
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(a)

(c)

(b)

(d)

(e)

FIG. 1. (a) Potential energy function with four metastable states and corresponding stationary density μ(x). (b) Density plot of the transfer operator for a simple

diffusion-in-potential dynamics defined on the range � = [1, 100] [see supplementary material (Ref. 65)], black and red indicates high transition probability,

white zero transition probability. Of particular interest is the nearly block-diagonal structure, where the transition density is large within blocks allowing rapid

transitions within metastable basins, and small or nearly zero for jumps between different metastable basins. (c) The four dominant eigenfunctions of the

transfer operator, ψ1, . . . , ψ4, which indicate the associated dynamical processes. The first eigenfunction is associated with the stationary process, the second to

a transition between A + B ↔ C + D, and the third and fourth eigenfunction to transitions between A ↔ B and C ↔ D, respectively. (d) The four dominant

eigenfunctions of the transfer operator weighted with the stationary density, φ1, . . . , φ4. (e) Eigenvalues of the transfer operator, the gap between the four

metastable processes (λi ≈ 1) and the fast processes is clearly visible.

balance as this allows much more profound analytical

statements to be made. The rationale is that we expect

detailed balance to be fulfilled in equilibrium molecular

dynamics based on a simple physical argument: for

dynamics that have no detailed balance, there exists a

set of states which form a loop in state space which is

traversed in one direction with higher probability than in

the other direction. This means that one could design a

machine which uses this preference of direction in order

to produce work. However, a system in equilibrium

is driven only by thermal energy, and conversion of

pure thermal energy into work contradicts the second

law of thermodynamics. Thus, equilibrium molecular

dynamics must be reversible and fulfill detailed balance.

The above conditions do not place overly burdensome restric-

tions on the choice of dynamical model used to describe equi-

librium dynamics. Most stochastic thermostats are consis-

tent with the above assumptions, e.g., Andersen57 (which can

be employed with either massive or per-particle collisions,

or coupled to only a subset of degrees of freedom), Hybrid

Monte Carlo,58 overdamped Langevin (also called Brownian

or Smoluchowski) dynamics,59, 60 and stepwise-thermalized

Hamiltonian dynamics.40 When simulating solvated systems,
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a weak friction or collision rate can be used; this can often be

selected in a manner that is physically motivated by the heat

conductivity of the material of interest and the system size.57

We note that the use of finite-timestep integrators for

these models of dynamics can sometimes be problematic, as

the phase space density sampled can differ from the density

desired. Generally, integrators based on symplectic Hamilto-

nian integrators (such as velocity Verlet61) offer greater sta-

bility for our purposes.

While technically, a Markov model analysis can be con-

structed for any choice of dynamical model, it must be noted

that several popular dynamical schemes violate the assump-

tions above, and using them means that one is (currently) do-

ing so without a solid theoretical basis, e.g., regarding the

boundedness of the discretization error analyzed in Sec. III

below. For example, Nosé-Hoover and Berendsen are either

not ergodic or do not generate the correct stationary distri-

bution for the desired ensemble.62 Energy-conserving Hamil-

tonian dynamics, even when considering a set of trajectories

that are in initial contact with a heat bath, is not ergodic and

therefore has no unique stationary distribution. While it is

possible that future work will extend the present theoretical

analysis to these and other models of dynamics, we currently

advise practitioners to choose a model which unambiguously

fulfills these conditions, yet provides physically reasonable

kinetics.

B. Transfer operator approach and the
dominant spectrum

At this point we shift from focusing on the evolution of

individual trajectories to the time evolution of an ensemble

density. Consider an ensemble of molecular systems at a point

in time t , distributed in state space � according to a proba-

bility density pt (x) that is different from the stationary den-

sity μ(x). If we now wait for some time τ , the probability

distribution of the ensemble will have changed because each

system copy undergoes transitions in state space according

to the transition probability density p(x, y; τ ). The change of

the probability density pt (x) to pt+τ (x) can be described with

the action of a continuous operator. From a physical point of

view, it seems straightforward to define the propagator Q(τ )

as follows:

pt+τ (y) = Q(τ ) ◦ pt (y) =
∫

x∈�

dx p(x, y; τ ) pt (x). (5)

Applying Q(τ ) to a probability density pt (x) will result in a

modified probability density pt+τ (x) that is more similar to

the stationary density μ(x), to which the ensemble must relax

after infinite time. An equivalent description is provided by

the transfer operator T (τ ),42 which has nicer properties from

a mathematical point of view. T (τ ) is defined as63:

ut+τ (y) = T (τ ) ◦ ut (y) =
1

μ(y)

∫

x∈�

dx p(x, y; τ ) μ(x) ut (x).

(6)

T (τ ) does not propagate probability densities, but instead

functions ut (x) that differ from probability densities by a

factor of the stationary density μ(x), i.e.,

pt (x) = μ(x)ut (x). (7)

The relationship between the two densities and operators is

shown in the scheme below:

pt

Q(τ )−→ pt+τ probability densities

↓ ·μ−1 ↑ ·μ
ut

T (τ )−→ ut+τ densities in μ-weighted space.

Alternatively to Q and T which describe the transport of

densities exactly by a chosen time-discretization τ , one could

investigate the density transport with a time-continuous

operator L called the generator which is the continuous

basis of rate matrices that are frequently used in physical

chemistry31, 64 and is related to the Fokker–Planck equation.54

Here, we do not investigate L in detail, but describe some of

its basic properties in the supplementary material.65

Equation (6) is a formal definition. When the particular

kind of dynamics is known it can be written in a more spe-

cific form.42 However, the general form (6) is sufficient for

the present analysis. The continuous operators have the fol-

lowing general properties:

• Both Q(τ ) and T (τ ) fulfill the Chapman–Kolmogorov

equation

pt+kτ (x) = [Q(τ )]k ◦ pt (x), (8)

ut+kτ (x) = [T (τ )]k ◦ ut (x), (9)

where [T (τ )]k refers to the k-fold application of the

operator, i.e., Q(τ ) and T (τ ) can be used to propagate

the evolution of the dynamics to arbitrarily long times

t + kτ .

• Q(τ ) has eigenfunctions φi (x) and associated eigenval-

ues λi [see Figs. 1(c) and 1(e)]:

Q(τ ) ◦ φi (x) = λiφi (x), (10)

while T (τ ) has eigenfunctions ψi (x) with the same

corresponding eigenvalues:

T (τ ) ◦ ψi (x) = λiψi (x). (11)

• When the dynamics are reversible, all eigenvalues λi

are real-valued and lie in the interval −1 < λi ≤ 142.

Moreover, the two types of eigenfunctions are related

by a factor of the stationary density μ(x):

φi (x) = μ(x)ψi (x), (12)

and their lengths are defined by the normalization con-

dition that the scalar product (see Table I) is unity for

all corresponding eigenfunctions: 〈φi , ψi 〉 = 1 for all

i = 1, . . . , m (see Table I for definition of scalar prod-

uct). Due to reversibility, noncorresponding eigenfunc-

tions are orthogonal: 〈φi , ψ j 〉 = 0 for all i �= j . When

T (τ ) is approximated by a reversible transition matrix

on a discrete state space, φi (x) and ψi (x) are approxi-

mated by the left and right eigenvectors of that transi-

tion matrix, respectively [compare Figs. 1(c) and 1(d)].
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TABLE I. Important symbols.

Symbol Meaning

� Continuous state space (positions and momenta)

x(t) Continuous state in � (positions and momenta) at time t

μ(x) Continuous (in state space) stationary density of x.

p(x) Continuous (in state space) probability density.

τ Lag time, time resolution of the model.

p(x, y; τ ) Transition probability density to y ∈ � after time τ given

the system in x ∈ �.

T (τ ) Transfer operator, propagates the continuous dynamics

for a time τ .

m Number of dominant eigenfunctions/eigenvalues

considered.

ψ(x) Eigenfunctions of T (τ ).

φ(x) Density-weighted eigenfunctions of T (τ ).

χi (x) Degree of membership of x to discrete state i .

S1, . . . , Sn Discrete sets which partition state space �.

μi (x) Local stationary density restricted to discrete state i .

〈 f, g〉 Scalar product 〈 f, g〉 =
∫

f (x) g(x) dx.

〈 f, g〉μ Weighted scalar product 〈 f, g〉μ =
∫

μ(x) f (x) g(x) dx.

n Number of discrete states.

π Discrete stationary density in Rn .

p(t) Discrete probability vector in Rn at time t .

C(τ ) Transition count matrix (row-dominant) in Rn×n ,

elements ci j (τ ) count the number of i → j transitions

during lag time τ .

T(τ ) Discrete transition matrix (row-stochastic) in Rn×n ,

elements Ti j (τ ) give the i → j transition probability

during lag time τ .

T̂(τ ) Estimate of T(τ ) from trajectory data.

ψ i i th right eigenvector of T(τ ) in Rn .

φi i th left eigenvector of T(τ ) in Rn .

• Since both operators are continuous, they possess

a continuous spectrum of eigenvalues. By conven-

tion, we only distinguish a finite number of m dom-

inant eigenvalue/eigenfunction pairs and sort them

by nonascending eigenvalue, i.e., λ1 = 1 > λ2 ≥ λ3

≥ · · · ≥ λm , while the remainder of the spectrum is

confined within in a ball of radius r ≤ λm centered

on 0.

There is one eigenvalue λ1 = 1 that has the greatest

norm (i.e., it is simple and dominant). The associated

eigenfunction corresponds to the stationary distribu-

tion μ(x) [see Fig. 1(d), top]:

Q(τ ) ◦ μ(x) = μ(x) = φ1(x), (13)

and the corresponding eigenfunction of T (τ ) is a con-

stant function on all state space � [see Fig. 1(c), top]:

T (τ ) ◦ 1 = 1 = ψ1(x), (14)

due to the relationship φ1(x) = μ(x)ψ1(x) = μ(x).

To see the significance of the other eigenvalue/eigenfunc-

tion pairs, we exploit that the dynamics can be decomposed

exactly into a superposition of m individual slow dynami-

cal processes and the remaining fast processes. For T (τ ), this

yields

ut+kτ (x) = Tslow(kτ ) ◦ ut (x) + Tfast(kτ ) ◦ ut (x), (15)

=
m

∑

i=1

λk
i 〈ut , φi 〉ψi (x) + Tfast(kτ ) ◦ ut (x), (16)

=
m

∑

i=1

λk
i 〈ut , ψi 〉μ ψi (x) + Tfast(kτ ) ◦ ut (x). (17)

Here, Tslow is the dominant, or slowly decaying part consist-

ing of the m slowest processes with λi ≥ λm , while Tfast con-

tains all (infinitely many) fast processes with λi < λm that

are usually not of interest. The weighted scalar product ap-

pearing above is defined in Table I. This decomposition re-

quires that subspaces Tslow and Tfast are orthogonal, which is

a consequence of detailed balance. This decomposition per-

mits a compelling physical interpretation: the slow dynamics

are a superposition of dynamical processes, each of which can

be associated with one eigenfunction ψi (or φi ) and a corre-

sponding eigenvalue λi [see Figs. 1(c)–1(e)]. These processes

decay faster with increasing time index k. In the long-time

limit where k → ∞, only the first term with λ1 = 1 remains,

recovering the stationary distribution φ1(x) = μ(x). All other

terms correspond to processes with eigenvalues λi < 1 and

decay over time, thus the associated eigenfunctions corre-

spond processes that decay under the action of the dynam-

ics and represent the dynamical rearrangements taking place

while the ensemble relaxes toward the equilibrium distribu-

tion. The closer λi is to 1, the slower the corresponding

process decays; conversely, the closer it is to 0, the faster.

Thus the λi for i = 2, . . . , m each corresponds to a phys-

ical timescale, indicating how quickly the process decays or

transports density toward equilibrium [see Fig. 1(e)]:

ti = −
τ

ln λi

, (18)

which is often called the i th implied timescale.40 Thus,

Eq. (15) can be rewritten in terms of implied timescales as:

ut+kτ (x) = 1 +
m

∑

i=2

exp

(

−
kτ

ti

)

〈ut , ψi 〉μ ψi (x)

+ Tfast(kτ ) ◦ ut (x). (19)

This implies that when there are gaps among the first

m eigenvalues, the system has dynamical processes acting

simultaneously on different timescales. For example, a sys-

tem with two-state kinetics would have λ1 = 1, λ2 ≈ 1 and

λ3 ≪ λ2 (t3 ≪ t2), while a system with a clear involvement

of an additional kinetic intermediate would have λ3 ∼ λ2

(t3 ∼ t2).

In Fig. 1, the second process, ψ2, corresponds to the slow

(λ2 = 0.9944) exchange between basins A + B and basins

C + D, as reflected by the opposite signs of the elements of ψ2

in these regions [Fig. 1(c)]. The next-slowest processes are the

A↔B transition and then the C↔D transition, while the sub-

sequent eigenvalues are clearly separated from the dominant
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spectrum and correspond to much faster local diffusion pro-

cesses. The three slowest processes effectively partition the

dynamics into four metastable states corresponding to basins

A, B, C, and D, which are indicated by the different sign struc-

tures of the eigenfunctions [Fig. 1(c)]. The metastable states

can be calculated from the eigenfunction structure, e.g., using

the Perron Cluster Cluster Analysis (PCCA) method.30, 38

Of special interest is the slowest relaxation time, t2. This

timescale identifies the worst case global equilibration or

decorrelation time of the system; no structural observable can

relax more slowly than this timescale. Thus, if one desires

to calculate an expectation value E[a] of an observable a(x)

which has a non-negligible overlap with the second eigen-

function, 〈a, ψ2〉 > 0, a straightforward single-run MD tra-

jectory would need to be many times t2 in length in order to

compute an unbiased estimate of E[a].

III. DISCRETIZATION AND DISCRETIZATION ERROR

While molecular dynamics in full continuous state space

� is Markovian by construction, the term Markov model is

due to the fact that in practice, state space must be somehow

discretized in order to obtain a computationally tractable de-

scription of the dynamics. The Markov model then consists of

the partitioning of state space used together with the transition

matrix modeling the jump process of the observed trajectory

projected onto these discrete states. However, this jump pro-

cess (Fig. 2) is no longer Markovian, as the information where

the continuous process would be within the local discrete state

is lost in the course of discretization. Modeling the long-time

statistics of this jump process with a Markov process is an

approximation, i.e., it involves a discretization error. In the

current section, this discretization error is analyzed and it is

shown what needs to be done in order to keep it small.

The discretization error is a systematic error of a Markov

model since it causes a deterministic deviation of the Markov

model dynamics from the true dynamics that persists even

when the statistical error is excluded by excessive sampling.

In order to focus on this effect alone, it is assumed in this sec-

tion that the statistical estimation error is zero, i.e., transition

probabilities between discrete states can be calculated exactly.

The results suggest that the discretization error of a Markov

model can be made small enough for the MSM to be useful

1

2
3

4 5

6

7

time

state
7
6
5
4
3
2
1

projection

Ω

FIG. 2. Scheme: The true continuous dynamics (dashed line) is projected

onto the discrete state space. MSMs approximate the resulting jump process

by a Markov jump process.

in accurately describing the relaxation kinetics, even for very

large and complex molecular systems.

In practical use, the Markov model is not obtained by

actually discretizing the continuous propagator. Rather, one

defines a discretization of state space and then estimates

the corresponding discretized transfer operator from a finite

quantity of simulation data, such as several long or many

short MD trajectories that transition between the discrete

states. The statistical estimation error involved in this estima-

tion will be discussed in Sec. IV; the current section focuses

only on the approximation error due to discretization of the

transfer operator.

A. Discretization of state space

Here we consider a discretization of state space � into

n sets. In practice, this discretization is often a simple parti-

tion with sharp boundaries, but in some cases it may be de-

sirable to discretize � into fuzzy sets.66 We can describe both

cases by defining membership functions χi (x) that quantify

the probability of point x to belong to set i (Ref. 43) which

have the property
∑n

i=1 χi (x) = 1. In the present study we

will concentrate on a crisp partitioning with step functions:

χi (x) = χ
crisp

i (x) =
{

1 x ∈ Si

0 x /∈ Si

. (20)

Here we have used n sets S = {S1, . . . , Sn} which entirely

partition state space (
⋃n

i=1 Si = �) and have no overlap (Si

∩ S j = ∅ for all i �= j). A typical example of such a crisp

partitioning is a Voronoi tessellation,67 where one defines n

centers x̄i , i = 1, . . . , n, and set Si is the union of all points

x ∈ � which are closer to x̄i than to any other center using

some distance metric [illustrated in Figs. 3(b) and 3(c)]. Note

that such a discretization may be restricted to some subset of

the degrees of freedom, e.g., in MD one often ignores veloci-

ties and solvent coordinates when discretizing.

The stationary probability πi to be in set i is then given

in terms of the full stationary density as:

πi =
∫

x∈Si

dx μ(x),

and the local stationary density μi (x) restricted to set i [see

Fig. 3(b)] is given by

μi (x) =

⎧

⎨

⎩

μ(x)

πi
x ∈ Si

0 x /∈ Si

. (21)

These properties are local, i.e., they do not require informa-

tion about the full state space.

B. Transition matrix

Together with the discretization, the Markov model is

defined by the row-stochastic transition probability matrix,

T(τ ) ∈ R
n×n , which is the discrete approximation of the

transfer operator described in Sec. II B via

Ti j (τ ) =
〈χ j , (T (τ ) ◦ χi )〉μ

〈χi , χi 〉μ
.
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FIG. 3. Crisp state space discretization illustrated on a one-dimensional two-well and a two-dimensional three-well potential [see supplementary material for

details of potential and dynamics (Ref. 65)]. (a) Two-well potential (black) and stationary distribution μ(x) (red). (b) Characteristic functions v1(x) = χ1(x),

v2(x) = χ2(x) (black and red). This discretization has the corresponding local densities μ1(x), μ2(x) (blue and yellow), see Eq. (21). (c) Three-well potential

(black contours indicate the isopotential lines) with a crisp partitioning into three states using a Voronoi partition with the centers denoted (+).

Physically, each element Ti j (τ ) represents the time-stationary

probability to find the system in state j at time t + τ given

that it was in state i at time t . By definition of the conditional

probability, this is equal to

Ti j (τ ) = P [x(t + τ ) ∈ S j | x(t) ∈ Si ] (22)

=
P [x(t + τ ) ∈ S j ∩ x(t) ∈ Si ]

P [x(t) ∈ Si ]
(23)

=
∫

x∈Si
dx μi (x) p(x, S j ; τ )
∫

x∈Si
dx μi (x)

, (24)

where we have used Eq. (2). Note that in this case the

integrals run over individual sets and only need the local

equilibrium distributions μi (x) as weights. This is a very

powerful feature: in order to estimate transition probabilities,

we do not need any information about the global equilibrium

distribution of the system, and the dynamical information

needed extends only over time τ . In principle, the full

dynamical information of the discretized system can be

obtained by initiating trajectories of length τ out of each state

i as long as we draw the starting points of these simulations

from a local equilibrium density μi (x).42, 43, 68

The transition matrix can also be written in terms of cor-

relation functions:40

Ti j (τ ) =
E[χi (x(t)) χ j (x(t + τ ))]

E[χi (x(t))]
=

ccorr
i j (τ )

πi

, (25)

where the unconditional transition probability ccorr
i j (τ )

= πi Ti j (τ ) is an equilibrium time correlation function which

is normalized such that
∑

i, j ccorr
i j (τ ) = 1. For dynamics ful-

filling detailed balance, the correlation matrix is symmetric

[ccorr
i j (τ ) = ccorr

j i (τ )].

Since the transition matrix T(τ ) is a discretization of the

transfer operator T (Refs. 36, 42, and 63; Sec. II B), we can

relate the functions that are transported by T [functions ut in

Eq. (6)] to column vectors that are multiplied to the matrix

from the right while the probability densities pt [Eq. (7)] cor-

respond to row vectors that are multiplied to the matrix from

the left. Suppose that p(t) ∈ R
n is a column vector whose el-

ements denote the probability, or population, to be within any

set j ∈ {1, . . . , n} at time t . After time τ , the probabilities will

have changed according to

p j (t + τ ) =
n

∑

i=1

pi (t)Ti j (τ ), (26)

or in matrix form

pT (t + τ ) = pT (t) T(τ ). (27)

Note that an alternative convention often used in the literature

is to write T(τ ) as a column-stochastic matrix, obtained by

taking the transpose of the row-stochastic transition matrix

defined here.

The stationary probabilities of discrete states, πi , yield

the unique discrete stationary distribution of T for any τ :

πT = πT T(τ ). (28)

All equations encountered so far are free of approximation.

We wish now to model the system kinetics of long times by

approximating the true dynamics with a Markov chain on the

space of n states. Using T(τ ) as a Markov model predicts that

for later times, t + kτ , the probability distribution will evolve

as

pT (t + kτ ) ≈ pT (t)Tk(τ ), (29)

which can only approximate the true distribution p(t + kτ )

that would have been produced by the continuous transfer

operator, as Eq. (29) is the result of a state space discretiza-

tion. The discretization error involved in this approximation

thus depends on how this discretization is chosen and is ana-

lyzed in detail below. A description alternative to that of tran-

sition matrices quite common in chemical physics is using

rate matrices and master equations.31, 64, 69, 70 The relationship

between this and the current approach is discussed in the Sup-

plementary Information.65
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C. Discretization error and non-Markovianity

The Markov model T(τ ) is indeed a model in the sense

that it only approximates the long-time dynamics based

on a discretization of state space, making the dynamical

equation (29) approximate. Here we analyze the approxima-

tion quality of Markov models in detail and obtain a descrip-

tion that reveals which properties the state space discretization

and the lag time τ must fulfill in order to obtain a good model.

Previous works have mainly discussed the quality of a

Markov model in terms of its “Markovianity” and introduced

tests of Markovianity of the process x(t) projected onto the

discrete state space. The space-continuous dynamics x(t) de-

scribed in Sec. II is, by definition, Markovian in full state

space � and it can thus be exactly described by a linear op-

erator, such as the transfer operator T (τ ) defined in Eq. (6).

The problem lies in the fact that by performing a state space

discretization, continuous states x ∈ � are grouped into dis-

crete states si (Sec. III A), thus “erasing” information of the

exact location within these states and “projecting” a contin-

uous trajectory x(t) onto a discrete trajectory s(t) = s(x(t)).

This jump process, s(t), is not Markovian, but Markov mod-

els attempt to approximate s(t) with a Markov chain.

Thus, non-Markovianity occurs when the full state space

resolution is reduced by mapping the continuous dynamics

onto a reduced space. In Markov models of molecular dy-

namics, this reduction consists usually of both, neglect of

degrees of freedom and discretization of the resolved degrees

of freedom. Markov models typically only use atom positions,

thus the velocities are projected out.38, 39 So far, Markov mod-

els have also neglected solvent degrees of freedom and have

only used the solute coordinates,22, 39 and the effect of this was

studied in detail.71 Indeed, it may be necessary to incorporate

solvent coordinates in situations where the solvent molecules

are involved in slow processes that are not easily detected in

the solute coordinates.72 Often, Markov models are also based

on distance metrics that only involve a subset of the solute

atoms, such as RMSD between heavy atom or alpha carbon

coordinates,22, 39, 49 or backbone dihedral angles.31, 38 Possibly

the strongest approximation is caused by clustering or lump-

ing sets of coordinates in the selected coordinate subspace

into discrete states.22, 31, 39, 49, 73 Formally, all of these opera-

tions aggregate sets of points in continuous state space � into

discrete states, and the question to be addressed is what is the

magnitude of the discretization error caused by treating the

non-Markovian jump process between these sets as a Markov

chain.

Consider the diffusive dynamics model depicted in

Fig. 4(a) and let us follow the evolution of the dynamics given

that we start from a local equilibrium in basin A [Fig. 4(b)],

either with the exact dynamics, or with the Markov model

dynamics on the discrete state space A and B. After a step

τ , both dynamics have transported a fraction of 0.1 of the
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FIG. 4. Illustration of the discretization error by comparing the dynamics of the diffusion in a double-well potential (a, e) [see supplementary material for setup

(Ref. 65)] at time steps 0 (b), 250 (c), 500 (d) with the predictions of a Markov model parameterized with a too short lag time τ = 250 at the corresponding

times 0 (f), 250 (g), 500 (h). (b, c, d) show the true density pt (x) (solid black line) and the probabilities associated with the two discrete states left and right

of the dashed line. The numbers in (f, g, h) are the discrete state probabilities pi (t + kτ ) predicted by the Markov model while the solid black line shows the

hypothetical density pi (t + kτ )μi (x) that inherently assumed by the Markov model by using the discrete state probabilities to correspondingly weight the local

stationary densities.
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ensemble to B. The true dynamics resolves the fact that much

of this is still located near the saddle point [Fig. 4(c)]. The

Markov model cannot resolve local densities within its dis-

crete states, which is equivalent to assuming that for the next

step the ensemble has already equilibrated within the dis-

crete state [Fig. 4(g)]. This difference affects the discrete state

(basin) probabilities at time 2τ : in the true dynamics, a signif-

icant part of the 0.1 fraction can cross back to A as it is still

near the saddle point, while this is not the case in the Markov

model where the 0.1 fraction is assumed to be relaxed to states

mostly around the minimum [compare Fig. 4(d) and (h)]. As a

result, the probability to be in state B is higher in the Markov

model than in the true dynamics. The difference between the

Markov model dynamics and the true dynamics is thus a result

of discretization, because the discretized model can no longer

resolve deviations from local equilibrium density μi (x) within

the discrete state.

This picture suggests the discretization error to have two

properties: (a) the finer the discretization, the smaller the

discretization error is, and (b) when increasing the coarse-

graining time, or time resolution, of our model, τ , the er-

rors for any fixed point in time t should diminish, because

we have less often made the approximation of imposing local

equilibrium.

D. Quantifying the discretization error

Figure 4 also suggests a practical measure to quan-

tify the discretization error. Densities, eigenfunctions, or any

other function f (x) of the continuous state x, are approx-

imated through the discretization S1, . . . , Sn . Let Q be the

projection onto the discretization basis which produces this

approximation f̂ (x):

f̂ (x) = Q f (x) =
n

∑

i=1

aiχi (x), (30)

where the coefficients are given by the projection weighted by

the probability of each state:

ai =
〈 f, χi 〉μ
〈1, χi 〉μ

=
∫

Si
dx μ(x) f (x)

∫

Si
dx μ(x)

. (31)

In the case of a crisp partitioning of state space, functions

f (x) are approximated by step functions that are constant

within the discrete states. The approximation error that is

caused by the discretization is then defined as the μ-weighted

Euclidean norm ‖·‖μ,2 of the difference between discretized

and original function:

δ f ≡
∥

∥ f (x) − f̂ (x)
∥

∥

μ,2
=

(∫

�

dx μ(x)
(

f (x) − f̂ (x)
)2

)1/2

.

(32)

When the projection Q is applied to probability densities

p(x), it effectively measures how much density is in each of

the discrete states and replaces the true density within each

state with a local stationary density of corresponding ampli-

tude. This projection allows the comparison between true and

Markov model dynamics to be made exactly as suggested by

Fig. 4: in both cases we start with an arbitrary initial density

projected onto discrete states, Qp0(x), then transport this den-

sity either with the true or with the Markov model dynamics

for some time kτ . Subsequently, the densities are again pro-

jected onto discrete states by Q and then compared:

• The true dynamics transports the initial density Qp0(x)

to [T (τ )]k Qp0(x).

• The Markov model dynamics transports the initial

density Qp0(x) to QT (τ )Qp0(x) in one step and to

Q[T (τ )Q]k p0(x) in k steps using the identity for pro-

jections Q ◦ Q = Q.

• Projecting both densities to local densities and com-

paring yields the difference

ǫ(k) =
∥

∥Q[T (τ )]k Qp0(x) − Q[T (τ )Q]k p0(x)
∥

∥

μ,2

=
∥

∥[Q[T (τ )]k Q − Q[T (τ )Q]k]p0(x)
∥

∥

μ,2
. (33)

In order to remove the dependency on the initial dis-

tribution p0(x), we assume the worst case: the maximum

possible value of ǫ(k) among all possible p0(x) is given

by the operator-2-norm of the error matrix [Q[T (τ )]k Q

− Q[T (τ )Q]k], where ‖A‖μ,2 ≡ max
‖x‖=1

‖Ax‖μ,2 (Ref. 74),

thus the Markov model error is defined as:

E(k) :=
∥

∥Q[T (τ )]k Q − Q[T (τ )Q]k
∥

∥

μ,2
, (34)

which measures the maximum possible difference between

the true probability density at time kτ and the probability den-

sity predicted by the Markov model at the same time.

In order to quantify this error, we declare our explicit

interest in the m slowest processes with eigenvalues 1 = λ1

< λ2 ≤ λ3 ≤ · · · ≤ λm . Generally, m ≤ n, i.e., we are inter-

ested in less processes than the number of n eigenvectors that

a Markov model with n states has. We define the following

quantities:

• δi := ‖ψi (x) − Qψi (x)‖μ,2 is the eigenfunction ap-

proximation error, quantifying the error of approxi-

mating the true continuous eigenfunctions of the trans-

fer operator, ψi (see Fig. 5 for illustration), for all

i ∈ {1, . . . , m}.
• δ := maxi δi is the largest approximation error among

these first m eigenfunctions.

• η(τ ) := λm+1(τ )

λ2(τ )
is the spectral error, the error due

to neglecting the fast subspace of the transfer

operator, which decays to 0 with increasing lag time:

limτ→∞ η(τ ) = 0.

The Markov model error E(k) can be proven36 to be

bounded from above by the following expression:

E(k) ≤ min{2, [mδ + η(τ )] [a(δ) + b(τ )]} λk
2 (35)

with

a(δ) =
√

m(k − 1)δ (36)

b(τ ) =
η(τ )

1 − η(τ )
(1 − η(τ )k−1). (37)
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This implies two observations:

1. For long times, the overall error decays to zero with λk
2,

where 0 < λ2 < 1, thus the stationary distribution (re-

covered as k → ∞) is always correctly modeled, even if

the kinetics are badly approximated.

2. The error during the kinetically interesting timescales

consists of a product whose terms contain separately the

discretization error and spectral error. Thus, the overall

error can be diminished by choosing a fine discretiza-

tion (where fine means it needs to closely approximate

the slow eigenfunctions), and using a large lag time τ .

Depending on the ratio λm+1(τ )/λ2(τ ), the decay of the

spectral error η(τ ) with τ might be slow. It is thus inter-

esting to consider a special case of the discretization where

n = m and δ = 0. This would be achieved by a Markov model

that uses a fuzzy partition with membership functions derived

from the first m eigenfunctions ψ1, . . . , ψm .68 From a more

practical point of view, this situation can be approached by

using a Markov model with n >> m states located such that

they discretize the first m eigenfunctions with a vanishing dis-

cretization error, and then declaring that we are only interested

in these m slowest relaxation processes. In this case we do not

need to rely on the upper bound of the error from Eq. (35), but

directly obtain the important result E(k) = 0.

In other words, a Markov model can approximate the ki-

netics of slow processes arbitrarily well, provided the dis-

cretization can be made sufficiently fine or improved in a

way that continues to minimize the eigenfunction approxima-

tion error. This observation can be rationalized by Eq. (15)

which shows that the dynamics of the transfer operator can

be exactly decomposed into a superposition of slow and fast

processes.

An important consequence of the δ-dependence of the

error is that the best partition is not necessarily metastable.

Previous work38–40, 52 has focused on the construction of

partitions with high metastability [defined as the trace of the

transition matrix T(τ )], e.g., the two-state partition shown in

[see second row in Fig. 5]. This approach was based on

the idea that the discretized dynamics must be approxi-

mately Markovian if the system remained in each partition

sufficiently long to approximately lose memory.39 While

it can be shown that if a system has m metastable sets

with λm ≫ λm+1, then the most metastable partition into

n = m sets also minimizes the discretization error,36 the

expression for the discretization error given here has two

further profound ramifications. First, even in the case where

there exists a strong separation of timescales so the system

has clearly m metastable sets, the discretization error can be

reduced even further by splitting the metastable partition into

a total of n > m sets which are not metastable. And second,

even in the absence of a strong separation of timescales, the

discretization error can be made arbitrarily small by making

the partition finer, especially in transition regions, where the

eigenfunctions change most rapidly [see second row in 5(b)].

Figure 6 illustrates the Markov model discretization er-

ror on a two-dimensional three-well example where two slow

processes are of interest. The left panels show a metastable

partition with three sets. As seen in Fig. 6(d), the discretiza-
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FIG. 5. Illustration of the eigenfunction approximation error δ2 on the slow

transition in the diffusion in a double well (top, black line). The slow-

est eigenfunction is shown in the lower four panels (black), along with

the step approximations (green) of the partitions (vertical black lines) at

x = 50; x = 40; x = 10, 20, . . . , 80, 90; and x = 40, 45, 50, 55, 60. The

eigenfunction approximation error δ2 is shown as red area and its norm is

printed.

tion errors |ψ2 − Qψ2|(x) and |ψ3 − Qψ3|(x) are large near

the transition regions, where the eigenfunctions ψ2(x) and

ψ3(x) change rapidly, leading to a large discretization error.

Using a random partition (Fig. 6, third column) makes the sit-

uation worse, but increasing the number of states reduces the

discretization error (Fig. 6, fourth column), thereby increas-

ing the quality of the Markov model. When states are chosen

such as to well approximate the eigenfunctions, a very small

error can be obtained with few sets (Fig. 6, second column)

These results suggest that an adaptive discretization al-

gorithm may be constructed which minimizes the E(k) er-

ror. Such an algorithm could iteratively modify the defi-

nitions of discretization sets as suggested previously,39 but

instead of maximizing metastability it would minimize the

E(k) error which can be evaluated by comparing eigenvector

approximations on a coarse discretization compared to a ref-

erence evaluated on a finer discretization.36

One of the most intriguing insights from both Eq. (15)

and the results of the discretization error is that, if for a given

system only the slowest dynamical processes are of interest,

it is sufficient to discretize the state space such that the first

few eigenvectors are well represented (in terms of small

approximation errors δi ). For example, if one is interested

in processes on timescales t∗ or slower, then the number m

of eigenfunctions that need to be resolved is equal to the

number of implied timescales with ti ≥ t∗. Due to the perfect

decoupling of processes for reversible dynamics in the eigen-

functions [see Eqs. (16) and (17)], no gap after these first m

timescales of interest is needed. Note that the quality of the
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FIG. 6. Illustration of the eigenfunction approximation errors δ2 and δ3 on the two slowest processes in a two-dimensional three-well diffusion model [see

supplementary material for model details (Ref. 65)]. The columns from left to right show different state space discretizations with white lines as state boundaries:

(i) three states with maximum metastability, (ii) the metastable states were further subdivided manually into 13 states to better resolve the transition region,

resulting in a partition where no individual state is metastable, (iii)/(iv) Voronoi partition using 25/100 randomly chosen centers, respectively. (a) Potential,

(b) the exact eigenfunctions of the slow processes, ψ2(x) and ψ3(x), (c) the approximation of eigenfunctions with discrete states, Qψ2(x) and Qψ3(x), (d)

approximation errors |ψ2 − Qψ2|(x) and |ψ3 − Qψ3|(x). The error norms δ2 and δ3 are given.

Markov model does not depend on the dimensionality of the

simulated system, i.e., the number of atoms. Thus, if only

the slowest process of the system is of interest (such as the

folding process in a two-state folder), only a one-dimensional

parameter, namely, the level of the dominant eigenfunction,

needs to be approximated with the clustering, even if the

system is huge. This opens a way to discretize state spaces of

very large molecular systems.

E. Approximation of eigenvalues and timescales
by Markov models

One of the most interesting kinetic properties of molecu-

lar systems are the intrinsic timescales of the system. They

can be both experimentally accessed via relaxation or cor-

relation functions that are measurable with various spectro-

scopic techniques,44, 75–77 but can also be directly calculated
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from the Markov model eigenvalues as implied timescales

[Eq. (18)]. Thus, we investigate the question how well the

dominant eigenvalues λi are approximated by the Markov

model, which immediately results in estimates for how accu-

rately a Markov model may reproduce the implied timescales

of the original dynamics. Consider the first m eigenvalues

of T (τ ), 1 = λ1(τ ) > λ2(τ ) ≥ . . . ≥ λm(τ ), and let 1 = λ̂1(τ )

> λ̂2(τ ) ≥ . . . ≥ λ̂m(τ ) denote the associated eigenvalues of

the Markov model T(τ ). The rigorous mathematical estimate

from Ref. 78 states that

max
j=1,...,m

|λ j (τ ) − λ̂ j (τ )| ≤ (m − 1) λ2(τ ) δ2, (38)

where δ is again the maximum discretization error of the first

m eigenfunctions, showing that the eigenvalues are well re-

produced when the discretization well traces these eigenfunc-

tions. In particular, if we are only interested in the eigenvalue

of the slowest process, λ2(τ ), which is often experimentally

reported via the slowest relaxation time of the system, t2, the

following estimate of the approximation error can be given:

|λ2(τ ) − λ̂2(τ )|
|λ2(τ )|

≤ δ2
2 . (39)

As λ2(τ ) corresponds to a slow process, we can make the

restriction λ2(τ ) > 0. Moreover, the discretization error

of Markov models based on full partitions of state space

is such that the eigenvalues are always underestimated,78

thus λ2(τ ) − λ̂2(τ ) > 0. Using Eq. (18), we thus obtain the

estimate for the discretization error of the largest implied

timescale and the corresponding smallest implied rate,

k2 = t−1
2 :

t̂−1
2 − t−1

2 = k̂2 − k2 ≤ −τ−1 ln(1 − δ2
2), (40)

which implies that for either δ2 → 0+ or τ → ∞, the error

in the largest implied timescale or smallest implied rate tends

to zero. Moreover, since λ2(τ ) → 0 for τ → ∞, this is also

true for the other processes:

lim
τ→∞

|λ j (τ ) − λ̂ j (τ )|
|λ j (τ )|

= 0, (41)

and also

lim
δ→0

|λ j (τ ) − λ̂ j (τ )|
|λ j (τ )|

= 0, (42)

which means that the error of the implied timescales also van-

ishes for either sufficiently long lag times τ or for sufficiently

fine discretization. This fact has been empirically observed

in many previous studies,22, 31, 38–40, 45, 73 but can now be

understood in detail in terms of the discretization error.

It is worth noting that observing convergence of the slow-

est implied timescales in τ is not a test of Markovianity. While

Markovian dynamics implies constancy of implied timescales

in τ (Refs. 38 and 40), the reverse is not true and would re-

quire the eigenvectors to be constant as well. However, ob-

serving the lag time-dependence of the implied timescales is

a useful approach to choose a lag time τ at which T(τ ) shall be

calculated, but this model needs to be validated subsequently

(see Sec. IV F).

Figure 7 shows the slowest implied timescale t2 for

the diffusion in a two-well potential (see Fig. 5) with
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FIG. 7. Convergence of the slowest implied timescale t2 = −τ/ ln λ2(τ ) of

the diffusion in a double-well potential depending on the MSM discretization.

The metastable partition (black, solid) has greater error than nonmetastable

partitions (blue, green) with more states that better trace the change of the

slow eigenfunction near the transition state.

discretizations shown in Fig. 5. The two-state partition at

x = 50 requires a lag time of ≈ 2000 steps in order to reach

an error of < 3% with respect to the true implied timescale,

which is somewhat slower than t2 itself. When the two-state

partition is distorted by shifting the discretization border

to x = 40, this quality is not reached before the process

itself has relaxed. Thus, in this system two states are not

sufficient to build a Markov model that is at the same time

precise and has a time resolution good enough to trace the

decay of the slowest process. By using more states and

particularly a finer discretization of the transition region, the

same approximation quality is obtained with only τ ≈ 1500

(blue) and τ ≈ 500 steps (green).

Figure 8 shows the two slowest implied timescales t2,

t3 for the diffusion in a two-dimensional three-well poten-

tial with discretizations shown in Fig. 6(a). The metastable

three-state partition requires a lag time of ≈ 1000 steps in or-

der to reach an error of < 3% with respect to the true implied

timescale, which is somewhat shorter than the slow but longer

than the fast timescale, while refining the discretization near

the transition states achieves the same precision with τ ≈ 200

using only 12 states. A k-means clustering with k = 25 is

worse than the metastable partition, as some clusters cross

over the transition region and fail to resolve the slow eigen-

functions. Increasing the number of clusters to k = 100 im-

proves the result significantly, but is still worse than the 12

states that have been manually chosen so as to well resolve the

transition region. This suggests that excellent MSMs could be

built with rather few states when an adaptive algorithm that

more finely partitions the transition region is employed.

F. Discretization methods for molecules

Macromolecular systems generally possess configuration

spaces of such high dimension that grid-based methods for

partitioning space become impractical. However, in many

macromolecular systems such as proteins, the region, over
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FIG. 8. Implied timescales for the two slowest processes in the two-

dimensional three-well diffusion model [see Fig. 6(a) for potential and sup-
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green correspond to the four choices of discrete states shown in columns 1 to

4 of Fig. 6. A fine discretization of the transition region clearly gives the best

approximation to the timescales at small lag times.

which the configurational probability density is significant,

defines a low-dimensional (but potentially highly nonlinear)

subspace.79 As a result, data-driven methods, where a clus-

tering of conformations sampled by some form of molecu-

lar simulation defines the partitioning of this low-dimensional

subspace, are both attractive and practical. Various combina-

tions of distance metrics and clustering methods have been

proposed. Distance metrics include Euclidean distance in

backbone coordinates22 or RMSD.39, 49 Clustering methods

include manual clustering,52 k-means clustering,22 k-centers

clustering,49 density-based clustering,80, 81 and adaptive clus-

tering approaches.39 Approaches to directly discretize certain

coordinates, such as the rotameric states31, 51 or the hydrogen-

bond patterns,38, 73 were also made.

In the present paper we do not attempt to argue for or

against a particular metric or clustering method. In theory,

any metric that is able to partition full state space � more

finely when the number of clusters is increased permits re-

duction of the eigenfunction approximation error to zero. In

practice, such a metric is difficult to design and thus one of-

ten measures structural differences on a subset of coordinates

(e.g., solute coordinates). In this case, the approximation of

the eigenfunctions will maintain an error that must be com-

pensated by increasing the lag time τ . In practice, it is impor-

tant that the metric is selected such that the molecular events

under investigation can be resolved. For example, backbone

FIG. 9. Structure of the MR121-GSGS-W peptide.

rotamer angles are a poor metric when large side-chains are

involved. Root mean square distance of entire protein struc-

tures might overwhelm small changes at individual degrees of

freedom and therefore be unsuitable when detailed changes in

the binding pocket of an enzyme are to be resolved.

However, it is interesting to see that MSMs are robust

with respect to changes of the metric and the clustering

method, within a significant range. This is illustrated by the

following analysis: the MR121-GSGS-W peptide simulation

(see Fig. 9 and supplementary material for simulation setup65)

was clustered with a Voronoi partition in an all-atom RMSD

metric, using three different methods to determine the cluster

centers:

1. k-centers clustering.82

2. Regular time clustering: Cluster generators were picked

at regular time intervals along the trajectory.

3. Regular space clustering: Cluster generators were cho-

sen to be approximately equally separated in RMSD:

a minimal distance dmin was fixed, the first trajectory

frame was used as the first cluster center, then the tra-

jectory was iterated and a frame was accepted as cluster

center when its RMSD to all existing cluster centers was

equal or greater than dmin.

As the equilibrium simulation used to estimate the Markov

model is a factor of 100 times longer than the slowest implied

timescale we consider the estimated transition matrix from

this trajectory as almost free of statistical error. The statisti-

cal issues in the estimation problem are discussed in detail in

Sec. IV below.

Figure 10 shows that for all clustering methods and num-

bers of clusters (10, 100, or 1000) used, the slowest implied

timescales converge to approximately the same values t2 ≈ 25

ns and t3 ≈ 10 ns at long lag times τ . All clustering meth-

ods produce MSMs which converge for smaller values of τ

when increasingly many clusters are used. This tendency can

be assumed as long as sufficient statistics are available. When

the number of clusters gets too large for a given amount of

simulation data, statistical issues need to be considered (see

Sec. IV). The differences in MSM quality between the dif-

ferent clustering methods for similar numbers of clusters are

small. Interestingly, k-centers and regular space clustering do

not outperform the simple method of picking cluster centers

at regular time intervals. The three methods used here are rel-

atively fast, all having a time complexity of O(k N ), with k

being the number of clusters and N the number of frames

in the trajectory. It is unclear whether using computationally

more expensive clustering methods are able to significantly

benefit the MSM construction at this stage. Our findings sug-

gest that MSM construction from trajectory data is robust as

long as sufficient data are available and a sufficient number of

states are used.

IV. ESTIMATION FROM DATA AND VALIDATION

In almost all practical cases, the transition matrix T(τ )

is not obtained by directly discretizing the continuous trans-

fer operator but rather by estimation from a finite quantity of

simulation data. This includes a statistical error component
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FIG. 10. Lag time dependent implied timescales t2 (solid lines) and t3
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ing, (b) cluster centers chosen from frames at fixed time intervals, (c) cluster

centers are chosen so as to have a certain minimal distance to all others. In-

dependent of the clustering method chosen, increasing the number of clusters

enhances the convergence of implied timescales.

into the overall error in modeling the true dynamics with

Markov models which will be discussed in this section. Here

we assume that a state space discretization (either crisp or

fuzzy) has been defined and that a trajectory is mapped onto

this discrete space. We then answer the question how to esti-

mate a Markov model based on such trajectory data.

Note that while in Sec. III we have studied only the dis-

cretization error of the Markov model without consideration

of statistical issues (i.e., it was assumed the transition matrix

could be computed exactly), this section only studies statis-

tical issues without consideration of the discretization error

(i.e., the discrete dynamics is now assumed to be perfectly

Markovian).

A. From trajectories to count matrix

Consider one trajectory generated at equilibrium condi-

tions with N configurations stored at a fixed time interval �t :

X = [x1 = x(t = 0), x2 = x(t = �t), . . . , xN = x(t = (N − 1)�t)]

(43)

and consider that a state space discretization has been defined

such that each structure can be assigned to one discrete state

xk ∈ Si → sk = i , and the trajectory information can be sim-

ply stored as the sequence s1, . . . , sN of discrete states.

We also assume that x1 was drawn from the equilib-

rium density pertaining to state s1, μs1
(x). The correct starting

distribution can be generated from a global estimate of the

stationary density (e.g., generated by well-converged meta-

dynamics83 or replica-exchange84 simulations), or more ef-

ficiently by launching trajectories from short local equilib-

rium dynamics restricted to the starting density μi (x).85 Note

that in the limit of very small discrete states, this problem

vanishes as μi (x) can then be well approximated by a step

function.22, 65

We can now define the discrete state count matrix

Cobs(τ ) = [cobs
i j (τ )] at lag time τ , where τ now needs to be

an integer multiple of the available data resolution �t :

cobs
i j (τ ) = cobs

i j (l�t) =
N−l
∑

k=1

χi (xk)χ j (xk+l) (44)

= | {k ∈ {1, . . . , N − l} | sk = i ∧ sk+l = j} |, (45)

which provides an estimator of the correlation matrix defined

in Eq. (25) by

ĉ corr
i j (τ ) =

cobs
i j (τ )

N − l
. (46)

When the state space is discretized by a crisp partition, this

matrix simply counts the number of observed transitions be-

tween discrete states, i.e., cobs
i j is the number of times the tra-

jectory was observed in state i at time t and in state j at time

t + τ , summed over all times t . If multiple trajectories are

available, then the count matrices of these trajectories are sim-

ply added up.

As a shorthand notation we define the row sums of Cobs:

cobs
i = cobs

i (τ ) :=
n

∑

k=1

cobs
ik , (47)

which are the total number of times the trajectory was in

state i .

B. Counting

We distinguish between two approaches to counting:

1. Sampling the trajectory at lag time τ :

Here the trajectory is sampled at lag time τ and only

these sample points are used for counting:

cobs
i j (τ ) = cobs

i j (l�t) =
⌊N/ l⌋−1
∑

k=1

χi (x(l·k)+1) χ j (x(l·k)+l+1).

(48)

When jump process is Markovian at τ , this generates

statistically independent transition counts. It is therefore

straightforward to use the resulting count matrix in order
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to derive expressions for the likelihood and posterior of

transition matrix (see Sec. IV C below), which is impor-

tant in order to obtain statistical models that do not un-

derestimate the uncertainties.39, 45, 51 A disadvantage of

this approach is that much of the data are ignored, which

can lead to numerical problems. In particular, states that

have been actually visited or transitions that have been

actually observed might be missed when subsampling

the data at interval τ , which may be a reason for estima-

tors breaking down.

2. Overlapping window count at lag time τ :

In this method we use a count window of width τ that is

shifted along the time line:

cobs
i j (τ ) = cobs

i j (l�t) =
N−l
∑

k=1

χi (xk)χ j (xk+l). (49)

This method uses observed transitions, although

nearby transitions such as t → t + τ and t + �t → t

+ �t + τ cannot be assumed to be statistically inde-

pendent. The resulting count matrix, when assumed

to consist of independent counts, will generate a pos-

terior distribution that is too narrow in the Bayesian

approaches below. However, the expectation value

of Ti j (τ ) is unbiased and thus maximum posterior

estimators (Sec. IV D) are asymptotically correct, such

that the window count method is preferred for this case.

At the moment it is an open question how to best make use

of all observed data while at the same time using statistically

independent, or at least uncorrelated counts. It appears

straightforward to use the window method and then divide all

counts by l, obtaining noninteger effective counts. However,

the consequences of this approach are not fully understood

because the probability distribution of transition matrices (see

Sec. IV B below) becomes multimodal for counts 0 < ci j

< 1. A safe approach is to use the window count method for

estimating the transition matrix and sampling the trajectory

at lag τ when computing count matrices for error estimators.

C. Prior, likelihood, and posterior distribution

It is intuitively clear that in the limit of an infinitely long

trajectory, the elements of the true transition matrix are given

by the trivial estimator T̂i j (τ ) = cobs
i j /cobs

i , i.e., the fraction of

times the transition i → j led out of state i . For a trajec-

tory of limited length, the underlying transition matrix T(τ ) is

not uniquely determined. Assuming that the matrix Cobs con-

tains statistically independent transition counts (see discus-

sion in Sec. IV B above), following Ref. 86, the probability

that a particular T(τ ) would generate a sequence s1, . . . , sN

the observed trajectory is given by the product of the individ-

ual jump probabilities,
∏N−1

k=1 Tsk ,sk+1
. In terms of our notation,

this can be rewritten in terms of the count matrix as:

p(Cobs|T) =
n

∏

i, j=1

T
cobs

i j

i j . (50)

Vice versa, the posterior probability of the transition matrix

being T(τ ) is

p(T|Cobs) ∝ p(T)p(Cobs|T) = p(T)

n
∏

i, j=1

T
cobs

i j

i j , (51)

where p(T) is the prior probability of transition matrices be-

fore observing any data. p(Cobs|T) is called the likelihood.

In transition matrix estimation one is interested in the most

probable matrices T, i.e., the T’s with a large density in the

posterior. The prior probability should be chosen such that it

restricts the posterior to solutions that are physically meaning-

ful in the situation where little observation data are available,

but otherwise should be “weak,” i.e., impose little bias (see

Sec. IV E for a discussion on the choice of the prior). For

computational simplicity, one typically chooses a prior that is

conjugate to the likelihood, i.e., has the same functional form.

This leads to the posterior:

p(T|Cobs) ∝
n

∏

i, j=1

T
c

prior

i j +cobs
i j

i j =
n

∏

i, j=1

T
ci j

i j , (52)

with the prior count matrix Cprior = [c
prior

i j ] and we have

defined the total number of counts, or posterior counts C

= Cprior + Cobs. Since any estimator will be based on the

count matrix, it is now straightforward to use a given estima-

tor for any prior Cprior. When a uniform distribution is used as

a prior (Cprior = 0, p(T) ∝ 1), likelihood and posterior distri-

bution are identical.

D. Maximum probability estimators

Based on a given probability distribution of parameters, a

straightforward parameter estimator is the one that maximizes

this probability distribution. Indeed, it can be shown (see sup-

plementary material for the derivation65) that the maximum

probability transition matrix, i.e., the maximum of Eq. (52),

T̂ = arg max p(T | Cobs) is given by the trivial estimator (as-

suming ci > 0):

T̂i j =
ci j

ci

. (53)

It turns out that T̂(τ ), as provided by Eq. (53), is the maxi-

mum of p(T|Cobs) and thus also of p(Cobs|T) when transition

matrices are assumed to be uniformly distributed a priori. In

the limit of infinite sampling, i.e., trajectory length N → ∞,

p(T|Cobs) converges toward a Dirac delta distribution with its

peak at T̂(τ ). In this case the prior contribution vanishes:

lim
N→∞

T̂i j = lim
N→∞

c
prior

i j + cobs
i j

c
prior

i + cobs
i

= lim
N→∞

cobs
i j

cobs
i

= Ti j , (54)

i.e., the estimator is “asymptotically unbiased.”

Note that the estimator T̂(τ ) does not necessarily fulfill

detailed balance πi T̂i j = π j T̂ j i even if the underlying dynam-

ics is in equilibrium and thus πi Ti j = π j T j i holds for the true

transition matrix. In many cases it is desirable and advan-

tageous to estimate a transition matrix that does fulfill de-

tailed balance. There is no known closed form solution for

the maximum probability estimator with the detailed balance
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constraint. In Ref. 49, an iterative method was given to ob-

tain such an estimator. Here we give a computationally more

efficient algorithm to compute this estimator.

Let xi j = πi Ti j be the unconditional transition probabil-

ity to observe a transition i → j . These variables fulfill the

constraint
∑

i, j xi j = 1, and the detailed balance condition

is given by xi j = x j i . It is hence sufficient to store the

xi j with i ≤ j in order to construct a reversible transition

matrix. Let xi =
∑

j xi j . The maximum probability estimator

is then obtained by the following iterative algorithm (see

supplementary material for the proof of correctness65), which

is iterated until some stopping criterion is met (e.g., change

of maxi, j {xi j } in one iteration is smaller than a given constant

or the number of iterations exceeds a predefined threshold):

Algorithm 1 Maximum probability estimator of reversible

transition matrices

(1) For all i, j = 1, . . . , n: initialize

xi j = x j i := ci j + c j i

xi :=
∑

j

xi j

(2) Repeat until stopping criterion is met

(2.1) For all i = 1, . . . , n:

update : xi i :=
ci i (xi − xi i )

ci − ci i

update : xi :=
∑

j

xi j

(2.2) For all i = 1, . . . , n − 1, j = i + 1, . . . , n:

a = ci − ci j + c j − c j i

b = ci (x j − xi j ) + c j (xi − xi j )

−(ci j + c j i )(xi + x j − 2xi j )

c = −(ci j + c j i )(xi − xi j )(x j − xi j )

update : xi j = x j i :=
−b +

√
b2 − 4ac

2a

update : xi :=
∑

j

xi j

(2.3) Update Ti j , i, j = 1, . . . , n:

Ti j :=
xi j

xi

E. Expectation and Uncertainty

Since simulation data are finite, all validation procedures

(either consistency checks or comparisons to experimental

data) need to account for statistical uncertainties. For these,

standard deviations or confidence intervals induced by the

posterior distribution of transition matrices are of interest.

It follows from well-known properties of the distribution of

transition matrices86 that the expectation value for transition

matrix element Ti j is

T̄i j = E[Ti j ] =
ci j + 1

ci + n
, (55)

and the variance is given by

Var[Ti j ] =
(ci j + 1)((ci + n) − (ci j + 1))

(ci + n)2((ci + n) + 1)
=

T̄i j (1 − T̄i j )

ci + n + 1
.

(56)

Consider a trajectory of a given molecular system which is

analyzed with two different state space discretizations, one

with n = 10 and one with n = 1000 and assume that a lag

time τ has been chosen which is identical and long enough

to provide Markov models with small discretization error for

both n (discussed in Sec. III). When using a uniform prior

(ci j = cobs
i j ), the expectation values would be different for the

two discretizations: in the n = 1000 case, most ci j are proba-

bly zero, such that the expectation value would be biased to-

ward the uninformative Ti j ≈ 1/n matrix, and many observed

transitions would be needed to overcome this bias. This be-

havior is undesirable. Thus, for uncertainty estimation it is

suggested to use a prior which allows the observation data

to have more impact. The extreme case is the so-called “null

prior”22 defined by

c
prior

i j = −1 ∀i, j ∈ {1, . . . , n}. (57)

Using the null prior, the first moments of the posterior become

T̄i j = E[Ti j ] =
cobs

i j

cobs
i

= T̂i j , (58)

Var[Ti j ] =
cobs

i j (cobs
i − cobs

i j )

(cobs
i )2(cobs

i + 1)
=

T̂i j (1 − T̂i j )

cobs
i + 1

. (59)

Thus, with a null prior, the expectation value is located at the

likelihood maximum, or equivalently at the maximum of the

posterior when a uniform prior would be used. Both expec-

tation value and variance are independent of the number of

discretization bins used. The variance of any Ti j asymptoti-

cally decays with the number of transitions out of the state i ,

which is expected for sampling expectations from the central

limit theorem.

In practice, one is often not primarily interested in the un-

certainties of the transition matrix elements themselves, but

rather in the uncertainties in properties computed from the

transition matrix. Two different approaches have been sug-

gested for this:

1. Linear error perturbation:47, 48, 87 Here, the transition

matrix distribution is approximated by a Gaussian and

the property of interest is approximated by a first-order

Taylor expansion. This results in a Gaussian distribution

of the property of interest with a mean and a covariance

matrix that can be computed in terms of C. This ap-

proach has the advantage of being deterministic, which

is desirable in situations where uncertainties are used

to steer an adaptive sampling procedure,37, 47, 48, 88 and

may be implemented very efficiently. The disadvantage

of this approach is that the Gaussian approximation of
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the transition matrix posterior is only asymptotically

valid, but easily breaks down when few counts have

been observed and permits unphysical values (e.g.,

Ti j outside the range [0,1]). Moreover, the property of

interest is approximated linearly which can introduce a

significant error when this property is nonlinear.

2. Markov chain Monte Carlo sampling of transition

matrices:45, 51, 89 Here, a set of transition matrices is

drawn from the posterior distribution. The property of

interest is then calculated for each transition matrix,

and the uncertainties are directly estimated from this

set. This approach requires that the true distribution

is sampled often enough such that well-converged

estimates of standard deviations or confidence intervals

can be made. The advantage of the approach is that no

assumptions are made concerning the functional form

of the distribution or the property being computed.

Furthermore, this approach can be straightforwardly

applied to any function or property of transition ma-

trices, including complex properties such as transition

path distributions22 without deriving the expressions

necessary for the linear error perturbation analysis. Its

disadvantage is that sampling may become slow for large

matrices.

F. Validation: Chapman–Kolmogorov test

We have above formulated conditions for choosing a dis-

cretization and a lag time τ that minimize the discretization

error of a MSM. However, in practice it is essential to con-

duct a test whether lag time and discretization have been cho-

sen such that the Markov model obtained is at least consistent

with the data used to parameterize it within statistical error. In

Sec. III D, the discretization error was measured as difference

between Markov model propagation and true propagation in

the continuous space. In practice it is easier to measure the

propagation error on the discrete space directly. In particular,

we are interested in checking whether the approximation,

[T̂(τ )]k ≈ T̂(kτ ), (60)

holds within statistical uncertainty. Here, T̂(τ ) is the transi-

tion matrix estimated from the data at lag time τ (the Markov

model), and T̂(kτ ) is the transition matrix estimated from

the same data at longer lag times kτ . Note that when the

nonreversible maximum likelihood estimator, Eq. (53), is

used, this approximation is trivially exact for k = 1 since

the Markov model was parameterized at lag time τ . For all

k ≫ t2/τ , the approximation should always be good, as

Markov models correctly model the stationary distribution,

even for bad choices of τ and discretization (see Sec. III D).

Thus, this test is only sensitive in ranges of k greater one and

smaller than the global relaxation time of the system.

There are various ways how a test of Eq. (60) could be

implemented. An implementation of this test should consider

the following points:

1. For large transition matrices, individual elements of

T̂(kτ ) or [T̂(τ )]k can be very uncertain, and comparing

n × n elements may be cumbersome. Therefore, we sug-
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FIG. 11. Chapman–Kolmogorov test for diffusion in a two-well potential

using a trajectory of length 106 steps. Tested are Markov models that use lag

times τ = 100, 500, 2000 and (a) two-state discretization (split at x = 50),

(b) six-state discretization (split at x = 40, 45, 50, 55, 60).

gest to compare the probability of being in a given set

of states, A, when starting from a well-defined starting

distribution. This simplifies the test to few observables

and allows to check the kinetics of states that are of spe-

cial interest, such as folded/unfolded states or metastable

states.

2. The test should be done for all times kτ for which trajec-

tory data are available. Tests that compare Markov mod-

els that differ only one lag step (τ and 2τ ) are likely

to be unreliable as small approximation errors at short

times may amplify at long times.

3. The quality of the approximation (60) should be judged

within the statistical uncertainties induced by the data.

Here we present an implementation that takes these prop-

erties into account. Let π be the stationary probability of the

Markov model T̂(τ ). The corresponding stationary distribu-

tion restricted to a set A is then given by

w A
i =

⎧

⎨

⎩

πi
∑

j∈A π j
i ∈ A

0 i /∈ A
. (61)
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(a)

(b)

(c)

(d)

FIG. 12. Chapman–Kolmogorov test for the three-well diffusion model (see also Fig. 6). For each of four discretizations (first column, a, b, c, d), the Chapman–

Kolmogorov test is shown for the three states with the greatest error (labeled with white figures in the first column). Relaxation curves from a 250 000 step

trajectory, pMD(A, A; kτ ) (black) along with the uncertainties ǫMD(A, A, kτ ) are compared to the model prediction, pMSM(A, A; kτ ) (red). The total error σ

given in the top right corners is measured as the 2-norm of the vector containing the differences pMD(A, A; kτ ) − pMSM(A, A; kτ ) for time points in the range

kτ ∈ [1, 128].

As a model test, the following “relaxation experiment” may

be carried out for each set: using wA as initial probabil-

ity vector for each of the sets under consideration, the

probability of being at that set at later times kτ is then

computed according to (i) the observed trajectory data and

(ii) the Markov model, and subsequently compared. The

trajectory-based time-dependence of the probability to be at

set A after time kτ with starting distribution wA is given by

pMD(A, A; kτ ) =
∑

i∈A

w A
i pMD(i, A; kτ ), (62)

where pMD(i, A, kτ ) is the trajectory-based estimate of

the stochastic transition function Eq. (2):

pMD(i, A; kτ ) =
∑

j∈A cobs
i j (kτ )

∑n
j=1 cobs

i j (kτ )
. (63)

Likewise, the probability to be at A according to the

Markov model is given by

pMSM(A, A; kτ ) =
∑

i∈A

[(wA)T Tk(τ )]i . (64)

Testing the validity of the Markov model then amounts to test-

ing how well the equality

pMD(A, A; kτ ) = pMSM(A, A; kτ ) (65)

holds, which is essentially a test of the Chapman–

Kolmogorov property. Note that the initial distribution w A
i is

simply a chosen reference distribution with respect to which

the comparison is made, here chosen as in Eq. (61).

The equality (65) is not expected to hold exactly as a re-

sult of statistical uncertainties caused by the fact that only a

finite number of transitions are available to estimate the true

transition probabilities. To account for this, the uncertainties

(one-sigma standard error) of the transition probabilities esti-

mated from MD trajectories are computed as:

ǫMD(A, A; kτ ) =
√

k
pMD(A, A; kτ ) − [pMD(A, A; kτ )]2

∑

i∈A

∑n
j=1 cobs

i j (kτ )
.

(66)
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The test then consists of assessing whether Eq. (65)

holds within these uncertainties. The uncertainty of

pMSM(A, A, kτ ) can be calculated using the methods

described in Sec. IV E. However, this is not necessary if

the test already succeeds while using only the uncertainties

ǫMD(A, A; kτ ).

For illustration, we show results of this test using a 106

step trajectory of a diffusion in a double-well potential (see

Figure 9 and supplementary material for simulation setup65).

Figure 11 shows the relaxation out of the left well using a two-

state discretization splitting at x = 50 and using a six-state

discretization splitting at x = {40, 45, 50, 55, 60} [see Fig. 5

for state definitions and Fig. 11 for results]. The two-state

discretization provides spurious results for τ = 100, good re-

sults for τ = 500, and for τ = 2000 the results are excel-

lent within the statistical uncertainty of the trajectory. For

the six-state discretization even τ = 100 is within the error

bars while τ = 500 and τ = 2000 are both excellent approxi-

mations.

Figure 12 shows the corresponding results for the three-

well diffusion model (see also Fig. 6 and supplemen-

tary material for model details65). A single 250 000 step

trajectory started from the energy minimum at x = (10, 10)

was simulated. For each of the four different discretiza-

tions shown in the first column of Fig. 12 the probability to

stay in a state is shown for the three states with the largest

Markov model error (highlighted in Fig. 12, left column).

It is apparent that the metastable three-state discretization

[Fig. 12(a)] performs well, however sacrificing metastability

in order to more finely discretize the transition region gener-

ates a superior discretization [Fig. 12(b)]. The “uninformed”

random 25-state clustering [Fig. 12(c)] performs worst but

can be improved significantly by using more states [Fig.

12(d)]. This further supports our theoretical finding that ei-

ther a clustering adapted to the eigenfunctions or using more

states can improve the quality of the constructed Markov

model.

Figure 13 shows the corresponding test results for the six

most metastable sets of the MR121-GSGS-W peptide using a

Markov model based on a Voronoi discretization using min-

imal RMSD to 1000 peptide configurations equally spaced

in time. The lag time was set to τ = 2 ns. The metastable

states are determined by dominant eigenvectors and have been

calculated with the PCCA+ method.30, 38 The Markov model

agrees with the observed trajectory within statistical uncer-

tainty for all metastable states.

G. Practical approach to Markov model analysis

Markov models are becomingly increasingly popular

as a tool to analyze large sets of MD trajectory data. In

order to give some guidance to the practitioner, we have

attached a brief walk-through for a typical Markov model

analysis in the supplementary material. The analyses sug-

gested there can be performed with the program EMMA

(EMMA’s Markov Model Algorithms, downloadable from

https://simtk.org/home/emma).
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FIG. 13. Chapman–Kolmogorov test for six metastable sets A to F in

MR121-GSGS-W. Solid curve: pMSM(A, A, kτ ) to pMSM(F, F, kτ ) pre-

dicted by the MSM parameterized at lag time τ =2 ns. Bullets with error bars:

expectation values and uncertainties of pMD(A, A, kτ ) to pMD(F, F, kτ ) di-

rectly calculated from the simulation data up to 100 ns.

V. DISCUSSION AND CONCLUSION

Markov modeling is a simulation analysis tool which is

rapidly gaining popularity in the MD community. We have

summarized the state of the art of generation and validation

of Markov models of molecular kinetics and have filled in

some important methodological gaps. Below, we summarize

our discussion of this procedure, and highlight areas where

further theoretical work or practical study is needed to give

the approach a solid foundation.

As shown in Sec. II, any physically reasonable imple-

mentation of equilibrium molecular dynamics can be under-

stood in terms of relaxation processes that are described by

the eigenfunctions of the dynamical operator. The role of

these eigenfunctions in molecular kinetics cannot be overem-

phasized, irrespective of whether Markov models are used

or not. These eigenfunctions unambiguously yield a struc-

tural dynamical interpretation of a relaxation process. Each

eigenfunction is linked to one eigenvalue with a correspond-

ing relaxation timescale that is accessible experimentally, thus

Markov models can serve as a means to interpret kinetic ex-

perimental data. From a modeling point of view, the dynam-

ical decomposition Eq. (15) shows that these eigenfunctions

define coordinates in which slow and fast dynamics can be

separated exactly. Indeed, they are the only choice of coor-

dinates for which such a separation is possible and any dif-

ferent attempt to model the dynamics via a projection onto

slow degrees of freedom or order parameters will necessarily

introduce memory terms that are challenging to deal with.90

One of the key insights from this work is that the

discretization error made by using a Markov model on

a discrete state space can be controlled by choosing the

discretization and the lag time adequately (see Sec. III).
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In particular, the quality of the Markov model depends

on how well the discretization approximates the slowly

relaxing eigenfunctions of the true dynamics. It is shown in

Sec. III C how the Markov model can be used to precisely

approximate only selected slow processes with relatively

few discrete states slicing the state space finely in regions

where the corresponding eigenfunctions change rapidly while

leaving the discretization coarse in regions where only the

fast eigenfunctions vary. This answers a key concern about

discretization-based kinetic model approaches, namely, that

for complex macromolecular systems there is no hope to enu-

merate all energy basins in the discrete model. The present

analysis shows that this is indeed not necessary and that in

principle, very few states are sufficient to obtain an excellent

model. Moreover, the analysis also shows that metastable

partitions suggested in previous works38, 39 are good among

partitions where the number of states n is allowed to be less

or equal to the number of metastable states in the system,

but that the approximation error can be further reduced by

increasing the number of partitions, even if this means that

the individual discrete states are no longer metastable.

This immediately raises the question how such a dis-

cretization can be created for a complex molecular system

where the true eigenfunctions are initially unknown. This

issue is not yet solved. Based on current results, it is clear

that subdividing discrete states should always reduce the

discretization error. Thus, when geometric clustering meth-

ods are used to subdivide state space, it is advisable to use as

many clusters as possible without running into serious statis-

tical problems. In the longer term, much better discretizations

can be expected from methods that adaptively discretize in an

iterative manner. For example, first an initial Markov model

is created based on a geometric clustering, these clusters are

then subdivided, providing a finer Markov model. The dis-

cretization error of the coarser model with respect to the finer

model is computed using the error bound from Sec. III C,

and it is then decided which states are kept, lumped, or split.

An adaptive method based on maximizing metastability has

been proposed in,39 and a similar approach may be followed

by minimizing the error bound from Sec. III C instead. In a

broader sense, adaptive space discretization methods based

on error bounds are commonly and successfully used in other

disciplines where equations must be solved on a grid, e.g., in

fluid mechanics and engineering. Moving to such approaches,

MD becomes more and more a numerical analysis problem

of molecular phase spaces, and may therefore benefit from

the understanding of discretization methods that has been

acquired in scientific computing.

We have devoted part of this work to describing how

a Markov model on a given discretization can be estimated

from an available data set. The main novelty in Sec. IV

was the introduction of an efficient estimator for reversible

transition matrices (Algorithm 1). It is recommended to use

this estimator instead of the trivial nonreversible estimator in

Eq. (53), because it enforces the physically reasonable de-

tailed balance constraint, thus making more efficient use of

the data and avoiding the difficulty of dealing with complex

transition matrix eigenvalues and eigenvectors that typically

arise from nonreversible transition matrices. As discussed in

Sec. IV E, there are a number of approaches for estimating the

uncertainty, i.e., the statistical estimation error of the Markov

model, which is caused by the finite sample size of data used

to parameterize it. The present work has treated the two types

of error separately: the discretization error was examined as-

suming that there was no statistical error, and the statistical

error was examined assuming that there was no discretization

error. This represents the current state of knowledge in the

field, but in reality both errors are always coupled, because a

finite data set is given that is used for both defining the dis-

cretization and estimating the transition matrix. Thus, the in-

vestigation of the coupling of the two sources of error will be

an important future research topic.

Although Markov model theory and methodology is now

rather well developed, a number of fundamental questions

remain. There is a hope that Markov models could avoid

or mitigate the sampling problem by replacing single long

equilibrium simulations that wait for the interesting rare

events to happen by a large set short trajectories starting

from different conformations that would be visited rarely

in equilibrium. This immediately raises the question how

relevant starting conformations can be found. This question is

not specific to Markov model analyses, and it is likely that in

this stage biased sampling methods such as metadynamics,83

conformational flooding,91 umbrella sampling,92 targeted

MD,93 replica-exchange MD,84 or pathway methods35 will

be useful to generate an initial exploration of conformation

space from which short equilibrium simulations can then be

launched. When the relevant conformations have been found

and a good discretization has been obtained, it is clear that the

uncertainty estimates of the Markov model can be exploited

in order to pick starting points of subsequent simulations so

as to adaptively reduce the uncertainty of the quantities of

interest most.47, 48, 94

A more technical point that is not well understood is how

to correctly weight the individual short trajectories in order

to compute unbiased estimates of the transition probabilities

from them [see Eq. (24)]. Since the Markov model is based on

transition probabilities conditional on the starting state, there

is no worry about relative weights between different discrete

states. The correct weighting between states is taken care of

by the Markov model, i.e., if trajectories are started from an

initial distribution that is entirely out of equilibrium between

states, the model will asymptotically provide the correct

stationary distribution. The difficulty, however, lies in the cor-

rect weighting of trajectories within discrete states. When the

size of the discrete states is not vanishingly small, the en-

ergy landscape within the states will not be approximately

flat, and therefore the local equilibrium density within the

states will not be flat either. Thus, when starting equilibrium

trajectories from a nonequilibrium distribution, these trajec-

tories should not contribute to the transition probability es-

timates with equal weights. Currently, this problem is dealt

with by either discarding initial segments of all trajectories

that correspond to local equilibration times or by enforcing

local equilibration by picking starting conditions from sim-

ulations that are constrained to the starting states (see Sec.

IV B). It would be desirable to have a simple reweighting

method that allows to make use of all available data without
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having to use extra simulations. This is a subject of ongoing

research.

The type of Markov models investigated here, i.e.,

transition matrix based kinetics models between discrete

state partitions of configuration space, must be viewed as one

aspect within a family of conformation dynamics approaches.

Rate matrix or master equation models31, 54, 64 are very close

in spirit, and we have mentioned connections to these models

(see supplementary material65), making most of our present

results available to these models as well. Recently, an alter-

native approach31 has been proposed to obtain coarse-grained

Markov or master equation models based on a noncomplete

partition of state space that avoids to finely discretize the

transition region. It is shown in Ref. 78 that our present

analyses of the discretization error can be applied to this

approach as well, only that here the eigenfunctions on the

nonresolved parts of state space are effectively replaced

by an interpolation based on committor functions between

core sets. Generating Markov or master equation models

based on rate models from an exploration of the stationary

points of the energy landscape is an approach that has great

tradition27 and has been particularly successful in the analysis

of Lennard-Jones or water clusters.27, 95 These models are not

concerned with the same estimation problems as the present

Markov models, as they are built from rate-theory based es-

timates (such as transition state theory) of state-to-state tran-

sition rates between the stationary points of the energy land-

scape, and not from trajectory statistics. However, they neces-

sarily share the same concerns of making a discretization error

by aggregating points of continuous state space into discrete

model states. In a wider sense, approaches that use MD to

parameterize effective stochastic equations, such as Langevin

dynamics,90, 96, 97 also induce models of the ensemble dy-

namics, such as Fokker–Planck type models. Such ensemble

dynamics models generally share the advantages of Markov

models over traditional MD analyses that have been discussed

in the introduction. The specific advantage of Markov models

is that they are on one hand asymptotically exact both in

terms of discretization and estimator quality (see Sec. III and

IV), and on the other hand very simple compared to models

that in some way include memory. As they allow the whole

arsenal of Markov chain theory to be readily accessed, the

functional relationship between Markov models and most

interesting molecular properties or observables has been

worked out already,22, 30, 42, 45, 48 and often has a simple and

straightforwardly interpretable form. Given these advantages

we expect that the popularity of Markov or similar models

for the modeling of molecular kinetics will keep increasing.
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