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Abstract

We propose an approximation method for analyzing Ericson and Pakes (1995)-style dynamic models
of imperfect competition. We develop a simple algorithm for computing an “oblivious equilibrium,” in
which each firm is assumed to make decisions based only on its own state and knowledge of the long run
average industry state, but where firms ignore current information about competitors’ states. We prove
that, as the market becomes large, if the equilibrium distribution of firm states obeys a certain “light-
tail” condition, then oblivious equilibria closely approximate Markov perfect equilibria. We develop
bounds that can be computed to assess the accuracy of the approximation for any given applied problem.
Through computational experiments, we find that the method often generates useful approximations for
industries with hundreds of firms and in some cases even tens of firms.
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1 Introduction

Ericson and Pakes (1995) (hereafter EP) introduced an approach to modeling industry dynamics in which
entry, exit, and investment, together with idiosyncratic shocks, result in heterogeneity among firms. The
analysis of such models — which we will refer to as EP-type models — relies on computation of Markov
perfect equilibria (MPE) using dynamic programming algorithms (e.g., Pakes and McGuire (1994)). A great
advantage of the EP framework is that it is easily extended to cover many important dynamic phehomena.
A major shortcoming, however, is the computational complexity of solving for MPE. Methods that acceler-
ate these computations have been proposed (Pakes and McGuire (2001) and Doraszelski and Judd (2003)).
However, even with such improvements, in practice computational concerns have typically limited the anal-
ysis to industries with just two or three firms. Such limitations have made it difficult to construct realistic
empirical models, and application of the EP framework to empirical problems has been rare (exceptions
include Benkard (2004), Gowrisankaran and Town (1997), Jenkins, Liu, Matzkin, and McFadden (2004),
and Ryan (2005)). More generally, model details are often dictated as much by computational concerns as
economic ones.

In an EP-type model, at each time, each firm has a state variable that captures its competitive advantage.
Though more general state spaces can be considered, we focus on the simple case where the firm state is
an integer. The value of this integer can represent, for example, a measure of product quality, the firm’s
current productivity level, or its capacity. Each firm’s state evolves over time based on investments and
random shocks. Thiedustry statas a vector representing the number of firms with each possible value of
the firm state variable. Even if firms are restricted to symmetric strategies, the number of relevant industry
states (and thus, the compute time and memory required for computing a MPE) becomes enormous very
quickly. For example, most industries contain more than 20 firms, but it would require approxi@2tely
million gigabytes of computer memory to store the policy function for an industry with just 20 firms and 40
firm states. As a result, it seems unlikely that exact computation of equilibria will ever be possible in many
applied problems of interest.

With this motivation, in this paper we instead propose an approximation method, one that dramatically
reduces the computational complexity of EP-type models in industries with many firms. The intuition behind
our approach is as follows. Consider an EP-type model in which firm shocks are idiosyncratic. In each

period, some firms receive positive shocks and some receive negative shocks. Now suppose there are a large

1See, for example, Benkard (2004), Berry and Pakes (1993), Besanko and Doraszelski (2004), Besanko, Doraszelski, Kryukov,
and Satterthwaite (2005), Doraszelski and Markovich (2003), Fershtman and Pakes (2000), Goettler, Parlour, and Rajan (2004),
Gowrisankaran (1999), Jenkins, Liu, Matzkin, and McFadden (2004), Judd, Schmedders, and Yeltekin (2002), Langohr (2003),
Markovich (2003), de Roos (2002), and Song (2003), as well as Pakes (2000) for a survey.



number of firms. It is natural to think that changes in individual firms’ states average out at the industry
level, such that the industry state does not change much over time. In that case, each firm could make near-
optimal decisions knowing only its own firm state and the long run average industry state. \deligadus
strategies, strategies for which a firm considers only its own state and the long run average industry state, and
we will define a new solution concept, callellivious equilibriumin which firms use oblivious strategies.
Computing an oblivious equilibrium is simple because dynamic programming algorithms that optimize over
oblivious strategies require compute time and memory that scale only with the number of firm states, and
not with the number of firms. Indeed, it is easy to compute oblivious equilibria for industries with thousands

of firms and hundreds of firm states.

To formalize the intuition above, we prove an asymptotic result that provides sufficient conditions for
oblivious equilibria to closely approximate MPE as the market size grows. It may seem that this would be
true provided that the average number of firms in the industry grows to infinity as the market size grows.
However, this is not sufficient. If the market is highly concentrated — for example, as is the case with
Microsoft in the software industry — then the approximation is unlikely to be accurate. A strategy that does
not keep track of the dominant firm’s state will not perform well. Instead, we show that, alongside some
technical requirements, a sufficient condition for oblivious equilibria to well approximate MPE asymptoti-
cally is that they generate a firm size distribution that is “light-tailed,” in a sense that we will make precise.
For example, if the demand system is given by a logit model and the spot market equilibrium is Nash in
prices, then the condition holds if the average firm size remains bounded by the same number for all market
sizes.

We provide an algorithm based on dynamic programming that computes oblivious equilibria. The algo-
rithm is computationally light, often terminating within a couple minutes of run time on a common laptop
computer even for industries with thousands of firms. It is also easy to implement, requiring, typically,
fewer than two hundred lines of Matlab code. This represents a considerable savings over existing algo-
rithms. Another distinguishing feature of the algorithm is that it places no a priori restrictions on the number
of firms or the number of firm states. Instead, these are determined endogenously and computed alongside
the oblivious equilibrium.

Our asymptotic result provides a condition under which the approximation is accurate for large markets.
We also derive bounds on the approximation error that can be efficiently computed for any given applied
problem. Despite the practical importance of such error bounds, there are very few cases in the approximate
dynamic programming literature where researchers have been able to provide useful bounding techniques for

high-dimensional stochastic control problems. Possibly the only relevant examples involve optimal stopping



(Haugh, Kogan, and Wang 2004) and portfolio optimization (Haugh, Kogan, and Wang 2005). As such, our
bounding technique represents a significant contribution. We show that these error bounds can be derived
quite generally; they do not require many of our modeling assumptions. Furthermore, while it is important
that there be no aggregate shocks for the asymptotic results to hold, we are able to derive error bounds
even for models that incorporate aggregate shocks. Using this bounding algorithm, we find that oblivious
equilibria often offer accurate approximations for industries involving hundreds of firms, and in some cases
even tens of firms.

Though our emphasis is on the use of oblivious equilibrium as an approximation of MPE, oblivious
equilibrium can also be motivated as a behavioral model in its own right. If observing the industry state and
designing strategies that keep track of it are costly, and do not lead to significant increases in profit, firms
may be better off using oblivious strategies.

The concept of oblivious equilibrium is closely related to Hopenhayn (1992). Hopenhayn models an
industry that hosts an infinite number of firms, each of which garners an infinitessimal fraction of the market.
His model is tractable because it assumes that the industry state is constant over time, implicitly assuming a
law of large number holds. This assumption is based on the same intuition that motivates our consideration
of oblivious equilibrium. However, our goal is to analyze models that closely reflect real world industries
that have finite numbers of firms. Also, our EP-type model is more general because the transitional dynamics
resulting from firms’ investment strategies are generated by equilibrium behavior that is explicitly modelled.
Hopenhayn abstracts from this aspect of the model and instead assumes that firms’ state trajectories (their
productivities) follow exogenous Markov processes.

Our approach also has similarities to a number of other past literatures. The light-tail condition we
consider is analogous to notions of diffuse industry structure in large markets associated with Sutton (1991)’s
exogenous sunk cost model. Though our goals are different, our asymptotic results are close in spirit to the
work of Novshek and Sonnenschein (1978) who, in a static setting, provide conditions under which Cournot-
Nash equilibrium converges to Walras competitive equilibrium when there is free entry. The notion that,
for asymptotically large markets, strategies can remain effective while ignoring information and strategic
behavior also appears in Vives (2002), in the context of Cournot models. Finally, Jovanovic and Rosenthal
(1988) consider sequential equilibria in a model where the actual equilibrium strategies can be represented
as simple functions of summary statistics of the distribution of firm states. This differs from our context, in
which simple functions provide only an approximation to equilibrium strategies.

There are a variety of relevant economic issues that can be studied using our methods. As an example,

2Note that Klette and Kortum (2003) and Melitz (2003) model investment explicitly in Hopenhayn-style models.



we briefly explore an important question in industrial organization: What features of an industry determine
whether an industry becomes fragmented or remains concentrated as the market grows in size? Sutton (1991)
sought to identify simple features of an industry that distinguish models that lead to these two outcomes. In
our model, through computational experiments, we show that an arbitrarily small increase in a single model
parameter that identifies the extent of vertical product differentiation, can turn an asymptotically fragmented
market into an asymptotically concentrated one. These results show that the predictions of Sutton (1991)
may sometimes be quite sensitive. For example, they imply that very different market structures might
be observed in the same industry across markets that are the same size and that have indistinguishable
characteristics. Note that our results remain broadly consistent with Sutton (1991) since the extent of vertical
product differentiation impacts the returns to investment. Consistent with Sutton (1991), industries with
higher returns to investment (even if the difference may be arbitrarily small) tend to be more concentrated.
The paper is organized as follows. In Section 2 we outline the dynamic industry model. In Section 3 we
introduce the concept of oblivious strategies and oblivious equilibrium. In Section 4 we provide conditions
under which oblivious strategies approximate MPE strategies asymptotically as the market size grows. In
Section 5 we provide methods for computing oblivious equilibria and error bounds. In Section 6 we report
results from computational experiments. Finally, Section 7 presents conclusions and a discussion of future

research directions.

2 A Dynamic Model of Imperfect Competition

In this section we formulate a model of an industry in which firms compete in a single-good market. Our
model is close in spirit to that of Ericson and Pakes (1995), but with some differences. Most notably, we
modify the entry and exit processes in Ericson and Pakes (1995) so as to make them more realistic when
there are a large number of firms. Additionally, our asymptotic results do not hold with aggregate industry

shocks so our model includes only idiosyncratic shocks.

2.1 Model and Notation

The industry evolves over discrete time periods and an infinite horizon. We index time periods with non-
negative integers € N (N = {0,1,2,...}). All random variables are defined on a probability space
(Q, F,P) equipped with a filtratioq F; : ¢ > 0}. We adopt a convention of indexing byariables that are

F;-measurable.



Each firm that enters the industry is assigned a unique positive integer-valued index. The set of indices
of incumbent firms at timeis denoted bys;. At each time € N, we denote the number of incumbent firms
asny.

Firm heterogeneity is reflected through firm states. To fix an interpretation, we will refer to a firm’s state
as its quality level. However, firm states might more generally reflect productivity, capacity, the size of its
consumer network, or any other aspect of the firm that affects its profits. Attithe quality level of firm
i € Sy is denoted byr;; € N.

We define thandustry states; to be a vector over quality levels that specifies, for each quality level
z € N, the number of incumbent firms at quality levein period¢t. Though there are a countable number
of industry states, we will consider an extended state sﬁaee{s € §R<jr°’ Yo s(z) < oo}. This will
allow us, for example, to consider derivatives of functions with respect to the industry state. Fore8gh
we defines_; ; € S to be the state of theompetitorsof firm ; that is,s_; ;(z) = s¢(x) — 1 if z;; = =, and
s_ii(x) = s¢(x), otherwise. Similarlyn_; ; denotes to the number of competitors of firm

In each period, each incumbent firm earns profits on a spot market. A firm’s single period expected
profit 7(z4, s—;+) depends on its quality level; and its competitors’ state_; ;.

The model also allows for entry and exit. In each period, each incumbent ér$y observes a positive
real-valued sell-off value;; that is private information to the firm. If the sell-off value exceeds the value of
continuing in the industry then the firm may choose to exit, in which case it earns the sell-off value and then
ceases operations permanently.

If the firm instead decides to remain in the industry, then it can invest to improve its quality level. If a

firm invests,;; € R4, then the firm’s state at time+ 1 is given by,

Tit+1 = Tit + W(Lit, Cit+1),

where the functionv captures the impact of investment on quality &pg, reflects uncertainty in the
outcome of investment. Uncertainty may arise, for example, due to the risk associated with a research and
development endeavor or a marketing campaign. We denote the unit cost of investrident by

In each period new firms can enter the industry by paying a setup:c@&sttrants do not earn profits in
the period that they enter. They appear in the following period at stateN and can earn profits thereafter.

Each firm aims to maximize expected net present value. The interest rate is assumed to be positive and
constant over time, resulting in a constant discount factgr ef(0, 1) per time period.

In each period, events occur in the following order:



Each incumbent firms observes its sell-off value and then makes exit and investment decisions.
The number of entering firms is determined and each entrant pays an entry €ost of
Incumbent firms compete in the spot market and receive profits.

Exiting firms exit and receive their sell-off values.

o & w0 dpoE

Investment outcomes are determined, new entrants enter, and the industry takes on a new .state

2.2 Model Primitives

The model as specified is general enough to encompass numerous applied problems in economics. Indeed,
similar models have been applied to advertising, auctions, collusion, consumer learning, environmental
policy, international trade policy, learning-by-doing, limit order markets, mergers, network externalities,
and other applied problems. To study any particular applied problem it is necessary to further specify the

primitives of the model, including:

profit function T
sell-off value distribution ~ Git
investment impact function w

investment uncertainty distribution ~ (;

unit investment cost d
entry cost K
discount factor G

Note that in most applied problems the profit function would not be specified directly, but would instead
result from a deeper set of primitives that specify a demand function, a cost function, and a static equilibrium
concept. An important parameter of the demand function, that we will focus on below, is the size of the

relevant market, which we will denote as

2.3 Assumptions

We make several assumptions about the model primitives, beginning with the profit function. An industry
states € S is said todominates’ € Sifforall z € N, > __s(z) > >, . s'(2). We will denote this
relation bys = s'. Intuitively, competition associated withis no weaker than competition associated with

s'.

Assumption 2.1.



. Foralls € S, m(x, s) is increasing inx.
. Forallz e Nands, s’ € S, if s = ' thenw(z, s) < 7(z,s).

. Forallz e Nands € S, w(z,s) > 0, andsup,, , 7(w, s) < oc.

A W ON P

. Forallz € N,y € N,ands € S, n(z, s) is differentiable with respect te(y). Further, for any
x €N,y eN,se§,andh € S such thats + vh € S for v > 0 sufficiently small, if

Zh ‘(ﬂnﬂxs) < .
yeN )
then
dlnﬂ(a:,er'yh)} B Zh( )alm(m,s)
dy e 20l

yeN
The assumptions are natural. Assumption 2.1.1 ensures that increases in quality lead to increases in

profit. Assumption 2.1.2 states that strengthened competition cannot result in increased profit. Assumption
2.1.3 ensures that profits are positive and bounded. The first part of Assumption 2.1.4 requires partial
differentiability of the profit function with respect to eagfy). Profit functions that are smooth, such as the
ones arising from random utility demand models like a logit model, will satisfy this assumption. The second
part of Assumption 2.1.4 is technical and essentially requires that the profit functidrctedtdifferentiable.

We also make assumptions about the distributions of the private shocks:
Assumption 2.2.

1. The variables{¢;|t > 0,7 > 1} are i.i.d. and have finite expectations and well-defined density
functions with suppori; .

. The random variable§(;;|t > 0,7 > 1} are i.i.d. and independent §f;;|t > 0,7 > 1}.
. Forall ¢, w(¢, ¢) is nondecreasing in.

. Foralle >0, Plw(e, Ge41) > 0] > 0.

. There exists a positive constantc N such thatfw(:, ¢)| < w, for all (¢, ().

. Forallk € {—w, ..., w}, Plw(t, (1) = k] is continuous in.

N o o B~ w0

. The transitions generated (., ¢) are unique investment choice admissible .

Assumptions 2.2.1 and 2.2.2 imply that investment and exit outcomes are idiosyncratic conditional on
the state. Assumption 2.2.3 and 2.2.4 imply that investment is productive. Assumption 2.2.5 places a finite
bound on how much progress can be made or lost in a single period through investment. Assumption
2.2.6 ensures that the impact of investment on transition probabilities is continuous. Assumption 2.2.7 was
introduced by Doraszelski and Satterthwaite (2003) to guarantee that the solution of the firms’ investment
decision problem is unique. It is used to prove existence of pure strategy equilibrium and it is satisfied by

many of the commonly used specifications in the literature.

7



We assume that there are a large number of potential entrants who play a symmetric mixed entry strategy.
In that case the number of actual entrants is well approximated by the Poisson distribution (see appendix for
a derivation of this result). This leads to the following assumptions:
Assumption 2.3.

1. The number of firms entering during periods a Poisson random variable that is conditionally
independent of ¢, (|t > 0,7 > 1}, conditioned ors;.

2. k > - ¢, whereg is the expected net present value of entering the market, investing zero each period,
and then exiting at an optimal stopping time.

We denote the expected number of firms entering at industry staby \(s;). This state-dependent
entry rate will be endogenously determined, and our solution concept will require that it satisfies a zero
expected profit condition. Modeling the number of entrants as a Poisson random variable has the advantage
that it leads to more elegant asymptotic results. Assumption 2.3.2 ensures that the sell-off value by itself is

not sufficient reason to enter the industry.

2.4 Equilibrium

As a model of industry behavior we focus on pure strategy Markov perfect equilibrium (MPE), in the sense
of Maskin and Tirole (1988). We further assume that equilibrium is symmetric, such that all firms use a
common stationary investment/exit strategy. In particular, there is a funcsoieh that at each timg
each incumbent firmi € S, invests an amount; = (xi, s—;¢). Similarly, each firm follows an exit
strategy that takes the form of a cutoff rule: there is a real-valued funptgurch that an incumbent firm
i € S; exits at timet if and only if ¢;; > p(zi,s—;+). In the appendix we show that there always exists
an optimal exit strategy of this form even among very general classes of exit strategied4 tenhote
the set of exit/investment strategies such that an elementM is a pair of functiong: = (¢, p), where
t: N xS — R, is aninvestment strategy apd N x S — R, is an exit strategy. Similarly, we denote the
set of entry rate functions h¥, where an element af is a function : S — 1.

We define the value functiol (x, s|i’, u, A) to be the expected net present value for a firm at state
when its competitors’ state is given that its competitors each follows a common strajegy M, the entry

rate function is\ € A, and the firm itself follows strategy’ € M. In particular,
Ti
Vi, sl 1y A) = By i Zﬁk_t (T (Tiks 5—i k) = deig) + B iy | Wi = T, 544 = 8] ;
k=t

wherei is taken to be the index of a firm at quality leweat timet, 7; is a random variable representing the

time at which firm:; exits the industry, and the subscripts of the expectation indicate the strategy followed
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by firm 4, the strategy followed by its competitors, and the entry rate function. In an abuse of notation, we
will use the shorthand/ (x, s|u, \) = V(x, s|u, p, ), to refer to the expected discounted value of profits
when firms follows the same strategyas its competitors.

An equilibrium to our model comprises an investment/exit strajegy (¢, p) € M, and an entry rate

function A € A that satisfy the following conditions:

1. Incumbent firm strategies represent a MPE:

(2.1) sup V(z,s|u/, pu, A) = V(z, s|u, \) Ve e N, Vs € S.
pn'em

In the appendix, we show that this supremum can always be attained simultaneously:fandh

by a common strategy’.

2. At each state, either entrants have zero expected profits or the entry rate is zero (or both):

> ses M8) (BEu NV (2% se4alp, Alse = s] — k) =0
BE [V (x¢, se41|p, N)|s¢ = 5] =k <0 VseS
A(s) >0 Vs e S.

Doraszelski and Satterthwaite (2003) establish existence of an equilibrium in pure strategies for a closely
related model. We do not provide an existence proof here because it is long and cumbersome and would
replicate this previous work. With respect to uniqueness, in general we presume that our model may have
multiple equilibria3

Dynamic programming algorithms can be used to optimize firm strategies, and equilibria to our model
can be computed via their iterative application. However, these algorithms require compute time and mem-
ory that grow proportionately with the number of relevant industry states, which is often intractable in

contexts of practical interest. This difficulty motivates our alternative approach.

3 Oblivious Equilibrium

We will propose a method for approximating MPE based on the idea that when there are a large number

of firms, simultaneous changes in individual firm quality levels can average out such that the normalized

3Doraszelski and Satterthwaite (2003) also provide an example of multiple equilibria in their closely related model.



industry state remains roughly constant over time. In this setting, each firm can potentially make near-
optimal decisions based only on its own quality level and the long run average industry state. With this
motivation, we consider restricting firm strategies so that each firm’s decisions depend only on the firm’s
quality level. We call such restricted strateg@divious since they involve decisions made without full

knowledge of the circumstances — in particular, the state of the industry.

3.1 Oblivious Strategies and Entry Rate Functions

Let M c M andA C A denote the set of oblivious strategies and the set of oblivious entry rate functions.
Since each strategy = (1, p) € M generates decisionsz, s) andp(z, s) that do not depend os with

some abuse of notation, we will often drop the second argument and sitend p(z). Similarly, for

an entry rate function. € A, we will denote by the real-valued entry rate which persists for all industry

states.

3.2 Oblivious Equilibrium

Note that if all firms use a common strategy: M, the quality level of each evolves as an independent tran-
sient Markov chain. Let th&-period transition sub-probabilities of this transient Markov chain be denoted
by P/’f(a:, y). Then, the expected time that a firm spends at a quality eisegjiven by> " ij(xe, x), and

the expected lifespan of a firm}7° (>~ P,’f(:ce, x). Denote the expected number of firms at quality

level z at timet by $;(z) = E[s;(x)]. The following result offers an expression for the long-run expected

industry state when dynamics are governed by oblivious strategies and entry rate functions.

Lemma 3.1. If firms make decisions according to an oblivious strategy M and enter according to an

oblivious entry rate function € A, and the expected time that a firm spends in the industry is finite, then

(3.1) lim §;(z) = /\iPZf(xe,x),
k=0

t—o00

forall x € N.

We omit the proof, which is straightforward. To abbreviate notation, wg Jgtx) = lim;_. 5;(x) for
pe M, X e A, andz € N. For an oblivious strategy € M and an oblivious entry rate functione A

we define aroblivious value function

V(x’M/7 oy )‘) = E,u’ Zﬁk_t (Wm(xika §u,)\) - d/fzk) + ﬁn_t¢i,ﬂ- Tit = I’] .
k=t
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This value function should be interpreted as the expected net present value of a firm that is at quality level
z and follows oblivious strategy.’, under the assumption that its competitors’ state willshg for all
time. Note that only the firm’s own strategy influences the firm’s state trajectory because neither the
profit function nor the strategy’ depends on the industry state. Hence, the subscript in the expectation
only reflects this dependence. Importantly, however, the oblivious value function remains a function of
the competitors’ strategy and the entry rate through the expected industry state,. Again, we abuse
notation by using/ (z|u, ) = V (x|, 1, A) to refer to the oblivious value function when firiiollows the
same strategy as its competitors.

We now define a new solution concept: ailivious equilibriumconsists of a strategy € M and an

entry rate functiom\ € A that satisfy the following conditions:

1. Firm strategies optimize an oblivious value function:

(3.2) sup V(z|u', p,A) = V(z[p,A), Vo €N,
,LL’GM

2. Either the oblivious expected value of entry is zero or the entry rate is zero (or both):

pY (W(xem, ) — n) =0
BV (2°|p, \) — Kk <0
x> 0.

It is straightforward to show that an oblivious equilibrium exists under mild technical conditions. Fur-
thermore, if the entry cost is not prohibitively high then an oblivious equilibrium with a positive entry rate
exists. We omit the proof of this for brevity. With respect to uniqueness, we have been unable to find mul-
tiple oblivious equilibria in any of the applied problems we have considered, but similarly with the case of
MPE, we have no reason to believe that in general there is a unique oblivious equilfbrium.

Note that we assume that, even if firms are using oblivious strategies, the sequence of single-period
profits received are the ones associated with Nash, and not oblivious, static behavior. For example, if single-
period profits are derived from a game in which firms compete in prices, we assume firms price according to
Nash equilibrium strategies, and are not oblivious with respect to pricing behavior. We make this assumption
because we are interested in the dynamic behavior of the industry, and we believe that assuming oblivious

pricing behavior, which would be cumbersome, would not change our conclusions in that respect.

“However, since oblivious strategies rule out strategies that are dependent on competitors’ states, there are likely to be fewer
oblivious equilibria than there are MPE.
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We will later explore situations where the number of firms is large and oblivious equilibria approximate
MPE, in a sense that we will define precisely. First, we analyze the long-run behavior of an industry where

strategies and the entry rate function are oblivious.

3.3 The Invariant Industry Distribution

In Lemma 3.1, we characterized the long-run expected industry state. Our next result characterizes the

long-run distribution. The symbeb- denotes weak convergencetas: co.

Lemma 3.2. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy
1 € M, the expected entry rate Jse A, and the expected time that each firm spends in the industry is finite.
Let{Z, : = € N} be a sequence of independent Poisson random variables with iganér) : = € N},

and letZ be a Poisson random variable with me@an, . 5,1 (z). Then,

(@) {s: : t > 0} is anirreducible, aperiodic and positive recurrent Markov chain;

(b) the invariant distribution of; is a product form of Poisson random variables;

(c) for all z, s¢(x) = Z,;

d)n; = Z.

To conclude this section we state an important result for later use. First note that

St(w) = Z l{witiﬂﬁ} = Z 1{I(j)t:z}’
j=1

1E€St

wherel 4 denotes the indicator of evedt Hence, for examplé,¢,, ., = 1if z;; = z, and1y,, .3 =0,
otherwise.{z(;); : j = 1,...,n} is a random permutation dfr;; : i € S;}. That is, we randomly pick a
firm from S; and assign to it the index= 1; from the remaining firms we randomly pick another firm and

assign to it the index = 2, and so on.

Lemma 3.3. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy
p € M, the expected entry rate ’s € A, and the expected time that each firm spends in the industry is
finite. Let{Y,, : n € N} be a sequence of integer-valued i.i.d. random variables, each distributed according

t0 5, 2(*)/ D sen Su(x). Then, for alln € N,

(l‘(l)t, cos Tyt | = n) = (Y1,...,Y,).

Proofs of Lemmas 3.2 and 3.3 can be found in the appendix. Assuming a Poisson entry process is key

to proving these results. Lemma 3.3 ensures that if we sample a firm randomly from those firms currently
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in the industry and the industry state is distributed according to the invariant distribution, the firm’s state
will be distributed according to the normalized expected industry state. Further, each subsequent time we
sample without replacement we get an independent sample from the same distribution. For brevity, when
we consider sampling a random firm from among those currently in the industry and the industry state is
distributed according to the invariant distribution, we will say that we are sampling a firm from the industry’s
invariant distribution.

It is straightforward to show that if per-period profit is bounded, say by some quantitiyen the
expected time a firm spends in the industry is finite for any oblivious strategy M that comprises
an oblivious equilibrium. This follows from the fact that the sell-off value has suppoRt.nand the
continuation value from every state is bounded abow{b@/Jr ¢. Hence, the probability of exiting in each
period is bounded below by a positive constant. This implies that the previous lemmas apply when firms use

oblivious equilibrium strategies.

4 Asymptotic Results

In this section, we establish asymptotic results that provide conditions under which oblivious equilibria offer
close approximations to MPE as the market size grows. As specified above, our model does not explicitly
depend on market size. However, market size would typically enter the profit funcfion, s_; ), through
the underlying demand system; in particular, profit for a firm at a given gtatg would typically increase
with market size. Therefore, in this section we consider a sequence of markets, indexed by market sizes
m € N. All other model primitives are assumed to remain constant within this sequence except for the profit
function, which depends om. To convey this dependence, we denote profit functions, by

We index functions and random variables associated with marketsizéh a superscriptm). From
this point onward we letji(™, A(™)) denote an oblivious equilibrium for market size Let V(™ andV (")
represent the value function and oblivious value function, respectively, when the marketsiZEoigurther
abbreviate notation we denote the expected industry state associatédWith\ (™)) by 3™ = 5., 5m)-

The random variablegm) denotes the industry state at timehen every firm uses strategy™ and
the entry rate iS\(™). We denote the invariant distribution 6™ : t > 0} by ¢(™). In order to simplify
our analysis, we assume that the initial industry sﬁé’ﬁ% is sampled frony ("), Hence,sgm) is a stationary

process;sgm) is distributed according tg(™ for all ¢ > 0. Note that this assumption does not affect

asymptotic results, since for any initial condition, the process approaches stationarity as time progresses.
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It will be helpful to decomposs!™ according tos!™ = £™n{™ where ™ is the random vec-
tor that represents the fraction of firms in each statevaﬁ”fa is the total number of firms, respectively.

Similarly, let /(™) = E| ft(m)} denote the expected fraction of firms in each state7afid = E[n§m>] =

g(m)
R(m) "

> en 87 () denote the expected number of firms. Using Lemma 3.3, it is easy to chegk'that

With some abuse of notation, we defing (xit, f—it, n—it) = Tm(Tit, n—it - foit)-

4.1 Assumptions about the Sequence of Profit Functions

In addition to Assumption 2.1, which applies to individual profit functions, we will make the following
assumptions, which apply to sequences of profit functions. Sket= {f € S|>° .y f(z) = 1} and
Si.={f € Si|Vz > z, f(x) = 0}.
Assumption 4.1.

1. sup,en ses Tm(®, 8) = O(m).

2. For all increasing sequencgsn;, € N[k € N}, n : N — N with n(my) = o(my), z,z € N with
x>z, andf € Sy, limy_o0 T, (2, f,n(my)) = o0.

dlnmy,(z, f,n)
sup —mA Iy
meN,zeN, €S n>0 dlnn
The assumptions are again natural. Assumption 4.1.1 should hold for virtually all relevant classes of

< 0.

profit functions. It is satisfied, for example, if the total disposable income of the consumer population grows
linearly in market siz&€. Assumption 4.1.2 is also natural. It states that if the number of firms grows slower
than the market size then the largest firm’s profit becomes arbitrarily large as the market grows. Assumption
4.1.3 states that the relative rate of change of profit with respect to relative changes in the number of firms
is uniformly bounded. To provide a concrete example, we show in the Appendix that these assumptions
are satisfied by a single period profit function derived from a demand system given by a logit model and
where the spot market equilibrium is Nash in prices. Later, we use this profit function for the computational

experiments and describe it in detail in Subsection 6.1.

4.2 Asymptotic Markov Equilibrium

Our aim is to establish that, under certain conditions, oblivious equilibria well-approximate MPE as the
market size grows. We define the following concept to formalize the sense in which this approximation

becomes exact.

SFor example, if each consumer has income that is less than some uppenbtuertotal disposable income of the consumer
population (an upper bound to firm profits) is always less thany".
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Definition 4.1. A sequencé/i™, \(™) € M x A possesses the asymptotic Markov equilibrium (AME)
property if forallxz € N,

Am By s | sub VO (™, g, A0) = VI (@, 5™ |, A | = 0.

Recall that the process is taken to be stationary, and therefore, this expectation does not depénd on
The definition of AME assesses approximation error at each firm statéerms of the amount by which a
firm at stater can increase its net present value by deviating from the oblivious equilibrium stratégy
and instead following an optimal (non-oblivious) best response that keeps track of the true industry state.
The notion of AME relates to the more common notion thatjuilibria approximate true equilibria in games
ase — 0 (Fudenberg and Levine 1986).

Note that standard MPE solution algorithms (e.g., Pakes and McGuire (1994)) aim to compute point-
wise e-equilibria; that is, where a firm cannot improve its net present value by moreetetamting from
anystate(z, s). The AME property instead considers the benefit of deviating to an optimal strategy starting
from each firm state;, averaged over the invariant distribution of industry states. It would not be possible
to obtain our results point-wise. This is because in an oblivious equilibrium firms may be making poor
decisions in states that are far from the expected state. Offsetting this effect is the fact that these states have
very low probability of occurrence, so they have a small impact on expected discounted®rofits.

If a sequence of oblivious equilibria has the AME property them@sows sup e v V™ (x, s|p/, 7™, X)) ~
V) (2, 5|2 \(™) for statess with probabilities that are not vanishing. This implies that, asymptotically,
™) is a near optimal strategy when the industry starts in any state that has significant probability of occur-
rence. Further, sinc8V (™) (z¢) = & for all m, asymptotically,5V (™) (z¢, s|z(™, \(™)) ~  for statess
with probabilities that are not vanishing. Hence, asymptoticall§) satisfies the zero profit condition at
such states. In SUMMAry,if; ., 5on) [supren VI (2, s, i) Xy — ym) () M) m) K(m)y
is small, MPE strategies and entry rates at relevant states should be well approximated by oblivious ones.

We will later present computational results that support this goint.

%Note that Pakes and McGuire (2001) use a similar concept as a stopping rule in their stochastic algorithm. They compare the
difference in the value function from two consecutive iterates, weighting states according to their empirical distribution of visits in
the long run.

"One might attempt to formalize this heuristic argument by following a similar line of reasoning as Fudenberg and Levine (1986)
or Altman, Pourtallier, Haurie, and Moresino (2000). They provide conditions under which, if a sequence of restricted-games,
converges to a game of intereét,in an appropriate way, then any convergent sequeneg, efequilibria of G, with ¢,,, — 0
converges to an equilibrium @. In our case, we do not have a well defined limit gamemnlf= oo, profits are infinite and we
would have infinite entry. This makes it hard to use their line of thought.
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4.3 Uniform Law of Large Numbers

The following theorem establishes that when the number of firms is large, the industry state becomes approx-

)

imately constant (i.esim ~ (™)) with high probability. We use-, to denote convergence in probability

asm — oQ.

Theorem 4.1. If lim,,_.oc 7(™ = oo then

(m) z(m)
s (x) 5" ()
o RO

The theorem can be proved by invoking a uniform law of large numbers (Vapnik and Chervonenkis
(1971)) and using Lemnta3. It suggests that when the expected number of firms is large, using an oblivious
strategy might be close to optimal, and that a sequence of oblivious equilibria possesses the AME property.

However, for this to be the case it turns out that additional conditions are required.

4.4 A Light-Tail Condition Implies AME

Even when there are a large number of firms, if the market tends to be concentrated — for example, if the
market is usually dominated by a single firm — the AME property is unlikely to hold. To ensure the AME
property, we need to impose a “light-tail” condition that rules out this kind of market concentration.

Note that%w is the semi-elasticity of one period profits with respect to the fraction of firms in
statex. We define thenaximal absolute semi-elasticity function

dInmy(y, f,n)
df ()

g(z) = max
meN,yeN, feS1,neN

For eachz, g(x) is the maximum rate of relative change of any firm’'s expected single-period profit that
could result from a small changes in the fraction of firms at quality lev&Ve can also interpret(z) as the
maximal possible impact of the presence of a firm at stata the profit of any other firm. Note that since
larger competitors tend to have greater influence on firm prgfits, typically increases with: and can be
unbounded.

Finally, we introduce our light-tail condition. For eaoh let (™ ~ f(™) According to Lemma 3.3,
(™ can be interpreted as the quality level of a firm that is randomly sampled from among all incumbents

while the industry is in steady state.
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Assumption 4.2. For all quality levelsz, g(x) < co. For all e > 0, there exists a quality levelsuch that

B [ | <6

for all market sizesn.

Recall thaty(x) is the maximum rate of relative change of any firm’s expected single-period profit that
could result from a small changes in the fraction of firms at quality levdlhe first part of the assumption
requires that for any, this quantity is finite. If this condition is not satisfied, a small change in the number
of firms at quality level: can have an arbitrarily large impact on other firms as the market size grows. It
is unlikely that an oblivious equilibrium will provide a good approximation in this situation. Note that the
assumption imposes thafx) is finite for eachr, howeverg(z) could grow arbitrarily large as grows.

To interpret the second part of the assumption it is helpful to first understand a weaker condition:
E[g(#™)] < oo. This weaker condition ensures that the expected impact of a randomly sampled in-
cumbent is finite. Note that the impact of a sampled firm should grow with its quality level and can become
arbitrarily high as the quality level does. This weaker condition can be viewed as a “light tail” condition,
since it requires that the probability of sampling firms at large quality levels dies off sufficiently quickly so
that the expected impact remains finite.

Note that, for anyr andz, the producty(z)1y,~ .} is equal to0 if = < z but otherwise is equal to
g(x). Hence E[g(2™)1 zm-.,] is similar to E[g(#™)] but ignores the impact of any sampled firm if its
quality level isz or lower. ConsequentI)E[g(:i(m))1{i(m)>z}} bounds the expected impact of the presence
of a randomly sampled firm if the impact of any firm with quality lewedr lower is ignored.

Itis easy to see that the conditidtg(#(™)] < oo is equivalent to a condition that, for amy> 0, there
exists a quality levet such thatE[g(Z(™)1;my] < e. This is because increasingsufficiently will
resultin ignoring a larger and larger number of firms in computing the expected impact and the expected im-
pact when none of the firms is ignored is finite. Assumption 4.2 poses a stronger condition in that it requires
that a quality levek can be chosen such thEt[g(aE(W)l{j(mbz}} < ¢ for all market sizesn simultane-
ously. This is like the “light tail conditionE[g(Z™)1;m)~..y] < €, or equivalentlyE[g(z™)] < oo,
which applies to a fixed market size, but it precludes the possibility that the tail becomes arbitrarily “fat”
as the market size increases. In a sense, it requires that the tails of quality distriffiftibmse uniformly
“light” over market sizesn.

As a different way to explain the light-tail condition, we note tha(if) is unbounded, then if there

existsy > 0, such thatsup,, E[g (#™)" "] < oo, Assumption 4.2 is satisfied. The condition is slightly
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stronger than requiring uniformly bounded first momentg(@f™).

To give a concrete illustration about our light-tail condition, in the Appendix we show that for a demand
system given by a logit model and where the spot market equilibrium is Nash in prices (see Subsection
6.1), Assumption 4.2 is satisfieddtip,,, £ [55(””‘)] < oo. That is, if the average firm quality level remains
uniformly bounded over all market sizes. For example;(if) converges in distribution to a lognormal
distribution, the light-tail condition is satisfied. On the other hana{if converges to a Pareto distribution
with parameter one (which does not have first moment), then the light-tail condition is not satisfied.

The following theorem establishes that, asymptotically, the average number of firms grows at least

linearly in the market size.
Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4(2) = Q(m) 8.

The proof can be found in the appendix. The intuition behind the result is simple. If the number of firms
were to grow slower than the market size, profits would blow up and the zero profit condition at the entry
state would not be met.

The next result, which is also proved in the appendix, establishes a stronger form of convergence than

Theorem 4.1.

Theorem 4.3. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Them, gmws,nﬁm)/ﬁ(m) —, land
LA™ = Fml1g =y 0.

This new form of convergence allows us to ensure the AME property, which leads to the main result of

this section.

Theorem 4.4. Under Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2, the sequigiitg, \(™)} of oblivious equi-
libria possesses the AME property.

This result is proved in the appendix.

5 Algorithm and Bounds

In this section we propose an algorithm that computes oblivious equilibria for a particular set of model
primitives. We then derive expressions that bound the approximation error associated with a particular

oblivious equilibrium.

7 (m)

8.e., liminf,, > 0. With an additional technical regularity condition, it is straightforward to show &l = O(m);

m

i.e.limsup, ") < co. Hencen™ = ©(m); i.e., asymptotically™ grows linearly inm.

m
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5.1 Computing Oblivious Equilibria

Algorithm 1 (below) is designed to compute an oblivious equilibrium. It starts with two extreme entry rates:

A = 0andX\ = sup, ,m(z,s)/k. Under mild assumptions, any oblivious equilibrium entry rate must lie
between these two extremes. The algorithm searches over entry rates between these two extremes for one
that leads to an oblivious equilibriufnFor each cadidate entry ratean inner loop (lines 5-8) computes an
oblivious equilibrium firm strategy for that fixed entry rate. If the termination conditions of both the inner

and outer loops are satisfied with= ¢5 = 0, we have an oblivious equilibrium. Small valuesegpfande,

allow for small errors associated with limitations of numerical precision.

Algorithm 1 Oblivious Equilibrium Solver

1 X:=0; X :=sup, ,7(x,s)/k
2. p(z) :=0forall x

3: repeat

4 A=A+ N)/2

5. repeat

6: W= p

7: Chooseu € M to maximizeV (z|u, i/, \) simultaneously for alk: € N
8 until lu— 4o <@

9. if BV (2|, ) — k > 0 then
10: A=A

11: else

12: A=A

13:  endif

14: until |8V (€|, \) — k| < €

The algorithm is easy to program and computationally efficient. In each iteration of the inner loop, the
optimization problem to be solved is a one dimensional dynamic program. The state space in this dynamic
program is the set of quality levels a firm can achieve. In principle, there could be an infinite humber of
them. However, beyond a certain quality level the optimal strategy for a firm is not to invest, so its quality
cannot increase to beyond that level. In the numerical experiments we present in Section 6, the state space
never had more than two hundred states per firm. The exact number of states is determined during execution
of the algorithm.

Whether this algorithm is guaranteed to terminate in a finite number of iterations remains an open issue.
However, in over 90% of the numerical experiments we present in the next section, it converged in less than

five minutes. In the rest, it converged in less than fifteen mintftes.

®Note that there are potentially many alternative methods for searching over entry rates for an oblivious equilibrium. For
example, one alternative would be to start at an arbitrary entry rate and then implement small increments and decrements to the
entry rate until an entry rate is found that leads to an oblivious equilibrium.

%The algorithm was programmed in Matlab. The experiments were executed on two UNIX shared machines. A SunEnterprise
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5.2 Error Bounds

To bound approximation error, we first need to define what is meaappyoximation error Consider an
oblivious strategy and entry rate functigi, \) € M. We will quantify approximation error at each firm

statex € N by

E sup V($,8t|ul,ﬂ, X) - V(CU,St’[TL, 5‘)
wem

Note that the expectation is over the invariant distributior;ofHence, approximation error is the amount
by which a firm at state € N can improve its expected net present value by unilaterally deviating from the
oblivious equilibrium strategy:, and instead following an optimal (non-oblivious) best response, averaged
over competitor states drawn from the invariant industry state distribution.

The next theorem provides two bounds on the approximation error. Recallithtite expected state in
equilibrium (E[s]). Leta,(y) be the expected discounted sum of an indicator of visits to gtédea firm

starting at state that uses strategy .

Theorem 5.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, for any oblivious equilitirﬁuﬁn) and firm

statex € N,

(5.1) E

R _ = 2
sSup V(:C? 3t|:u/7 K, )‘) - V(.%', St|ﬂ> )‘)] < iE[A‘ﬂ—m‘(s)]a
wem ﬁ
whereA|r|(s) = maxyey |7(y, s) — 7(y, §)|, and

(5.2)

B | sup V(s 3) = Vi, il X)] < BT+ Y arly) (r(0,5) — Eln(y. ).
pwem yeN

whereAn(s) = maxyen (7(y, s) — 7(y, 5)).

The derivation of these bounds can be found in the appendix. It is worth mentioning that the result can
be generalized a great deal. In particular, most of the prior assumptions can be dropped; for instance, most
alernative entry processes will not change the result. In addition, in the appendix we provide a version of
the bounds for a model that incorporates aggregate shocks.

The first bound is simpler so we will use it to build the intuition behind the bounds. According to the
first bound, if one period profits when the state is sampled from the invariant distribution are close to one

period profits evaluated at the expected state, then the oblivious equilibrium offers a close approximation.

6500, Solaris 2.8, with 16 GB RAM, 12 GB swap, and 18 GB tmp; and a SunEnterprise 5500, Solaris 8, with 4 GB RAM, 4 GB
swap, and 8.7 GB tmp.
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This is because, in that case, firms cannot improve their expected discounted profits much by unilaterally
deviating from the oblivious strategy and keeping track of the industry state.

The second bound is more involved. We provide it because it is much tighter. Note that the right-hand-
side of the second bound depends on the initial firm statehereas the right-hand-side of the first bound
does not.

Both bounds can be easily estimated via simulation algorithms. Computing the bounds involves com-
puting an expectation over the industry state Once the oblivious equilibrium has been computed, the
industry state has a known distribution, namely, the product form of Poisson random variables with mean
§ (by Lemma 3.2). In particular, note that the bounds are not a function of the true MPE or even of the
optimal non-oblivious best response strategy. Computing either of these strategies could require solving a
high-dimensional dynamic program.

In our computational experiments, we also make use of a stronger bound that applies when the quality

level of a firm can change by at most one unit per time petioe-(1), a common feature of EP-type models.

Theorem 5.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Further, assume that the quality level of any firm can

change by at most one unit per time period. Then, for any oblivious equilifium), firm statez € N,

anda € N,
E | sup V(x,sm’,ﬂ,j\) — Vi, s|i, 5\) < 1—1ﬁ [E[AAﬂ'm(s)] + ﬁﬁ—mE[AAcﬂ_m(S)H i
wem
(5.3) F Y ) (m5:5) — B [, ) -
yeN

whereA 4 my, (s) = maxyea (T (y, s) — ™m(y,5)), A ={0,...,a— 1} andz € A.

The proof of this result is similar to that of Theorem 5.1 and is omitted. In gen&rat,, (v, s)] —
m™m(y,5) > 0 and is increasing iy. Therefore,F [maxyca (mm(y, s) — mm(y, §))] increases as the set
A increases, making the first term our previous bound (5.2) large. In this new bound (5.3), the term that
involvesmax,¢ 4< is the larger one because it involves the maximum over the larger states. However, this
is offset by the factor of%~%. The term3?~* appears because it takes at least = periods to transition
from statex to any state iM“. When using this bound in the computational experiments, we choose the set

A to minimize the right-hand-side.
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6 Computational Experiments

In this section we conduct some computational experiments to evaluate how oblivious equilibrium performs
in practice, and also to demonstrate the range of applications that are possible using our methods. We begin
with the model to be analyzed. The model is similar to Pakes and McGuire (1994). However, it differs in

the entry and exit processes, in the demand system, and in that we do not consider an aggregate shock.

6.1 The Computational Model

SINGLE-PERIOD PROFIT FUNCTION We consider an industry with differentiated products, where each
firm’s state variable represents the quality of its product. Therematensumers in the market. In period

consumer; receives utilityu;;; from consuming the good produced by fifrgiven by:
Uijt = 91111(% + 1)+ 02In(Y —py) +vije, €S, j=1,...,m,

whereY is the consumer’s income,; is the price of the good produced by firmand« is a scaling
factor. v;;; are i.i.d. random variables distributed Gumbel that represent unobserved characteristics for
each consumer-good pair. There is also an outside good that provides consumers zero utility. We assume
consumers buy at most one product each period and that they choose the product that maximizes utility.
Under these assumptions our demand system is a classical logit model.

Let N(zit, pi) = exp(01 In(zi + 1) + 02 In(Y — p;)). Then, the expected market share of each firm is

given by:
_ N (xit, p;)
L+ jes, N(wji; py)

We assume that firms set prices in the spot market. If there is a constant margiratltestash equilibrium

U(xitys—i,tap) ) Vi S St .

of the pricing game satisfies the first-order conditions,
(6.1) Y —pi +62(p;i — ¢)(o(zit,5-i4,p) —1) =0, Vi € Sy .

There is a unique Nash equilibrium in pure strategies, dengt¢@aplin and Nalebuff (1991)). Expected
profits are given by:

T (Tit, S—it) = mo (@i, s—i, p*)(pj — ), Vi € S

SELL-OFF PRICE ¢; are i.i.d. exponential random variables with mdan

TRANSITION DYNAMICS. A firm’s investment is successful with probabilif#.-, in which case the quality
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of its product increases by one level. The firm’s product depreciates one quality level with probgbility
independently each period. Note that our model differs from Pakes and McGuire (1994) here because the
depreciation shocks in our model are idiosyncratic. Combining the investment and depreciation processes,

it follows that the transition probabilities for a firm in statehat invests are given by:

(1-8)ac

Tras fy=o+1
i g i = = (1_6)+6G‘L i _
P |:‘Tt+1 y)xt %L} Tta - fy==
é i _
Ta fy=z-1.

6.2 Numerical Results: Behavior of the Bound

Our first set of results investigate the behavior of the approximation error bound under several different
model specifications. A wide range of parameters for our model could reasonably represent different real
world industries of interest. In practice the parameters would either be estimated using data from a particular
industry or chosen to reflect an industry under study. We begin by investigating a particular set of represen-
tative parameter values. Following Pakes and McGuire (1994) we $3 andé = 0.7. Additionally, we
fix marginal cost at = 0.5, income atY” = 1, §, = 0.5, andy = 1. The discount factor i = 0.95.
The entry cost isc = 35 and the entry state i8° = 10. The average sell-off value i = 10. In this
case,3 - ¢ < k, so sell-off value by itself is not sufficient reason to enter the industry (assumption 2.3.2).
Additionally, both sell-off values and entry costs are substantially larger than marginal costs, consistent with
empirical evidence.

In our computational experiments we found that the most important parameter affecting the approxima-
tion error bounds wa#,;, which determines the importance that consumers place on product qudlitys If
small, the degree of vertical differentiation between products is small. This reduces the impact of changes
in the industry state on profits, making the MPE strategies less sensitive to the industry state. Additionally,
when6; is small it turns out that the invariant distributiéns very “light-tailed”. Oblivious strategies work
well in this case, and the approximation error bound is smafl; 1§ large, we get the reverse implications
and the approximation error bound is larger.

Based on these experiments, here we consider two different valugsarfd the investment cost
(01,d): (0.1, 0.1) and(0.5, 0.5). The former (“Low”) is a situation where the level of vertical differentiation
is low and it is inexpensive to invest to improve quality. The latter (“High”) is the opposite. As a point of
comparison, if a firm increases its state frers= 10 to x = 20, its single-period profits increase by 7% and

40% respectively in the two cases (holding competitors constant).
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For each set of parameters, we use the approximation error bound in Theorem 5.2 to compute an upper

bound on the percentage error in the value functioh.2e/er ‘;([féjfs’@’;))ﬁv(xe’SW’A)], where(ji, \) are

the OE strategy and entry rate, respectively, and the expectations are taken with resp&tetestimate

the expectations using simulatibhWe compute the previously mentioned percentage approximation error
bound for different market sizes. As the market size increases, the expected number of firms increases and
the approximation error bound decreases.

In Figure 1 we present the percentage approximation error bound as a function of the expected number
of firms for the two levels of vertical differentiation (the two curves are obtained by varying the market size).
For the low vertical differentiation case it takes around 60 firms to bring the bound down to 2%, and 250
firms to bring it below 1%. For the high case it takes around 250 firms to bring the bound to 5% and 1000
firms to bring it near 2%.

When the level of vertical differentiation is high, the number of firms required to have a good approxi-
mation is large, requiring hundreds and even thousands of firms. The approximation would be better if the
industry states were always close to its meaf, One aspect of the model that interferes with this is the
Poisson entry process, which leads to a large amount of variability in the number of firms inside the industry.
Recall that we chose to model the entry process this way because it facilitated the asymptotic arguments in
Section 4. However, the expressions for the approximation error bounds remain correct for a wide range
of entry models. To investigate this issue further, as an alternative, we tried using an entry process where
the number of entrants each period is deterministic, but still satisfies a zero profits cotdifibis. entry
process implies a smaller variability in the number of firms.

Figure 2 presents the results with the new entry process. In the case of low vertical differentiation, the
approximation error bound is less than 2% with just 30 firms and it is around 1% with 100 firms. When the
level of vertical differentiation is high the approximation error bound is around 5% when there are 120 firms
and around 2% for 700 firms.

Going one step further in reducing the variability of the industry dynamics, we tried shutting down entry
and exit altogether and considered an industry with a fixed number of firms. This situation can be viewed as
a particular case of the model presented in Section 2, with a constant sell-off value equal to zero and a very

high entry cost. See Figure 3 for the results. For the low case the approximation error bound is less than

"The expected value function is estimated with a relative precision of 1% and a confidence level of 99%. The bound is estimated
with a relative precision of at most 10% and a confidence level of 99% (in cases where the bound is very small it is difficult to
achieve better precision than this). Note that the percentage approximation error bound depends orctke &tathe purposes
of this section we consider the percentage bound evaluated at the entry state.

2Note that the zero profits condition typically requires a fractional number of entrants to be satisfied exactly, so to accomodate
this we instead randomized the number of entrants between the two neighboring integers. For example, if the equilibrium entry rate
is 2.5, then the number of entrants is 2 or 3 with probability 0.5. Allowing for fractional numbers ensures existence of equilibrium.
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0.5% with just 5 firms, while for the high case it is 5% for 5 firms, less than 3% with 40 firms, and less than
1% with 400 firms.

Most economic applications would involve from less than ten to several hundred firms. These results
show that the approximation error bound may sometimes be sai2dbj in these cases, though this would

depend on the model and parameter values for the industry under study.

6.3 Closeness to Markov Perfect Equilibrium

Having gained some insight into what features of the model lead to low values of the approximation error
bound, the question arises as to what value of the error bounds is required to obtain a good approximation.
To shed light on this issue we compare long-run statistics for the same industry primitives under oblivi-
ous equilibrium and MPE strategies. A major constraint on this exercise is that it requires the ability to
actually compute the MPE. With the current algorithms we are able to compute MPE for industries with
a maximum of five to ten firms — to keep computation manageable we use four firms here. We therefore
limit our analysis to the case of a fixed number of firms (no entry and exit), because only for that case were
the approximation error bounds small under oblivious strategies (with only four firms). We use the same
parameter specifications as in the previous subsection. Because of computational constraints in computing
the MPE, we also impose a maximum state that a firm can reaeh gf = 15, at which point investment
is assumed to have no further effect. The market size is fixed, 30.13

Recall that under oblivious equilibrium strategies, the industry state is described by an ergodic Markov
chain (Lemma 3.2). This is also true under MPE strategies (Ericson and Pakes (1995)). Therefore, both
systems have a well defined invariant distribution that describes their long-run behavior. We compare the
average values of several economic statistics of interest under the oblivious equilibrium and the MPE in-
variant distributions. The quantities compared are: average investment, average producer surplus, average
consumer surplus, average share of the largest firm (C1), and average share of the largest two firms (C2).
Table 1 reports these statistics for a wide range of parameters. We also report the maximum value (across all
states) and weighted average value of the approximation error bound, as well as the maximum and weighted

average of the actual benefit from deviating and keeping track of the industry state (the actual difference

E[Supp,/e_/\/l V(Ie78‘.’-]‘/7:&7%)_‘/(17615':&15‘
E[V (z¢,s]f1,\)]]

proximation error bound. In the results below we concentrate on the maximum values of these quantities.

)]). Note that the the latter quantity should always be smaller than the ap-

From the computational experiments we conclude the following (see Table 1):

13The code used to compute MPE was generously provided by Uli Doraszelski.
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1. When the error bound is less than 1% the long-run quantities estimated under oblivious equilibrium

and MPE strategies are very close.

2. Performance of the approximation depends on the shape of the average industry state. When the
bound is between 1-20% and the average industry state is symmetric (see Figure 4), the long-run
guantities estimated under oblivious equilibrium and MPE strategies remain close. When the bound
is above 1% and the average industry state is very skewed (see Figure 5), the long-run quantities
can be quite different on a percentage basis (5% to 20%). However, as shown in Table 2, this large
percentage difference partly reflects the fact that there is very little investment in these industries, so

a small amount of error results in a large percentage error.

3. The approximation error bound is not tight. For a wide range of parameters the approximation error

bound is as much as 10 to 20 times larger than the actual benefit from deviating.

The previous results suggest that MPE dynamics are well-approximated by oblivious equilibrium strate-
gies when the approximation error bound is small (less than 1-2% and in some cases even up to 20 %). These
results, together with those from Subsection 6.2, demonstrate that the oblivious equilibrium approximation

significantly expands the range of applied problems that can be analyzed computationally.

6.4 Example: The Evolution of Industry Structure as Market Size Increases

In this subsection we analyze the structure of the industry as market size grows under different parameter
specifications. We note that the intention of this subsection is to show the potential of our methods and to
provoke interest in future research in this area, and not to make robust and conclusive statements.

An important question in industrial organization is to understand what features of an industry are most
important to determining the industry’s structure. Of particular interest (Sutton 1991) is whether a market
becomes fragmented, or remains concentrated, as the market grows in size. Sutton (1991) and Shaked and
Sutton (1987) suggest that the presence of “endogenous” sunk costs imposes a lower bound to concentration.
Our model is a dynamic model of endogenous sunk costs because, while entrants pay the same cost of
entry regardless of market size (an “exogenous” sunk cost), in larger markets they may need to invest large
amounts to become as large as the incumbent firms (an “endogenous” sunk cost). In what follows we show
that under slightly different parameterizations of our model we get two extremely different outcomes: a
fragmented and a very concentrated industry. an approach is not

We use the same parameter specifications as in Subsection 6.2 with the only difference that now we

considen) = 7 in the utility of the consumers. This specification makes it easier to obtain the two different
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situations. We fixd = 0.5 and we compute the oblivious equilibrium féf = 0.9 andf; = 1.2. In

Figures 6 and 7 we present the average industry states obtained for different market sizes in the two cases.
For 8, = 0.9, as the market size grows the industry becomes fragmented. The number of firms grows
but firms do not grow in size, so the market share for every firm converges to zero. 8\herl.2 the

entry rate decreases and firms grow larger as market size grows. In this second case, the industry state is
heavy-tailed-*

These results have a clear intuition: whign> 1 consumers care more about quality and this increases
the returns to investment. What results is a quality race between firms, so there are a small number of firms
in the industry that become ever larger with the market size. When 1 returns to investment are lower
and investment is not worthwhile above a certain point regardless of the market size. (Note that with further
experimentation it is easy to show that for@ll< 1 the industry fragments, whereas tqr> 1 the industry
remains concentrated as market size increases.)

These results contradict Sutton (1991) in one sense because Sutton (1991) sought predictions about
market structure that are robust across a wide class of models. Here, different market structures result from
the same model through an arbitrarily small change in a single parameter. An implication of this result is
that the same industry might be observed with very different market structures across markets that are the
same size and that have indistinguishable characteristics.

However, our results remain broadly consistent with Sutton’s predictions because the parameter that
determines market structure in our model pertains directly to the returns to investment. Consistent with
the predictions of Sutton (1991), industries with higher returns to investment tend to be concentrated. Our

results show, however, that this relationship can be very fragile.

7 Conclusions and Future Research

The goal of this paper has been to increase the set of applied economic problems that can be addressed using
Ericson and Pakes (1995)-style dynamic models of imperfect competition. Due to the curse of dimension-
ality, existing dynamic programming methods have limited application of these models to industries with a
small number of firms and a small number of states per firm. Even with accelerated methods (e.g., Pakes and

McGuire (2001) and Doraszelski and Judd (2003)), it seems likely that it will never be possible to solve for

14To show the results more clearly, we forced the highest quality level to be 80. This leads the industry state to have a mass of
firms near 80 for the larger market sizes. Without this arbitrary cutoff firms would grow even larger and it becomes difficult to solve
for the oblivious equilibrium (because the expected lifespan of a firm tends to infinity and the industry is heavy-tailed) as well as to
show the results graphically.
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an MPE exactly in many problems of interest. As an alternative, we proposed a method for approximating
MPE behavior using an oblivious equilibrium, where firms make decisions only based on their own state
and the long run average industry state.

We began by showing that the approximation works well asymptotically, where asymptotics were taken
in the market size. A sufficient condition for an oblivious equilibrium to well approximate a MPE asymp-
totically is that the sequence of industry states generated by the oblivious equilibria is “light-tailed” (as
described by Assumption 4.2). This condition is also sufficient to establish that a model of the type intro-
duced in Hopenhayn (1992) yields a good approximation of a finite industry. We also introduced a simple
algorithm to compute an oblivious equilibrium. A nice feature of the algorithm is that there is no need to
place a’ priori restrictions on the number of firms in the industry or the set of states that a firm can reach. As
a result, computational considerations place very few constraints on model details.

To facilitate using oblivious equilibrium in practice, we derived approximation error bounds that indicate
how good the approximation is in any particular problem under study. These approximation error bounds
are quite general and thus can be used in a wide class of models. We believe them to be the first bounds of
this type in this literature. Through computational experiments, we showed that oblivious equilibrium often
yields a good approximation of MPE behavior for industries with a couple hundred firms, and sometimes
even with just tens of firms.

Note that in our approximation we have considered very simple strategies that are functions only of a
firm’s own state and the long run average industry state. The question naturally arises whether it may be
possible to obtain better approximations using additional information, such as the total number of firms in
the industry and/or the average state across firms. Solving for equilibria of this type would be more difficult
than solving for oblivious equilibria, but is still likely to be computationally feasible. However, showing
that such an approach would provide a good approximation is not a simple extension of our results. The
approximation error bounds would be more difficult to obtain for this case because, even if the shocks to
individual firms remained idiosyncratic, firms’ outcomes would be correlated through their strategies, which
would be functions of commonly known variables. The asymptotic results would be similarly difficult to

prove. This, and similar extensions, will be a subject of future research.
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A Proofs and Mathematical Arguments

A.1 Proofs and Mathematical Arguments for Section 2
A.1.1 The Poisson Entry Model

Suppose there arE potential entrants at a given state. Each potential entrant enters if the setupisost

less than the present value of future cash flows upon entryv46t) be the present value of future cash

flows for each entering firm if of the K firms enter simultaneously:x (i) is nonincreasing in. One can

then pose the problem faced by potential entrants as a game in which each entrant employs a mixed strategy
and enters with some probabilipy.. If we assume that every potential entrant employs the same strategy,

the condition for a mixed strategy Nash equilibrium whea [vx (K), vk (1)] can be written as
K-1
K-1Y\ ; K—1—i . o
(A1) Z ( ; )pK(l PK) vg(i+1) — k=0,

1=0

which is solved by a uniquex € [0,1]. If kK < vk (K), the equilibrium is a pure strategy wigh = 1,
whereas ify > vk (1), the equilibrium is given by, = 0. The following result, which we state without
proof, establishes that our Poisson entry model can be viewed as a limiting case as the number of potential

entrantsi’ grows large.
Lemma A.1. Let the following conditions hold:

1. vk (7) is non-increasing in, VK and non-increasing irk, Vi;

2. there exists a positive constant such thatvg (i)| < M, VK, Vi;

3. there exist¥, such thatvK > K, vx (i) changes sign if0, K);

4. there exists a function(i) such thadlim .., max;; [vk (i) — v(i)| = 0, forall i € N.
Then,

1. for eachK > K, Equation (A.1) has a unique solutig- € (0, 1);

2. thelimitA = limg_, ., Kpj, exists, and it is a binomial random variable with parametei&’, p, )

and Z is a Poisson random variable with meanthenYy = Z.

The result states that if the number of potential entrants grows to infinity then the entry process converges
to a Poisson random variable. Hence, Poisson entry can be understood as the result of a large population of

potential entrants, each one entering the industry with a very small probability.
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A.1.2 Bellman’s Equation

We define a dynamic programming operator:

(Tu2\V)(,8) = m(z,s)+E [max {ﬁ@f)z‘t,sup (=de 4 BEu [V (%441, S—iyt+1)|Tit = T, 554 = 8, Lip = LDH ,

>0

forallz €¢ Nands € S.

To simplify the notation in this section we will Ie}/flﬁfA =V (|, 1, N).

Lemma A.2. Let Assumptions ... hold. Then, for alle M and X € A, there existg.* € M, such that:

B v B
Vir = 3B Vin = LV
W

Further, V:A is the unique fixed point df,, , within the class of bounded functions.

Proof. First note that, for some constant the value functionVlf‘;, is bounded by 0 < Vlf;(a;s) <

Cc

5+ ¢,Vx € N,s € S. Therefore, it will never be optimal to invest more than a finite quantity,

Hence we can assume without loss of generality that «(x,s) < 7, Vx € N, Vs € S. Additionally,
Bé < p(x,s) < ﬁ +¢,Vx € N, Vs € S. Therefore the action space for each state is compact.
For a given statéz, s), expected one period profits including investment and sell-off value can be written

as:

W(:E) 8) - db(x’ S)P[¢ < p(ac, S)] + E[d) ’ ¢ > p($, S)]P[¢ > p(SU, 5)] :

Note thatr(x, s) < ¢, investment is bounded by the previous argumentg@hds finite expectation. There-
fore, expected one period profits including investment and the sell-off value are uniformly bounded for all

stateqz, s). The result follows by Propositions 1.2.2 and 3.1.7 in Bertsekas (2001). O

A.2 Proofs and Mathematical Arguments for Section 3

Lemma 3.2. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy
1 € M, the expected entry rate dse A, and the expected time that each firm spends in the industry is finite.
Let{Z, : = € N} be a sequence of independent Poisson random variables with iganér) : = € N},

and letZ be a Poisson random variable with mean, . 5, x(z). Then,

(@) {s: : t > 0} is anirreducible, aperiodic and positive recurrent Markov chain;

(b) the invariant distribution o#; is a product form of Poisson random variables;
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(c) for all z, s¢(x) = Z,;

(d)n, = Z.

Proof. If every firm uses a strategy € M and entry is according to an entry rate functibre A, then

X = {s; : t > 0} is clearly an irreducible Markov chain. All states reach the state {0,0, ...} with
positive probability and all states can be reached ffoas well. Now, take any state € S. There is a
positive probability that there is no entry, no exit and no firms’ state transitions. Therefore, foe afl,
Plsi+1 = s|s = s] > 0, soX is aperiodic. MoreoveX is positive recurrent because the expected time to
come back from stat@ to itself is finite (see Kleinrock (1975)).

Now, let us write:

t Wi
(A.2) si(x) = Z Z Lex,, =a} s

7=0 i=1

wherelV are i.i.d. Poisson random variables with mearthe first sum is taken over all periods previous

to (and including), the second sum is taken over the firms that entered the industry in each period, and for
eachr, X, ;_, are random variables that represent the state ofiaftert — = periods inside the industry
when using strategy. Since firms use oblivious strategy e M their state evolutions are independent,
sol(x,, .— areiid. It follows thaty 1", 1(x,, .= Is afiltered Poisson random variable, so it is a
Poisson random variable. Thugz), as a sum of independent Poisson random variables, is also Poisson.
Given that the expected time a firm spends inside the industry is finite, using characteristic functions it is
straightforward to show that(z) = Z,, Y € N. To show tha{ Z, : = € N} is a sequence of independent
random variables note that by the filtering property of Poisson random variables (Durrett (1996))¢ for all
{si(z) : = € N} is a sequence of independent random variables.

By summing over: € N, we can show that, = Z. O

Lemma 3.3. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy
w € M, the expected entry rate ’ € A, and the expected time that each firm spends in the industry is
finite. Let{Y,, : n € N} be a sequence of independent random variables, each distributed according to

5ux(-)/ 2 pen Su(x). Then, for alln € N,

(l‘(l)t, cos Tyt | = n) = (Y1,...,Y,).

Proof. The proof is rather involved, but relies on a simple idea. For a Poisson process, conditional on

n arrivals on an interval0, 7'}, the unordered arrival times have the same distribution asd. uniform
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random variables if0, 7.

Let us condition om; = n. {z(;); : j = 1,...,n} are the random variables that represent the state of
each of the: firms in the industry when they are sampled randomly. The expected time a firm spends inside
the industry is finite, so the time a firm spends inside the industry is finite with probability one. Recall that
a firm can increase its quality level by at masstates each period. Therefok&, > 0, there exists a state
z,suchthatforall € 1,...,n, vt, Plz(;, > 2] < e. Thatis, the probability of observing a firm in a very

large state is negligible, because firms “do not have time” to get that far. Hence,

P U{:U(j)t>z}|nt:n <e€,Vt.
j=1
Therefore, the sequence of random vectorgy;, - . -, Z(n,)¢ | ¢ = n) is tight. Theorem 9.1 in Durrett
(1996) states that,, = Z if and only if for all setsA with P[Z € 0A] = 0, lim,,_.oc P[Z, € A] = P[Z €

A], whered A denotes the boundary of the skt Using this result and the tightness previously established,

it is enough to show that for afl, for all (z1, ..., z,):
(A.3) tlirglop [x(j)t =zj,j=1,... ,n‘nt = n] = Hp(zj) ,

=1

wherep(+) is the PMF5,,,(-)/ 3 e 12 (2). LetT; be the entry date of firnj) andT; = t — T; be its

age. Then we can write:

P[:Jc(j)tzzj,jzl,...,n‘nt:n] = Z Plrgy =25, j=1,....,n|Th=t1,...., T, =ty,ny =n] -

P[letlv"an:tn‘nt:n]
= > HP[%)F%W}:%]'

(A4) 'P[letl,...,Tn:tn‘nt:’l’L],

The last equation follows because the evolution of firms is independent across firms. Note that iiasy
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a value greater that thenP [Tl =t1,...., T, =t,

ng = n} = 0. We can write

P [z = 2, Tj = t;]

P [%)t = Zj(Tj = tj} =

PT; =1
_ PlTi=tj, Xjy, = 2]
P T = tj]
_ PIT; = 4]P[X; = 2]
PT; =1
(A.5) = P[Xj, = 2],

where, similarly to aboveX; ;. is arandom variable that represents a firm’s state gffgeriods conditional
on having stayed in the industry. Note that for@ll{X;, : j > 1} isi.i.d. The second to last equation
follows because the evolution of a firm is independent of its entry time.

Now we show that

n
lim PITy=ty,.... T, =ty |y =n] = 11wl
j=1
for some probability mass functian This equation can be derived directly. However, it is easier to invoke
the relationship between. and a Poisson process and show that the equation holds using known results for
Poisson processes.

Similarly to equation (A.2), we can write:

¢ Wy
ng = Zzl{Ai,t,T:u,

7=0 i=1

where, for eachr, A;;_, are i.i.d. Bernoulli random variables that equal one if the firm is still in the
industry aftert — 7 periods when using strategy SinceA; ;. are i.i.d.,n;, = ziZ:TI 1(4,, ,=1}is @
filtered Poisson random variable, and is therefore Poisson. Call its mearit follows thatn, is a sum of
independent Poisson random variables, so it is Poisson with fgag o -

Consider{ N(t) : t > 0}, a homogeneous Poisson process on the real line with rate 1. Not¥ that
andn; are equivalent in the sense that we can constiyasing the proces§N(s) 0<s< Zi:o am}
in the following way: for eacl < = < t, consider the events in the interyak .1, a;-—1 + oy -], where
a1 = 0. Assign those events to firms that are still in the industry at ttna@d entered at period,
nt -. Note that: i)N(ay ) andn, , are both Poisson with mean .; i) N(t¢) has independent increments

andn, - are independent, for ad; iii) N(Zizo ay r) andn, are both sum of independent Poisson random
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variables with meai "' _; oy .

SupposeV (3¢ _, ax-) = n. Conditional on that event, the unordered arrival time®V¢f) have the
same distribution as i.i.d. uniform random variables i, th:o ot -] (Durrett (1996)). By the equivalence
argument described above, conditionakgr= n, the unordered arrival times of thefirms are i.i.d. discrete
random variables with PMF:

w(r)=—2T — 0<r<t.

ijo arj o
Recall that, , is the expected number of firms that entered at tina@d are still inside the industry at time
t. Since the entry rate is the same every period and every firm uses the same strategy which is independent
of every other firmp, » = &, wheredy, is the expected number of firms that entered the industry at time
s, for any s, and are still inside the industry at tise+ k. This suggests making a change of variable and

defining:
Qy

t ~
ijo @;j

u (k) is the probability a random sampled firm from the industry at tiraetered: periods ago, conditional

onn; = n. Taking the limit ag tends to infinity, we get that:

. g
lim w (k) =u(k) = ==, 0< k< o0 ,
=00 Zj:() ay

provided thatim; . E[n;] = > 22, &; < oo, which is true by assumption.(k) is the probability a ran-

dom sampled firm from the industry at time> 0 enteredk periods before the sampling period. Therefore
lim Py =ty,... . Ty =tn |0y =] = T it
j=1
Replacing the previous equation and equation (A.5) in equation (A.4) we obtain:
lim P [z =2, j=1,...,n|n=n] = H Z PlXjt = zjlu(t)

t—o00 .
71=10<t<0

where the interchange between the infinite sum and the limit follows by dominated convergence. The sum
yields the PMPFp(-). The previous equation proves that, ..., Y, are i.i.d. with PMFp(-) which is inde-
pendent ofu.

Considert > 0. More formally, suppose that is sampled from the invariant distribution, which is well

defined by Lemma 3.2. In this cass,is a stationary process; is distributed according to the invariant
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distribution for all¢ > 0.
Sun(@) = Elsi()] = E | Y 1o ,)=a)
j=1

Conditioning omy;, and considering that we already proved that;y, : j = 1,...,n} are i.i.d. with PMF
p(-) which is independent of, we get thap(-) =5, \(-)/ > en Sun (). O

A.3 Proofs and Mathematical Arguments for Section 4
A.3.1 Preliminary Lemmas

We will use the following lemma, which follows immediately from Assumption 4.2. We omit the proof.
First, we defind| |1, = >, | f(z)|g(z).

Lemma A.3. Let{ /(") |m e N} be a sequence of distributions satisfying Assumption 4.2. Then,

lim sup inf Hf(m) — fHLg = 0.

0 m fesy .

Lemma A.4. Under Assumptions 2.1, 2.2, and 2.3,

sup V (z|2™, X)) < oc.

m

Proof. We will assume that > z¢; the case of < ¢ is trivial. Assume for contradiction thatip,,, V (|z(™, \(™)) =
oo. We will argue that this contradicts the zero profit condition for entering firms. If a firm invests,

there is a probability(¢) > 0 that the firm will increase its quality level by at least one unit. tbe the time

a firm takes to transition from stai€ to stater. If a firm invests, > 0 in each period, by a geometric trials
argumentFE[r]| < oo. Therefore, there exists an investment strategy for which the expected time and cost to
transition fromz® to 2 are uniformly bounded above over. It follows thatsup,,, V (z¢|a(™, A\(™) = co.

This contradicts the zero profit condition. O

Letl, = {h:N—R||h

1,¢ < oo}. With some abuse of notation, 6t ;, = S1 N 41 4.

Lemma A.5. Let Assumptions 2.1, 2.2, and 2.3, hold. Then, for:all

oo
sup sup £, Zﬂk_t sup T (Tik, f, ﬁ(m)) ‘ Tig = x| < 00.
m peM et fes
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Proof. Let all expectations in this proof be conditioned o5 = x. The industry state, and therefore

7 (-, 50™), is not influenced by firni's investement decisions. Hence,

(A.6) sup sup £,
m peM

Zﬂ’”wmm,é(m))] < sup V/(a] ™), A™) < oo,

k=t

where the final relation follows from Lemma A.4.

By Assumption 2.1.4, forany € N, f, f' € Si 4, n € Ry, andm € N,

(5>

‘ﬂ-m(:% f?n) - 7Tm<y7 fl’”” =

(ﬂ@—f«@)(ammm%f+vw—f%n»d7

2\ =71, of (@)
1) =/ o
. / §%<\v ) oeh
1 = £l
17— 7l
< 0.

Letting f = (1,0,0,...), it follows thatsup,cy ;nen |7Tm($,i,77l(m)) — T(z,5)] = C < oo. By
Assumption 2.1.2, for alts € R, z € N, andf € Sy, mp (2, f,72™) < mp(z, f,72™) < 71 (2, 5M) +
C. The result then follows from (A.6). O

A.4 Proof of Theorem 4.2

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4(2) = Q(m).

n(m)

Proof. Assume for contradiction thdim inf,, = 0. Then there exists an increasing sequemge

A(me) k)

such thatlim;, *— = 0, and by Assumption 4.1.2, for alf,z € N with z > 2, andf € Sy,
limy o0 ﬂmk(x,f,n mk)) = oo.

Note that foranyh : S — R,y € N, f € S; 4, andn € N,

671'm y).ﬂ )

2 M) |5

zeN

< [[hfl1g-

It follows from Assumptions 2.1.4 and 4.2 that

lim sup inf sup Inwm(x,f(m),ﬁ(m)) — 1117Tm(l‘7f7ﬁ(m)) =0.

Z—00 f€31,z x
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It follows that
f(m) 5 (m)
lim sup inf sup Wm(:v’f: ™)
m—oo m/feslz T anwjfomjﬁﬁnn

and therefore,

ﬂm(m’f(m),ﬁ(m)) > (1 — ) (z, f(m)’ﬁ(m))’
for all = andm. This implies that for all: > z, limg_ 7, (z, f0™), 2(™)) = 0o, which contradicts
Lemma A.4. It follows tha&(™ = Q(m). O
A.4.1 Proof of Theorem 4.4
Lemma A.6. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Then, fod any,

(m)
t

7 (m)

P

—1] > 5] < e~ S2m),

Proof. By a simple analysis of the Poisson distribution, it is easy to show thatisfa Poisson random
variable with meam,
P Hﬁ = 1) > 5] < e=O),
n

By Lemma 3.2,n§m) is a Poisson random variable with meai?). By Theorem 4.27(m) — Q(m). The

result follows. 0

Theorem 4.3. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Them, gs)ws,ngm)/ﬁ(m) —, land
LA™ = Fml1g =y 0.

Proof. Convergence ohgm)/ﬁ(m) follows from Lemma A.6. To complete the proof, we will establish

convergence of £™ — f(m)|; ,. Note that for any: € N,

1A = F < zmaxg(@)|fi™ () @]+ g@) (@) + > g(a) ) (@

<
>z >z

= Al 4 g | ol

We will show that for any, A,(Zm) converges in probability to zero, that for ahy- 0, for sufficiently largez,
limy,— o0 P[Cﬁm) > 0] = 0, and that for any > 0 ande > 0, for sufficiently largez, lim sup,,,_, . P[Bgm) >
5] < /6. The assertion thatf™ — Fm)|; , —, 0 follows from these facts.

By Lemma 3.3, for any:, (ft(m) () | n§m> = n) is distributed as the empirical mearvof.i.d. Bernoulli

samples with expectatiofi™ (z). It follows that for anyz, (|f™ (z) — ™) (z)| | n = n) converges in
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probability to zero uniformly overn asn grows. By Lemma 4.2 and the fact tha&”)/fz(m converges
in probability to1, for anyn, limmﬂmP[ngm) < n] = 0. It follows that for anyz, Am) converges in
probability to zero.

By Lemma A.3, for anyd > 0, for sufficiently largez, limsup,,_, c§m> < 4, and therefore,
nmmﬂop[cém) > 6] = 0. By Tonelli's Theorem,E[Bgm)] = Cﬁm). Invoking Markov’s inequality,

for anyd > 0 ande > 0, for sufficiently largez, limsup,,,_, ., P[Bgm) > 0] < ¢/o. The result follows. [
The following technical lemma follows immediately from Assumption 4.1.3. We omit the proof.

Lemma A.7. Let Assumptions 2.1.3 and 4.1.3 hold. Then, foeall 0 there exist$ > 0 such that for all

n,n € R4 satisfyingn/n — 1| < 4,

sup 7Trn(xv f7 n) B 7-[-Tn(aja f7 ﬁ)

~ < €.
m7f7m 7Tm(:L‘,f, n)

Lemma A.8. Let Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2 hold. Then, for all sequéntesc M},

nlgnoo Eu(7rz)7ﬁ(m)7§\(7rz) [Z Bk_t|7rm(‘rikv 5(—7?,)16) - Wm(inw fSTZ]){p ﬁ’(m))’ ‘ Tt = T, 5(_7?7)15 ~ q(m)] =0.
k=t

Proof. For the purpose of this proof, we will assume that all expectations are conditioneg enx and

s~ g Let ALY = |mp (@it sU)) — T, fU7), 0], Fix e > 0 and lets > 0 satisfy the

assertion of Lemma A.7. Lef denote the ever*h;m)/ﬁ(m) — 1‘ > §. Applying Tonelli’'s Theorem, we

obtain

Ti Ti

- -

B m) som) 30m) [Zﬁ tAZ(;T)] = D BB o pom om [AEZL)}
k=t k=t

Ti
= ) gt (Eu(M),g(m),S\(M) [AE?)LZ} B m) fom) 30m) [AEZ"”)lzD
k=t

Ti

< Z ﬁk_t <€E,u(m>,ﬂ(m),5\(m) |:7Tm($ik:a fE:er:’ ﬁ(m)):| + O(m)P[Z])
k=t
A N O(m)P[Z]
< €E () = (m) S(m ﬂktsupwmwi,f,n(m) 4+ ——
() fi(m) 3(m) LZ:; sup (@ik ) -5

where the first inequality follows from Lemma A.7 and Assumption 4.1.1. Singarbitrary, the expected

sum is finite (by Lemma A.5), an@[Z] < e~*™) (by Lemma A.6), the result follows. O

The following technical lemma follows immediately from assumptions on the profit function. We omit
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the proof.

Lemma A.9. Let Assumptions 2.1.3 and 2.1.4 hold. Then, fora# 0 there exist$ > 0 such that for
f, f € 81, satistying| f — fll1.y <,

~

Tm (2, fyn) — T (z, fin)

sup .
7Tm(l'a fa n)

J/’,f7m

< €.

Lemma A.10. Let Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2 hold. Then, for all sequéntesc M},

77‘151100 Ep(m>,/1(7”),5\(m) [Z Bk_t|ﬂ-m(xikv fﬁrzggv ’Fl(m)) - Wm(xik’ g(m))| ‘ Tit = T, 5(_177),5 ~ q(m)] =0.
k=t

Proof. For the purpose of this proof, we will assume that all expectations are conditioneg enz and
s(_"z)t ~ g™, Let AU = |1, (2, f(T’z,ﬁ(m)) — T (xit, 50™)]|. Fix e > 0 and lets satisfy the assertion

of Lemma A.9. LetZ denote the everﬂtff’zzC — ft™)|,, > 6. Applying Tonelli's Theorem, we obtain

Ti

) k—t A (m)
E m) om) 30m) [Z B A
k=t

Ti
= > B m pom 5w [A&T)]
=t

i

_ k—t (m) (m)

- Z/B EM('m),/‘l('m)’S\(m) |:Azk 1—\Z] +EM(7VL)7’&('NL)7X(7VL) [Alk 1Z
k=t

€

S 15

Ti
k—
+ > B E iy gom s [Az(;")lz} ,
K=t

where the inequality follows from Lemma A.9.

Note thatAg,T) < 28Upses, Tm(@ik, £, 71™). Hence,

Ti i
> B E o om s [AEIT)lZ] < D BE o pom s |2 SUP T (i, f,2) 1,
k=t k=t fea

= 2P[Z]Eu(7n)7ﬁ(m)75\(7n) Zﬁk_t sup Wm(xik:; f’ ﬁ(m)) ,
k=t fes

where the final expression follows from the fact tlféf) evolves independently fromﬁ?). Sincee is
arbitrary, P[Z] — 0 (by Theorem 4.3), and the expected sum is finite (by Lemma A.5), the result follows.
O

Theorem 4.4. Under Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2, the sequgriée, \(™)} of oblivious equi-
libria possesses the AME property.
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Proof. Let *(™) be an optimal (non-oblivious) best responséit6™, \(™); in particular,

VO (g s )30 = sup VO (6], 50, A0,
HEM

Let

V) (2, s) = VO (&, )0 @ X)) v ) (g sz XM > 0.
The AME property, which we set out to establish, asserts that for@lN, limp, oo E;(m) 50m) V) (g, s§m>)] =

0.

For anym, becausg(™ and\(™ attain an oblivious equilibrium,

It follows that

VO (ays) = (VO Gy sl ), X0M) — V) ), X))
(VO (@l 2 = v (@, ], 3

™)
(v<m>(x,s|u*<m>, A0 M)y g m) () +m) | 5(m) ;<m>)>
)

IN

+(17<m>(xm<m>,x<m>) VO (z, 5| 5™, X0m)

= A™(z,s)+ B™(x,s).

To complete the proof, we will establish th, ., 5 [A™(z, s™)] andE ;) 50m [BU™ (2, s\™)] con-

verge to zero.

Let 7; be the time at which firmi exists, and Ieﬂgn) = |mtm (4t, 3(_7?;) — Tm(xi, 5§™)]. Itis easy to
see that
A(m) (.’L’, S) S EM*(m)’ﬁ(m)j\(m) [Z ﬂk_tAz(-]:,n) ‘ Tt = X, S(_ﬂ;)t = 5]
k=t
B(m)(x,s) < E~(m) Am [Z /Bk_tA'EZT) ) Ty = $,8(1?7)t _ 8] ,
k=t

and lettingg(™ be the invariant distribution of™ with the oblivious strategji(™ and the oblivious entry
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%
B
=
3

B
Q)
wm/\

2

AN

E i) fiom) 30m) [Z CaN ‘ zir =570 ~ q(m)]
=t

-
B
2
B

Sy

2
®
NN

2

A

E~(m) Alm [Z ﬁk’—tAEZL) ‘ Tit = T, 3(:7;3& ~ q(m)] .

k=t

By the triangle inequality,
A(m) < ‘ﬂ—m( Tiky S—4 k) - Wm(xzky f(z Lo TV )’ + |7Tm(xzk7 fl(k )7 ~(m)> - Wm(wika §(m))|
The result therefore follows from Lemmas A.8 and A.10. O

A.4.2 Example: Logit Demand System with Price Competition

We consider a single period profit function like the one introduced in Subsection 6.1. It is direct to check
that Assumptions 2.1, 4.1.1, and 4.1.2 are satisfied. Now, we show that Assumption 4.1.3 is satisfied. To

simplify notation we assume = 1. Now,

dlnﬂ'm(‘r fﬂl) 8ln7rm(x,f,n)+8ln7rm(az,f,n) 8pa: +Zaln77m(xvan) 8])1'

A7) ! -
(A7) dlnn dlnn Opx Olnn Op; Olnn’

€S

whereS is the set of firms in state = fn, andp, is the price charged by the firm in state The first term
takes into account the direct change in profits due to the change on the number of firms keeping prices fixed.

The second and third terms consider the change in profits implied by the change of prices. Now,

Oy (z, f,n) B ny en f(2)(1+ 2)(Y — p,)%
dlnn 1+ ny ey f(2) (14 2)0(Y —p.)%2 + (14 2) (Y — pg)%

Olnmy, (x,f,n)

o = 1. Similarly, it is possible to show that & < L

Thereforesup,,,cn zen, fesi n>0

Olnmm(z,f,n) Ops Olnmm (z,f;n) Op; P -
SUD,meN zeN, fES, >0 ) o ol 2ies p; 715 | < 0o. The complete derivation is long

and algebraically cumbersome so it is omitted. However, we note a couple of important points. To compute

aél’ﬁin we use equation (6.1) together with the implicit function theorem. Each term in the s@rﬁ%ﬁ

hence the sum, even if it includes an infinite number of terms, remains bounded.

Now we derive the maximal absolute semi-elasticity functign,). Similarly to equation (A.7) we have

\dlnﬂm(y,f,n) _ Olnmy(y, f,n) Olnmy(y, f,n) Opy Olnmy,(y, f,n) Op;
A w) oiw) T op, f T2 om0

€S
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Now,
81n77m(y7f7n) n(l—i_*’v)él(yv_pz)(s2

of (x) 1 fE A+ )Y = pa) 4+ (1 + )0 (Y —py)*

Therefore,

Olnmy,(y, f,n)

(A.9) max 9f(x)

mEN7y€N7f€S]. ,TLEN

~0(a") .

The second and third terms in equation (A.8) can be bound in a similar way to (A.7). Assumption 4.2 is

satisfied ifsup,,, £ [¢((™)'*7] < oo, for somey > 0. Taked; = 1= to conclude thatup,, E [#™)] <

oo implies the light-tail conditiort®

A.5 Proofs and Mathematical Arguments for Section 5

Theorem 5.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, for any oblivious equilit(rﬁuﬁn) and firm

statex € N,

(A.10) E _Z
wem 1- B

o~ o~ 2
sup V(z, se|i’, fi, ) — V(x,stm,)\)] < E[A|mm|(s)],

whereA|r|(s) = maxyen |7(y, s) — 7 (y, §)|, and

(A.11)

E us’lelf\)/l V(JJ, St‘:u/v[% 5‘) - V(JZ, St‘ﬁ? :\)] < 7E[A7T(S)] + Zaw(y) (ﬂ'(y, §) —FE [TI'(y, S)])7

whereAr(s) = maxyen (7(y, s) — 7(y, 3)).

Proof. We derive the second bound, beginning with the following proposition ut:die an optimal (non-
oblivious) best response to an oblivious equilibrigimn ;\) for a firm that is keeping track of the industry

state.

Proposition A.1.

BV (x, sl i X) — V(z, 5l V)] < 1_16E[A7rm<s>] VzeN.

Note that for larger, .. (z, f,n) grows roughly likex* asz grows. Hence, taking, = ﬁ for smally > 0 means that
profits increase almost linearly with the quality level.
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Proof. By a similar argument to the one at the beginning of the proof of Theorem 4.4, we have that

(A.12)

i

Vi, s|u*, i, 5\) - f/(x s|i, ) <F A Zﬁkft (T (Tik, S—i k) — Tm(Tik, 8)) |Tit = T, 544 = s] .
k=t

The equation can be rewritten as:

V(Ivs‘lu’*vﬂ7 5‘) - V("'Ij78‘ﬂ7 5‘) < Z/Bk ! Z WA xzk Y, S—ik = s Tit = T, S—jt = S} :

UEN
s'eS
(A13) (ﬂ-m(y7 S/) - 7-‘-Tn(yv 5)) )
wherePM H/\[xzk =vy,s_ix = | x4 = z,5_;; = s] is the probability firmi, currently in state: with

competitors in state, will be in statey ands’, respectivelyk — ¢ periods from now.

We can write:

! /
P“*’ﬁ,j\[xik =Y, 5 ik =5 | =x,5_5;,=5] = P.a slwie =y | s—ip =8,z = 2,551 = 5] -

P [s_ix =8| @i =2,5 14 = 8]

1% fi A
= Pp*,ﬁ,?\[xik =yl|s_ir= s ay =z, S_it=8]"

P sls—ik = s'| s_it = s].

The last equation follows because rival firms use strafegyhich only depends on their own state, and the

entry rate is\ independent of the industry state. Substituting into equation (A.13) gives:

V(£78|M*’ﬂ55‘)_‘7($78|ﬂ75‘) S Zﬂk tz S—Zk_s |5 Zt_s]
s'eS
Z T xzk =Y ’ S—ik = s y it = Ly S—it = S] (ﬂ-m(ya ) Trm(yag))
yGN
(A14) < Z[Bk t Z )\ 3 i,k — S ‘ S—it = S] I;léif\)]( (ﬂ—m(y7 ) - 7Tm<y7§)) ’
s'eS

Recall thatg(s) is the invariant distribution ofs; : ¢ > 0}, wheres; is the industry state at time
when every firms uses strategyand the entry rate is. Note that{s_;; : t > 0} is the same process as

{s¢ : t > 0}. Hence for any > t:

(A.15) 9(s') = a(s)Pysls—in = 5" | s—ip = 5]
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Multiplying equations (A.14) by(s) and summing over all € S we obtain:

> ats) (Vi sl i %) = Vi, sli ) <Y als §jﬁt s = | s_ig=s]-
seS seS s'eS
I;g@c (Wm(% s') — mm(y, 3))
= Zﬁktzz Szk—s S—i,t:S]'
s'eS seS
r;leal\)]( (Wm(ya ) - m(y7 8))
(A16) - Zﬂk ¢ Z max 7-[-Tn(ya S,) - 7rm(?/7 5))

k=t s'eS

The second equation follows by Fubini and the last one by equation (A.15). The previous argument is valid

foranyx € N, therefore:

E[V (2, s, fi, \) — V(x, s|ji, 3)] < 1_16E[A7rm(s)] VzeN,

wheres is a random vector distributed according;to O

Returning to the derivation of the bound, we have that:
(A.17)

IV (2, slu* i, \) = V (s, slji, N)] = [V (@ sl 1, X) = V (a s1ja, 2] + B[V, sl ) = V(i V]

The first term is bounded by the previous proposition. Let us analyze the second term:

‘7(337 S‘ﬂ’ 5‘) - V(J:) S|/j’7 X) = Eﬂf Z/@kft (Trm(xika §) - dL;c) + ﬁnitgb:’—i Ljp = T, 8—it = 8]
Lk=t
— Eu5 D8 (mm(@ins s—ik) — dif) + 87T i = w5 i = s]
Lk=t
= By [ D8 (@i, 8) — mon(wik, 5—ik)) |Tie = 2,5 i = 8]
Lk=t
=§:Mt22 aalsoia =[5 =]
= s'eS
(A.18) Z Palza =y | it = 2] (7 (Y, 5) — 7y, 5)) -

yeN

The last equation follows because under oblivious strategies firms’ trajectories are independent. Multiplying
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each term by;(s), summing over alk € S and interchanging sums in the right hand side using Fubini we

obtain:
(A19) E[V (5|1, \) =V (x, 5], N)] = > B> Py =y | zy = ] (tm(y, 5) — E [mm(y, 9)]) ,
k=t yeN

wheres is a random vector distributed accordingjtd=inally, interchanging the sums

(A.20) E[V(x,s]ﬂ, A)—V(x s]u, Zaz (Tm(y, 8) — E [mm(y, s)]) -
yeN

The second bound follows by equations (A.17), (A.20) and the proposition. The first one follows by a similar
argument, but with the difference that we takex, <y in equation (A.18) and we take absolute value of the

difference of one period profits in equations (A.14) and (A.18). O
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B Tables and Figures

Table 1: Comparison of MPE and OE strategies (4 firms, no entry and exit)

Parameters Long Run Statistics (% Diff) Perf Bound (% Diff)|  Actual (% Diff)
Prod Cons Max Weighted| Max  Weighted

01 d Inv. Surp  Surp C1 Cc2 Diff Avg Diff Avg

0.10 0.10 | —=0.26 —0.01 —0.02 0.03 0.03 0.14 0.13 0.08 0.07

0.15 0.27 3.54 0.14 0.2 1.22 0.46 0.36 0.35 0.1 0.1

0.20 0.35 4.18 0.29 0.42 1.93 1.03 0.81 0.77 —0.09 —0.05

0.30 0.30 | —0.13 0.06 0.08 0.08 0.16 1.67 1.22 0.04 0.01

0.30 0.55 9.28 0.93 1.31 5.10 2.45 1.96 1.85 0.26 0.25

0.40 0.80 | 21.02 2.10 2.93 11.58 4.12 3.01 2.92 0.30 0.29

0.50 1.00 | 18.62 3.30 4.33 15.69 5.94 6.29 5.86 0.32 0.30

0.50 0.50 | —0.11 0.20 0.28 0.18 0.50 6.64 3.61 0.21 0.06

0.70 0.70 | —2.21 0.40 0.15 1.08 2.09 | 18.85 8.35 1.60 0.67

0.85 0.70 | —2.19 0.23 —0.28 1.37 2.10 | 30.80 9.64 1.80 0.20

1.20 1.00 | —8.41 1.59 0.36 2.73 8.41 | 131.30 48.50 23.70 7.90
Long run statistics and value functions simulated with a relative precision of 1.0% and a confidence |evel of
99%. Performance bound simulated with a relative precision of at most 10% and a confidence level pf 99%.

49



Table 2: Comparison of MPE and OE Investment (4 firms, no entry and exit)

Parameters Investment
01 d MPE OE % Diff
0.10 0.10 0.752 0.754 | —0.26
0.15 0.27 0.192 0.185 3.54
0.20 0.35 0.261 0.250 4.18
0.30 0.30 0.754 0.755 | —0.13
0.30 0.55 0.238 0.216 9.28
0.40 0.80 0.168 0.133 | 21.02
0.50 1.00 0.195 0.158 | 18.62
0.50 0.50 0.741 0.742 | —0.11
0.70 0.70 0.694 0.709 | —2.21
0.85 0.70 0.748 0.765 | —2.19
1.20 1.00 0.553 0.599 | —8.41

Investment simulated with a relative precision|pf
1.0% and a confidence level of 99%.

Figure 1: Percentage approximation error bound for Poisson entry process for different market
sizes.
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Figure 2: Percentage approximation error bound for deterministic entry process for different mar-
ket sizes.
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Figure 3: Percentage approximation error bound for fixed number of firms.
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Figure 4: Average industry state fér = 0.5 andd = 0.5.
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Figure 5: Average industry state féf = 0.4 andd = 0.8.
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Figure 6: Average industry state for different market sizegfot 0.9.
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Figure 7: Average industry state for different market size9fce 1.2.
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