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Abstract
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1 Introduction

Ericson and Pakes (1995) (hereafter EP) introduced an approach to modeling industry dynamics in which

entry, exit, and investment, together with idiosyncratic shocks, result in heterogeneity among firms. The

analysis of such models — which we will refer to as EP-type models — relies on computation of Markov

perfect equilibria (MPE) using dynamic programming algorithms (e.g., Pakes and McGuire (1994)). A great

advantage of the EP framework is that it is easily extended to cover many important dynamic phenomena.1

A major shortcoming, however, is the computational complexity of solving for MPE. Methods that acceler-

ate these computations have been proposed (Pakes and McGuire (2001) and Doraszelski and Judd (2003)).

However, even with such improvements, in practice computational concerns have typically limited the anal-

ysis to industries with just two or three firms. Such limitations have made it difficult to construct realistic

empirical models, and application of the EP framework to empirical problems has been rare (exceptions

include Benkard (2004), Gowrisankaran and Town (1997), Jenkins, Liu, Matzkin, and McFadden (2004),

and Ryan (2005)). More generally, model details are often dictated as much by computational concerns as

economic ones.

In an EP-type model, at each time, each firm has a state variable that captures its competitive advantage.

Though more general state spaces can be considered, we focus on the simple case where the firm state is

an integer. The value of this integer can represent, for example, a measure of product quality, the firm’s

current productivity level, or its capacity. Each firm’s state evolves over time based on investments and

random shocks. Theindustry stateis a vector representing the number of firms with each possible value of

the firm state variable. Even if firms are restricted to symmetric strategies, the number of relevant industry

states (and thus, the compute time and memory required for computing a MPE) becomes enormous very

quickly. For example, most industries contain more than 20 firms, but it would require approximately22

million gigabytes of computer memory to store the policy function for an industry with just 20 firms and 40

firm states. As a result, it seems unlikely that exact computation of equilibria will ever be possible in many

applied problems of interest.

With this motivation, in this paper we instead propose an approximation method, one that dramatically

reduces the computational complexity of EP-type models in industries with many firms. The intuition behind

our approach is as follows. Consider an EP-type model in which firm shocks are idiosyncratic. In each

period, some firms receive positive shocks and some receive negative shocks. Now suppose there are a large

1See, for example, Benkard (2004), Berry and Pakes (1993), Besanko and Doraszelski (2004), Besanko, Doraszelski, Kryukov,
and Satterthwaite (2005), Doraszelski and Markovich (2003), Fershtman and Pakes (2000), Goettler, Parlour, and Rajan (2004),
Gowrisankaran (1999), Jenkins, Liu, Matzkin, and McFadden (2004), Judd, Schmedders, and Yeltekin (2002), Langohr (2003),
Markovich (2003), de Roos (2002), and Song (2003), as well as Pakes (2000) for a survey.
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number of firms. It is natural to think that changes in individual firms’ states average out at the industry

level, such that the industry state does not change much over time. In that case, each firm could make near-

optimal decisions knowing only its own firm state and the long run average industry state. We calloblivious

strategies, strategies for which a firm considers only its own state and the long run average industry state, and

we will define a new solution concept, calledoblivious equilibrium, in which firms use oblivious strategies.

Computing an oblivious equilibrium is simple because dynamic programming algorithms that optimize over

oblivious strategies require compute time and memory that scale only with the number of firm states, and

not with the number of firms. Indeed, it is easy to compute oblivious equilibria for industries with thousands

of firms and hundreds of firm states.

To formalize the intuition above, we prove an asymptotic result that provides sufficient conditions for

oblivious equilibria to closely approximate MPE as the market size grows. It may seem that this would be

true provided that the average number of firms in the industry grows to infinity as the market size grows.

However, this is not sufficient. If the market is highly concentrated — for example, as is the case with

Microsoft in the software industry — then the approximation is unlikely to be accurate. A strategy that does

not keep track of the dominant firm’s state will not perform well. Instead, we show that, alongside some

technical requirements, a sufficient condition for oblivious equilibria to well approximate MPE asymptoti-

cally is that they generate a firm size distribution that is “light-tailed,” in a sense that we will make precise.

For example, if the demand system is given by a logit model and the spot market equilibrium is Nash in

prices, then the condition holds if the average firm size remains bounded by the same number for all market

sizes.

We provide an algorithm based on dynamic programming that computes oblivious equilibria. The algo-

rithm is computationally light, often terminating within a couple minutes of run time on a common laptop

computer even for industries with thousands of firms. It is also easy to implement, requiring, typically,

fewer than two hundred lines of Matlab code. This represents a considerable savings over existing algo-

rithms. Another distinguishing feature of the algorithm is that it places no a priori restrictions on the number

of firms or the number of firm states. Instead, these are determined endogenously and computed alongside

the oblivious equilibrium.

Our asymptotic result provides a condition under which the approximation is accurate for large markets.

We also derive bounds on the approximation error that can be efficiently computed for any given applied

problem. Despite the practical importance of such error bounds, there are very few cases in the approximate

dynamic programming literature where researchers have been able to provide useful bounding techniques for

high-dimensional stochastic control problems. Possibly the only relevant examples involve optimal stopping
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(Haugh, Kogan, and Wang 2004) and portfolio optimization (Haugh, Kogan, and Wang 2005). As such, our

bounding technique represents a significant contribution. We show that these error bounds can be derived

quite generally; they do not require many of our modeling assumptions. Furthermore, while it is important

that there be no aggregate shocks for the asymptotic results to hold, we are able to derive error bounds

even for models that incorporate aggregate shocks. Using this bounding algorithm, we find that oblivious

equilibria often offer accurate approximations for industries involving hundreds of firms, and in some cases

even tens of firms.

Though our emphasis is on the use of oblivious equilibrium as an approximation of MPE, oblivious

equilibrium can also be motivated as a behavioral model in its own right. If observing the industry state and

designing strategies that keep track of it are costly, and do not lead to significant increases in profit, firms

may be better off using oblivious strategies.

The concept of oblivious equilibrium is closely related to Hopenhayn (1992). Hopenhayn models an

industry that hosts an infinite number of firms, each of which garners an infinitessimal fraction of the market.

His model is tractable because it assumes that the industry state is constant over time, implicitly assuming a

law of large number holds. This assumption is based on the same intuition that motivates our consideration

of oblivious equilibrium. However, our goal is to analyze models that closely reflect real world industries

that have finite numbers of firms. Also, our EP-type model is more general because the transitional dynamics

resulting from firms’ investment strategies are generated by equilibrium behavior that is explicitly modelled.

Hopenhayn abstracts from this aspect of the model and instead assumes that firms’ state trajectories (their

productivities) follow exogenous Markov processes.2

Our approach also has similarities to a number of other past literatures. The light-tail condition we

consider is analogous to notions of diffuse industry structure in large markets associated with Sutton (1991)’s

exogenous sunk cost model. Though our goals are different, our asymptotic results are close in spirit to the

work of Novshek and Sonnenschein (1978) who, in a static setting, provide conditions under which Cournot-

Nash equilibrium converges to Walras competitive equilibrium when there is free entry. The notion that,

for asymptotically large markets, strategies can remain effective while ignoring information and strategic

behavior also appears in Vives (2002), in the context of Cournot models. Finally, Jovanovic and Rosenthal

(1988) consider sequential equilibria in a model where the actual equilibrium strategies can be represented

as simple functions of summary statistics of the distribution of firm states. This differs from our context, in

which simple functions provide only an approximation to equilibrium strategies.

There are a variety of relevant economic issues that can be studied using our methods. As an example,

2Note that Klette and Kortum (2003) and Melitz (2003) model investment explicitly in Hopenhayn-style models.
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we briefly explore an important question in industrial organization: What features of an industry determine

whether an industry becomes fragmented or remains concentrated as the market grows in size? Sutton (1991)

sought to identify simple features of an industry that distinguish models that lead to these two outcomes. In

our model, through computational experiments, we show that an arbitrarily small increase in a single model

parameter that identifies the extent of vertical product differentiation, can turn an asymptotically fragmented

market into an asymptotically concentrated one. These results show that the predictions of Sutton (1991)

may sometimes be quite sensitive. For example, they imply that very different market structures might

be observed in the same industry across markets that are the same size and that have indistinguishable

characteristics. Note that our results remain broadly consistent with Sutton (1991) since the extent of vertical

product differentiation impacts the returns to investment. Consistent with Sutton (1991), industries with

higher returns to investment (even if the difference may be arbitrarily small) tend to be more concentrated.

The paper is organized as follows. In Section 2 we outline the dynamic industry model. In Section 3 we

introduce the concept of oblivious strategies and oblivious equilibrium. In Section 4 we provide conditions

under which oblivious strategies approximate MPE strategies asymptotically as the market size grows. In

Section 5 we provide methods for computing oblivious equilibria and error bounds. In Section 6 we report

results from computational experiments. Finally, Section 7 presents conclusions and a discussion of future

research directions.

2 A Dynamic Model of Imperfect Competition

In this section we formulate a model of an industry in which firms compete in a single-good market. Our

model is close in spirit to that of Ericson and Pakes (1995), but with some differences. Most notably, we

modify the entry and exit processes in Ericson and Pakes (1995) so as to make them more realistic when

there are a large number of firms. Additionally, our asymptotic results do not hold with aggregate industry

shocks so our model includes only idiosyncratic shocks.

2.1 Model and Notation

The industry evolves over discrete time periods and an infinite horizon. We index time periods with non-

negative integerst ∈ N (N = {0, 1, 2, . . .}). All random variables are defined on a probability space

(Ω,F ,P) equipped with a filtration{Ft : t ≥ 0}. We adopt a convention of indexing byt variables that are

Ft-measurable.
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Each firm that enters the industry is assigned a unique positive integer-valued index. The set of indices

of incumbent firms at timet is denoted bySt. At each timet ∈ N, we denote the number of incumbent firms

asnt.

Firm heterogeneity is reflected through firm states. To fix an interpretation, we will refer to a firm’s state

as its quality level. However, firm states might more generally reflect productivity, capacity, the size of its

consumer network, or any other aspect of the firm that affects its profits. At timet, the quality level of firm

i ∈ St is denoted byxit ∈ N.

We define theindustry statest to be a vector over quality levels that specifies, for each quality level

x ∈ N, the number of incumbent firms at quality levelx in periodt. Though there are a countable number

of industry states, we will consider an extended state spaceS =
{
s ∈ <∞+

∣∣∣ ∑∞
x=0 s(x) <∞

}
. This will

allow us, for example, to consider derivatives of functions with respect to the industry state. For eachi ∈ St,

we defines−i,t ∈ S to be the state of thecompetitorsof firm i; that is,s−i,t(x) = st(x)− 1 if xit = x, and

s−i,t(x) = st(x), otherwise. Similarly,n−i,t denotes to the number of competitors of firmi.

In each period, each incumbent firm earns profits on a spot market. A firm’s single period expected

profit π(xit, s−i,t) depends on its quality levelxit and its competitors’ states−i,t.

The model also allows for entry and exit. In each period, each incumbent firmi ∈ St observes a positive

real-valued sell-off valueφit that is private information to the firm. If the sell-off value exceeds the value of

continuing in the industry then the firm may choose to exit, in which case it earns the sell-off value and then

ceases operations permanently.

If the firm instead decides to remain in the industry, then it can invest to improve its quality level. If a

firm investsιit ∈ <+, then the firm’s state at timet+ 1 is given by,

xi,t+1 = xit + w(ιit, ζi,t+1),

where the functionw captures the impact of investment on quality andζi,t+1 reflects uncertainty in the

outcome of investment. Uncertainty may arise, for example, due to the risk associated with a research and

development endeavor or a marketing campaign. We denote the unit cost of investment byd.

In each period new firms can enter the industry by paying a setup costκ. Entrants do not earn profits in

the period that they enter. They appear in the following period at statexe ∈ N and can earn profits thereafter.

Each firm aims to maximize expected net present value. The interest rate is assumed to be positive and

constant over time, resulting in a constant discount factor ofβ ∈ (0, 1) per time period.

In each period, events occur in the following order:
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1. Each incumbent firms observes its sell-off value and then makes exit and investment decisions.

2. The number of entering firms is determined and each entrant pays an entry cost ofκ.

3. Incumbent firms compete in the spot market and receive profits.

4. Exiting firms exit and receive their sell-off values.

5. Investment outcomes are determined, new entrants enter, and the industry takes on a new statest+1.

2.2 Model Primitives

The model as specified is general enough to encompass numerous applied problems in economics. Indeed,

similar models have been applied to advertising, auctions, collusion, consumer learning, environmental

policy, international trade policy, learning-by-doing, limit order markets, mergers, network externalities,

and other applied problems. To study any particular applied problem it is necessary to further specify the

primitives of the model, including:

profit function π

sell-off value distribution ∼ φit

investment impact function w

investment uncertainty distribution∼ ζit

unit investment cost d

entry cost κ

discount factor β

Note that in most applied problems the profit function would not be specified directly, but would instead

result from a deeper set of primitives that specify a demand function, a cost function, and a static equilibrium

concept. An important parameter of the demand function, that we will focus on below, is the size of the

relevant market, which we will denote asm.

2.3 Assumptions

We make several assumptions about the model primitives, beginning with the profit function. An industry

states ∈ S is said todominates′ ∈ S if for all x ∈ N,
∑

x≤z s(z) ≥
∑

x≤z s
′(z). We will denote this

relation bys � s′. Intuitively, competition associated withs is no weaker than competition associated with

s′.

Assumption 2.1.
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1. For all s ∈ S, π(x, s) is increasing inx.

2. For all x ∈ N ands, s′ ∈ S, if s � s′ thenπ(x, s) ≤ π(x, s′).

3. For all x ∈ N ands ∈ S, π(x, s) > 0, andsupx,s π(x, s) <∞.

4. For all x ∈ N, y ∈ N, ands ∈ S, π(x, s) is differentiable with respect tos(y). Further, for any
x ∈ N, y ∈ N, s ∈ S, andh ∈ S such thats+ γh ∈ S for γ > 0 sufficiently small, if∑

y∈N
h(y)

∣∣∣∣∂ lnπ(x, s)
∂s(y)

∣∣∣∣ <∞,

then
d lnπ(x, s+ γh)

dγ

∣∣∣
γ=0

=
∑
y∈N

h(y)
∂ lnπ(x, s)
∂s(y)

.

The assumptions are natural. Assumption 2.1.1 ensures that increases in quality lead to increases in

profit. Assumption 2.1.2 states that strengthened competition cannot result in increased profit. Assumption

2.1.3 ensures that profits are positive and bounded. The first part of Assumption 2.1.4 requires partial

differentiability of the profit function with respect to eachs(y). Profit functions that are smooth, such as the

ones arising from random utility demand models like a logit model, will satisfy this assumption. The second

part of Assumption 2.1.4 is technical and essentially requires that the profit function is Fréchet differentiable.

We also make assumptions about the distributions of the private shocks:

Assumption 2.2.

1. The variables{φit|t ≥ 0, i ≥ 1} are i.i.d. and have finite expectations and well-defined density
functions with support<+.

2. The random variables{ζit|t ≥ 0, i ≥ 1} are i.i.d. and independent of{φit|t ≥ 0, i ≥ 1}.

3. For all ζ, w(ι, ζ) is nondecreasing inι.

4. For all ι > 0, P[w(ι, ζi,t+1) > 0] > 0.

5. There exists a positive constantw ∈ N such that|w(ι, ζ)| ≤ w, for all (ι, ζ).

6. For all k ∈ {−w, . . . , w}, P[w(ι, ζi,t+1) = k] is continuous inι.

7. The transitions generated byw(ι, ζ) are unique investment choice admissible .

Assumptions 2.2.1 and 2.2.2 imply that investment and exit outcomes are idiosyncratic conditional on

the state. Assumption 2.2.3 and 2.2.4 imply that investment is productive. Assumption 2.2.5 places a finite

bound on how much progress can be made or lost in a single period through investment. Assumption

2.2.6 ensures that the impact of investment on transition probabilities is continuous. Assumption 2.2.7 was

introduced by Doraszelski and Satterthwaite (2003) to guarantee that the solution of the firms’ investment

decision problem is unique. It is used to prove existence of pure strategy equilibrium and it is satisfied by

many of the commonly used specifications in the literature.
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We assume that there are a large number of potential entrants who play a symmetric mixed entry strategy.

In that case the number of actual entrants is well approximated by the Poisson distribution (see appendix for

a derivation of this result). This leads to the following assumptions:

Assumption 2.3.

1. The number of firms entering during periodt is a Poisson random variable that is conditionally
independent of{φit, ζit|t ≥ 0, i ≥ 1}, conditioned onst.

2. κ > β · φ̄, whereφ̄ is the expected net present value of entering the market, investing zero each period,
and then exiting at an optimal stopping time.

We denote the expected number of firms entering at industry statest, by λ(st). This state-dependent

entry rate will be endogenously determined, and our solution concept will require that it satisfies a zero

expected profit condition. Modeling the number of entrants as a Poisson random variable has the advantage

that it leads to more elegant asymptotic results. Assumption 2.3.2 ensures that the sell-off value by itself is

not sufficient reason to enter the industry.

2.4 Equilibrium

As a model of industry behavior we focus on pure strategy Markov perfect equilibrium (MPE), in the sense

of Maskin and Tirole (1988). We further assume that equilibrium is symmetric, such that all firms use a

common stationary investment/exit strategy. In particular, there is a functionι such that at each timet,

each incumbent firmi ∈ St invests an amountιit = ι(xit, s−i,t). Similarly, each firm follows an exit

strategy that takes the form of a cutoff rule: there is a real-valued functionρ such that an incumbent firm

i ∈ St exits at timet if and only if φit ≥ ρ(xit, s−i,t). In the appendix we show that there always exists

an optimal exit strategy of this form even among very general classes of exit strategies. LetM denote

the set of exit/investment strategies such that an elementµ ∈ M is a pair of functionsµ = (ι, ρ), where

ι : N×S → <+ is an investment strategy andρ : N×S → <+ is an exit strategy. Similarly, we denote the

set of entry rate functions byΛ, where an element ofΛ is a functionλ : S → <+.

We define the value functionV (x, s|µ′, µ, λ) to be the expected net present value for a firm at statex

when its competitors’ state iss, given that its competitors each follows a common strategyµ ∈M, the entry

rate function isλ ∈ Λ, and the firm itself follows strategyµ′ ∈M. In particular,

V (x, s|µ′, µ, λ) = Eµ′,µ,λ

[
τi∑

k=t

βk−t (πm(xik, s−i,k)− dιik) + βτi−tφi,τi

∣∣∣xit = x, s−i,t = s

]
,

wherei is taken to be the index of a firm at quality levelx at timet, τi is a random variable representing the

time at which firmi exits the industry, and the subscripts of the expectation indicate the strategy followed
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by firm i, the strategy followed by its competitors, and the entry rate function. In an abuse of notation, we

will use the shorthand,V (x, s|µ, λ) ≡ V (x, s|µ, µ, λ), to refer to the expected discounted value of profits

when firmi follows the same strategyµ as its competitors.

An equilibrium to our model comprises an investment/exit strategyµ = (ι, ρ) ∈ M, and an entry rate

functionλ ∈ Λ that satisfy the following conditions:

1. Incumbent firm strategies represent a MPE:

(2.1) sup
µ′∈M

V (x, s|µ′, µ, λ) = V (x, s|µ, λ) ∀x ∈ N, ∀s ∈ S.

In the appendix, we show that this supremum can always be attained simultaneously for allx ands

by a common strategyµ′.

2. At each state, either entrants have zero expected profits or the entry rate is zero (or both):

∑
s∈S λ(s) (βEµ,λ [V (xe, st+1|µ, λ)|st = s]− κ) = 0

βEµ,λ [V (xe, st+1|µ, λ)|st = s]− κ ≤ 0 ∀s ∈ S

λ(s) ≥ 0 ∀s ∈ S.

Doraszelski and Satterthwaite (2003) establish existence of an equilibrium in pure strategies for a closely

related model. We do not provide an existence proof here because it is long and cumbersome and would

replicate this previous work. With respect to uniqueness, in general we presume that our model may have

multiple equilibria.3

Dynamic programming algorithms can be used to optimize firm strategies, and equilibria to our model

can be computed via their iterative application. However, these algorithms require compute time and mem-

ory that grow proportionately with the number of relevant industry states, which is often intractable in

contexts of practical interest. This difficulty motivates our alternative approach.

3 Oblivious Equilibrium

We will propose a method for approximating MPE based on the idea that when there are a large number

of firms, simultaneous changes in individual firm quality levels can average out such that the normalized

3Doraszelski and Satterthwaite (2003) also provide an example of multiple equilibria in their closely related model.
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industry state remains roughly constant over time. In this setting, each firm can potentially make near-

optimal decisions based only on its own quality level and the long run average industry state. With this

motivation, we consider restricting firm strategies so that each firm’s decisions depend only on the firm’s

quality level. We call such restricted strategiesoblivioussince they involve decisions made without full

knowledge of the circumstances — in particular, the state of the industry.

3.1 Oblivious Strategies and Entry Rate Functions

Let M̃ ⊂ M andΛ̃ ⊂ Λ denote the set of oblivious strategies and the set of oblivious entry rate functions.

Since each strategyµ = (ι, ρ) ∈ M̃ generates decisionsι(x, s) andρ(x, s) that do not depend ons, with

some abuse of notation, we will often drop the second argument and writeι(x) andρ(x). Similarly, for

an entry rate functionλ ∈ Λ̃, we will denote byλ the real-valued entry rate which persists for all industry

states.

3.2 Oblivious Equilibrium

Note that if all firms use a common strategyµ ∈ M̃, the quality level of each evolves as an independent tran-

sient Markov chain. Let thek-period transition sub-probabilities of this transient Markov chain be denoted

byP k
µ (x, y). Then, the expected time that a firm spends at a quality levelx is given by

∑∞
k=0 P

k
µ (xe, x), and

the expected lifespan of a firm is
∑∞

k=0

∑
x∈N P

k
µ (xe, x). Denote the expected number of firms at quality

level x at timet by s̃t(x) = E[st(x)]. The following result offers an expression for the long-run expected

industry state when dynamics are governed by oblivious strategies and entry rate functions.

Lemma 3.1. If firms make decisions according to an oblivious strategyµ ∈ M̃ and enter according to an

oblivious entry rate functionλ ∈ Λ̃, and the expected time that a firm spends in the industry is finite, then

(3.1) lim
t→∞

s̃t(x) = λ
∞∑

k=0

P k
µ (xe, x),

for all x ∈ N.

We omit the proof, which is straightforward. To abbreviate notation, we lets̃µ,λ(x) = limt→∞ s̃t(x) for

µ ∈ M̃, λ ∈ Λ̃, andx ∈ N. For an oblivious strategyµ ∈ M̃ and an oblivious entry rate functionλ ∈ Λ̃

we define anoblivious value function

Ṽ (x|µ′, µ, λ) = Eµ′

[
τi∑

k=t

βk−t (πm(xik, s̃µ,λ)− dιik) + βτi−tφi,τi

∣∣∣xit = x

]
.
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This value function should be interpreted as the expected net present value of a firm that is at quality level

x and follows oblivious strategyµ′, under the assumption that its competitors’ state will bes̃µ,λ for all

time. Note that only the firm’s own strategyµ′ influences the firm’s state trajectory because neither the

profit function nor the strategyµ′ depends on the industry state. Hence, the subscript in the expectation

only reflects this dependence. Importantly, however, the oblivious value function remains a function of

the competitors’ strategyµ and the entry rateλ through the expected industry states̃µ,λ. Again, we abuse

notation by using̃V (x|µ, λ) ≡ Ṽ (x|µ, µ, λ) to refer to the oblivious value function when firmi follows the

same strategyµ as its competitors.

We now define a new solution concept: anoblivious equilibriumconsists of a strategyµ ∈ M̃ and an

entry rate functionλ ∈ Λ̃ that satisfy the following conditions:

1. Firm strategies optimize an oblivious value function:

(3.2) sup
µ′∈M̃

Ṽ (x|µ′, µ, λ) = Ṽ (x|µ, λ), ∀x ∈ N.

2. Either the oblivious expected value of entry is zero or the entry rate is zero (or both):

λ
(
βṼ (xe|µ, λ)− κ

)
= 0

βṼ (xe|µ, λ)− κ ≤ 0

λ ≥ 0.

It is straightforward to show that an oblivious equilibrium exists under mild technical conditions. Fur-

thermore, if the entry cost is not prohibitively high then an oblivious equilibrium with a positive entry rate

exists. We omit the proof of this for brevity. With respect to uniqueness, we have been unable to find mul-

tiple oblivious equilibria in any of the applied problems we have considered, but similarly with the case of

MPE, we have no reason to believe that in general there is a unique oblivious equilibrium.4

Note that we assume that, even if firms are using oblivious strategies, the sequence of single-period

profits received are the ones associated with Nash, and not oblivious, static behavior. For example, if single-

period profits are derived from a game in which firms compete in prices, we assume firms price according to

Nash equilibrium strategies, and are not oblivious with respect to pricing behavior. We make this assumption

because we are interested in the dynamic behavior of the industry, and we believe that assuming oblivious

pricing behavior, which would be cumbersome, would not change our conclusions in that respect.

4However, since oblivious strategies rule out strategies that are dependent on competitors’ states, there are likely to be fewer
oblivious equilibria than there are MPE.
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We will later explore situations where the number of firms is large and oblivious equilibria approximate

MPE, in a sense that we will define precisely. First, we analyze the long-run behavior of an industry where

strategies and the entry rate function are oblivious.

3.3 The Invariant Industry Distribution

In Lemma 3.1, we characterized the long-run expected industry state. Our next result characterizes the

long-run distribution. The symbol⇒ denotes weak convergence ast→∞.

Lemma 3.2. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate isλ ∈ Λ̃, and the expected time that each firm spends in the industry is finite.

Let {Zx : x ∈ N} be a sequence of independent Poisson random variables with means{s̃µ,λ(x) : x ∈ N},

and letZ be a Poisson random variable with mean
∑

x∈N s̃µ,λ(x). Then,

(a) {st : t ≥ 0} is an irreducible, aperiodic and positive recurrent Markov chain;

(b) the invariant distribution ofst is a product form of Poisson random variables;

(c) for all x, st(x) ⇒ Zx;

(d) nt ⇒ Z.

To conclude this section we state an important result for later use. First note that

st(x) =
∑
i∈St

1{xit=x} =
nt∑

j=1

1{x(j)t=x},

where1A denotes the indicator of eventA. Hence, for example,1{xit=x} = 1 if xit = x, and1{xit=x} = 0,

otherwise.{x(j)t : j = 1, . . . , nt} is a random permutation of{xit : i ∈ St}. That is, we randomly pick a

firm from St and assign to it the indexj = 1; from the remaining firms we randomly pick another firm and

assign to it the indexj = 2, and so on.

Lemma 3.3. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate isλ ∈ Λ̃, and the expected time that each firm spends in the industry is

finite. Let{Yn : n ∈ N} be a sequence of integer-valued i.i.d. random variables, each distributed according

to s̃µ,λ(·)/
∑

x∈N s̃µ,λ(x). Then, for alln ∈ N,

(
x(1)t, . . . , x(nt)t

∣∣∣nt = n
)
⇒ (Y1, . . . , Yn).

Proofs of Lemmas 3.2 and 3.3 can be found in the appendix. Assuming a Poisson entry process is key

to proving these results. Lemma 3.3 ensures that if we sample a firm randomly from those firms currently
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in the industry and the industry state is distributed according to the invariant distribution, the firm’s state

will be distributed according to the normalized expected industry state. Further, each subsequent time we

sample without replacement we get an independent sample from the same distribution. For brevity, when

we consider sampling a random firm from among those currently in the industry and the industry state is

distributed according to the invariant distribution, we will say that we are sampling a firm from the industry’s

invariant distribution.

It is straightforward to show that if per-period profit is bounded, say by some quantityπ, then the

expected time a firm spends in the industry is finite for any oblivious strategyµ ∈ M̃ that comprises

an oblivious equilibrium. This follows from the fact that the sell-off value has support in<+ and the

continuation value from every state is bounded above byπ
1−β + φ. Hence, the probability of exiting in each

period is bounded below by a positive constant. This implies that the previous lemmas apply when firms use

oblivious equilibrium strategies.

4 Asymptotic Results

In this section, we establish asymptotic results that provide conditions under which oblivious equilibria offer

close approximations to MPE as the market size grows. As specified above, our model does not explicitly

depend on market size. However, market size would typically enter the profit function,π(xit, s−i,t), through

the underlying demand system; in particular, profit for a firm at a given state(x, s) would typically increase

with market size. Therefore, in this section we consider a sequence of markets, indexed by market sizes

m ∈ N. All other model primitives are assumed to remain constant within this sequence except for the profit

function, which depends onm. To convey this dependence, we denote profit functions byπm.

We index functions and random variables associated with market sizem with a superscript(m). From

this point onward we let(µ̃(m), λ̃(m)) denote an oblivious equilibrium for market sizem. LetV (m) andṼ (m)

represent the value function and oblivious value function, respectively, when the market size ism. To further

abbreviate notation we denote the expected industry state associated with(µ̃(m), λ̃(m)) by s̃(m) ≡ s̃µ̃(m),λ̃(m) .

The random variables(m)
t denotes the industry state at timet when every firm uses strategỹµ(m) and

the entry rate is̃λ(m). We denote the invariant distribution of{s(m)
t : t ≥ 0} by q(m). In order to simplify

our analysis, we assume that the initial industry states
(m)
0 is sampled fromq(m). Hence,s(m)

t is a stationary

process;s(m)
t is distributed according toq(m) for all t ≥ 0. Note that this assumption does not affect

asymptotic results, since for any initial condition, the process approaches stationarity as time progresses.
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It will be helpful to decomposes(m)
t according tos(m)

t = f
(m)
t n

(m)
t , wheref (m)

t is the random vec-

tor that represents the fraction of firms in each state andn
(m)
t is the total number of firms, respectively.

Similarly, let f̃ (m) ≡ E[f (m)
t ] denote the expected fraction of firms in each state andñ(m) ≡ E[n(m)

t ] =∑
x∈N s̃

(m)(x) denote the expected number of firms. Using Lemma 3.3, it is easy to check thatf̃ (m) = s̃(m)

ñ(m) .

With some abuse of notation, we defineπm(xit, f−i,t, n−i,t) ≡ πm(xit, n−i,t · f−i,t).

4.1 Assumptions about the Sequence of Profit Functions

In addition to Assumption 2.1, which applies to individual profit functions, we will make the following

assumptions, which apply to sequences of profit functions. LetS1 = {f ∈ S|
∑

x∈N f(x) = 1} and

S1,z = {f ∈ S1|∀x > z, f(x) = 0}.

Assumption 4.1.

1. supx∈N,s∈S πm(x, s) = O(m).

2. For all increasing sequences{mk ∈ N|k ∈ N}, n : N 7→ N with n(mk) = o(mk), x, z ∈ N with
x > z, andf ∈ S1,z, limk→∞ πmk

(x, f, n(mk)) = ∞.

3.

sup
m∈N,x∈N,f∈S1,n>0

∣∣∣∣d lnπm(x, f, n)
d lnn

∣∣∣∣ <∞.

The assumptions are again natural. Assumption 4.1.1 should hold for virtually all relevant classes of

profit functions. It is satisfied, for example, if the total disposable income of the consumer population grows

linearly in market size.5 Assumption 4.1.2 is also natural. It states that if the number of firms grows slower

than the market size then the largest firm’s profit becomes arbitrarily large as the market grows. Assumption

4.1.3 states that the relative rate of change of profit with respect to relative changes in the number of firms

is uniformly bounded. To provide a concrete example, we show in the Appendix that these assumptions

are satisfied by a single period profit function derived from a demand system given by a logit model and

where the spot market equilibrium is Nash in prices. Later, we use this profit function for the computational

experiments and describe it in detail in Subsection 6.1.

4.2 Asymptotic Markov Equilibrium

Our aim is to establish that, under certain conditions, oblivious equilibria well-approximate MPE as the

market size grows. We define the following concept to formalize the sense in which this approximation

becomes exact.
5For example, if each consumer has income that is less than some upper boundȲ then total disposable income of the consumer

population (an upper bound to firm profits) is always less thanm · Ȳ .
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Definition 4.1. A sequence(µ̃(m), λ̃(m)) ∈ M × Λ possesses the asymptotic Markov equilibrium (AME)

property if for allx ∈ N,

lim
m→∞

Eµ̃(m),λ̃(m)

[
sup

µ′∈M
V (m)(x, s(m)

t |µ′, µ̃(m), λ̃(m))− V (m)(x, s(m)
t |µ̃(m), λ̃(m))

]
= 0 .

Recall that the processst is taken to be stationary, and therefore, this expectation does not depend ont.

The definition of AME assesses approximation error at each firm statex in terms of the amount by which a

firm at statex can increase its net present value by deviating from the oblivious equilibrium strategyµ̃(m),

and instead following an optimal (non-oblivious) best response that keeps track of the true industry state.

The notion of AME relates to the more common notion thatε-equilibria approximate true equilibria in games

asε→ 0 (Fudenberg and Levine 1986).

Note that standard MPE solution algorithms (e.g., Pakes and McGuire (1994)) aim to compute point-

wise ε-equilibria; that is, where a firm cannot improve its net present value by more thanε starting from

anystate(x, s). The AME property instead considers the benefit of deviating to an optimal strategy starting

from each firm statex, averaged over the invariant distribution of industry states. It would not be possible

to obtain our results point-wise. This is because in an oblivious equilibrium firms may be making poor

decisions in states that are far from the expected state. Offsetting this effect is the fact that these states have

very low probability of occurrence, so they have a small impact on expected discounted profits.6

If a sequence of oblivious equilibria has the AME property then, asm grows,supµ′∈M V (m)(x, s|µ′, µ̃(m), λ̃(m)) ≈

V (m)(x, s|µ̃(m), λ̃(m)) for statesswith probabilities that are not vanishing. This implies that, asymptotically,

µ̃(m) is a near optimal strategy when the industry starts in any state that has significant probability of occur-

rence. Further, sinceβṼ (m)(xe) = κ for all m, asymptotically,βV (m)(xe, s|µ̃(m), λ̃(m)) ≈ κ for statess

with probabilities that are not vanishing. Hence, asymptotically,λ̃(m) satisfies the zero profit condition at

such states. In summary, ifEµ̃(m),λ̃(m)

[
supµ′∈M V (m)(x, s(m)

t |µ′, µ̃(m), λ̃(m))− V (m)(x, s(m)
t |µ̃(m), λ̃(m))

]
is small, MPE strategies and entry rates at relevant states should be well approximated by oblivious ones.

We will later present computational results that support this point.7

6Note that Pakes and McGuire (2001) use a similar concept as a stopping rule in their stochastic algorithm. They compare the
difference in the value function from two consecutive iterates, weighting states according to their empirical distribution of visits in
the long run.

7One might attempt to formalize this heuristic argument by following a similar line of reasoning as Fudenberg and Levine (1986)
or Altman, Pourtallier, Haurie, and Moresino (2000). They provide conditions under which, if a sequence of restricted games,Gm,
converges to a game of interest,G in an appropriate way, then any convergent sequence ofεm−equilibria ofGm with εm → 0
converges to an equilibrium ofG. In our case, we do not have a well defined limit game. Ifm = ∞, profits are infinite and we
would have infinite entry. This makes it hard to use their line of thought.
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4.3 Uniform Law of Large Numbers

The following theorem establishes that when the number of firms is large, the industry state becomes approx-

imately constant (i.e.,s(m)
t ≈ s̃(m)) with high probability. We use→p to denote convergence in probability

asm→∞.

Theorem 4.1. If limm→∞ ñ(m) = ∞ then

sup
x∈N

∣∣∣s(m)
t (x)
ñ(m)

− s̃(m)(x)
ñ(m)

∣∣∣ →p 0.

The theorem can be proved by invoking a uniform law of large numbers (Vapnik and Chervonenkis

(1971)) and using Lemma3.3. It suggests that when the expected number of firms is large, using an oblivious

strategy might be close to optimal, and that a sequence of oblivious equilibria possesses the AME property.

However, for this to be the case it turns out that additional conditions are required.

4.4 A Light-Tail Condition Implies AME

Even when there are a large number of firms, if the market tends to be concentrated — for example, if the

market is usually dominated by a single firm — the AME property is unlikely to hold. To ensure the AME

property, we need to impose a “light-tail” condition that rules out this kind of market concentration.

Note thatd ln πm(y,f,n)
df(x) is the semi-elasticity of one period profits with respect to the fraction of firms in

statex. We define themaximal absolute semi-elasticity function:

g(x) = max
m∈N,y∈N,f∈S1,n∈N

∣∣∣∣d lnπm(y, f, n)
df(x)

∣∣∣∣ .
For eachx, g(x) is the maximum rate of relative change of any firm’s expected single-period profit that

could result from a small changes in the fraction of firms at quality levelx. We can also interpretg(x) as the

maximal possible impact of the presence of a firm at statex on the profit of any other firm. Note that since

larger competitors tend to have greater influence on firm profits,g(x) typically increases withx and can be

unbounded.

Finally, we introduce our light-tail condition. For eachm, let x̃(m) ∼ f̃ (m). According to Lemma 3.3,

x̃(m) can be interpreted as the quality level of a firm that is randomly sampled from among all incumbents

while the industry is in steady state.
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Assumption 4.2. For all quality levelsx, g(x) <∞. For all ε > 0, there exists a quality levelz such that

E
[
g(x̃(m))1{x̃(m)>z}

]
≤ ε,

for all market sizesm.

Recall thatg(x) is the maximum rate of relative change of any firm’s expected single-period profit that

could result from a small changes in the fraction of firms at quality levelx. The first part of the assumption

requires that for anyx, this quantity is finite. If this condition is not satisfied, a small change in the number

of firms at quality levelx can have an arbitrarily large impact on other firms as the market size grows. It

is unlikely that an oblivious equilibrium will provide a good approximation in this situation. Note that the

assumption imposes thatg(x) is finite for eachx, however,g(x) could grow arbitrarily large asx grows.

To interpret the second part of the assumption it is helpful to first understand a weaker condition:

E[g(x̃(m))] < ∞. This weaker condition ensures that the expected impact of a randomly sampled in-

cumbent is finite. Note that the impact of a sampled firm should grow with its quality level and can become

arbitrarily high as the quality level does. This weaker condition can be viewed as a “light tail” condition,

since it requires that the probability of sampling firms at large quality levels dies off sufficiently quickly so

that the expected impact remains finite.

Note that, for anyx andz, the productg(x)1{x>z} is equal to0 if x ≤ z but otherwise is equal to

g(x). Hence,E[g(x̃(m))1{x̃(m)>z}] is similar toE[g(x̃(m))] but ignores the impact of any sampled firm if its

quality level isz or lower. Consequently,E[g(x̃(m))1{x̃(m)>z}] bounds the expected impact of the presence

of a randomly sampled firm if the impact of any firm with quality levelz or lower is ignored.

It is easy to see that the conditionE[g(x̃(m))] <∞ is equivalent to a condition that, for anyε > 0, there

exists a quality levelz such thatE[g(x̃(m))1{x̃(m)>z}] ≤ ε. This is because increasingz sufficiently will

result in ignoring a larger and larger number of firms in computing the expected impact and the expected im-

pact when none of the firms is ignored is finite. Assumption 4.2 poses a stronger condition in that it requires

that a quality levelz can be chosen such thatE
[
g(x̃(m))1{x̃(m)>z}

]
≤ ε for all market sizesm simultane-

ously. This is like the “light tail condition”E[g(x̃(m))1{x̃(m)>z}] ≤ ε, or equivalentlyE[g(x̃(m))] < ∞,

which applies to a fixed market size, but it precludes the possibility that the tail becomes arbitrarily “fat”

as the market size increases. In a sense, it requires that the tails of quality distributionsf̃ (m) are uniformly

“light” over market sizesm.

As a different way to explain the light-tail condition, we note that ifg(x) is unbounded, then if there

existsγ > 0, such that,supmE[g
(
x̃(m)

)1+γ
] < ∞, Assumption 4.2 is satisfied. The condition is slightly
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stronger than requiring uniformly bounded first moments ofg(x̃(m)).

To give a concrete illustration about our light-tail condition, in the Appendix we show that for a demand

system given by a logit model and where the spot market equilibrium is Nash in prices (see Subsection

6.1), Assumption 4.2 is satisfied ifsupmE
[
x̃(m)

]
< ∞. That is, if the average firm quality level remains

uniformly bounded over all market sizes. For example, ifx̃(m) converges in distribution to a lognormal

distribution, the light-tail condition is satisfied. On the other hand, ifx̃(m) converges to a Pareto distribution

with parameter one (which does not have first moment), then the light-tail condition is not satisfied.

The following theorem establishes that, asymptotically, the average number of firms grows at least

linearly in the market size.

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2,ñ(m) = Ω(m) 8.

The proof can be found in the appendix. The intuition behind the result is simple. If the number of firms

were to grow slower than the market size, profits would blow up and the zero profit condition at the entry

state would not be met.

The next result, which is also proved in the appendix, establishes a stronger form of convergence than

Theorem 4.1.

Theorem 4.3. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Then, asm grows,n(m)
t /ñ(m) →p 1 and

‖f (m)
t − f̃ (m)‖1,g →p 0.

This new form of convergence allows us to ensure the AME property, which leads to the main result of

this section.

Theorem 4.4. Under Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2, the sequence{µ̃(m), λ̃(m)} of oblivious equi-

libria possesses the AME property.

This result is proved in the appendix.

5 Algorithm and Bounds

In this section we propose an algorithm that computes oblivious equilibria for a particular set of model

primitives. We then derive expressions that bound the approximation error associated with a particular

oblivious equilibrium.

8I.e., lim infm
ñ(m)

m
> 0. With an additional technical regularity condition, it is straightforward to show thatñ(m) = O(m);

i.e., lim supm
ñ(m)

m
< ∞. Hence,n(m) = Θ(m); i.e., asymptotically,̃n(m) grows linearly inm.
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5.1 Computing Oblivious Equilibria

Algorithm 1 (below) is designed to compute an oblivious equilibrium. It starts with two extreme entry rates:

λ = 0 andλ = supx,s π(x, s)/κ. Under mild assumptions, any oblivious equilibrium entry rate must lie

between these two extremes. The algorithm searches over entry rates between these two extremes for one

that leads to an oblivious equilibrium.9 For each cadidate entry rateλ, an inner loop (lines 5-8) computes an

oblivious equilibrium firm strategy for that fixed entry rate. If the termination conditions of both the inner

and outer loops are satisfied withε1 = ε2 = 0, we have an oblivious equilibrium. Small values ofε1 andε2

allow for small errors associated with limitations of numerical precision.

Algorithm 1 Oblivious Equilibrium Solver

1: λ := 0; λ := supx,s π(x, s)/κ
2: µ(x) := 0 for all x
3: repeat
4: λ := (λ+ λ)/2
5: repeat
6: µ′ := µ
7: Chooseµ ∈M to maximizeṼ (x|µ, µ′, λ) simultaneously for allx ∈ N
8: until ‖µ− µ′‖∞ ≤ ε1
9: if βṼ (xe|µ, λ)− κ ≥ 0 then

10: λ := λ
11: else
12: λ := λ
13: end if
14: until |βṼ (xe|µ, λ)− κ| ≤ ε2

The algorithm is easy to program and computationally efficient. In each iteration of the inner loop, the

optimization problem to be solved is a one dimensional dynamic program. The state space in this dynamic

program is the set of quality levels a firm can achieve. In principle, there could be an infinite number of

them. However, beyond a certain quality level the optimal strategy for a firm is not to invest, so its quality

cannot increase to beyond that level. In the numerical experiments we present in Section 6, the state space

never had more than two hundred states per firm. The exact number of states is determined during execution

of the algorithm.

Whether this algorithm is guaranteed to terminate in a finite number of iterations remains an open issue.

However, in over 90% of the numerical experiments we present in the next section, it converged in less than

five minutes. In the rest, it converged in less than fifteen minutes.10

9Note that there are potentially many alternative methods for searching over entry rates for an oblivious equilibrium. For
example, one alternative would be to start at an arbitrary entry rate and then implement small increments and decrements to the
entry rate until an entry rate is found that leads to an oblivious equilibrium.

10The algorithm was programmed in Matlab. The experiments were executed on two UNIX shared machines. A SunEnterprise
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5.2 Error Bounds

To bound approximation error, we first need to define what is meant byapproximation error. Consider an

oblivious strategy and entry rate function(µ̃, λ̃) ∈ M̃. We will quantify approximation error at each firm

statex ∈ N by

E

[
sup

µ′∈M
V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
.

Note that the expectation is over the invariant distribution ofst. Hence, approximation error is the amount

by which a firm at statex ∈ N can improve its expected net present value by unilaterally deviating from the

oblivious equilibrium strategỹµ, and instead following an optimal (non-oblivious) best response, averaged

over competitor states drawn from the invariant industry state distribution.

The next theorem provides two bounds on the approximation error. Recall thats̃ is the expected state in

equilibrium (E[s]). Let ax(y) be the expected discounted sum of an indicator of visits to statey for a firm

starting at statex that uses strategỹµ .

Theorem 5.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, for any oblivious equilibrium(µ̃, λ̃) and firm

statex ∈ N,

(5.1) E

[
sup

µ′∈M
V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 2

1− β
E[∆|πm|(s)],

where∆|π|(s) = maxy∈N |π(y, s)− π(y, s̃)|, and

(5.2)

E

[
sup

µ′∈M
V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 1

1− β
E[∆π(s)] +

∑
y∈N

ax(y) (π(y, s̃)− E [π(y, s)]) ,

where∆π(s) = maxy∈N (π(y, s)− π(y, s̃)).

The derivation of these bounds can be found in the appendix. It is worth mentioning that the result can

be generalized a great deal. In particular, most of the prior assumptions can be dropped; for instance, most

alernative entry processes will not change the result. In addition, in the appendix we provide a version of

the bounds for a model that incorporates aggregate shocks.

The first bound is simpler so we will use it to build the intuition behind the bounds. According to the

first bound, if one period profits when the state is sampled from the invariant distribution are close to one

period profits evaluated at the expected state, then the oblivious equilibrium offers a close approximation.

6500, Solaris 2.8, with 16 GB RAM, 12 GB swap, and 18 GB tmp; and a SunEnterprise 5500, Solaris 8, with 4 GB RAM, 4 GB
swap, and 8.7 GB tmp.
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This is because, in that case, firms cannot improve their expected discounted profits much by unilaterally

deviating from the oblivious strategy and keeping track of the industry state.

The second bound is more involved. We provide it because it is much tighter. Note that the right-hand-

side of the second bound depends on the initial firm statex, whereas the right-hand-side of the first bound

does not.

Both bounds can be easily estimated via simulation algorithms. Computing the bounds involves com-

puting an expectation over the industry statest. Once the oblivious equilibrium has been computed, the

industry state has a known distribution, namely, the product form of Poisson random variables with mean

s̃ (by Lemma 3.2). In particular, note that the bounds are not a function of the true MPE or even of the

optimal non-oblivious best response strategy. Computing either of these strategies could require solving a

high-dimensional dynamic program.

In our computational experiments, we also make use of a stronger bound that applies when the quality

level of a firm can change by at most one unit per time period (w̄ = 1), a common feature of EP-type models.

Theorem 5.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Further, assume that the quality level of any firm can

change by at most one unit per time period. Then, for any oblivious equilibrium(µ̃, λ̃), firm statex ∈ N,

anda ∈ N,

E

[
sup

µ′∈M
V (x, s|µ′, µ̃, λ̃)− V (x, s|µ̃, λ̃)

]
≤ 1

1− β

[
E[∆Aπm(s)] + βa−xE[∆Acπm(s)]

]
+

+
∑
y∈N

ax(y) (πm(y, s̃)− E [πm(y, s)]) .(5.3)

where∆Aπm(s) = maxy∈A (πm(y, s)− πm(y, s̃)),A = {0, . . . , a− 1} andx ∈ A.

The proof of this result is similar to that of Theorem 5.1 and is omitted. In general,E [πm(y, s)] −

πm(y, s̃) ≥ 0 and is increasing iny. Therefore,E [maxy∈A (πm(y, s)− πm(y, s̃))] increases as the set

A increases, making the first term our previous bound (5.2) large. In this new bound (5.3), the term that

involvesmaxy∈Ac is the larger one because it involves the maximum over the larger states. However, this

is offset by the factor ofβa−x. The termβa−x appears because it takes at leasta− x periods to transition

from statex to any state inAc. When using this bound in the computational experiments, we choose the set

A to minimize the right-hand-side.
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6 Computational Experiments

In this section we conduct some computational experiments to evaluate how oblivious equilibrium performs

in practice, and also to demonstrate the range of applications that are possible using our methods. We begin

with the model to be analyzed. The model is similar to Pakes and McGuire (1994). However, it differs in

the entry and exit processes, in the demand system, and in that we do not consider an aggregate shock.

6.1 The Computational Model

SINGLE-PERIOD PROFIT FUNCTION. We consider an industry with differentiated products, where each

firm’s state variable represents the quality of its product. There arem consumers in the market. In periodt,

consumerj receives utilityuijt from consuming the good produced by firmi given by:

uijt = θ1 ln(
xit

ψ
+ 1) + θ2 ln(Y − pit) + νijt , i ∈ St, j = 1, . . . ,m,

whereY is the consumer’s income,pit is the price of the good produced by firmi, andψ is a scaling

factor. νijt are i.i.d. random variables distributed Gumbel that represent unobserved characteristics for

each consumer-good pair. There is also an outside good that provides consumers zero utility. We assume

consumers buy at most one product each period and that they choose the product that maximizes utility.

Under these assumptions our demand system is a classical logit model.

LetN(xit, pi) = exp(θ1 ln(xit + 1) + θ2 ln(Y − pi)). Then, the expected market share of each firm is

given by:

σ(xit, s−i,t, p) =
N(xit, pi)

1 +
∑

j∈St
N(xjt, pj)

, ∀i ∈ St .

We assume that firms set prices in the spot market. If there is a constant marginal costc, the Nash equilibrium

of the pricing game satisfies the first-order conditions,

(6.1) Y − pi + θ2(pi − c)(σ(xit, s−i,t, p)− 1) = 0 , ∀i ∈ St .

There is a unique Nash equilibrium in pure strategies, denotedp∗i (Caplin and Nalebuff (1991)). Expected

profits are given by:

πm(xit, s−i,t) = mσ(xit, s−i,t, p
∗)(p∗i − c) , ∀i ∈ St .

SELL-OFF PRICE. φit are i.i.d. exponential random variables with meanK.

TRANSITION DYNAMICS. A firm’s investment is successful with probabilityaι
1+aι , in which case the quality
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of its product increases by one level. The firm’s product depreciates one quality level with probabilityδ,

independently each period. Note that our model differs from Pakes and McGuire (1994) here because the

depreciation shocks in our model are idiosyncratic. Combining the investment and depreciation processes,

it follows that the transition probabilities for a firm in statex that investsι are given by:

P
[
xi

t+1 = y
∣∣∣xi

t = x, ι
]

=



(1−δ)aι
1+aι if y = x+ 1

(1−δ)+δaι
1+aι if y = x

δ
1+aι if y = x− 1 .

6.2 Numerical Results: Behavior of the Bound

Our first set of results investigate the behavior of the approximation error bound under several different

model specifications. A wide range of parameters for our model could reasonably represent different real

world industries of interest. In practice the parameters would either be estimated using data from a particular

industry or chosen to reflect an industry under study. We begin by investigating a particular set of represen-

tative parameter values. Following Pakes and McGuire (1994) we fixa = 3 andδ = 0.7. Additionally, we

fix marginal cost atc = 0.5, income atY = 1, θ2 = 0.5, andψ = 1. The discount factor isβ = 0.95.

The entry cost isκ = 35 and the entry state isxe = 10. The average sell-off value isK = 10. In this

case,β · φ < κ, so sell-off value by itself is not sufficient reason to enter the industry (assumption 2.3.2).

Additionally, both sell-off values and entry costs are substantially larger than marginal costs, consistent with

empirical evidence.

In our computational experiments we found that the most important parameter affecting the approxima-

tion error bounds wasθ1, which determines the importance that consumers place on product quality. Ifθ1 is

small, the degree of vertical differentiation between products is small. This reduces the impact of changes

in the industry state on profits, making the MPE strategies less sensitive to the industry state. Additionally,

whenθ1 is small it turns out that the invariant distributions̃ is very “light-tailed”. Oblivious strategies work

well in this case, and the approximation error bound is small. Ifθ1 is large, we get the reverse implications

and the approximation error bound is larger.

Based on these experiments, here we consider two different values ofθ1 and the investment costd:

(θ1, d): (0.1, 0.1) and(0.5, 0.5). The former (“Low”) is a situation where the level of vertical differentiation

is low and it is inexpensive to invest to improve quality. The latter (“High”) is the opposite. As a point of

comparison, if a firm increases its state fromx = 10 to x = 20, its single-period profits increase by 7% and

40% respectively in the two cases (holding competitors constant).
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For each set of parameters, we use the approximation error bound in Theorem 5.2 to compute an upper

bound on the percentage error in the value function,
E[supµ′∈M V (xe,s|µ′,µ̃,λ̃)−V (xe,s|µ̃,λ̃)]

E[V (xe,s|µ̃,λ̃)]] , where(µ̃, λ̃) are

the OE strategy and entry rate, respectively, and the expectations are taken with respect tos. We estimate

the expectations using simulation.11 We compute the previously mentioned percentage approximation error

bound for different market sizes. As the market size increases, the expected number of firms increases and

the approximation error bound decreases.

In Figure 1 we present the percentage approximation error bound as a function of the expected number

of firms for the two levels of vertical differentiation (the two curves are obtained by varying the market size).

For the low vertical differentiation case it takes around 60 firms to bring the bound down to 2%, and 250

firms to bring it below 1%. For the high case it takes around 250 firms to bring the bound to 5% and 1000

firms to bring it near 2%.

When the level of vertical differentiation is high, the number of firms required to have a good approxi-

mation is large, requiring hundreds and even thousands of firms. The approximation would be better if the

industry states were always close to its mean,s̃. One aspect of the model that interferes with this is the

Poisson entry process, which leads to a large amount of variability in the number of firms inside the industry.

Recall that we chose to model the entry process this way because it facilitated the asymptotic arguments in

Section 4. However, the expressions for the approximation error bounds remain correct for a wide range

of entry models. To investigate this issue further, as an alternative, we tried using an entry process where

the number of entrants each period is deterministic, but still satisfies a zero profits condition.12 This entry

process implies a smaller variability in the number of firms.

Figure 2 presents the results with the new entry process. In the case of low vertical differentiation, the

approximation error bound is less than 2% with just 30 firms and it is around 1% with 100 firms. When the

level of vertical differentiation is high the approximation error bound is around 5% when there are 120 firms

and around 2% for 700 firms.

Going one step further in reducing the variability of the industry dynamics, we tried shutting down entry

and exit altogether and considered an industry with a fixed number of firms. This situation can be viewed as

a particular case of the model presented in Section 2, with a constant sell-off value equal to zero and a very

high entry cost. See Figure 3 for the results. For the low case the approximation error bound is less than

11The expected value function is estimated with a relative precision of 1% and a confidence level of 99%. The bound is estimated
with a relative precision of at most 10% and a confidence level of 99% (in cases where the bound is very small it is difficult to
achieve better precision than this). Note that the percentage approximation error bound depends on the statex so for the purposes
of this section we consider the percentage bound evaluated at the entry state.

12Note that the zero profits condition typically requires a fractional number of entrants to be satisfied exactly, so to accomodate
this we instead randomized the number of entrants between the two neighboring integers. For example, if the equilibrium entry rate
is 2.5, then the number of entrants is 2 or 3 with probability 0.5. Allowing for fractional numbers ensures existence of equilibrium.
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0.5% with just 5 firms, while for the high case it is 5% for 5 firms, less than 3% with 40 firms, and less than

1% with 400 firms.

Most economic applications would involve from less than ten to several hundred firms. These results

show that the approximation error bound may sometimes be small (<2%) in these cases, though this would

depend on the model and parameter values for the industry under study.

6.3 Closeness to Markov Perfect Equilibrium

Having gained some insight into what features of the model lead to low values of the approximation error

bound, the question arises as to what value of the error bounds is required to obtain a good approximation.

To shed light on this issue we compare long-run statistics for the same industry primitives under oblivi-

ous equilibrium and MPE strategies. A major constraint on this exercise is that it requires the ability to

actually compute the MPE. With the current algorithms we are able to compute MPE for industries with

a maximum of five to ten firms — to keep computation manageable we use four firms here. We therefore

limit our analysis to the case of a fixed number of firms (no entry and exit), because only for that case were

the approximation error bounds small under oblivious strategies (with only four firms). We use the same

parameter specifications as in the previous subsection. Because of computational constraints in computing

the MPE, we also impose a maximum state that a firm can reach ofxmax = 15, at which point investment

is assumed to have no further effect. The market size is fixed,m = 30.13

Recall that under oblivious equilibrium strategies, the industry state is described by an ergodic Markov

chain (Lemma 3.2). This is also true under MPE strategies (Ericson and Pakes (1995)). Therefore, both

systems have a well defined invariant distribution that describes their long-run behavior. We compare the

average values of several economic statistics of interest under the oblivious equilibrium and the MPE in-

variant distributions. The quantities compared are: average investment, average producer surplus, average

consumer surplus, average share of the largest firm (C1), and average share of the largest two firms (C2).

Table 1 reports these statistics for a wide range of parameters. We also report the maximum value (across all

states) and weighted average value of the approximation error bound, as well as the maximum and weighted

average of the actual benefit from deviating and keeping track of the industry state (the actual difference
E[supµ′∈M V (xe,s|µ′,µ̃,λ̃)−V (xe,s|µ̃,λ̃)]

E[V (xe,s|µ̃,λ̃)]] ). Note that the the latter quantity should always be smaller than the ap-

proximation error bound. In the results below we concentrate on the maximum values of these quantities.

From the computational experiments we conclude the following (see Table 1):

13The code used to compute MPE was generously provided by Uli Doraszelski.
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1. When the error bound is less than 1% the long-run quantities estimated under oblivious equilibrium

and MPE strategies are very close.

2. Performance of the approximation depends on the shape of the average industry state. When the

bound is between 1-20% and the average industry state is symmetric (see Figure 4), the long-run

quantities estimated under oblivious equilibrium and MPE strategies remain close. When the bound

is above 1% and the average industry state is very skewed (see Figure 5), the long-run quantities

can be quite different on a percentage basis (5% to 20%). However, as shown in Table 2, this large

percentage difference partly reflects the fact that there is very little investment in these industries, so

a small amount of error results in a large percentage error.

3. The approximation error bound is not tight. For a wide range of parameters the approximation error

bound is as much as 10 to 20 times larger than the actual benefit from deviating.

The previous results suggest that MPE dynamics are well-approximated by oblivious equilibrium strate-

gies when the approximation error bound is small (less than 1-2% and in some cases even up to 20 %). These

results, together with those from Subsection 6.2, demonstrate that the oblivious equilibrium approximation

significantly expands the range of applied problems that can be analyzed computationally.

6.4 Example: The Evolution of Industry Structure as Market Size Increases

In this subsection we analyze the structure of the industry as market size grows under different parameter

specifications. We note that the intention of this subsection is to show the potential of our methods and to

provoke interest in future research in this area, and not to make robust and conclusive statements.

An important question in industrial organization is to understand what features of an industry are most

important to determining the industry’s structure. Of particular interest (Sutton 1991) is whether a market

becomes fragmented, or remains concentrated, as the market grows in size. Sutton (1991) and Shaked and

Sutton (1987) suggest that the presence of “endogenous” sunk costs imposes a lower bound to concentration.

Our model is a dynamic model of endogenous sunk costs because, while entrants pay the same cost of

entry regardless of market size (an “exogenous” sunk cost), in larger markets they may need to invest large

amounts to become as large as the incumbent firms (an “endogenous” sunk cost). In what follows we show

that under slightly different parameterizations of our model we get two extremely different outcomes: a

fragmented and a very concentrated industry. an approach is not

We use the same parameter specifications as in Subsection 6.2 with the only difference that now we

considerψ = 7 in the utility of the consumers. This specification makes it easier to obtain the two different

26



situations. We fixd = 0.5 and we compute the oblivious equilibrium forθ1 = 0.9 andθ1 = 1.2. In

Figures 6 and 7 we present the average industry states obtained for different market sizes in the two cases.

For θ1 = 0.9, as the market size grows the industry becomes fragmented. The number of firms grows

but firms do not grow in size, so the market share for every firm converges to zero. Whenθ1 = 1.2 the

entry rate decreases and firms grow larger as market size grows. In this second case, the industry state is

heavy-tailed.14

These results have a clear intuition: whenθ1 > 1 consumers care more about quality and this increases

the returns to investment. What results is a quality race between firms, so there are a small number of firms

in the industry that become ever larger with the market size. Whenθ1 < 1 returns to investment are lower

and investment is not worthwhile above a certain point regardless of the market size. (Note that with further

experimentation it is easy to show that for allθ1 < 1 the industry fragments, whereas forθ1 > 1 the industry

remains concentrated as market size increases.)

These results contradict Sutton (1991) in one sense because Sutton (1991) sought predictions about

market structure that are robust across a wide class of models. Here, different market structures result from

the same model through an arbitrarily small change in a single parameter. An implication of this result is

that the same industry might be observed with very different market structures across markets that are the

same size and that have indistinguishable characteristics.

However, our results remain broadly consistent with Sutton’s predictions because the parameter that

determines market structure in our model pertains directly to the returns to investment. Consistent with

the predictions of Sutton (1991), industries with higher returns to investment tend to be concentrated. Our

results show, however, that this relationship can be very fragile.

7 Conclusions and Future Research

The goal of this paper has been to increase the set of applied economic problems that can be addressed using

Ericson and Pakes (1995)-style dynamic models of imperfect competition. Due to the curse of dimension-

ality, existing dynamic programming methods have limited application of these models to industries with a

small number of firms and a small number of states per firm. Even with accelerated methods (e.g., Pakes and

McGuire (2001) and Doraszelski and Judd (2003)), it seems likely that it will never be possible to solve for

14To show the results more clearly, we forced the highest quality level to be 80. This leads the industry state to have a mass of
firms near 80 for the larger market sizes. Without this arbitrary cutoff firms would grow even larger and it becomes difficult to solve
for the oblivious equilibrium (because the expected lifespan of a firm tends to infinity and the industry is heavy-tailed) as well as to
show the results graphically.
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an MPE exactly in many problems of interest. As an alternative, we proposed a method for approximating

MPE behavior using an oblivious equilibrium, where firms make decisions only based on their own state

and the long run average industry state.

We began by showing that the approximation works well asymptotically, where asymptotics were taken

in the market size. A sufficient condition for an oblivious equilibrium to well approximate a MPE asymp-

totically is that the sequence of industry states generated by the oblivious equilibria is “light-tailed” (as

described by Assumption 4.2). This condition is also sufficient to establish that a model of the type intro-

duced in Hopenhayn (1992) yields a good approximation of a finite industry. We also introduced a simple

algorithm to compute an oblivious equilibrium. A nice feature of the algorithm is that there is no need to

place a’ priori restrictions on the number of firms in the industry or the set of states that a firm can reach. As

a result, computational considerations place very few constraints on model details.

To facilitate using oblivious equilibrium in practice, we derived approximation error bounds that indicate

how good the approximation is in any particular problem under study. These approximation error bounds

are quite general and thus can be used in a wide class of models. We believe them to be the first bounds of

this type in this literature. Through computational experiments, we showed that oblivious equilibrium often

yields a good approximation of MPE behavior for industries with a couple hundred firms, and sometimes

even with just tens of firms.

Note that in our approximation we have considered very simple strategies that are functions only of a

firm’s own state and the long run average industry state. The question naturally arises whether it may be

possible to obtain better approximations using additional information, such as the total number of firms in

the industry and/or the average state across firms. Solving for equilibria of this type would be more difficult

than solving for oblivious equilibria, but is still likely to be computationally feasible. However, showing

that such an approach would provide a good approximation is not a simple extension of our results. The

approximation error bounds would be more difficult to obtain for this case because, even if the shocks to

individual firms remained idiosyncratic, firms’ outcomes would be correlated through their strategies, which

would be functions of commonly known variables. The asymptotic results would be similarly difficult to

prove. This, and similar extensions, will be a subject of future research.
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A Proofs and Mathematical Arguments

A.1 Proofs and Mathematical Arguments for Section 2

A.1.1 The Poisson Entry Model

Suppose there areK potential entrants at a given state. Each potential entrant enters if the setup costκ is

less than the present value of future cash flows upon entry. LetvK(i) be the present value of future cash

flows for each entering firm ifi of theK firms enter simultaneously.vK(i) is nonincreasing ini. One can

then pose the problem faced by potential entrants as a game in which each entrant employs a mixed strategy

and enters with some probabilitypK . If we assume that every potential entrant employs the same strategy,

the condition for a mixed strategy Nash equilibrium whenκ ∈ [vK(K), vK(1)] can be written as

(A.1)
K−1∑
i=0

(
K − 1
i

)
pi

K(1− pK)K−1−ivK(i+ 1)− κ = 0,

which is solved by a uniquepK ∈ [0, 1]. If κ < vK(K), the equilibrium is a pure strategy withpK = 1,

whereas ifη > vK(1), the equilibrium is given bypK = 0. The following result, which we state without

proof, establishes that our Poisson entry model can be viewed as a limiting case as the number of potential

entrantsK grows large.

Lemma A.1. Let the following conditions hold:

1. vK(i) is non-increasing ini, ∀K and non-increasing inK, ∀i;

2. there exists a positive constantM such that|vK(i)| < M, ∀K, ∀i;

3. there existsK, such that∀K > K, vK(i) changes sign in(0,K);

4. there exists a functionv(i) such thatlimK→∞maxi≤i |vK(i)− v(i)| = 0, for all i ∈ N.

Then,

1. for eachK > K, Equation (A.1) has a unique solutionp∗K ∈ (0, 1);

2. the limitλ = limK→∞Kp∗K exists, and ifYK is a binomial random variable with parameters(K, p∗K)

andZ is a Poisson random variable with meanλ, thenYK ⇒ Z.

The result states that if the number of potential entrants grows to infinity then the entry process converges

to a Poisson random variable. Hence, Poisson entry can be understood as the result of a large population of

potential entrants, each one entering the industry with a very small probability.
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A.1.2 Bellman’s Equation

We define a dynamic programming operator:

(Tµ,λV )(x, s) = π(x, s)+E
[
max

{
βφit, sup

ι≥0
(−dι+ βEµ,λ [V (xi,t+1, s−i,t+1)|xit = x, s−i,t = s, ιit = ι])

}]
,

for all x ∈ N ands ∈ S.

To simplify the notation in this section we will letV µ′

µ,λ ≡ V (·|µ′, µ, λ).

Lemma A.2. Let Assumptions ... hold. Then, for allµ ∈M andλ ∈ Λ, there existsµ∗ ∈M, such that:

V µ∗

µ,λ = sup
µ′∈M

V µ′

µ,λ = Tµ,λV
µ∗

µ,λ.

Further,V µ∗

µ,λ is the unique fixed point ofTµ,λ within the class of bounded functions.

Proof. First note that, for some constantc, the value functionV µ∗

µ,λ, is bounded by 0 ≤ V µ∗

µ,λ(x, s) ≤
c

1−β + φ,∀x ∈ N, s ∈ S. Therefore, it will never be optimal to invest more than a finite quantity,ι.

Hence we can assume without loss of generality that0 ≤ ι(x, s) ≤ ι, ∀x ∈ N, ∀s ∈ S. Additionally,

βφ ≤ ρ(x, s) ≤ c
1−β + φ, ∀x ∈ N, ∀s ∈ S. Therefore the action space for each state is compact.

For a given state(x, s), expected one period profits including investment and sell-off value can be written

as:

π(x, s)− dι(x, s)P[φ < ρ(x, s)] + E[φ | φ ≥ ρ(x, s)]P[φ ≥ ρ(x, s)] .

Note thatπ(x, s) < c, investment is bounded by the previous argument andφ has finite expectation. There-

fore, expected one period profits including investment and the sell-off value are uniformly bounded for all

states(x, s). The result follows by Propositions 1.2.2 and 3.1.7 in Bertsekas (2001).

A.2 Proofs and Mathematical Arguments for Section 3

Lemma 3.2. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate isλ ∈ Λ̃, and the expected time that each firm spends in the industry is finite.

Let {Zx : x ∈ N} be a sequence of independent Poisson random variables with means{s̃µ,λ(x) : x ∈ N},

and letZ be a Poisson random variable with mean
∑

x∈N s̃µ,λ(x). Then,

(a) {st : t ≥ 0} is an irreducible, aperiodic and positive recurrent Markov chain;

(b) the invariant distribution ofst is a product form of Poisson random variables;
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(c) for all x, st(x) ⇒ Zx;

(d) nt ⇒ Z.

Proof. If every firm uses a strategyµ ∈ M̃ and entry is according to an entry rate functionλ ∈ Λ̃, then

X ≡ {st : t ≥ 0} is clearly an irreducible Markov chain. All states reach the state∅ = {0, 0, . . .} with

positive probability and all states can be reached from∅ as well. Now, take any states ∈ S. There is a

positive probability that there is no entry, no exit and no firms’ state transitions. Therefore, for alls ∈ S,

P[st+1 = s
∣∣∣st = s] > 0, soX is aperiodic. MoreoverX is positive recurrent because the expected time to

come back from state∅ to itself is finite (see Kleinrock (1975)).

Now, let us write:

(A.2) st(x) =
t∑

τ=0

Wτ∑
i=1

1{Xi,t−τ=x} ,

whereWτ are i.i.d. Poisson random variables with meanλ, the first sum is taken over all periods previous

to (and including)t, the second sum is taken over the firms that entered the industry in each period, and for

eachτ , Xi,t−τ are random variables that represent the state of firmi aftert − τ periods inside the industry

when using strategyµ. Since firms use oblivious strategyµ ∈ M̃ their state evolutions are independent,

so1{Xi,t−τ=x} are i.i.d. It follows that
∑Wτ

i=1 1{Xi,t−τ=x} is a filtered Poisson random variable, so it is a

Poisson random variable. Thusst(x), as a sum of independent Poisson random variables, is also Poisson.

Given that the expected time a firm spends inside the industry is finite, using characteristic functions it is

straightforward to show thatst(x) ⇒ Zx, ∀x ∈ N. To show that{Zx : x ∈ N} is a sequence of independent

random variables note that by the filtering property of Poisson random variables (Durrett (1996)), for allt,

{st(x) : x ∈ N} is a sequence of independent random variables.

By summing overx ∈ N, we can show thatnt ⇒ Z.

Lemma 3.3. Let Assumptions 2.2 and 2.3 hold. Assume that firms follow a common oblivious strategy

µ ∈ M̃, the expected entry rate isλ ∈ Λ̃, and the expected time that each firm spends in the industry is

finite. Let{Yn : n ∈ N} be a sequence of independent random variables, each distributed according to

s̃µ,λ(·)/
∑

x∈N s̃µ,λ(x). Then, for alln ∈ N,

(
x(1)t, . . . , x(nt)t

∣∣∣nt = n
)
⇒ (Y1, . . . , Yn).

Proof. The proof is rather involved, but relies on a simple idea. For a Poisson process, conditional on

n arrivals on an interval[0, T ], the unordered arrival times have the same distribution asn i.i.d. uniform
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random variables in[0, T ].

Let us condition onnt = n. {x(j)t : j = 1, . . . , n} are the random variables that represent the state of

each of then firms in the industry when they are sampled randomly. The expected time a firm spends inside

the industry is finite, so the time a firm spends inside the industry is finite with probability one. Recall that

a firm can increase its quality level by at mostw states each period. Therefore,∀ε > 0, there exists a state

z, such that for allj ∈ 1, . . . , n, ∀t, P[x(j)t > z] < ε. That is, the probability of observing a firm in a very

large state is negligible, because firms “do not have time” to get that far. Hence,

P

 n⋃
j=1

{x(j)t > z} | nt = n

 < ε , ∀t .

Therefore, the sequence of random vectors(x(1)t, . . . , x(nt)t | nt = n) is tight. Theorem 9.1 in Durrett

(1996) states thatZn ⇒ Z if and only if for all setsA with P[Z ∈ ∂A] = 0, limn→∞ P [Zn ∈ A] = P [Z ∈

A], where∂A denotes the boundary of the setA. Using this result and the tightness previously established,

it is enough to show that for alln, for all (z1, . . . , zn):

(A.3) lim
t→∞

P
[
x(j)t = zj , j = 1, . . . , n

∣∣∣nt = n
]

=
n∏

j=1

p(zj) ,

wherep(·) is the PMFs̃µ,λ(·)/
∑

x∈N s̃µ,λ(x). Let T̃j be the entry date of firm(j) andTj = t − T̃j be its

age. Then we can write:

P
[
x(j)t = zj , j = 1, . . . , n

∣∣∣nt = n
]

=
∑

0≤t1<∞,...,
0≤tn<∞

P[x(j)t = zj , j = 1, . . . , n | T1 = t1, . . . , Tn = tn, nt = n] ·

P [T1 = t1, . . . , Tn = tn | nt = n]

=
∑

0≤t1<∞,...,
0≤tn<∞

n∏
j=1

P
[
x(j)t = zj | Tj = tj

]
·

P [T1 = t1, . . . , Tn = tn | nt = n] ,(A.4)

The last equation follows because the evolution of firms is independent across firms. Note that if anytj has
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a value greater thatt, thenP
[
T1 = t1, . . . , Tn = tn

∣∣∣nt = n
]

= 0. We can write

P
[
x(j)t = zj

∣∣∣Tj = tj

]
=

P
[
x(j)t = zj , Tj = tj

]
P [Tj = tj ]

=
P

[
Tj = tj , Xj,tj = zj

]
P [Tj = tj ]

=
P[Tj = tj ]P[Xj,tj = zj ]

P [Tj = tj ]
= P[Xj,tj = zj ] ,(A.5)

where, similarly to above,Xj,tj is a random variable that represents a firm’s state aftertj periods conditional

on having stayed in the industry. Note that for allk, {Xj,k : j ≥ 1} is i.i.d. The second to last equation

follows because the evolution of a firm is independent of its entry time.

Now we show that

lim
t→∞

P [T1 = t1, . . . , Tn = tn | nt = n] =
n∏

j=1

u[tj ] ,

for some probability mass functionu. This equation can be derived directly. However, it is easier to invoke

the relationship betweennt and a Poisson process and show that the equation holds using known results for

Poisson processes.

Similarly to equation (A.2), we can write:

nt =
t∑

τ=0

Wτ∑
i=1

1{Ai,t−τ=1} ,

where, for eachτ , Ai,t−τ are i.i.d. Bernoulli random variables that equal one if the firm is still in the

industry aftert − τ periods when using strategyµ. SinceAi,t−τ are i.i.d.,nt,τ ≡
∑Zτ

i=1 1{Ai,t−τ=1} is a

filtered Poisson random variable, and is therefore Poisson. Call its meanαt,τ . It follows thatnt is a sum of

independent Poisson random variables, so it is Poisson with mean
∑t

τ=0 αt,τ .

Consider{N(t) : t ≥ 0}, a homogeneous Poisson process on the real line with rate 1. Note thatN(t)

andnt are equivalent in the sense that we can constructnt using the process
{
N(s) : 0 ≤ s ≤

∑t
τ=0 αt,τ

}
in the following way: for each0 ≤ τ ≤ t, consider the events in the interval[αt,τ−1, αt,τ−1 + αt,τ ], where

αt,−1 = 0. Assign those events to firms that are still in the industry at timet and entered at periodτ ,

nt,τ . Note that: i)N(αt,τ ) andnt,τ are both Poisson with meanαt,τ ; ii) N(t) has independent increments

andnt,τ are independent, for allτ ; iii) N(
∑t

τ=0 αt,τ ) andnt are both sum of independent Poisson random
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variables with mean
∑t

τ=0 αt,τ .

SupposeN(
∑t

τ=0 αt,τ ) = n. Conditional on that event, the unordered arrival times ofN(t) have the

same distribution asn i.i.d. uniform random variables in[0,
∑t

τ=0 αt,τ ] (Durrett (1996)). By the equivalence

argument described above, conditional onnt = n, the unordered arrival times of then firms are i.i.d. discrete

random variables with PMF:

vt(τ) =
αt,τ∑t
j=0 αt,j

, 0 ≤ τ ≤ t .

Recall thatαt,τ is the expected number of firms that entered at timeτ and are still inside the industry at time

t. Since the entry rate is the same every period and every firm uses the same strategy which is independent

of every other firm,αt,τ = α̃k, whereα̃k is the expected number of firms that entered the industry at time

s, for anys, and are still inside the industry at times + k. This suggests making a change of variable and

defining:

ut(k) =
α̃k∑t
j=0 α̃j

, 0 ≤ k ≤ t .

ut(k) is the probability a random sampled firm from the industry at timet enteredk periods ago, conditional

onnt = n. Taking the limit ast tends to infinity, we get that:

lim
t→∞

ut(k) ≡ u(k) =
α̃k∑∞
j=0 α̃j

, 0 ≤ k <∞ ,

provided thatlimt→∞E[nt] =
∑∞

j=0 α̃j < ∞, which is true by assumption.u(k) is the probability a ran-

dom sampled firm from the industry at timet� 0 enteredk periods before the sampling period. Therefore

lim
t→∞

P [T1 = t1, . . . , Tn = tn | nt = n] =
n∏

j=1

u[tj ] .

Replacing the previous equation and equation (A.5) in equation (A.4) we obtain:

lim
t→∞

P
[
x(j)t = zj , j = 1, . . . , n | nt = n

]
=

n∏
j=1

∑
0≤t<∞

P[Xj,t = zj ]u(t)

where the interchange between the infinite sum and the limit follows by dominated convergence. The sum

yields the PMFp(·). The previous equation proves thatY1, . . . , Yn are i.i.d. with PMFp(·) which is inde-

pendent ofn.

Considert� 0. More formally, suppose thats0 is sampled from the invariant distribution, which is well

defined by Lemma 3.2. In this case,st is a stationary process;st is distributed according to the invariant
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distribution for allt ≥ 0.

s̃µ,λ(x) = E[st(x)] = E

 nt∑
j=1

1{x(j)t=x}

 .

Conditioning onnt, and considering that we already proved that{x(j)t : j = 1, . . . , n} are i.i.d. with PMF

p(·) which is independent ofn, we get thatp(·) = s̃µ,λ(·)/
∑

x∈N s̃µ,λ(x).

A.3 Proofs and Mathematical Arguments for Section 4

A.3.1 Preliminary Lemmas

We will use the following lemma, which follows immediately from Assumption 4.2. We omit the proof.

First, we define‖f‖1,g =
∑

x |f(x)|g(x).

Lemma A.3. Let{f̃ (m)|m ∈ N} be a sequence of distributions satisfying Assumption 4.2. Then,

lim
z→∞

sup
m

inf
f̂∈S1,z

‖f̃ (m) − f̂‖1,g = 0.

Lemma A.4. Under Assumptions 2.1, 2.2, and 2.3,

sup
m
Ṽ (x|µ̃(m), λ̃(m)) <∞.

Proof. We will assume thatx ≥ xe; the case ofx < xe is trivial. Assume for contradiction thatsupm Ṽ (x|µ̃(m), λ̃(m)) =

∞. We will argue that this contradicts the zero profit condition for entering firms. If a firm investsι > 0,

there is a probabilityp(ι) > 0 that the firm will increase its quality level by at least one unit. Letτ be the time

a firm takes to transition from statexe to statex. If a firm investsι > 0 in each period, by a geometric trials

argument,E[τ ] <∞. Therefore, there exists an investment strategy for which the expected time and cost to

transition fromxe to x are uniformly bounded above overm. It follows thatsupm Ṽ (xe|µ̃(m), λ̃(m)) = ∞.

This contradicts the zero profit condition.

Let `1,g = {h : N 7→ < | ‖h‖1,g <∞}. With some abuse of notation, letS1,g = S1 ∩ `1,g.

Lemma A.5. Let Assumptions 2.1, 2.2, and 2.3, hold. Then, for allx,

sup
m

sup
µ∈M

Eµ

[ ∞∑
k=t

βk−t sup
f∈S1

πm(xik, f, ñ
(m))

∣∣∣ xit = x

]
<∞.
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Proof. Let all expectations in this proof be conditioned onxit = x. The industry state, and therefore

πm(·, s̃(m)), is not influenced by firmi’s investement decisions. Hence,

(A.6) sup
m

sup
µ∈M

Eµ

[ ∞∑
k=t

βk−tπm(xik, s̃
(m))

]
≤ sup

m
Ṽ (x|µ̃(m), λ̃(m)) <∞,

where the final relation follows from Lemma A.4.

By Assumption 2.1.4, for anyy ∈ N, f, f ′ ∈ S1,g, n ∈ <+, andm ∈ N,

∣∣πm(y, f, n)− πm(y, f ′, n)
∣∣ =

∣∣∣∣∣
∫ 1

γ=0

∑
x∈N

(
f(x)− f ′(x)
‖f − f ′‖2

) (
∂ lnπm(y, f ′ + γ(f − f ′), n)

∂f(x)

)
dγ

∣∣∣∣∣
≤

∫ 1

γ=0

∑
x∈N

(
|f(x)− f ′(x)|
‖f − f ′‖2

)
g(x)dγ

=
‖f − f ′‖1,g

‖f − f ′‖2
< ∞.

Letting f = (1, 0, 0, . . .), it follows that supx∈N,m∈N |πm(x, f, ñ(m)) − πm(x, s̃(m))| ≡ C < ∞. By

Assumption 2.1.2, for allm ∈ <+, x ∈ N, andf ∈ S1, πm(x, f, ñ(m)) ≤ πm(x, f, ñ(m)) ≤ πm(x, s̃(m)) +

C. The result then follows from (A.6).

A.4 Proof of Theorem 4.2

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2,ñ(m) = Ω(m).

Proof. Assume for contradiction thatlim infm ñ(m)

m = 0. Then there exists an increasing sequencemk

such thatlimk
ñ(mk)

mk
= 0, and by Assumption 4.1.2, for allx, z ∈ N with x > z, and f ∈ S1,z,

limk→∞ πmk
(x, f, ñ(mk)) = ∞.

Note that for anyh : S 7→ <+, y ∈ N, f ∈ S1,g, andn ∈ N,

∑
x∈N

h(x)
∣∣∣∣∂πm(y, f, n)

∂f(x)

∣∣∣∣ ≤ ‖h‖1,g.

It follows from Assumptions 2.1.4 and 4.2 that

lim
z→∞

sup
m

inf
f̂∈S1,z

sup
x

∣∣∣lnπm(x, f̃ (m), ñ(m))− lnπm(x, f̂ , ñ(m))
∣∣∣ = 0.
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It follows that

lim
m→∞

sup
m

inf
f̂∈S1,z

sup
x

∣∣∣∣∣πm(x, f̃ (m), ñ(m))

πm(x, f̂ (m), ñ(m))
− 1

∣∣∣∣∣ = 0,

and therefore,

πm(x, f̃ (m), ñ(m)) ≥ (1− ε)πm(x, f̂ (m), ñ(m)),

for all x andm. This implies that for allx > z, limk→∞ πmk
(x, f̃ (mk), ñ(mk)) = ∞, which contradicts

Lemma A.4. It follows that̃n(m) = Ω(m).

A.4.1 Proof of Theorem 4.4

Lemma A.6. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Then, for anyδ > 0,

P

[∣∣∣∣∣n(m)
t

ñ(m)
− 1

∣∣∣∣∣ ≥ δ

]
≤ e−Ω(m).

Proof. By a simple analysis of the Poisson distribution, it is easy to show that ifn is a Poisson random

variable with meañn,

P
[∣∣∣n
ñ
− 1

∣∣∣ ≥ δ
]
≤ e−Θ(ñ).

By Lemma 3.2,n(m)
t is a Poisson random variable with meanñ(m). By Theorem 4.2,̃n(m) = Ω(m). The

result follows.

Theorem 4.3. Let Assumptions 2.1, 2.2, 2.3, 4.1.2, and 4.2, hold. Then, asm grows,n(m)
t /ñ(m) →p 1 and

‖f (m)
t − f̃ (m)‖1,g →p 0.

Proof. Convergence ofn(m)
t /ñ(m) follows from Lemma A.6. To complete the proof, we will establish

convergence of‖f (m)
t − f̃ (m)‖1,g. Note that for anyz ∈ N,

‖f (m)
t − f̃ (m)‖1,g ≤ zmax

x≤z
g(x)|f (m)

t (x)− f̃ (m)(x)|+
∑
x>z

g(x)f (m)
t (x) +

∑
x>z

g(x)f̃ (m)(x)

≡ A(m)
z +B(m)

z + C(m)
z .

We will show that for anyz,A(m)
z converges in probability to zero, that for anyδ > 0, for sufficiently largez,

limm→∞ P[C(m)
z ≥ δ] = 0, and that for anyδ > 0 andε > 0, for sufficiently largez, lim supm→∞ P[B(m)

z ≥

δ] ≤ ε/δ. The assertion that‖f (m)
t − f̃ (m)‖1,g →p 0 follows from these facts.

By Lemma 3.3, for anyx, (f (m)
t (x) | n(m)

t = n) is distributed as the empirical mean ofn i.i.d. Bernoulli

samples with expectatioñf (m)(x). It follows that for anyx, (|f (m)
t (x) − f̃ (m)(x)| | nt = n) converges in
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probability to zero uniformly overm asn grows. By Lemma 4.2 and the fact thatn(m)
t /ñ(m) converges

in probability to1, for anyn, limm→∞ P[n(m)
t ≤ n] = 0. It follows that for anyz, A(m)

z converges in

probability to zero.

By Lemma A.3, for anyδ > 0, for sufficiently largez, lim supm→∞C
(m)
z ≤ δ, and therefore,

limm→∞ P[C(m)
z ≥ δ] = 0. By Tonelli’s Theorem,E[B(m)

z ] = C
(m)
z . Invoking Markov’s inequality,

for anyδ > 0 andε > 0, for sufficiently largez, lim supm→∞ P[B(m)
z ≥ δ] ≤ ε/δ. The result follows.

The following technical lemma follows immediately from Assumption 4.1.3. We omit the proof.

Lemma A.7. Let Assumptions 2.1.3 and 4.1.3 hold. Then, for allε > 0 there existsδ > 0 such that for all

n, n̂ ∈ <+ satisfying|n/n̂− 1| < δ,

sup
x,f,m

∣∣∣∣πm(x, f, n)− πm(x, f, n̂)
πm(x, f, n̂)

∣∣∣∣ < ε.

Lemma A.8. Let Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2 hold. Then, for all sequences{µ(m) ∈M},

lim
m→∞

Eµ(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t|πm(xik, s
(m)
−i,k)− πm(xik, f

(m)
−i,k, ñ

(m))|
∣∣∣ xit = x, s

(m)
−i,t ∼ q(m)

]
= 0.

Proof. For the purpose of this proof, we will assume that all expectations are conditioned onxit = x and

s
(m)
−i,t ∼ q(m). Let ∆(m)

it = |πm(xit, s
(m)
−i,t) − πm(xit, f

(m)
−i,t, ñ

(m))|. Fix ε > 0 and letδ > 0 satisfy the

assertion of Lemma A.7. LetZ denote the event
∣∣∣n(m)

k /ñ(m) − 1
∣∣∣ > δ. Applying Tonelli’s Theorem, we

obtain

Eµ(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t∆(m)
ik

]
=

τi∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik

]
=

τi∑
k=t

βk−t
(
Eµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik 1¬Z

]
+ Eµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik 1Z

])
≤

τi∑
k=t

βk−t
(
εEµ(m),µ̃(m),λ̃(m)

[
πm(xik, f

(m)
−i,k, ñ

(m))
]

+O(m)P[Z]
)

≤ εEµ(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t sup
f∈S1

πm(xik, f, ñ
(m))

]
+
O(m)P[Z]

1− β
,

where the first inequality follows from Lemma A.7 and Assumption 4.1.1. Sinceε is arbitrary, the expected

sum is finite (by Lemma A.5), andP[Z] ≤ e−Ω(m) (by Lemma A.6), the result follows.

The following technical lemma follows immediately from assumptions on the profit function. We omit
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the proof.

Lemma A.9. Let Assumptions 2.1.3 and 2.1.4 hold. Then, for allε > 0 there existsδ > 0 such that for

f, f̂ ∈ S1,g satisfying‖f − f̂‖1,g < δ,

sup
x,f,m

∣∣∣∣∣πm(x, f, n)− πm(x, f̂ , n)

πm(x, f̂ , n)

∣∣∣∣∣ < ε.

Lemma A.10. Let Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2 hold. Then, for all sequences{µ(m) ∈M},

lim
m→∞

Eµ(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t|πm(xik, f
(m)
−i,k, ñ

(m))− πm(xik, s̃
(m))|

∣∣∣ xit = x, s
(m)
−i,t ∼ q(m)

]
= 0.

Proof. For the purpose of this proof, we will assume that all expectations are conditioned onxit = x and

s
(m)
−i,t ∼ q(m). Let ∆(m)

it = |πm(xit, f
(m)
−i,t, ñ

(m)) − πm(xit, s̃
(m))|. Fix ε > 0 and letδ satisfy the assertion

of Lemma A.9. LetZ denote the event‖f (m)
−i,k − f̃ (m)‖1,g > δ. Applying Tonelli’s Theorem, we obtain

Eµ(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t∆(m)
ik

]
=

τi∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik

]
=

τi∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik 1¬Z

]
+ Eµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik 1Z

]
≤ ε

1− β
+

τi∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik 1Z

]
,

where the inequality follows from Lemma A.9.

Note that∆(m)
ik ≤ 2 supf∈S1

πm(xik, f, ñ
(m)). Hence,

τi∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
∆(m)

ik 1Z

]
≤

τi∑
k=t

βk−tEµ(m),µ̃(m),λ̃(m)

[
2 sup

f∈S1

πm(xik, f, ñ
(m))1Zδ

]

= 2P[Z]Eµ(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t sup
f∈S1

πm(xik, f, ñ
(m))

]
,

where the final expression follows from the fact thatf
(m)
ik evolves independently fromx(m)

ik . Sinceε is

arbitrary,P[Z] → 0 (by Theorem 4.3), and the expected sum is finite (by Lemma A.5), the result follows.

Theorem 4.4. Under Assumptions 2.1, 2.2, 2.3, 4.1, and 4.2, the sequence{µ̃(m), λ̃(m)} of oblivious equi-

libria possesses the AME property.
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Proof. Let µ∗(m) be an optimal (non-oblivious) best response to(µ̃(m), λ̃(m)); in particular,

V (m)(x, s|µ∗(m), µ̃(m), λ̃(m)) = sup
µ∈M

V (m)(x, s|µ, µ̃(m), λ̃(m)).

Let

V̂ (m)(x, s) = V (m)(x, s|µ∗(m), µ̃(m), λ̃(m))− V (m)(x, s|µ̃(m), λ̃(m)) ≥ 0.

The AME property, which we set out to establish, asserts that for allx ∈ N, limm→∞Eµ̃(m),λ̃(m) [V̂ (m)(x, s(m)
t )] =

0.

For anym, becausẽµ(m) andλ̃(m) attain an oblivious equilibrium,

Ṽ (m)(x|µ̃(m), λ̃(m)) = sup
µ̃∈M̃

Ṽ (m)(x|µ̃, µ̃(m), λ̃(m)).

It follows that

V̂ (m)(x, s) =
(
V (m)(x, s|µ∗(m), µ̃(m), λ̃(m))− Ṽ (m)(x|µ̃(m), λ̃(m))

)
+

(
Ṽ (m)(x|µ̃(m), λ̃(m))− V (m)(x, s|µ̃(m), λ̃(m))

)
≤

(
V (m)(x, s|µ∗(m), µ̃(m), λ̃(m))− Ṽ (m)(x|µ∗(m), µ̃(m), λ̃(m))

)
+

(
Ṽ (m)(x|µ̃(m), λ̃(m))− V (m)(x, s|µ̃(m), λ̃(m))

)
≡ A(m)(x, s) +B(m)(x, s).

To complete the proof, we will establish thatEµ̃(m),λ̃(m) [A(m)(x, s(m)
t )] andEµ̃(m),λ̃(m) [B(m)(x, s(m)

t )] con-

verge to zero.

Let τi be the time at which firmi exists, and let∆(m)
it = |πm(xit, s

(m)
−i,t) − πm(xit, s̃

(m))|. It is easy to

see that

A(m)(x, s) ≤ Eµ∗(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t = s

]

B(m)(x, s) ≤ Eµ̃(m),λ̃(m)

[
τi∑

k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t = s

]
,

and lettingq(m) be the invariant distribution ofs(m)
t with the oblivious strategỹµ(m) and the oblivious entry
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rateλ̃(m),

Eµ̃(m),λ̃(m)

[
A(m)(x, s(m)

t )
]
≤ Eµ∗(m),µ̃(m),λ̃(m)

[
τi∑

k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t ∼ q(m)

]

Eµ̃(m),λ̃(m)

[
B(m)(x, s(m)

t )
]
≤ Eµ̃(m),λ̃(m)

[
τi∑

k=t

βk−t∆(m)
ik

∣∣∣ xit = x, s
(m)
−i,t ∼ q(m)

]
.

By the triangle inequality,

∆(m)
ik ≤ |πm(xik, s−i,k)− πm(xik, f

(m)
−i,k, ñ

(m))|+ |πm(xik, f
(m)
ik , ñ(m))− πm(xik, s̃

(m))|.

The result therefore follows from Lemmas A.8 and A.10.

A.4.2 Example: Logit Demand System with Price Competition

We consider a single period profit function like the one introduced in Subsection 6.1. It is direct to check

that Assumptions 2.1, 4.1.1, and 4.1.2 are satisfied. Now, we show that Assumption 4.1.3 is satisfied. To

simplify notation we assumeψ = 1. Now,

d lnπm(x, f, n)
d lnn

=
∂ lnπm(x, f, n)

∂ lnn
+
∂ lnπm(x, f, n)

∂px

∂px

∂ lnn
+

∑
i∈S

∂ lnπm(x, f, n)
∂pi

∂pi

∂ lnn
,(A.7)

whereS is the set of firms in states = fn, andpx is the price charged by the firm in statex. The first term

takes into account the direct change in profits due to the change on the number of firms keeping prices fixed.

The second and third terms consider the change in profits implied by the change of prices. Now,

∂ lnπm(x, f, n)
∂ lnn

= −
n

∑
z∈N f(z)(1 + z)δ1(Y − pz)δ2

1 + n
∑

z∈N f(z)(1 + z)δ1(Y − pz)δ2 + (1 + x)δ1(Y − px)δ2
.

Therefore,supm∈N,x∈N,f∈S1,n>0

∣∣∣∂ ln πm(x,f,n)
∂ ln n

∣∣∣ = 1. Similarly, it is possible to show that ifδ2 ≤ 1
2 ,

supm∈N,x∈N,f∈S1,n>0

∣∣∣∂ ln πm(x,f,n)
∂px

∂px

∂ ln n +
∑

i∈S
∂ ln πm(x,f,n)

∂pi

∂pi

∂ ln n

∣∣∣ <∞. The complete derivation is long

and algebraically cumbersome so it is omitted. However, we note a couple of important points. To compute

∂pi

∂ ln n we use equation (6.1) together with the implicit function theorem. Each term in the sum isΘ
(

1
n

)
,

hence the sum, even if it includes an infinite number of terms, remains bounded.

Now we derive the maximal absolute semi-elasticity function,g(x). Similarly to equation (A.7) we have

d lnπm(y, f, n)
df(x)

=
∂ lnπm(y, f, n)

∂f(x)
+
∂ lnπm(y, f, n)

∂py

∂py

∂f(x)
+

∑
i∈S

∂ lnπm(y, f, n)
∂pi

∂pi

∂f(x)
.(A.8)
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Now,
∂ lnπm(y, f, n)

∂f(x)
= − n(1 + x)δ1(Y − px)δ2

1 + n
∑

z∈N f(z)(1 + z)δ1(Y − pz)δ2 + (1 + y)δ1(Y − py)δ2

Therefore,

(A.9) max
m∈N,y∈N,f∈S1,n∈N

∣∣∣∣∂ lnπm(y, f, n)
∂f(x)

∣∣∣∣ = O
(
xδ1

)
.

The second and third terms in equation (A.8) can be bound in a similar way to (A.7). Assumption 4.2 is

satisfied ifsupmE
[
g(x̃(m))1+γ

]
<∞, for someγ > 0. Takeδ1 = 1

1+γ to conclude thatsupmE
[
x̃(m)

]
<

∞ implies the light-tail condition.15

A.5 Proofs and Mathematical Arguments for Section 5

Theorem 5.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Then, for any oblivious equilibrium(µ̃, λ̃) and firm

statex ∈ N,

(A.10) E

[
sup

µ′∈M
V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 2

1− β
E[∆|πm|(s)],

where∆|π|(s) = maxy∈N |π(y, s)− π(y, s̃)|, and

(A.11)

E

[
sup

µ′∈M
V (x, st|µ′, µ̃, λ̃)− V (x, st|µ̃, λ̃)

]
≤ 1

1− β
E[∆π(s)] +

∑
y∈N

ax(y) (π(y, s̃)− E [π(y, s)]) ,

where∆π(s) = maxy∈N (π(y, s)− π(y, s̃)).

Proof. We derive the second bound, beginning with the following proposition. Letµ∗ be an optimal (non-

oblivious) best response to an oblivious equilibrium(µ̃, λ̃) for a firm that is keeping track of the industry

state.

Proposition A.1.

E[V (x, s|µ∗, µ̃, λ̃)− Ṽ (x, s|µ̃, λ̃)] ≤ 1
1− β

E[∆πm(s)] , ∀x ∈ N .

15Note that for largen, πm(x, f, n) grows roughly likexδ1 asx grows. Hence, takingδ1 = 1
1+γ

for smallγ > 0 means that
profits increase almost linearly with the quality level.
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Proof. By a similar argument to the one at the beginning of the proof of Theorem 4.4, we have that

(A.12)

V (x, s|µ∗, µ̃, λ̃)− Ṽ (x, s|µ̃, λ̃) ≤ Eµ∗,µ̃,λ̃

[
τi∑

k=t

βk−t (πm(xik, s−i,k)− πm(xik, s̃))
∣∣∣xit = x, s−i,t = s

]
.

The equation can be rewritten as:

V (x, s|µ∗, µ̃, λ̃)− Ṽ (x, s|µ̃, λ̃) ≤
∞∑

k=t

βk−t
∑
y∈N
s′∈S

Pµ∗,µ̃,λ̃[xik = y, s−i,k = s′ | xit = x, s−it = s] ·

(
πm(y, s′)− πm(y, s̃)

)
,(A.13)

wherePµ∗,µ̃,λ̃[xik = y, s−i,k = s′ | xit = x, s−i,t = s] is the probability firmi, currently in statex with

competitors in states, will be in statey ands′, respectively,k − t periods from now.

We can write:

Pµ∗,µ̃,λ̃[xik = y, s−i,k = s′ | xit = x, s−i,t = s] = Pµ∗,µ̃,λ̃[xik = y | s−i,k = s′, xit = x, s−i,t = s] ·

Pµ∗,µ̃,λ̃[s−i,k = s′ | xit = x, s−i,t = s]

= Pµ∗,µ̃,λ̃[xik = y | s−i,k = s′, xit = x, s−i,t = s] ·

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s].

The last equation follows because rival firms use strategyµ̃, which only depends on their own state, and the

entry rate is̃λ independent of the industry state. Substituting into equation (A.13) gives:

V (x, s|µ∗, µ̃, λ̃)− Ṽ (x, s|µ̃, λ̃) ≤
∞∑

k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s]∑
y∈N

Pµ∗,µ̃,λ̃[xik = y | s−i,k = s′, xit = x, s−i,t = s]
(
πm(y, s′)− πm(y, s̃)

)
≤

∞∑
k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s]max
y∈N

(
πm(y, s′)− πm(y, s̃)

)
,(A.14)

Recall thatq(s) is the invariant distribution of{st : t ≥ 0}, wherest is the industry state at timet

when every firms uses strategyµ̃ and the entry rate is̃λ. Note that{s−i,t : t ≥ 0} is the same process as

{st : t ≥ 0}. Hence for anyk ≥ t:

(A.15) q(s′) =
∑
s∈S

q(s)Pµ̃,λ̃[s−i,k = s′ | s−i,t = s]
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Multiplying equations (A.14) byq(s) and summing over alls ∈ S we obtain:

∑
s∈S

q(s)
(
V (x, s|µ∗, µ̃, λ̃)− Ṽ (x, s|µ̃, λ̃)

)
≤

∑
s∈S

q(s)
∞∑

k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,k = s′ | s−i,t = s] ·

max
y∈N

(
πm(y, s′)− πm(y, s̃)

)
=

∞∑
k=t

βk−t
∑
s′∈S

∑
s∈S

q(s)Pµ̃,λ̃[s−i,k = s′ | s−i,t = s] ·

max
y∈N

(
πm(y, s′)− πm(y, s̃)

)
=

∞∑
k=t

βk−t
∑
s′∈S

q(s′) max
y∈N

(
πm(y, s′)− πm(y, s̃)

)
(A.16)

The second equation follows by Fubini and the last one by equation (A.15). The previous argument is valid

for anyx ∈ N, therefore:

E[V (x, s|µ∗, µ̃, λ̃)− Ṽ (x, s|µ̃, λ̃)] ≤ 1
1− β

E[∆πm(s)] , ∀x ∈ N ,

wheres is a random vector distributed according toq.

Returning to the derivation of the bound, we have that:

(A.17)

E[V (x, s|µ∗, µ̃, λ̃)− V (x, s|µ̃, λ̃)] = E[V (x, s|µ∗, µ̃, λ̃)− Ṽ (x, s|µ̃, λ̃)] +E[Ṽ (x, s|µ̃, λ̃)− V (x, s|µ̃, λ̃)]

The first term is bounded by the previous proposition. Let us analyze the second term:

Ṽ (x, s|µ̃, λ̃)− V (x, s|µ̃, λ̃) = Eµ̃,λ̃

[
τi∑

k=t

βk−t
(
πm(xik, s̃)− dιik

)
+ βτi−tφi

τi

∣∣∣xit = x, s−i,t = s

]

− Eµ̃,λ̃

[
τi∑

k=t

βk−t
(
πm(xik, s−i,k)− dιik

)
+ βτi−tφi

τi

∣∣∣xit = x, s−i,t = s

]

= Eµ̃,λ̃

[
τi∑

k=t

βk−t (πm(xik, s̃)− πm(xik, s−i,k))
∣∣∣xit = x, s−i,t = s

]

=
∞∑

k=t

βk−t
∑
s′∈S

Pµ̃,λ̃[s−i,t = s′ | s−i,t = s] ·∑
y∈N

Pµ̃[xik = y | xit = x]
(
πm(y, s̃)− πm(y, s′)

)
.(A.18)

The last equation follows because under oblivious strategies firms’ trajectories are independent. Multiplying
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each term byq(s), summing over alls ∈ S and interchanging sums in the right hand side using Fubini we

obtain:

(A.19) E[Ṽ (x, s|µ̃, λ̃)−V (x, s|µ̃, λ̃)] =
∞∑

k=t

βk−t
∑
y∈N

P µ̃[xik = y | xit = x] (πm(y, s̃)− E [πm(y, s)]) ,

wheres is a random vector distributed according toq. Finally, interchanging the sums

(A.20) E[Ṽ (x, s|µ̃, λ̃)− V (x, s|µ̃, λ̃)] =
∑
y∈N

ax(y) (πm(y, s̃)− E [πm(y, s)]) .

The second bound follows by equations (A.17), (A.20) and the proposition. The first one follows by a similar

argument, but with the difference that we takemaxy∈N in equation (A.18) and we take absolute value of the

difference of one period profits in equations (A.14) and (A.18).
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B Tables and Figures

Table 1: Comparison of MPE and OE strategies (4 firms, no entry and exit)

Parameters Long Run Statistics (% Diff) Perf Bound (% Diff) Actual (% Diff)
Prod Cons Max Weighted Max Weighted

θ1 d Inv. Surp Surp C1 C2 Diff Avg Diff Avg
0.10 0.10 −0.26 −0.01 −0.02 0.03 0.03 0.14 0.13 0.08 0.07
0.15 0.27 3.54 0.14 0.2 1.22 0.46 0.36 0.35 0.1 0.1
0.20 0.35 4.18 0.29 0.42 1.93 1.03 0.81 0.77 −0.09 −0.05
0.30 0.30 −0.13 0.06 0.08 0.08 0.16 1.67 1.22 0.04 0.01
0.30 0.55 9.28 0.93 1.31 5.10 2.45 1.96 1.85 0.26 0.25
0.40 0.80 21.02 2.10 2.93 11.58 4.12 3.01 2.92 0.30 0.29
0.50 1.00 18.62 3.30 4.33 15.69 5.94 6.29 5.86 0.32 0.30
0.50 0.50 −0.11 0.20 0.28 0.18 0.50 6.64 3.61 0.21 0.06
0.70 0.70 −2.21 0.40 0.15 1.08 2.09 18.85 8.35 1.60 0.67
0.85 0.70 −2.19 0.23 −0.28 1.37 2.10 30.80 9.64 1.80 0.20
1.20 1.00 −8.41 1.59 0.36 2.73 8.41 131.30 48.50 23.70 7.90

Long run statistics and value functions simulated with a relative precision of 1.0% and a confidence level of
99%. Performance bound simulated with a relative precision of at most 10% and a confidence level of 99%.
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Table 2: Comparison of MPE and OE Investment (4 firms, no entry and exit)
Parameters Investment
θ1 d MPE OE % Diff
0.10 0.10 0.752 0.754 −0.26
0.15 0.27 0.192 0.185 3.54
0.20 0.35 0.261 0.250 4.18
0.30 0.30 0.754 0.755 −0.13
0.30 0.55 0.238 0.216 9.28
0.40 0.80 0.168 0.133 21.02
0.50 1.00 0.195 0.158 18.62
0.50 0.50 0.741 0.742 −0.11
0.70 0.70 0.694 0.709 −2.21
0.85 0.70 0.748 0.765 −2.19
1.20 1.00 0.553 0.599 −8.41

Investment simulated with a relative precision of
1.0% and a confidence level of 99%.

Figure 1: Percentage approximation error bound for Poisson entry process for different market
sizes.
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Figure 2: Percentage approximation error bound for deterministic entry process for different mar-
ket sizes.
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Figure 3: Percentage approximation error bound for fixed number of firms.
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Figure 4: Average industry state forθ1 = 0.5 andd = 0.5.
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Figure 5: Average industry state forθ1 = 0.4 andd = 0.8.
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Figure 6: Average industry state for different market sizes forθ1 = 0.9.
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Figure 7: Average industry state for different market sizes forθ1 = 1.2.
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