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Introduction

Background and motivation

Blockchain is one of the most popular issues discussed extensively in recent years, and 

it has already changed people’s lifestyle in some real areas due to its great impact on 

finance, business, industry, transportation, healthcare and so forth. Since the introduc-

tion of Bitcoin by Nakamoto [1], blockchain technologies have obtained many important 

advances in both basic theory and real applications up to now. Readers may refer to, 

for example, excellent books by Wattenhofer [2], Prusty [3], Drescher [4], Bashir [5] and 

Parker [6]; and survey papers by Zheng et al. [7], Constantinides et al. [8], Yli-Huumo 

et al. [9], Plansky et al. [10], Lindman et al. [11] and Risius and Spohrer [12].

Abstract 

In this paper, we develop a more general framework of block‑structured Markov pro‑

cesses in the queueing study of blockchain systems, which can provide analysis both 

for the stationary performance measures and for the sojourn time of any transaction or 

block. In addition, an original aim of this paper is to generalize the two‑stage batch‑

service queueing model studied in Li et al. (Blockchain queue theory. In: International 

conference on computational social networks. Springer: New York; 2018. p. 25–40) both 

“from exponential to phase‑type” service times and “from Poisson to MAP” transaction 

arrivals. Note that the MAP transaction arrivals and the two stages of PH service times 

make our blockchain queue more suitable to various practical conditions of blockchain 

systems with crucial factors, for example, the mining processes, the block generations, 

the blockchain building and so forth. For such a more general blockchain queue‑

ing model, we focus on two basic research aspects: (1) using the matrix‑geometric 

solution, we first obtain a sufficient stable condition of the blockchain system. Then, 

we provide simple expressions for the average stationary number of transactions in 

the queueing waiting room and the average stationary number of transactions in the 

block. (2) However, on comparing with Li et al. (2018), analysis of the transaction–con‑

firmation time becomes very difficult and challenging due to the complicated block‑

chain structure. To overcome the difficulties, we develop a computational technique of 

the first passage times by means of both the PH distributions of infinite sizes and the 

RG factorizations. Finally, we hope that the methodology and results given in this paper 

will open a new avenue to queueing analysis of more general blockchain systems in 

practice and can motivate a series of promising future research on development of 

blockchain technologies.
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It may be necessary and useful to further remark several important directions and 

key research as follows: (1) smart contracts by Par [13], Bartoletti and Pompianu [14], 

Alharby and van Moorsel [15] and Magazzeni et al. [16]; (2) ethereum by Diedrich [17], 

Dannen [18], Atzei et al. [19] and Antonopoulos and Wood [20]; (3) consensus mech-

anisms by Wang et  al. [21], Debus [22], Pass et  al. [23], Pass and Shi [24] and Cachin 

and Vukolić [25]; (4) blockchain security by Karame and Androulaki [26], Lin and Liao 

[27] and Joshi et al. [28]; (5) blockchain economics by Swan [29], Catalini and Gans [30], 

Davidson et al. [31], Bheemaiah [32], Becket al. [33], Biais et al. [34], Kiayias et al. [35] 

and Abadi and Brunnermeier [36]. In addition, there are still some important topics 

including the mining management, the double spending, PoW, PoS, PBFT, withholding 

attacks, pegged sidechains and so on. Also, their investigations may be well understood 

from the references listed above.

Recently, blockchain has become widely adopted in many real applications. Readers 

may refer to, for example, Foroglou and Tsilidou [37], Bahga and Madisetti [38] and Xu 

et al. [39]. At the same time, we also provide a detailed observation on some specific per-

spectives, for instance, (1) blockchain finance by Tsai et al. [40], Nguyen [41], Tapscott 

and Tapscott [42], Treleaven et al. [43] and Casey et al. [44]; (2) blockchain business by 

Mougayar [45], Morabito [46], Fleming [47], Beck et al. [48], Nowiński and Kozma [49] 

and Mendling et al. [50]; (3) supply chains under blockchain by Hofmann et al. [51], Kor-

pela et al. [52], Kim and Laskowski [53], Saberi et al. [54], Petersen et al. [55], Sternberg 

and Baruffaldi [56] and Dujak and Sajter [57]; (4) internet of things under blockchain by 

Conoscenti et al. [58], Bahga and Madisetti [59], Dorri et al. [60], Christidis and Devet-

sikiotis [61] and Zhang and Wen [62]; (5) sharing economy under blockchain by Huckle 

et al. [63], Hawlitschek et al. [64], De Filippi [65], and Pazaitis et al. [66]; (6) healthcare 

under blockchain by Mettler [67], Rabah [68], Griggs et al. [69] and Wang et al. [70]; (7) 

energy under blockchain by Oh et al. [71], Aitzhan and Svetinovic [72], Noor et al. [73] 

and Wu and Tran [74].

Based on the above discussion, whether it is theoretical research or real applications, 

we always hope to know how performance of the blockchain system is obtained, and 

whether there is still some room to be able to further improve performance of the block-

chain system. For this, it is a key to find solution of such a performance issue in the study 

of blockchain systems. Thus, we need to provide mathematical modeling and analysis 

for blockchain performance evaluation by means of, for example, Markov processes, 

Markov decision processes, queueing networks, Petri networks, game models and so on. 

Unfortunately, so far only a little work has been on performance modeling of blockchain 

systems. Therefore, this motivates us in this paper to develop Markov processes and 

queueing models for a more general blockchain system. We hope that the methodology 

and results given in this paper will open a new avenue to Markov processes of block-

chain systems and can motivate a series of promising future research on development of 

blockchain technologies.

Related work

Now, we provide several different classes of related work for Markov processes in block-

chain systems, for example, queueing models, Markov processes, Markov decision pro-

cesses, random walks, fluid limit and so on.
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Queueing models

To use queueing theory to model a blockchain system, we need to observer some key 

factors, for example, transaction arrivals, block generation, blockchain-building, block 

size, transaction fee, mining pools, mining reward, solving difficulty of crypto math-

ematical puzzle, throughput and so forth. As shown in Fig.  1, we design a two-stage, 

Service-In-Random-Order and batch service queueing system by means of two stages 

of asynchronous processes: block generation and blockchain building. Li et  al. [75] is 

the first one to provide a detailed analysis for such a blockchain queue by means of the 

matrix-geometric solution. Kasahara and Kawahara [76] and Kawase and Kasahara [77] 

discussed the blockchain queue with general service times through an incompletely 

solving idea, which has still been for dealing with an interesting open problem up to 

now. In addition, they also gave some useful numerical experiments for performance 

observation. Ricci et al. [78] proposed a framework encompassing machine learning and 

a queueing model, which is used to identify which transactions will be confirmed and to 

characterize the confirmation time of a confirmed transaction. Memon et al. [79] pro-

posed a simulation model for the blockchain systems by means of queuing theory. 

Bowden et al. [80] discussed time-inhomogeneous behavior of the block arrivals in 

the bitcoin blockchain because the block-generation process is influenced by several 

key factors such as the solving difficulty level of crypto mathematical puzzle, trans-

action fee, mining reward, and mining pools. Papadis et  al. [81] applied the time-

inhomogeneous block arrivals to set up some Markov processes to study evolution 

and dynamics of blockchain networks and discussed key blockchain characteristics 
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Fig. 1 A blockchain queueing system under Markovian environment
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such as the number of miners, the hashing power (block completion rates), block dis-

semination delays, and block confirmation rules. Further, Jourdan et al. [82] proposed 

a probabilistic model of the bitcoin blockchain by means of a transaction and block 

graph and formulated some conditional dependencies induced by the bitcoin protocol 

at the block level. Based on analysis in the two papers, it is clear that when the block-

generation arrivals are a time-inhomogeneous Poisson process, we believe that the 

blockchain queue analyzed in this paper will become very difficult and challenging 

and, thus, it will be an interesting topic in our future study.

Markov processes

To evaluate performance of a blockchain system, Markov processes are a basic math-

ematical tool, e.g., see Bolch et al. [83] for more details. As an early key work to apply 

Markov processes to blockchain performance issues, Eyal and Sirer [84] established 

a simple Markov process to analyze the vulnerability of Nakamoto protocols through 

studying the block-forking behavior of blockchain. Note that some selfish miners may 

get higher payoffs by violating the information propagation protocols and postpon-

ing their mined blocks such that such selfish miners exploits the inherent block fork-

ing phenomenon of Nakamoto protocols. Nayak et al. [85] extended the work by Eyal 

and Sirer [84] through introducing a new mining strategy: stubborn mining strategy. 

They used three improved Markov processes to further study the stubborn mining 

strategy and two extensions: the Equal-Fork Stubborn (EFS) and the Trail Stubborn 

(TS) mining strategies. Carlsten [86] used the Markov process to study the impact of 

transaction fees on the selfish mining strategies in the bitcoin network. Göbel et al. 

[87] further considered the mining competition between a selfish mining pool and 

the honest community by means of a two-dimensional Markov process, in which they 

extended the Markov model of selfish mining by considering the propagation delay 

between the selfish mining pool and the honest community.

Kiffer and Rajaraman [88] provided a simple framework of Markov processes for 

analyzing consistency properties of the blockchain protocols and used some numer-

ical experiments to check the consensus bounds for network delay parameters and 

adversarial computing percentages. Huang et al. [89] set up a Markov process with an 

absorbing state to analyze performance measures of the Raft consensus algorithm for 

a private blockchain.

Markov decision processes

Note that the selfish miner may adopt different mining policies to release some blocks 

under the longest-chain rule, which is used to control the block-forking structure. 

Thus, it is interesting to find an optimal mining policy in the blockchain system. To 

do this, Sapirshtein et  al. [90], Sompolinsky and Zohar [91] and Gervais et  al. [92] 

applied the Markov decision processes to find the optimal selfish-mining strategy, in 

which four actions: adopt, override, match and wait, are introduced in order to con-

trol the state transitions of the Markov decision process.
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Random walks

Goffard [93] proposed a random walk method to study the double-spending attack 

problem in the blockchain system and focused on how to evaluate the probability of the 

double-spending attack ever being successful. Jang and Lee [94] discussed profitability of 

the double-spending attack in the blockchain system through using the random walk of 

two independent Poisson counting processes.

Fluid limit

Frolkova and Mandjes [95] considered a bitcoin-inspired infinite-server model with a 

random fluid limit. King [96] developed the fluid limit of a random graph model to dis-

cuss the shared ledger and the distributed ledger technologies in the blockchain systems.

Contributions

The main contributions of this paper are twofold. The first contribution is to develop a 

more general framework of block-structured Markov processes in the study of block-

chain systems. We design a two-stage, Service-In-Random-Order and batch service 

queueing system, whose original aim is to generalize the blockchain queue studied in 

Li et al. [75] both “from exponential to phase-type” service times and “from Poisson to 

MAP” transaction arrivals. Note that the transaction MAP arrivals and two stages of PH 

service times make our new blockchain queueing model more suitable to various practi-

cal conditions of blockchain systems. Using the matrix-geometric solution, we obtain 

a sufficient stable condition of the more general blockchain system and provide simple 

expressions for two key performance measures: the average stationary number of trans-

actions in the queueing waiting room, and the average stationary number of transactions 

in the block.

The second contribution of this paper is to provide an effective method for comput-

ing the average transaction–confirmation time of any transaction in a more general 

blockchain system. In general, it is always very difficult and challenging to analyze the 

transaction–confirmation time in the blockchain system with MAP inputs and PH ser-

vice times, because the service discipline of the blockchain system is new from two key 

points: (1) the “block service” is a class of batch service and (2) some transactions are 

chosen into a block by means of the Service-In-Random-Order. In addition, the MAP 

inputs and PH service times also make analysis of the blockchain queue more compli-

cated. To study the transaction–confirmation time, we set up a Markov process with 

an absorbing state (see Fig.  4) according to the blockchain system (see Figs.  1 and 2). 

Based on this, we show that the transaction–confirmation time of any transaction is the 

first passage time of the Markov process with an absorbing state, hence we can discuss 

the transaction–confirmation time (or the first passage time) by means of both the PH 

distributions of infinite sizes and the RG factorizations. Based on this, we propose an 

effective algorithm for computing the average transaction–confirmation time of any 

transaction. We hope that our approach given in this paper can be applicable to deal 

with the transaction–confirmation times in more general blockchain systems. 

The structure of this paper is organized as follows. "Model description" section 

describes a two-stage, Service-In-Random-Order and batch service queueing system, 
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where the transactions arrive at the blockchain system according to a Markovian 

arrival process (MAP), the block-generation and blockchain-building times are all 

of phase type (PH). "A Markov process of GI/M/1 type" section establishes a contin-

uous-time Markov process of GI/M/1 type, derives a sufficient stable condition of 

the blockchain system, and expresses the stationary probability vector of the block-

chain system by means of the matrix-geometric solution. "The stationary transaction 

numbers" section provides simple expressions for the average stationary number of 

transactions in the queueing waiting room, the average stationary number of trans-

actions in the block, and uses some numerical examples to verify computability of 

our theoretical results. To compute the average transaction–confirmation time of any 

transaction, "The transaction–confirmation time" section develops a computational 

technique of the first passage times by means of both the PH distributions of infinite 

sizes and the RG factorizations. Finally, some concluding remarks are given in last 

section.

Model description

In this section, from a more general point of view of blockchain, we design an inter-

esting and practical blockchain queueing system, where the transactions arrive at the 

blockchain system according to a Markovian arrival process (MAP), while the block-

generation and blockchain-building times are all of phase type (PH).

From a more practical background of blockchain, it is necessary to extend and gen-

eralize the blockchain queueing model, given in Li et al. [75], to a more general case 

not only with non-Poisson transaction inputs but also with non-exponential block-

generation and blockchain-building times. At the same time, we further abstract the 

block-generation and blockchain-building processes as a two-stage, Service-In-Ran-

dom-Order and batch service queueing system by means of the MAP and the PH dis-

tribution. Such a blockchain queueing system is depicted in Fig. 1.

From Fig. 1, now we provide some model descriptions as follows:
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Fig. 2 State transition relations of the Markov process
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Arrival process

Transactions arrive at the blockchain system according to a Markovian arrival process 

(MAP) with matrix representation (C ,D) of order m0 , where the matrix C + D is the 

infinitesimal generator of an irreducible Markov process; C indicates the state transi-

tion rates that only the random environment changes without any transaction arrival, D 

denotes the arrival rates of transactions under the random environment C; (C + D)e = 0 , 

and e is a column vector of suitable size in which each element is one. Obviously, the 

Markov process C + D with finite states is irreducible and positive recurrent. Let ω be the 

stationary probability vector of the Markov process C + D , it is clear that ω(C + D) = 0 

and ωe = 1 . Also, the stationary arrival rate of the MAP is given by � = ωDe.

In addition, we assume that each arriving transaction must first enter a queueing wait-

ing room of infinite size. See the lower left part corner of Fig. 1.

A block‑generation process

Each arriving transaction first needs to enter a waiting room. Then, it may be chosen into 

a block of the maximal size b. This is regarded as the first stage of service, called a block-

generation process. Note that the arriving transactions will be continually chosen into 

the block until the block-generation process is over under which a nonce is appended to 

the block by a mining winner. See the lower middle part of Fig. 1 for more details.

The block-generation time begins the initial epoch of a mining process until a nonce 

of the block is found (i.e., the cryptographic mathematical puzzle is solved for sending 

a nonce to the block), then the mining process is terminated immediately. We assume 

that all the block-generation times are i.i.d., and are of phase type with an irreducible 

representation (β , S) of order m2 , where βe = 1 , the expected blockchain-building time 

is given by 1/µ2 = −βS−1
e.

The block‑generation discipline

A block can consist of some transactions but at most b transactions. Once the mining 

process begins, the transactions in the queueing waiting room are chosen into a block, 

but they are not completely based on the First Come First Service (FCFS) from the order 

of transaction arrivals. For example, several transactions in the back of this queue are 

possible to be chosen into the block. When the block is formed, it will not receive any 

new arriving transaction again. See the lower middle part of Fig. 1.

A blockchain‑building process

Once the mining process is over, the block with a group of transactions will be pegged to 

a blockchain. This is regarded as the second stage of service due to the network latency, 

called a blockchain-building process, see the lower right corner of Fig.  1. In addition, 

the upper part of Fig. 1 also outlines the blockchain and the internal structure of every 

block.

In the blockchain system, we assume that the blockchain-building times are i.i.d, and 

have a common PH distribution with an irreducible representation (α,T ) of order m1 , 

where αe = 1 , and the expected block-generation time is given by 1/µ1 = −αT−1
e.
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The maximum block size

To avoid the spam attacks, the maximum size of each block is limited. We assume that there 

are at most b transactions in each block. If there are more than b transactions in the queue-

ing waiting room, then the b transactions are chosen into a full block so that those redun-

dant transactions are still left in the queueing waiting room, and they find a new choice to 

set up another possible block. In addition, the block size b maximizes the batch service abil-

ity in the blockchain system.

Independence

We assume that all the random variables defined above are independent of each other.

Remark 1 This paper is the first one to consider a blockchain system with non-Poisson 

transaction arrivals (MAPs) and with non-exponential block-generation and blockchain-

building times (PH distributions), and it also provides a detailed analysis for the block-

chain queueing model by means of the block-structured Markov processes and the RG 

factorizations. However, so far analysis of the blockchain queues with renewal arrival 

process or with general service time distributions has still been an interesting open 

problem in queueing research of blockchain systems.

Remark 2 In the blockchain system, there are some key factors including the maximum 

block size, mining reward, transaction fee, mining strategy, security of blockchain and so 

on. Based on this, we may develop reward queueing models, decision queueing models, 

and game queueing models in the study of blockchain systems. Therefore, analysis for 

the key factors will be not only theoretically necessary but also practically important in 

development of blockchain technologies.

A Markov process of GI/M/1 type

In this section, to analyze the blockchain queueing system, we first establish a continuous-

time Markov process of GI/M/1 type. Then, we derive a system stable condition and express 

the stationary probability vector of this Markov process by means of the matrix-geometric 

solution.

Let N1(t),N2(t), I(t), J1(t) and J2(t) be the number of transactions in the queueing 

waiting room, the number of transactions in the block, the phase of the MAP, the phase 

of a blockchain-building PH time, and the phase of a block-generation PH time at time t, 

respectively. We write X = {(N1(t),N2(t), I(t), J1(t), J2(t)), t ≥ 0} . Then, it is easy to see 

that X is a continuous-time Markov process with block structure whose state space is given 

by

� = {(0, 0; i), 1 ≤ i ≤ m0}

∪
{(

0, l; i, j
)

, 1 ≤ l ≤ b, 1 ≤ i ≤ m0, 1 ≤ j ≤ m1

}

∪
{

(k , 0; i, r), k ≥ 1, 1 ≤ i ≤ m0, 1 ≤ r ≤ m2

}

∪
{(

k , l; i, j
)

, k ≥ 1, 1 ≤ l ≤ b, 1 ≤ i ≤ m0, 1 ≤ j ≤ m1

}

.
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From Fig. 1, it is easy to set up the state transition relations of the Markov process X , 

see Fig. 2 for more details. It is a key in understanding of Fig. 2 that there is a different 

transition between State (k , 0) for the block generation and State (k , l) for the blockchain 

building with 1 ≤ l ≤ b because the block-generation and blockchain-building processes 

cannot simultaneously exist at a time, and specifically, a block must first be generated, 

then it can enter the blockchain-building process.

Using Fig. 2, the infinitesimal generator of the Markov process X is given by

where ⊗ and ⊕ are the Kronecker product and the Kronecker sum of two matrices, 

respectively,

and

Clearly, the continuous-time Markov process X is of GI/M/1 type.

Now, we use the mean drift method to discuss the system stable condition of the con-

tinuous-time Markov process X of GI/M/1 type. Note that the mean drift method for 

checking system stability is given a detailed introduction in Chapter 3 of Li [97].
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From Chapter  1 of Neuts [98] or Chapter  3 of Li [97], for the Markov process of 

GI/M/1 type, we write

Clearly, the matrix A is the infinitesimal generator of an irreducible, aperiodic and posi-

tive recurrent Markov process with two levels (i.e., levels 0 and b), together with b − 1 

instantaneous levels (i.e., levels 1, 2, . . . , b − 1 ) which will vanish as the time t goes to 

infinity. On the other hand, such a special Markov process A will not influence appli-

cations of the matrix-geometric solution because it is only related to the mean drift 

method for establishing system stable conditions.

The following theorem discusses the invariant measure θ of the Markov process A , 

that is, the vector θ satisfies the system of linear equations θA = 0 and θe = 1.

Theorem  1 There exists the unique invariant measure θ = (θ0, 0, . . . , 0, θb) of the 

Markov process A, where (θ0, θb) is the stationary probability vector of the irreducible pos-

itive-recurrent Markov process whose infinitesimal generator

Proof It follows from θA = 0 that

For Eq. (4), note that

where C + D is the infinitesimal generator of an irreducible and a positive-recurrent 

Markov process; thus, its eigenvalue of the maximal real part is zero so that all the other 

eigenvalues have a negative real part; while T, coming from the PH distribution with 

(2)

A = A0 + A1 + Ab+1

=















D ⊗ I + C ⊕ S I ⊗
�

S
0α

�

I ⊗
�

T
0β

�

D ⊗ I + C ⊕ T

.

.

.
. . .

I ⊗
�

T
0β

�

D ⊗ I + C ⊕ T

I ⊗
�

T
0β

�
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.

R =

(

D ⊗ I + C ⊕ S I ⊗
(

S
0α

)

I ⊗
(

T
0β

)
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)

.

(3)θ1(D ⊗ I + C ⊕ S) +

b−1
∑

k=1

θk

[

I ⊗

(

T
0β

)]

+ θb

[

I ⊗

(

T
0β

)]

= 0,

(4)θk [D ⊗ I + C ⊕ T ] = 0, 1 ≤ k ≤ b − 1,

(5)θ1

[

I ⊗

(

S
0α

)]

+ θb(D ⊗ I + C ⊕ T ) = 0.

D ⊗ I + C ⊕ T = D ⊗ I + C ⊗ I + I ⊗ T

= (C + D) ⊗ I + I ⊗ T

= (C + D) ⊕ T ,
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irreducible representation (α,T ) , is invertible with the real part of each eigenvalue be 

negative due to the fact that Te � 0 , and the matrix T has the properties that all diago-

nal elements are negative, and all off-diagonal elements are nonnegative. Note that each 

eigenvalue of the matrix (C + D) ⊕ T  is the sum of an eigenvalue of the matrix C + D 

and an eigenvalue of the matrix T; thus, each eigenvalue of the matrix (C + D) ⊕ T  

has a negative real part (i.e., it is non-zero). This shows that the matrix (C + D) ⊕ T  is 

invertible by means of det ((C + D) ⊕ T ) �= 0 , which is the product of all the eigenval-

ues of (C + D) ⊕ T  . Hence, from Equation θk [D ⊗ I + C ⊕ T ] = 0 for 1 ≤ k ≤ b − 1 , we 

obtain

This gives

It follows from (3) and (5) that

Thus, we have

Let

Then, the matrix R is the infinitesimal generator of an irreducible positive-recurrent 

Markov process. Thus, the Markov process R exists the stationary probability vec-

tor (θ0, θb) , that is, there exists the unique solution to the system of linear equations: 

(θ0, θb)R = 0 and θ0e + θbe = 1 . This completes the proof.  �

The following theorem provides a necessary and sufficient conditions under which the 

Markov process Q is positive recurrence.

Theorem 2 The Markov process Q of GI/M/1 type is positive recurrent if and only if

Proof Using the mean drift method given in Chapter 3 of Li [17] (e.g., Theorem 3.19 

and the continuous-time case in Page 172), it is easy to see that the Markov process Q of 

GI/M/1 type is positive recurrent if and only if

θ1 = θ2 = · · · = θb−1 = 0.

θ = (θ0, 0, . . . , 0, θb).

{

θ0(D ⊗ I + C ⊕ S) + θb
[

I ⊗
(

T 0β
)]

= 0,

θ0
[

I ⊗
(

S0α
)]

+ θb(D ⊗ I + C ⊕ T ) = 0.

(θ0, θb)

(

D ⊗ I + C ⊕ S I ⊗
(

S0α
)

I ⊗
(

T 0β
)

D ⊗ I + C ⊕ T

)

= (0, 0).

R =

(

D ⊗ I + C ⊕ S I ⊗
(

S
0α

)

I ⊗
(

T
0β

)

D ⊗ I + C ⊕ T

)

.

(6)(θ0 + θb)(D ⊗ I)e < bθ0

[

I ⊗

(

S
0α

)]

e.
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Note that

and

thus, we obtain

This completes the proof.  �

It is necessary to consider a special case in which the transaction inputs are Poisson with 

arrival rate � , and the blockchain-building and block-generation times are exponential with 

service rates µ1 and µ2 , respectively. Note that this special case was studied in Li et al. [75], 

here we only restate the stable condition as the following corollary.

Corollary 3 The Markov process Q of GI/M/1 type is positive recurrent if and only if

By observing (10), it is easy to see that 1/(bµ1) + 1/(bµ2) < 1/� , that is, the complicated 

service speed of transactions is faster than the transaction arrival speed, under which the 

Markov process Q of GI/M/1 type is positive recurrent. However, it is not easy to under-

stand Condition (6) which is largely influenced by the matrix computation with respect to 

the MAP and the PH distribution.

If the Markov process Q of GI/M/1 type is positive recurrent, we write its stationary 

probability vector as

where for k = 0

and for 1 ≤ l ≤ b

(7)θA0e < bθAb+1e.

(8)
θA0e = θ0(D ⊗ I)e + θb(D ⊗ I)e

= (θ0 + θb)(D ⊗ I)e

(9)bθAb+1e = bθ0

[

I ⊗

(

S
0
α

)]

e,

(θ0 + θb)(D ⊗ I)e < bθ0

[

I ⊗

(

S
0α

)]

e.

(10)
bµ1µ2

µ1 + µ2

> �.

π = (π0,π1,π2, . . .),

π0 =
(

π0,0,π0,1, . . . ,π0,b

)

,

π0,0 =

(

π
(i)
0,0

: 1 ≤ i ≤ m0

)

,

π0,l =

(

π
(i,j)
0,l : 1 ≤ i ≤ m0, 1 ≤ j ≤ m1

)

;
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for k ≥ 1

and for 1 ≤ l ≤ b

Note that in the above expressions, the vector a =

(

a(i,j) : 1 ≤ i ≤ I , 1 ≤ j ≤ J
)

 is based 

on the lexicographical order of the elements, that is,

If (θ0 + θb)(D ⊗ I)e < bθ0
[

I ⊗
(

S
0α

)]

e , then the Markov process Q of GI/M/1 type is 

irreducible and positive recurrent. Thus, the Markov process Q exists a unique station-

ary probability vector, which is also matrix-geometric. Thus, to express the matrix-geo-

metric stationary probability vector, we need to first obtain the rate matrix R, which is 

the minimal nonnegative solution to the following nonlinear matrix equation

In general, it is very complicated to solve this nonlinear matrix equation (11) due to the 

term Rb+1
Ab+1 of size b + 1 . In fact, for the blockchain queueing system, here we can-

not provide an explicit expression for the rate matrix R yet. In this case, we can use some 

iterative algorithms, given in Neuts [98], to give its numerical solution. For example, an 

effective iterative algorithm given in Neuts [98] is described as

Note that this algorithm is fast convergent, that is, after a finite number of iterative steps, 

we can numerically obtain a solution of higher precision which is used to approximate 

the rate matrix R.

The following theorem directly comes from Theorem 1.2.1 of Chapter 1 in Neuts [98]. 

Here, we restate it without a proof.

Theorem 4 If the Markov process Q of GI/M/1 type is positive recurrent, then the sta-

tionary probability vector π = (π0,π1,π2, . . .) is given by

where the vector (π0,π1) is the stationary probability vector of the censoring Markov 

process Q(1,2) of levels 0 and 1 which is irreducible and positive recurrent. Thus, it is the 

unique solution to the following system of linear equations:

πk =
(

πk ,0,πk ,1, . . . ,πk ,b

)

,

πk ,0 =

(

π
(i,r)

k ,0
: 1 ≤ i ≤ m0, 1 ≤ r ≤ m2

)

,

πk ,l =

(

π
(i,j)
k ,l : 1 ≤ i ≤ m0, 1 ≤ j ≤ m1

)

.

a =

(

a(1,1)
, a(1,2)

, . . . , a(1,J )
; a(2,1)

, a(2,2)
, . . . , a(2,J )

; . . . ; a(I ,1)
, a(I ,2)

, . . . , a(I ,J )
)

.

(11)R
b+1

Ab+1 + RA1 + A0 = 0.

R0 = 0,

RN+1 =

(

R
b+1
N

Ab+1 + A0

)

(−A1)
−1

.

(12)πk = π1R
k−1

, k ≥ 2.
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where

Proof Here, we only derive the boundary condition (13). It follows from πQ = 0 that

Using the matrix-geometric solution πk = π1R
k−1 for k ≥ 2 , we have

This gives the desired result and completes the proof.  �

The stationary transaction numbers

In this section, we discuss two key performance measures: the average stationary numbers 

of transactions both in the queueing waiting room and in the block and give their simple 

expressions by means of the vectors π0 and π1 , and the rate matrix R. Finally, we use numer-

ical examples to verify computability of our theoretical results and show how the perfor-

mance measures depend on the main parameters of this system.

If (θ0 + θb)(D ⊗ I)e < bθ0
[

I ⊗
(

S
0α

)]

e , then the blockchain system is stable. In this 

case, we write that w.p.1,

where N1(t) and N2(t) are the random numbers of transactions in the queueing waiting 

room and of transactions in the block at time t ≥ 0 , respectively.

a. The average stationary number of transactions in the queueing waiting room

It follows from (12) and (13) that

(13)

{

(π0,π1)Q
(1,2)

= (π0,π1),

π0e + π1(I − R)−1
e = 1,

Q(1,2)
=





B1 B0

b+1
�

k=2

Rk−2Bk A1 + RbAb+1



.

{

π0B1 + π1B2 + · · · + πbBb+1 = 0,

π0B0 + π1A1 + πb+1Ab+1 = 0.

{

π0B1 + π1

(

B2 + RB3 + · · · + R
b−1

Bb+1

)

= 0,

π0B0 + π1

(

A1 + R
b
Ab+1

)

= 0.

N1 = limt→+∞N1(t), N2 = limt→+∞N2(t),

E[N1] =

∞∑

k=1

k

m0∑

i=1

m2∑

r=1

π
(i,r)
k ,0 +

∞∑

k=1

k

b∑

l=1

m0∑

i=1

m1∑

j=1

π
(i,j)
k ,l

=

∞∑

k=1

k

b∑

l=0

πk ,l e

=

∞∑

k=1

k πk e = π1R(I − R)−2e.
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Note that the above three vectors e have different sizes, for example, the size of the first 

one is m0 × m2 for l = 0 and m0 × m1 for 1 ≤ l ≤ b , while the sizes of the second and 

third are m0 × (m2 + bm1) . For simplicity of description, here we use only a vector e 

whose size can easily be inferred by the context.

b. The average stationary number of transactions in the block

Let h = (0, e, 2e, . . . , be)
T . Then

In the remainder of this section, we provide some numerical examples to verify com-

putability of our theoretical results, and to analyze how the two performance measures 

E[N1] and E[N2] depend on some crucial parameters of the blockchain queueing system.

In the two numerical examples, we take some common parameters: The block-build-

ing service rate µ1 ∈ [0.05, 1.5] , the block-generation service rate µ2 = 2 , the arrival rate 

� = 0.3 , the maximum block size b = 40, 320, 1000 , respectively.

From Fig. 3, it is seen that E[N1] and E[N2] decrease, as µ1 increases. At the same time, 

E[N1] decreases as b increases, but E[N2] increases as b increases.

The transaction–confirmation time

In this section, we provide a matrix-analytic method based on the RG factorizations 

for computing the average transaction–confirmation time of any transaction, which is 

always an interesting but difficult topic because of the batch service for a block of trans-

actions, and of the Service-In-Random-Order for choosing some transactions from the 

queueing waiting room into a block.

In the blockchain system, the transaction–confirmation time is the time interval 

from the time epoch that a transaction arrives at the queueing waiting room to the 

time point that the block including the transaction is first confirmed and then it is built 

in the blockchain. Obviously, the transaction–confirmation time is the sojourn time 

of the transaction in the blockchain system, and it is the sum of the block-generation 

and blockchain-building times with respect to the transaction taken in the block. Let I 

denote the transaction–confirmation time of any transaction when the blockchain sys-

tem is stable.

To study the transaction–confirmation time I , we need to introduce the stationary life 

time Ŵs of the PH blockchain-building time Ŵ with an irreducible representation (α,T ) . 

E[N2] =

b
∑

l=0

l

∞
∑

k=0

m0
∑

i=1

m1
∑

j=1

π
(i,j)
k ,l

=

b
∑

l=0

l

∞
∑

k=0

πk ,l e

=

∞
∑

k=0

πk h

=

[

π0 + π1(I − R)−1
]

h.
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Let ̟ be the stationary probability vector of the Markov process T + T
0
α . Then, the 

stationary life time Ŵs is also a PH distribution with an irreducible representation (̟ ,T ) , 

e.g., see Property 1.5 in Chapter 1 of Li [97]. Clearly, E[Ŵs] = −̟T
−1

e.

Now, we introduce a Markov process {Y (t) : t ≥ 0} with an absorbing state, whose 

state transition relation is given in Fig. 4 according to Figs. 1 and 2. At the same time, we 

define the first passage time as

For k ≥ 0, 1 ≤ i ≤ m0 and 1 ≤ r ≤ m2 , if Y (0) = (k , 0; i, r) , then we write the first pas-

sage time as ξ|(k ,0;i,r).

Remark 3 It is necessary to explain the absorbing rates in the below part of Fig. 4.

1. If Y (0) = (k , l) for 1 ≤ k ≤ b and 0 ≤ l ≤ b , then the k transactions can be chosen 

into a block once the previous block is pegged to the blockchain, a tagged transaction 

of the k transactions is chosen into the block with probability 1.

ξ = inf
{

t : Y (t) = the absorbing state, t ≥ 0
}

.

( 0,1 )

(0,b-1)

( 0,b )

( 1,0 )

( 1,1 )

(1,b-1)

( 1,b )

( b-1,0 )

( b-1,1 )

(b-1,b-1)

( b-1,b)

( b,0 )

( b,1 )

(b,b-1)

( b,b )

( b+1,0 )

( b+1,1 )

(b+1,b-1)

( b+1,b )

( b+2,0 )

( b+2,1 )

(b+2,b-1)

( b+2,b )

 : The Markov arrival process (MAP) with irreducible representation ,C D

 : The PH blockchain-building times with irreducible representation ,T

 : The PH blockchain-generation times with irreducible representation ,S

An absorbing state

0 ,  1k b l b

,k l

An absorbing state

0
e T

1,  1k b l b

,k l

An absorbing state

0b
e T
k

,0k
0bk

e T
k

1

Fig. 4 State transition relations of the Markov process with an absorbing state
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2. If Y (0) = (k , l) for k ≥ b + 1 and 0 ≤ l ≤ b , then any b transactions of the k transac-

tions can randomly be chosen into a block once the previous block is pegged to the 

blockchain; thus, a tagged transaction of the k transactions is chosen into the block 

of the maximal size b with probability b/k.

When a transaction arrives at the queueing waiting room, it can observe the states of the 

blockchain system having two different cases:

Case one: state (k , 0; i, r) for k ≥ 1; 1 ≤ i ≤ m0 and 1 ≤ r ≤ m2 . In this case, with the ini-

tial probability π
(i,r)

k ,0
 , the transaction–confirmation time I is the first passage time ξ|(k ,0;i,r) 

of the Markov process with an absorbing state, whose state transition relation is given in 

Fig. 4.

Case two: state (k , l; i, r) for k ≥ 1, 1 ≤ l ≤ b; 1 ≤ i ≤ m0 and 1 ≤ j ≤ m1 . In this case, 

with the initial probability π
(i,j)
k ,l  , the transaction–confirmation time I is decomposed into 

the sum of the random variable Ŵs and the first passage time ξ|(k ,0;i,r) given in Case one. It is 

easy to see from Fig. 4 that there exists a stochastic decomposition: I = Ŵs + ξ|(k ,0;i,r).

From the above analysis, it is easy to see that computation of the first passage time 

ξ|(k ,0;i,r) is a key in analyzing the transaction–confirmation time.

Based on the state transition relation given in Fig. 4, now we write the infinitesimal gen-

erator of the Markov process {Y (t) : t ≥ 0} as

where

for k ≥ b + 1

(14)H =




�B1
�B0

�B2
�A1 A0

�B3
�A1 A0

.

.

.
. . .

. . .

�Bb+1
�A1 A0

Ab+1
�A(b+1)
1

A0

Ab+1
�A(b+2)
1

A0

. . .
. . .

. . .




,

A0 =




D ⊗ I

D ⊗ I

. . .

D ⊗ I


, Ab+1 =




0 · · · 0 I ⊗
�
S
0
α

� 
,

�A1 =




C ⊕ S

C ⊕ T

. . .

C ⊕ T


,
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If the blockchain system is stable, then the probability that a transaction observes State 

(0, 0; i) only after arrived at the instant is π
(i,r)
1,0

 ; for 1 ≤ l ≤ b , the probability that a 

transaction observes State 
(

0, l; i, j
)

 only after arrived at the instant is π
(i,j)
1,l  ; for k ≥ 2 , 

the probability that a transaction observes State (k − 1, 0; i, r) only after arrived at the 

instant is π
(i,r)

k ,0
 ; for k ≥ 2, 1 ≤ l ≤ b , the probability that a transaction observes State 

(

k − 1, l; i, j
)

 only after arrived at the instant is π
(i,j)
k ,l  . Obviously, for 0 ≤ l ≤ b , States 

(0, 0; i) and 
(

0, l; i, j
)

 will not be encountered by the transaction only after arrived at the 

instant and, thus, the stationary probabilities π
(i)
0,0

 and π
(i,j)
0,l  should be omitted by means 

of the observation of any arriving transaction. Based on this, we introduce a new initial 

probability vector for the observation of any transaction only after arrived at the instant 

as follows:

where for k ≥ 1

and for 1 ≤ l ≤ b

To emphasize on the event that the transaction observes State (k − 1, 0; i, r) only after 

arrived at the instant, we introduce a new initial probability vector

where for k ≥ 1

�A(k)
1

=




C ⊕ S

I ⊗

�
k−b

k
T 0β

�
C ⊕ T

.

.

.
. . .

I ⊗

�
k−b

k
T 0β

�
C ⊕ T




;

�B0 =




0 D ⊗ I

D ⊗ I

. . .

D ⊗ I


, �B1 =




C ⊗ I

C ⊕ T

. . .

C ⊕ T


,

�B2 =




I ⊗
�
S0α

�
0 0 · · · 0


, . . . , �Bb+1 =




0 · · · 0 I ⊗
�
S0α

� 
.

γ = (γ1, γ2, γ3, . . .),

γk =
(

γk ,0, γk ,1, . . . , γk ,b
)

,

γk ,0 =

(

1

1 − π0e
π

(i,r)

k ,0
: 1 ≤ i ≤ m0, 1 ≤ r ≤ m2

)

γk ,l =

(

1

1 − π0e
π

(i,j)
k ,l : 1 ≤ i ≤ m0, 1 ≤ j ≤ m1

)

.

ϕ = (ϕ1,ϕ2,ϕ3, . . .),

ϕk =

(

γk ,0, 0, 0, . . . , 0
)

.
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In addition, we take

Theorem 5 If the blockchain system is stable, then the first passage time ξ|(k ,0;i,r) is a PH 

distribution of infinite size with an irreducible representation (η(k , 0; i, r),H), where H is 

given in (14), and

Also, we have

Proof If the blockchain system is stable, then ξ|(k ,0;i,r) is the first passage time of the 

Markov process H (or {Y (t) : t ≥ 0} ) with an absorbing state and under the initial state 

Y (0) = (k , 0; i, r) . Note that the original Markov process Q given in (1) is irreducible and 

positive recurrent and, thus, ξ|(k ,0;i,r) is a PH distribution of infinite size with an irreduc-

ible representation (η(k , 0; i, r),H) . At the same time, a simple computation gives

This completes the proof.  �

Based on Theorem 5, now we extend the first passage time ξ|(k ,0;i,r) to ξ|(0,ϕ) , which is 

the first passage time of the Markov process H with an initial probability vector (0,ϕ) . 

The following corollary shows that ξ|(0,ϕ) is PH distribution of infinite size, while its 

proof is easy and is omitted here.

Corollary 6 If the blockchain system is stable, then the first passage time ξ|(0,ϕ) is a PH 

distribution of infinite size with an irreducible representation ((0,ϕ),H), and

The following theorem provides a simple expression for the average transaction–

confirmation time E[I] by means of Corollary 6.

Theorem 7 If the blockchain queueing system is stable, then the average transaction–

confirmation time E[I] is given by

ψ = γ − ϕ.

η(k , 0; i, r) =

(

0, 0, . . . , 0,
1

1 − π0e
π

(i,r)

k ,0
, 0, 0, . . . , 0

)

.

H
0

= −He

=

(

e ⊗ T
0
, e ⊗ T

0
, . . . , e ⊗ T

0
;

b

b + 1
e ⊗ T

0
,

b

b + 2
e ⊗ T

0
, . . .

)

.

H
0

=

(

e ⊗ T
0
, e ⊗ T

0
, . . . , e ⊗ T

0
;

b

b + 1
e ⊗ T

0
,

b

b + 2
e ⊗ T

0
, . . .

)

.

E
[

ξ|(0,ϕ)

]

= −(0,ϕ)H−1
e,

Var
[

ξ|(0,ϕ)

]

= (0,ϕ)H−2
e −

[

(0,ϕ)H−1
e

]2

.
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 where Ŵs is the stationary life time of the PH blockchain-building time with an irreducible 

representation (α,T ). Further, we have

where ̟  is the stationary probability vector of the Markov process T + T
0
α.

Proof We first introduce two basic events

and

It is easy to see that � ∪ �
c
= � . Thus, the two events are complementary according to 

the fact that the transaction can observe all the states of the Markov process Q only after 

arrived at the instant. If the blockchain system is stable, then it is easy to compute the 

probabilities of the two events as follows:

and

Using the law of total probability, we obtain

The proof is completed.  �

As shown in Theorem 7, it is a key in the study of PH distributions of infinite sizes 

whether or not we can compute the inverse matrix H−1 of infinite size. To this end, we 

E[I] = E
[

ξ|(0,ϕ)

]

+ (1 − ϕe)E[Ŵs],

E[I] = −(0,ϕ)H−1
e − (1 − ϕe)̟T

−1
e,

� =
{

The transaction observes States (0, 0; i) and (k , 0; i, r)

for 1 ≤ i ≤ m0, k ≥ 1, 1 ≤ r ≤ m2

only after arrived at the instant
}

�
c
=

{

The transaction observes States
(

k , l; i, j
)

for k ≥ 1, 1 ≤ l ≤ b, 1 ≤ i ≤ m0, 1 ≤ j ≤ m1

only after arrived at the instant
}

.

P{�} = (0,ϕ)e = ϕe

P
{

�c
}

= 1 − P{�} = 1 − ϕe.

E[I] = P{�}E[I | �] + P
{

�c
}

E
[

I | �c
]

= ϕe E
[

ξ|(0,ϕ)

]

+ (1 − ϕe)E
[

Ŵs + ξ|(0,ϕ)

]

= E
[

ξ|(0,ϕ)

]

+ (1 − ϕe)E[Ŵs]

= −(0,ϕ)H−1
e − (1 − ϕe)̟T

−1
e.
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need to use the RG factorizations, given in Li [97], to provide such a computable path. 

In what follows, we provide only a simple interpretation on such a computation, while 

some detailed discussions will be left in our another paper in the future.

In fact, it is often very difficult and challenging to compute the inverse of a matrix of 

infinite size only except for the triangular matrices. Fortunately, using the RG factoriza-

tions, the infinitesimal generator H can be decomposed into a product of three matrices: 

two block-triangular matrices and a block-diagonal matrix. Therefore, the RG factoriza-

tions play a key role in generalizing the PH distributions from finite dimensions to infi-

nite dimensions.

Using Subsection 2.2.3 in Chapter 2 of Li [97] (see Pages 88 to 89), now we provide 

the UL-type RG factorization of the infinitesimal generator H . It will be seen that the 

RG factorization of H has a beautiful block structure, which is well related to the special 

block characteristics of H corresponding to the blockchain system. To this end, we need 

to define and compute the R-, U- and G-measures as follows.

The R‑measure

Let Rk for k ≥ 0 be the minimal nonnegative solution to the system of nonlinear matrix 

equations:

and

The U‑measure

Based on the R-measure Rk for k ≥ 0 , we have

R0 = B̃0 + R0Ã1 + R0R1 · · ·Rb−1RbAb+1,

R1 = A0 + R1Ã1 + R1R2 · · ·RbRb+1Ab+1,

R2 = A0 + R2Ã1 + R2R3 · · ·Rb+1Rb+2Ab+1,

.

.

.

Rb−1 = A0 + Rb−1Ã1 + Rb−1Rb · · ·R2b−2R2b−1Ab+1,

Rb = A0 + RbÃ
(b+1)
1

+ RbRb+1 · · ·R2b−1R2bAb+1,

Rb+1 = A0 + Rb+1Ã
(b+2)
1

+ Rb+1Rb+2 · · ·R2bR2b+1Ab+1,

Rb+2 = A0 + Rb+2Ã
(b+3)
1

+ Rb+2Rb+3 · · ·R2b+1R2b+2Ab+1,

.

.

.

U0 = B̃1 + R0B̃2 + R0R1B̃3 + · · · + R0R1 · · ·Rb−2Rb−1B̃b+1,

U1 = Ã1 + R1R2 · · ·Rb−1RbAb+1,

U2 = Ã1 + R2R3 · · ·RbRb+1Ab+1,

.

.

.

Ub = Ã1 + RbRb+1 · · ·R2b−2R2b−1Ab+1,
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and

The G‑measure

Based on the R-measure Rk for k ≥ 0 and the U-measure Uk for k ≥ 0 , we have

and for k ≥ 3

Based on the R-, U- and G-measures, we provide the UL-type RG factorization of the 

infinitesimal generator H as follows:

Ub+1 = Ã
(b+1)
1

+ Rb+1Rb+2 · · ·R2b−1R2bAb+1,

Ub+2 = Ã
(b+2)
1

+ Rb+2Rb+3 · · ·R2bR2b+1Ab+1,

Ub+3 = Ã
(b+3)
1

+ Rb+3Rb+4 · · ·R2b+1R2b+2Ab+1,

.

.

.

G1,0 = (−U1)
−1

(
B̃2 + R1B̃3 + R1R2B̃4 + · · · + R1R2 · · ·Rb−2Rb−1B̃b+1

)
,

G2,0 = (−U2)
−1

(
B̃3 + R2B̃4 + R2R3B̃5 + · · · + R2R3 · · ·Rb−2Rb−1B̃b+1

)
,

.

.

.

Gb−1,0 =
(
−Ub−1

)
−1

(
B̃b + Rb−1B̃b+1

)
,

Gb,0 = (−Ub)
−1

B̃b+1,

G2,1 = (−U2)
−1

R2R3 · · ·Rb−1RbAb+1,

G3,1 = (−U3)
−1

R3R4 · · ·Rb−1RbAb+1,

.

.

.

Gb,1 = (−Ub)
−1

RbAb+1,

Gb+1,1 =
(
−Ub+1

)
−1

Ab+1,

Gk ,k−1 = (−Uk)
−1

RkRk+1 · · ·Rk+b−3Rk+b−2Ab+1,

Gk+1,k−1 =
(

−Uk+1

)

−1
Rk+1Rk+2 · · ·Rk+b−3Rk+b−2Ab+1,

.

.

.

Gk+b−2,k−1 =
(

−Uk+b−2

)

−1
Rk+b−2Ab+1,

Gk+b−1,k−1 =
(

−Uk+b−1

)

−1
Ab+1.

H = (I − RU )U(I − GL),
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where

 and

Based on the UL-type RG factorization H =(I − RU )U(I − GL) , we obtain

where the inverse matrices (I − GL)
−1 , U−1 and (I − RU )−1 are given some expressions 

in Appendix A.3 of Li [97]: inverses of matrices of infinite size (see Pages 654 to 658). 

Once the inverse of matrix H of infinite size is given, the PH distribution of infinite size 

can be constructed under a computable and feasible framework. In fact, this is very 

important in the study of stochastic models. Also see Li et al. [99] and Takine [100] for 

more details.

Remark 4 In general, it is always very difficult and challenging to discuss the transac-

tion–confirmation time of any transaction in a blockchain system due to two key points: 

The block service is a class of batch service, and some transactions are chosen into a 

block by means of the Service-In-Random-Order. For a more general blockchain system, 

this paper sets up a Markov process with an absorbing state, and shows that the transac-

tion–confirmation time is the first passage time of the Markov process with an absorb-

ing state. Therefore, this paper can discuss the transaction–confirmation time by means 

of the PH distribution of infinite size (corresponding to the first passage time) and pro-

vides an effective algorithm for computing the average transaction–confirmation time 

using the RG factorizations of block-structured Markov processes of infinite levels. We 

believe that the RG factorizations of block-structured Markov processes will play a key 

role in the queueing study of blockchain systems.

RU =













0 R0

0 R1

0 R2

0 R3

. . .
. . .













,

U = diag(U0,U1,U2,U3, . . .)

GL =































0

G1,0 0

G2,0 G2,1 0

.

.

.
.
.
.

.

.

.
. . .

Gb−1,0 Gb−1,1 Gb−1,b−2 · · · 0

Gb,0 Gb,1 Gb,b−2 · · · Gb,k 0

Gb+1,1 Gb+1,b−2 · · · Gb+1,k Gb+1,k+1 0

Gb+2,b−2 · · · Gb+2,k Gb+2,k+1 Gb+2,k+2 0

. . .
. . .

. . .
. . .

. . .
. . .































.

H
−1

= (I − GL)
−1

U
−1(I − RU )−1

,
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Concluding remarks

In this paper, we develop a more general framework of block-structured Markov pro-

cesses in the queueing study of blockchain systems. To do this, we design a two-stage, 

Service-In-Random-Order and batch service queueing system with MAP transaction 

arrivals and two-stages of PH service times and discuss some key performance measures 

such as the average stationary number of transactions in the queueing waiting room, 

the average stationary number of transactions in the block, and the average transac-

tion–confirmation time of any transaction. Note that the study of performance measures 

is a key to improve blockchain technologies sufficiently. On the other hand, an original 

aim of this paper is to generalize the two-stage batch-service queueing model studied in 

Li et al. [75] both “from exponential to phase-type” service times and “from Poisson to 

MAP” transaction arrivals. Note that the MAP transaction arrivals and the two stages of 

PH service times make our queueing model more suitable to various practical conditions 

of blockchain systems with key factors, for example, the mining processes, the reward 

incentive, the consensus mechanism, the block generation, the blockchain building and 

so forth.

Using the matrix-geometric solution, we first obtain a sufficient stable condition of 

the blockchain system. Then, we provide simple expressions for two key performance 

measures: the average stationary number of transactions in the queueing waiting room, 

and the average stationary number of transactions in the block. Finally, to deal with the 

transaction–confirmation time, we develop a computational technique of the first pas-

sage times by means of both the PH distributions of infinite sizes and the RG factoriza-

tions. In addition, we use numerical examples to verify computability of our theoretical 

results. Along these lines, we will continue our future research on several interesting 

directions as follows:

• Developing effective algorithms for computing the average transaction–confirmation 

times in terms of the RG factorizations.

• Analyzing multiple classes of transactions in the blockchain systems, in which the 

transactions are processed in the block-generation and blockchain-building pro-

cesses according to a priority service discipline.

• When the arrivals of transactions are a renewal process, and/or the block-generation 

times and/or the blockchain-building times follow general probability distributions, 

an interesting future research is to focus on fluid and diffusion approximations of 

blockchain systems.

• Setting up reward function with respect to cost structures, transaction fees, min-

ing reward, consensus mechanism, security and so forth. It is very interesting in our 

future study to develop stochastic optimization, Markov decision processes and sto-

chastic game models in the study of blockchain systems.
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