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Markov programming by successive approximations

with respect to weighted supremum norms

by

J. Wessels

Summary. Markovian decision processes are considered in the situation of dis­

crete time. countable state space. and general decision space. By introducing

a Banach space with a weighted supremum norm. conditions are derived, which

guarantee convergence of successive approximations to the value function.

These conditions are weaker then those required by the usual supnorm approach.

Several properties of the successive approximations are derived.

I. Introduction. We consider a Markov decision process with a countably infi­

nite or finite state space $ and decision space K. defined as follows. A

system is observed at discrete points of time (t = 0.1.2 •••• ). If at time t

the state of the system is i € $. a decision k € K may be chosen. which re­

sults in a reward r~. The state i at time t and the decision k determine the
1

probability p~. of observing the system in state j at time t + 1 (regardless
1J

of the earlier history of the process). We suppose:

L
jEt;

k <p .. -
l.J

for all 1 € $. k E K •

Hence a positive probability for fading of the system is allowed.

A policy f is a function on $ with values in K. A strategy s is a sequence

of policies: s = (fO,f1,f2•••• ). If strategy s is used. we take decision

ft(i), if at time t the state of the system is i. i.e. we introduce only

so-called (nonrandomized) Markov strategies.

As optimality criterion we choose total expected reward. which is defined

for a strategy s = (fO,f1, ••• ) as a vector V(s) in the following way

00 t-J
V(s) = L [IT P(fn)]r(f t )

t=O n=O

where the sum is supposed to remain convergent when rewards are replaced

by their absolute values,
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ref) is interpreted as a (column) vector with i-component r~(i) (for 1 E $)
1

for any policy f, and

P(f) " d .. h ( .. ) f(i) (f cr) fIS Interprete as a matrIx WIt I,J -component p.. or I,J E ~ or
IJ

any policy f.

Matrix products, matrix-vector products and sums of vectors are defined In

the usual way; an empty matrix product is the identical matrix.

This formulation contains the discounted case (6 ~ 1), since the discount­

factor may be supposed to be incorporated in the p~ .• The same holds for the
IJ

semi-Markov case, which only requires t to be interpreted as the number of

the decision moment rather than as actual time. For semi-Markov decision pro­

cesses with discounting the resulting discountfactors depend on i,j,k and

may again be supposed to be incorporated in the p~ .•
IJ

V(s) converges absolutely and uniformly in its components under the follow­

ing conditions:

L p~. ~ p < 1, Ir~1 ~ M. IJ 1
J

(for all i E $, k E K) •

Under these conditions the total expected reward V.(s), when the system
1

starts in i and under strategy s, is at most 1 M in absolute value. The
- p

value function V := sup V(s) may then be estimated by successive approxima-
s

tions. Upper and lower bounds for V may be given at each step. At the same

time, the method produces at each step a stationary strategy s=(f,f, ••• )

with V(s) lying between the same bounds. For the finite state, finite deci­

sion case this may be found in Macqueen [7.J, Schellhaas [IIJ, and van Nunen

[8J. A more general situation has been treated by Denardo [2J.

In this paper we obtain similar results under somewhat weaker conditions,

especially the uniformity requirements of the conditions will be weakened.

Like Denardo, Macqueen, Schellhaas, and van Nunen, we shall basically apply

the contraction operator technique as introduced by Blackwell [IJ. However,

we shall not use the Banach space of functions on $ with supremum norm as

Blackwell does. We shall introduce a Banach space V of functions on $ with

a modified supremum norm. For inventory problems with average costs, Wijngaard

[ISJ introduces a special (exponential) norm of this type. Lippman [6J works
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with the same type of norm for the discounted case, however his conditions

are more complicated and only guarantee N-stage contraction. Operators in W

are introduced in section 2. Section 3 presents an approximation procedure

for the value function of the problem, together with a procedure to find a

strategy which is nearly optimal. In section 4 some possibilities for exten­

sions and for weakening of the conditions are suggested.

2. Norms and operators. Let ~ be a positive function on $, and denote by W the

set of all real valued functions v on $ (interpreted as columnvectors) with

the property

Ilv II := sup ~(i) Iv(i) I < co •

id;

As one easily verifies, II· /I is a norm and the set V is complete with respect

to this norm, i.e. W is a Banach space.

This norm on W induces a norm on the set of real matrices that represent li­

near operators on V, viz.

II A II : = sup ~ (i) L Ia .. I~-1 (j) •
1 j 1J

For matrices A, B with II A 11,11 B II < co and v E W we clearly have

IIAv II s IIA IIl1v II and IIAB II s IIA IIIIB II •

We now state some assumptions on the reward and probability structure of the

system.

Assumptions.

1) r(f) E V and II r(f) II s M < co for all policies f.

2) sup IIP(f) 11=: p < 1.
f

Assumption 1 means that

Ir~1 s~
1 ~\1)

for all k E K and i E $ •

Hence, for fixed i E $ the rewards for different decisions are bounded, how­

ever as a function of i these bounds may increase to infinity. Actually, a

function ~ exists such that assumption I is fulfilled, iff r~ is bounded 1n
1

k f or fixed i.
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For the probability structure, assumption 2 means, that, given the starting
I -I

state i and the decision k, the expectation of II - (Xl) is at most Pll (i),

where XI is the random variable denoting the state of the system at time

t = 1. In the special case II = I these assumptions give the well-known con­

ditions mentioned in section l.

Lemma I. For any strategy s = (fO,f
l

, •.. ) the total expected reward V(s)

exists, i.e.

00 t-]

I [IT p(fn)Jlr(f t ) I
t=O n=O

converges componentwise and ~n norm (the vector jrl has i-component Iril),

M M -I
V(s) EW, IIV(s)II :s; 1- P or Vi(s):s;] _ p II (i) •

Proof. The assertion follows from the fact that

t-]
v t := [IT P(fn)J\r(f t ) lEW,

n=O

twi th II v t II :s; p M.

On V we define the operators Lf for any policy f and U, by

o

Lfv := ref) + P(f)v for any v E W

(Uv)(i) k:= sup {r.
kd< ~

+ L p~.v(j)}
J ~J

for i E $, V E W ,

or in matrix notation:

Uv := sup {ref) + P(f)v} ,
f

where the sup ~s taken componentwise.

L.emma 2.

a) Lf and U map W into W.

b) Lf and U are monotone mappings.

c) Lf and U {v E V I IIvll :s; M } into itself.map
I - P

d) Lf and U are strictly contracting with contraction radii 1\ P(f) II and p res-

pectively.
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M
e) Lf and U possess unique fixed points in W with norms at most I _ P

f) the fixed point of L
f

is V(f(oo», where f(oo) denotes the stationary stra­

tegy (f,f,f, ••• ).

Proof. The proofs of a), b), c) are straightforward. For the finite state,

finite decision case with ~ = 1 property c) has been noticed by Shapiro [12J.

e) is a direct consequence of d) and assumption 2. f) is proved by direct ve­

rification. About d) the following remarks. The proof of the fact that L f is

strictly contracting with contraction radius at most II P(£) II is straightfor­

ward. The example v(i) := ~-I (i), wei) := a (i E $) shows that for certain

v,w E W

That U has contraction radius at most p 1S proved in the following way.

Choose v E V and £ > O. For any i E S a decision k is chosen such that

r~ + I p~.v(j) ~ (Uv)(i) - £~-I(i) •
1 J 1J

Now for this v and an arbitrary w E W we have

~(i)(Uv)(i) - ~(i)(Uw)(i) ~ ~(i)r~ + ~(i) ~ p~.v. + £ +
J 1J J

- ~(i)r~ - ~(i) I p~.w(j) =£+~(i)h~.(v(j) -w(j» ~
1 j 1J j 1J

~ £ + pll v - w 1\ •

In the same way we prove far arbitrary v and w

~(i)(Uw)(i) - ~(i)(Uv)(i) ~ £ + pllv - wll.

Hence

II Uw - Uw II ~ £ + pll v - w II

and therefore

for all £ > a ,

II Uv - Uw II ~ pll v - w II •

By substituting wei) := 0, v(j) := ~~-I(j) with ~ > 0, we verify that

II Uv - Uw II ~ [-2£ + pJII v - w II
£

This implies that p is the contraction radius. o
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3. Approximation procedures. Fixed points of contraction mappings on W may be

approximated by a sequence of points in W. For the operator U, such a se­

quence is generated in the following way: choose Vo E W, define recursively

v := Uv for n 1,2, •••• Then v converges in norm to the fixed pointn n-I n
w of U: lim II v - wll == 0, or, for E > a there exists a number N such thatn E

~

for n ;:: N :
E

for all i E S; •

As U is monotone, we obtain a nondecreasing sequence, if Vo is chosen such

that vO::; vI'
M -I -IThis can be achieved by taking va := - I ~ where ~ E 'V with compo-

-I - P
nents ~ (i) • By assumptions I and 2 we then have

VI == sup {ref) - P(f)1 ~ p ~-I} ;:: -M~-I
f

M -I
-:--- p~ ==

- p

It seems natural to conjecture that w

M -I
_ p ~ = V o .

v (== sup V(s)). We first prove
s

Lemma 3. For any strategy s

Proof.

00 t-l N-I t-I 00

V(s) I [ P(f )]r(f ) I [ II P(fn)]rC f t ) + I t -I
= II ::; P M~

t=O n=O n t t==O n=O t=N

Hence if
pNM ::; E, i.e. if N sufficiently large, we haveI - p

V(s) N -I::; U a + Ell

where a denotes the element of W with all components 0.

UNO converges in norm and hence componentwise to w when N + 00. This implies

-I
V(s) :; w + E~

This inequality holds componentwise for any E > 0, hence V(s) ::; w. [1
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Theorem I. For any € > a there is a policy f, such that the stationary stra-
(co)

tegy f := (f,f, ••• ) satisfies

hence V = w.

Proof. Let 0 := !(I - p)€. Select va E W, such

1 f h . -I . her or eac component, e.g. va = -c~ w~t c

(n = 1,2, ••• ) is selected, such that

that va < UVa (strictly smal­
M

< 1 ). A policy f
- p n

-I
v := Lf v 1 ~ max{v l'Uv 1 - o~ },n n- n- n-

n

where the maximum is taken componentwise. Such a policy f can always be
n

found, as can be seen as follows. If v I(i) < (Uv I)(i) it is trivial byn- n-
the definition of U. If v 1(i) = (Uv I)(i) for certain i E $, then f (i) =n- n- n
= fn_l(i) satisfies, because - using induction - we have

hence

as required.

We now proceed with the proof. The same reasoning gives

~ v
n

for any natural number k. Hence

It now suffices to prove that v approximates w ~n norm for sufficiently
n

large n. We have

o~
-I

U[Uv 2 o -I J
-I

v L
f

v
n

_
1

~ Uv 1 - ~ - - 0]1 ~
n n- n- ]1 .

n

U2v OP]1
-1

0]1
-I

~ - -n-2

Repetition of this argument yields

o -I
-:---- ]1

- p
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Summarizing we have

n
U v ­o

n
Since U Vo converges to w (in norm), we have for n sufficiently large

26
- p

= e: • o

Now we have proved that the fixed point w of the operator U is equal to the

optimal value vector V of the decision problem. Furthermore we have proved

that for any e: > 0 a stationary strategy is e:-optimal (defined in terms of

the norm). The question now arises whether one is able to find lower and

upper bounds for V(f(oo» and V at the n-th iteration step of the iteration
n

process developed in the proof of theorem 1. Apparently, v ~s a lower bound.
n

However, without much effort a better lower bound and upper bound can be

constructed. The proofs follow the same line as van Nunen's proof [8J for

the bounds of Macqueen [7J in the ~ = 1, finite state, finite decision case.

The same technique turned out to work for a variety of other successive ap­

proximation methods for the same case (van Nunen [8J, van Nunen [9J, Wessels

and van Nunen [14J). Hinderer [4J used a similar approach for finite horizon

problems.

-I
Theorem 2. Suppose 6 > 0; v,w E V such that Uw - 6~ ~ v. Then

<5 + pll v - w II -IV ~ v + 11I-p ...

-I
Proof. Uv = U(w + v - w). Hence, s~nce Uw ~ v + 6~

-1 -1 -I
Uv ~ Uw + pll v - w Ihl ::s: v + <5~ + pll v - w Ihl

-}
This implies Uv ~ v + e:j..1 wi th e: : = 6 + pll v - w II. Hence

2 -1 -1U v ~ U(v + e:j..1 ) = U(w + v - w + e:p )

::s: Uw + pll v - w Ihl-1 + e:pp-I



- 9 -

Or

2 -I
U v ::;; v + E: (I + p)J:l •

Generally

E: -I
-:--- ]1

- p

which implies. since lim UNv V:
N+oo

V ::;; v + E: -I
p ]1 o

Theorem 3. If v.w € W satisfy Lfw ;::: v. then

p)1 v - w 11* I ()::;; pll v - w II -I
v + ]1- ::;; V(f co) v + I _p ]1

I - p*

where

II v - wll
*

:= inf ]1(i)(v(i) - w(i») •
i

\' k -I
p * := i nf ]1 (i) ~ p.. ]1 (j )

i.k J 1.J

The proof proceeds as the proof of theorem 2.

Remark. In theorem 3 the values of p and p may be replaced by
*

p (f) := II P(f) II

and

o

respectively. These replacements make the assertions sharper. however. they

take more work.

We have now proved. that the following algorithm ends after a finite number

of steps:

start: choose a > 0. 0 > O. Vo € W with Vo < UvO « for all compo-
onents) and < aI - p •

iteration part: find for n = 1.2•••• a policy f n • such that

-]
;::: max{v l'Uv I - 0]1 }n- n-
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until

Q + pll v - v IIn n-I
I - p

p)1 vn - vn-I 11*

I - p*
< a •

stop:
p II v - v II Q + pll v - v 1 II

v + * n n-l * jl-ISV(f(oo))SVSv + n n- ]..1-1.
n 1 - p* n n 1 - p

with a distance between lower and upper bound of less than a.

v
n

pll v - v 1 II
+ n n-

1 - p

-1
]..I

hence the distance between upper and lower bounds for

V(f(oo)) is less than a - 1 0
n - p

4. Extensions and remarks. An an interesting extension of the theory presented

here, these spaces and norms could be used to develop analogues to other

successive approximation methods. For the supnorm case different successive

approximation methods have been proposed (e.g. Reetz [IOJ, Schellhaas [IIJ,

van Nunen [8J). These and several other ideas have been combined and extend­

ed by van Nunen [9J, whereas a more general approach for generating succes­

sive approximation procedures for the supnorm case has been presented by

Wessels [I3J and Wessels and van Nunen [I4J. In the papers [8J and [14J,

Howardts policy iteration method [5J appears as a specific successive appro­

ximation procedure. It seems possible to weaken the conditions under which

these methods work.

An other interesting situation for extension in the sense of this paper may

be found in a paper by Harrison [3J. Harrison considers a situation with un­

bounded reward functions where successive approximations converge in supremum

norm if the starting vector is well chosen.

In the present paper the condition is:

A: a positive function jl exists, such that assumptions 1 and 2 are satisfied.

For the finite state case ($ finite) condition A is equivalent to

B: r~ is bounded as a function of i, k, and there exist a positive number €
~

and a natural number N, such that

F(XN E $ I Xo = i, strategy s) ~ 1 - € for all s,i •

The proof of the equivalence is rather straightforward.
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Actually. B implies A if 1\ is countably infinite, which ~s proved ~n the

same way as in the finite case.

Such topics will be treated more extensively ~n a forthcoming paper by

K.M. van Hee and the present author.

*Condition A may be weakened by replacing assumption 2 by 2 •

A . 2*.ssumpt~ort For some T ~

T-1
II 11 P(f

t
) II ~ p < 1 •

t=O

It is not necessary to use a fixed 0 in the algorithm: the a-value, 6 say,
n

used ~n the n-th situation, may depend on n; it is only required that

on ~ 6* < a(1 - p), for rt sufficiently large.
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