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Markov Random Field Surface Reconstruction
Rasmus R. Paulsen, Jakob Andreas Bærentzen, and Rasmus Larsen

Abstract—A method for implicit surface reconstruction is proposed. The novelty in this paper is the adaption of Markov Random Field

regularization of a distance field. The Markov Random Field formulation allows us to integrate both knowledge about the type of

surface we wish to reconstruct (the prior) and knowledge about data (the observation model) in an orthogonal fashion. Local models

that account for both scene-specific knowledge and physical properties of the scanning device are described. Furthermore, how the

optimal distance field can be computed is demonstrated using conjugate gradients, sparse Cholesky factorization, and a multiscale

iterative optimization scheme. The method is demonstrated on a set of scanned human heads and, both in terms of accuracy and the

ability to close holes, the proposed method is shown to have similar or superior performance when compared to current state-of-the-art

algorithms.

Index Terms—Bayesian approach, implicit surface, Markov random field, mesh generation, surface reconstruction.

Ç

1 INTRODUCTION

SCATTERED point interpolation is a well-studied problem
and application of this technique is found in a variety of

fields; from the geological prediction of mineral reserves
based on a few drill holes to the reconstruction of objects in
microscopy images. In this paper, we will focus on the
problem of robustly constructing surfaces from sampled
point sets. The 3D data used in this paper are from a clinical
environment, where patients (typically babies) are scanned
pre- and postoperatively. Since the subjects can typically
only be scanned once, there will be cases where points or
anatomical structures are missing or incomplete. The
criteria that are stated below are based on these assump-
tions. However, the algorithm presented is general and can
handle point sets from different modalities. The following
criteria were used in the design and implementation of the
presented algorithm:

. Robust:No self-intersections and nonmanifold edges
in the reconstructed surface. Can handle surfaces that
are not topologically equivalent to spheres.

. Accurate: The reconstructed surface follows the
input data faithfully. Possible to control the accuracy
in the presence of noise.

. Hole filling:Plausible interpolation in case ofmissing
data and holes. Control of hole-filling strategy.

. Flexible: Possible to adapt the algorithm based on
knowledge of the nature of the data and the physical
and statistical properties of the data capturemodality.

The method proposed is based on the computation of a
distance field, which is later regularized using a statistical
framework. Three optimization schemes are demonstrated.
Finally, the surface is extracted as a level set of the regularized
distance field.

2 RELATED WORK

The work presented here falls within the class of algorithms
that fit implicit 3D functions to an input point set. The
approach was pioneered in the work by Hoppe [1], where a
distance field is computed for each point by finding the
distance to the closest plane fitted locally to the input data.
In Hoppes work, the triangulated surface is extracted using
the marching cubes algorithm [2]. Today, alternative
implicit triangulaters are available [3], [4]. A similar method
was used to align data sets using knowledge of the physics
of the scanning modality [5]. A recent method uses radial
basis functions (RBF) to represent the underlying 3D
function [6]. It uses estimated point normals to create a
density representation of the input data. The normals are
used to place points with positive values outside the (at the
time unknown) object and points with negative values
inside the object. The RBF is then fitted to these offset points
and the surface is extracted as the zero level of the 3D
function. The fitting is done by solving a large and dense
linear system, which is far from trivial. An alternative
approach is described in [7], where local quadratic func-
tions are fitted locally and weighted globally using a
partition of unity method. The approach is inherently
multiscale since an octree subdivision is used for represent-
ing the basic functions. An octree approach is also used by
Kazhdan et al. [8], where the surface is found by solving a
Poisson problem. In physics, the Poisson equation is used to
solve problems involving diffusion of, for example, heat.
The solution is found by blurring an indicator function, and
solving a sparse linear system. It is based on the work
described in [9], where the Fast Fourier Transform is used to
compute the solution. This method indirectly minimizes the
membrane energy of the distance field and, as will be
shown later, this is not always optimal. The method has
later been extended by others [10]. The method described in
this paper resembles the method described in [11], where a
distance field representation of the input data is regularized
by minimizing a bending energy using a double Laplacian
operator. However, their method is designed for imple-
mentation on the GPU and has been optimized for speed.
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Furthermore, it is not obvious how the parameters of the
methods can be adapted to surfaces and data with different
characteristics. The prior art in this field is abundant and we
have only mentioned a selection of the most relevant.

The novelty in this paper is the use of Markov Random
Field (MRF) regularization in a Bayesian framework. Since
the paper by Geman and Geman [12] on stochastic
relaxation, Gibbs distributions, and Bayesian restoration,
the Bayesian paradigm has been used in a variety of
domains. Early work typically focuses on restoring noisy 2D
images. In the work by Besag [13], [14] local models that
favor similar pixel neighbor intensities are applied, and the
image probabilities are optimized using stochastic methods.
Another example is image labeling, where each pixel is
classified based on both scene-specific models and knowl-
edge of the physical and statistical properties of the capture
device [12], [15]. MRF regularization has also been used on
nonscalar fields. A specific inspiration for our work is found
in [16], where it is described how optical flow fields
computed from time series of radar images are regularized.
Each pixel contains a 2D flow vector and several models
that operate on these multidimensional fields are described.
These models are similar to the ones we propose. Recently,
a method to regularize 3D vector fields has been described
in [17]. The vector fields are constructed as correspondences
between two meshes, and the MRF regularization is used in
an alignment framework. The involved probabilities are
based on an assumed similarity between neighboring
vectors and correspondences between regions with similar
curvature on the two shapes. The MRF approach presented
in this paper is based on a 3D scalar field and uses energy
functions and optimization strategies described in, for
example, [16], [17]. A thorough introduction to Markov
Random Fields can be found in [18].

Statistical approaches have previously been applied to
surface reconstruction and surface manipulation. An early
example can be found in [19], where a Bayesian approach is
used to classify regions of voxels in volumetric images. A
Bayesian approach is also used in [20], where a dense point
cloud is computed based on a measured point cloud. The
observation model is modeled as a truncated Gaussian
based on point distances. The prior term includes both a
smoothness term and a density term. Furthermore, sharp
features are included in the probability function. While not
mentioned in the paper, the formulation is close to the
Markov Random Field approach. In contrast to our work,
which is based on an implicit description of the surface, the
method in [20] exclusively reconstructs the point cloud, and
the surface is extracted using the method in [1]. An
alternative method working exclusively with triangular
surfaces is presented in [21], where it is assumed that a
surface has already been computed. The first part of the
paper describes a Bayesian regularization of the surface,
where an oriented Gaussian distribution is used as an
observation model, and a square root prior is used as
smoothness prior. The second part of the paper presents a
Bayesian framework for surface decimation. Even though
the statistical framework presented in [21] is similar to our
framework, there is a difference in that we use an implicit
surface representation and that we do not only regularize

but also reconstruct the surface from input points. A
statistical approach to combined alignment and reconstruc-
tion of point clouds is described in [22]. Here, a set of point
clouds is roughly aligned. Second, a prototype surface is
computed using a local quadratics approach that is very
similar to the method described in [7]. In the next step, the
poses of the input point clouds are changed to match the
prototype. The optimization is formulated in a Bayesian
framework, where the prior defines a smoothness of the
surface and the probability is explained by a projected
distance of points to the reconstructed surface. The
parameters optimized are the collection of rigid transforma-
tions of the point clouds and the parameters of the fitting
quadratics. As will be demonstrated later, the method from
[7] is fast and accurate, but has problems with regards to
hole filling. In [23], surfaces are extracted from multiple
camera views using a probabilistic model and a Bayesian
framework. As will be demonstrated, the priors used in our
work are linear. Nonlinear priors for surface normals are
demonstrated in a surface reconstruction scheme in [24].
This approach is similar to anisotropic diffusion.

Surface reconstruction can also be framed in a variational
and partial differential equation (PDE) framework. In [25],
the level set method is used to reconstruct surfaces from
scattered point data, and in [26], the level set method is
used in a probabilistic framework to reconstruct 3D shapes
from range scans. These methods have also been used in
stereo reconstruction [27]. As in our method, the level set
methods typically work on an implicit volumetric repre-
sentation of the surface. There are obvious similarities in the
results that can be obtained using the level set methods and
in the results obtained using our method. In [25], a
membrane-like surface is computed in the same way as
seen in our approach. The major difference is the formula-
tion of the models and the optimization methods employed.
Our method is also characterized by a decoupling of the
behavior of the surface in high-confidence areas and the
behavior where no samples are present.

Our method defines the desirable behavior when there is
no data. This indirectly makes the method close holes in a
predictable way. Recently, inpainting has been used for hole
filling [28], [29], [30]. As with the previously mentioned PDE
methods, these are typically based on a variational definition
of the behavior of the surface where there are holes in the
surface. In [30], functionals are defined using the mean
curvature of the isosurfaces of an implicit surface represen-
tation and the solution is found using a PDE framework. In
[29], a finite element method is employed to minimize the
Willmore energy over the surface. The results obtained using
inpainting seem to be comparable to our results. However,
the formulation and the optimization are different.

The preprocessing of the point cloud employed in this
paper resembles the approach used when computing point
set surfaces [31]. Here, local maps of the geometry are
computed using the moving least squares (MLS) method.
Points in a local neighborhood are first fitted by a plane and
then a low-order polynomial is fitted to the residuals from a
plane projection. This allows both up and downsampling of
the point cloud and can also be used for noise removal. It
can be considered as a low-pass filter of the point cloud.
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Our approach is based on fitting a plane and using this as
input to a distance calculation. Since a small neighborhood
with few samples is used, it is doubtful whether we would
achieve more accurate results using the full MLS fitting. In
[32], an extension to the method in [31] is presented. By
using robust statistics the method is able to identify sharp
edges and thereby reduce the low-pass filter effect of the
original approach.

3 METHOD

The proposed method consists of four steps. Initially, an
oriented point set with consistent normal directions is
created from the input data. Second, a signed distance field
is computed based on the oriented point set. In the next
step, a Markov Random Field based regularization is
applied to the distance field. Note that the word distance
field is used in a loose sense since we do not enforce unit
length gradients. In addition, the multiscale methods re-
estimate distances in between the regularization steps.
Finally, the surface is extracted using an isosurface
extraction algorithm, and the resulting mesh is optimized.

3.1 Preprocessing the Point Set

The point set is processed to remove outliers and create
consistent normal estimates. Initially, a sampling density
estimate is computed by finding the average �l and standard
deviation �l of the distances to the closest point neighbors.
The distance is calculated for each point by locating the
closest point and computing the Euclidean distance between
the two. This estimate is used as a parameter in the next steps.
An estimate of the point normals is computed using local
principal component analysis (PCA) using a point search
radius of 2:5�l. A point is considered noise, if the third
Eigenvalue explains more than 10 percent of the local
variation or if the distance from the point to the plane
indirectly estimated by the PCA is greater than �l. Second, a
graph-based search algorithm is used to group points into
connected components, where two points are considered
neighbors if their distance is less than �l þ 6�l and their
mutual normal angle is less than 15 degree. Connected
components containing fewer points than 1 percent of the
total number of input points are removed. During the graph
search, the normals in the connected components are forced
to have consistent directions. Finally, the normal directions
in the connected components are compared to the position of
the capture device. If amajority of normals are pointing away
from the capture device, all the normals in the connected
component are flipped. The result is a point set with few
outliers and consistent normal directions.

3.2 Computing the Signed Distance Field

The distance field is represented as a uniform voxel volume,
where the value in each voxel is the signed distance to the
nearest oriented sample point. A uniform space division is
deliberately chosen in favor of a more advanced approach,
for example, octrees. The reason is that if the input point
cloud is used as the target when the octree subdivision is
computed, areas with no points or sparse samples are
represented by very big octree cubes, thus lowering the
achievable resolution in these areas, for example, this can
observed with surfaces reconstructed by the Poisson

approach [8]. Since our focus is on hole filling, it is
important that holes are reconstructed at the same spatial
resolution as the densely sampled areas. We, therefore,
believe that a uniform spatial division is important, even
though it limits the achievable resolution. The initial
distance field is computed using a distance method similar
to the one described in [11]. The input points are stored in
an octree for faster localization. For each voxel, the five
closest (to the voxel center) input points are found using the
standard Euclidean metric. Second, the distance to the five
points is computed as the projected distance from the voxel
center to the line spanned by the point and its associated
normal as seen in Fig. 1. Finally, the distance is chosen as
either the average or the median of the five distances. Using
the average is equivalent to minimizing the L2 norm and
should be used if the points are influenced by Gaussian
noise, while the median that is equivalent to minimizing the
L1 norm should be used for data with outliers. While
Gaussian noise is typically correlated with the quality of the
mechanical and optical components of the capture device,
outliers can, for example, be caused by a stereogrammetry
algorithm finding false matches. The range scanner used in
this study has very high quality components and the
Gaussian noise is found to be negligible, but some outliers
are present due to the stereogrammetry algorithm. In the
following, the L1 norm is, therefore, used. An approximate
surface can be extracted from the distance field using a
standard Bloomenthal isosurface extractor [4]. However, at
this point, the surface is neither smooth nor does it fill holes
in a satisfactory way. The next section describes how
regularization is used to create improved surfaces.

3.3 Markov Random Field Regularization

To obtain a better and more faithful surface reconstruction,
the problem of finding the distance field is cast in a Bayesian
framework of Markov Random Field restoration. In the
following, the value at voxel indexed with i is described by a
random variable Di. The probability of voxel i having a
specific value di is, therefore, pðDi ¼ diÞ. In the following,
the event pðDi ¼ diÞ is abbreviated pðdiÞ. Furthermore, the
entire distance field is described by a multivariate random
variable D with the same number of elements, N , as voxels
in the field. The event pðD1 ¼ d1; . . . ; DN ¼ dNÞ is, therefore,
written as pðD ¼ dÞ. However, in the following, the
abbreviation pðdÞ is used for this event.
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The four successive stages of the Bayesian paradigm
are followed:

1. Construction of a prior probability distribution pðdÞ
for the distance field D.

2. Formulation of an observation model pðdojdÞ that
describes the distribution of the observed distances
Do given any particular realization of the prior
distribution.

3. Combination of the prior and the observation model
into the posterior distribution by Bayes theorem

pðdjdoÞ ¼ pðdojdÞpðdÞ=pðdoÞ: ð1Þ

pðdoÞ is the prior probability of the observed
distance field. This term is constant and can be
ignored in the optimization.

4. Drawing inference based on the posterior
distribution.

Here the observed distances Do are the initial estimates
of the distances in the distance field. In other words, the
goal is to compute the distance field d̂ that maximizes the
posterior probability

d̂ ¼ argmax
d

pðdjdoÞ: ð2Þ

To describe a probability distribution on a spatial
arrangement of voxels some useful definitions from graph
theory are necessary.

Given a graph of connected sites S ¼ fs1; s2; . . . ; sNg. A
neighborhood system N ¼ fNs; s 2 Sg is any collection of
subsets of S for which 1) s 62 Ns, and 2) r 2 Ns , s 2 Nr. Ns

are the neighbors of s. A clique C is a subset of sites S for
which every pair of sites are neighbors. In the following, the
distance field D is treated as an undirected graph, where
i � j is used to denote that voxel i and voxel j are neighbors.
Note that voxels are indexed by simple numbering instead of
the cumbersome ðx; y; zÞ indexing. With these definitions the
probability distribution of any family of random variables
indexed by S, i.e., D ¼ fDsjs 2 Sg can be considered.

Let � denote the set of all possible configurations
� ¼ fd ¼ fdig

N
i¼1jdi 2 IRg. A random field D is a Markov

Random Field with respect to N iff

1. pðdÞ > 0 8 d 2 �,
2. pðdsjdr; r 6¼ sÞ ¼ pðdsjdr; r 2 NsÞ 8s 2 S,

The first constraint is the positivity condition and can be
satisfied by specifying a neighborhood large enough to
encompass the Markovianity condition in the second
constraint. Although the second condition is on the state
of neighboring sites only, it does not exclude long-range
correlations in the probability distribution over the entire
graph. In our case the second condition translates into that
the probability of the value of a given voxel pðdiÞ is only
dependent on the values at the neighboring voxels.

Given a neighborhood system N ¼ fNsg, let all cliques
be denoted by C. For all C 2 C it is assumed that a family of
potential functions VC exists. An energy function for any
given configuration of D can now be defined:

UðdÞ ¼
X

C2C

Vc: ð3Þ

This leads to the definition of the Gibbs measure induced by
the energy function UðdÞ:

pðdÞ ¼ expð�UðdÞÞ: ð4Þ

Normally, a partition function Z and a temperature T is
used in (4). However, for our purpose Z cancels out, T is
considered constant, and they are, therefore, both ignored
in the following. The Hammersley-Clifford theorem gives
the relation between MRF and Gibbs random fields and
states that D is a Markov random field with respect to N iff
pðdÞ is a Gibbs distribution with respect to N [15], [33].
Later it will be described, how potentials that induce the
Gibbs measure are defined and thus MRF properties of D
on the graph are encompassed.

MRFs are often specified with one-dimensional finite
state spaces. However, the voxel values in the distance field
are continuous. Luckily, it can be shown that MRFs
generalize to multivariate continuous distributions as
described in, for example, [16], [17].

3.3.1 Prior Models

The prior probability distribution pðdÞ should capture the
general and scene-specific knowledge. In our case, the prior
should describe the general properties of the surfacewewish
to reconstruct. Aswill be shown later, it can, for example, be if
the surface acts like a membrane. As indicated earlier, the
local prior distribution for a given voxel value should be
based on the values of the surrounding voxels or more
formally the voxels that share cliques with the current voxel.
As a consequence of (4) the local probabilities are formulated
as energy functions. A classic and much used prior is based
on differences between neighbors [13]. Using the L2-norm,
the energy function for this prior is

UGðdiÞ ¼
1

n

X

i�j

ðdi � djÞ
2; ð5Þ

where n is the number of neighboring voxels. In this paper,
a 6-neighborhood system is used, so n ¼ 6. This energy
function has a simple maximum likelihood (ML) estimate
and using this prior is equivalent to minimizing the
membrane energy [34]. Plugging this energy function into
(4) gives pðdiÞ ¼ expð�UGðdiÞÞ that obviously induces a
standard Gaussian distribution on the voxel values. An
alternative prior is based on differences between neighbor-
ing Laplacians:

ULðdiÞ ¼
X

i�j

ðLðdiÞ � LðdjÞÞ
2; ð6Þ

where LðdiÞ is the Laplacian estimated at voxel i. This
choice is inspired by the method described in [11]. A
discrete approximation of the Laplacian is used:

LðdiÞ ¼
1

n

X

i�j

ðdi � djÞ: ð7Þ

Obviously, this prior favors distance fields with smooth
Laplacians. Since the Laplacian of a distance field is
proportional to its mean curvature [35], the prior in (6)
favors distance fields with small variations in mean
curvature. With this approximation, it can be seen that
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the energy function in (6) is defined using a set of cliques
based on a neighborhood system where two voxels i and j
are neighbors if ðpi � pjÞ

2 � 4, where pi is the ðx; y; zÞ index
of voxel i.

3.3.2 Observation Model

Given a realization of the prior distribution, the observation
model pðdojdÞ describes the conditional distribution of the
observed data Do. In other words, given the true distance
field d, pðdojdÞ is the distribution of the observed
(measured) distance field. If, for example, the distance field
is created based on the scanning of a perfect sphere, the true
distance field is how the distance field would optimally be
without any noise influence, etc. The observation model
describes how deviations from the true distance field caused
by noise or mechanical problems are distributed. The
observation model should, therefore, reflect the physical
or statistical properties of the capture device. In our case,
the data are acquired using a ranger scanner, where it is
possible to assign measures of confidence to each point. By
specifying the observation model, we may favor a distance
map that is true to the initial distance map in regions with
high data confidence. As with the prior models, the
observation model is formulated as an energy function.
The observation model energy used is:

Uobs

�

doi
�

¼
�

di � doi
�2
; ð8Þ

where doi is the original distance at voxel i. Using (4) with
this energy function leads to pðdoi jdiÞ ¼ expð�Uobsðd

o
i ÞÞ, that

is, a Gaussian distribution with mean di.

3.3.3 Local Confidence Estimates

A local confidence measure �i 2 ½0 : 1� is used to balance the
prior and the observationmodel. It is based on the Euclidean
distance from the voxel center to the nearest input point dEi .
Here �i ¼ 1�minðdEi =d

E
max; 1Þ, where dEmax is a user-defined

maximum Euclidean distance. For the scans of the human
faces, a value of dEmax ¼ 3�l was found to be suitable. A
discussion of other confidence measures can be found in [5].

3.3.4 Maximum a Posteriori Estimate

We wish to compute the distance field that maximizes the a
posteriori conditional probability d̂ ¼ argmaxd pðdjdoÞ. As
will be shown, the maximization of the posterior probability
is transformed into the minimization of the weighted sum
of the energy functions for the prior distribution and the
observation model.

Using the Markovianity assumption and Bayes’ rule, we
can write the a posteriori probability of a single voxel as a
product of the probability given by its prior and the
observation model:

pðdijdr; r 2 NiÞ ¼ pðdiÞpðd
o
i jpiÞ;

where pðdoi Þ is left out since it is constant. Using the energies
(5) or (6) and (8), we obtain

pðdijdr; r 2 NiÞ

¼ exp ��i�UobsðdiÞ � ð1� �i�ÞUpriorðdiÞ
� �

;

where the global weight � and the local �is are used to
balance the prior and observation models. The ML estimate
of the voxel value di can be computed as:

@ ln pðdijdr; r 2 NiÞ

@di

¼
@ð��i�UobsðdiÞ � ð1� �i�ÞUpriorðdiÞÞ

@di
¼ 0:

If the prior from (5) is used, the solution is:

di ¼ �i�d
o
i þ ð1� �i�Þ

1

n

X

i�j

dj: ð9Þ

The linear solution is due to the quadratic nature of the
energy functions used. Furthermore, the solution is also
found to be a linear combination of neighboring voxel
values and the original distance estimate if the prior from
(6) is used. Details can be found in Appendix. The next
section describes how three different approaches can be
used to compute the global solution.

3.4 Optimization

As seen in the previous section, the maximization of the
global probability is equal to minimizing the global energy.
Three different approaches have been tested.

3.4.1 Multiscale ICM

The Markovianity assumption states that local probabilities
are defined using only a near neighborhood. A simple
method to find the global optimum is to iteratively assign
each site its local maximum likelihood estimate ((9) for the
energy term in (5)). This approach is called the Iterative
Conditional Modes (ICM) algorithm [14]. The visiting order
is determined by a permuted index vector, ensuring that all
voxels are visited for each iteration, but in a random order.
This is done to avoid propagation of trends. In each
iteration the total root mean square (RMS) change of voxel
values is observed and the algorithm stops when this value
drops below a fixed threshold. Alternatively, the algorithm
stops after a fixed number of iterations. The ICM algorithm
is equal to the Gauss-Seidel method for determining
solutions of linear systems.

Due to the uniform space division, a multiscale ICM
solver is fairly easy to implement. Initially, the solution is
found in a small voxel volume and the results are
propagated to the next level using linear interpolation. In
each step, the side lengths of the voxel volume are doubled.
Furthermore, a new initial distance estimate is recomputed
for the voxels in a narrow band around the input points at
each level. In the current implementation, the maximum
side length of the initial volume is 16 and the typical
number of levels used is four.

3.4.2 Conjugate Gradient

The Conjugate Gradient method [36], [37] used to solve
unconstrained optimization problems can also be applied to
our problem of finding the minimum of the global energy:

Eg ¼
X

N

i¼1

� ln pðdijdr; r 2 NiÞ ¼ ð10Þ

X

N

i¼1

ð�i�UobsðdiÞ þ ð1� �i�ÞUpriorðdiÞÞ: ð11Þ

The main observation is that, due to the Markovianity
condition, the partial derivative of Eg with respect to a
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single voxel value di only depends on the change of the
local energy terms involving the neighbors of di:

@Eg

@di
¼

@Ei

@di
þ
X

i�j

@Ej

@di
; ð12Þ

where Ei ¼ �i�UobsðdiÞ þ ð1� �i�ÞUpriorðdiÞ. It is, therefore,

reasonably quick to compute the gradient of the total energy

rEg ¼ ð
@Eg

@d1
; . . . ;

@Eg

@dN
Þ. In our experiments, we have used a

standard Fletcher-Reeves-based conjugate gradient imple-

mentation. Details can be found in [37]. In addition, the

method is implemented in a multiscale scheme as described

in Section 3.4.1. While it is simple to compute
@Eg

@di
for the

energy in (5), it is quite complicated for the energy in (6)

due to the larger neighborhood. Experiments showed that

the multiscale ICM is superior to multiscale Conjugate

Gradients for the energy formulation in (6).

3.4.3 Sparse Cholesky Factorization

An alternative approach is to formulate the problem as a
large sparse linear system, since (9) can be rearranged into:

nidi
1� �i�

�
X

i�j

dj ¼
ni�i�

1� �i�
doi ; ð13Þ

that can be cast into the linear system Ax ¼ b:

n1

1� �1�
�1 . . . �1 . . .

�1
n2

1� �2�
�1 . . .

..

.

�1

..

. . .
.

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

x ¼

n1�1�

1� �1�
do1

n2�2�

1� �2�
do2

..

.

nN�N�

1� �N�
doN

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

;

where xi ¼ di and A is a sparse tridiagonal matrix with
fringes [38] having dimensionsNxN , where N is the number
of voxels. The number of neighbors of a voxel determines the
number of �1 in each row in A. The column indexes of the
�1 depend on the ordering of the voxel volume. In our case,
the index is computed as i ¼ xt þ yt �Nx þ zt �Nx �Ny, where
ðxt; yt; ztÞ are the voxel displacement compared to the
current voxel and ðNx; Ny; NzÞ is the volume dimensions.
Some special care is needed for edge and corner voxels that
do not have six neighbors. For the energy term in (5), the
maximum entries in a row are seven, which makes the
system very sparse. Furthermore, A is symmetric and
positive definite making it suitable for sparse Cholesky
decomposition. A standard sparse Cholesky solver (CHOL-
MOD) is used to solve the system [39]. Our experiments have
demonstrated that the sparse Cholesky solver works well
when the number of voxels in the volume is less than 200,000.
On a standard PC with 2 GB of memory, the solver runs out
of memory for larger volumes. However, the sparse
Cholesky approach is well suited for computing the initial
level used in the multiscale ICM solver described in the
previous section. In the following, the results using the
energy term in (5) are produced using the Sparse Cholesky
solver to compute the initial estimate and themultiscale ICM
solver is used for the next levels. With this approach, the

estimation and regularization of the distance field is done in
less than two minutes for a final voxel volume of (150, 150,
150) on a standard dual core, 2.4 GHz, 2 GB RAMPC. For the
energy in (6), the pure multiscale ICM solver is used, due to
the difficulty in constructingA. The solver is approximately
50 percent slower with (6) than with (5).

3.5 Meshing

The Bloomenthal polygonizer [4] is used to extract the
isosurface from the MRF regularized distance field.
Furthermore, a mesh-optimization scheme is applied to
achieve a better triangulation. The method used is a
modified version of the technique described in [40]. The
modification is that we use the distance field for estimating
surface tangents and reprojection of points. Initially, a goal
edge length l is computed as the median value of the
existing edge lengths. The approach consists of the
following steps:

1. Split all edges that are longer than 4
3
l at theirmidpoint.

2. Collapse all edges shorter than 4
5
l into their midpoint.

3. Optimize vertex valence to 6 by edge flipping.
4. Weighted tangential relaxation of all vertices.
5. Backproject each vertex to the zero-level surface of

the distance field.

The above steps are repeated 10 times. In the tangential
relaxation step, the vertex p is moved to p0 ¼ q þ
ðnnT ðp� qÞÞ, where n is the surface normal estimated
from the distance field and q is the weighted barycenter of
the neighbor vertices of p. The weighted barycenter is
calculated by weighting each neighbor with the area of their
one-ring neighbors. Backprojecting a point to the zero-level
surface of a distance field is trivial, since the distance field
provides (with some computation) both the distance and
the direction to the zero level at any given point in space.
However, as mentioned earlier our distance field does not
strictly enforce the unit gradient and, therefore, this method
is not accurate. Experiments showed that a simple Runge-
Kutta [38] like vector field tracing approach efficiently
locates the closest zero-level location for a given point in
space. Inspecting distributions of both edge lengths and
triangle areas shows that they both follow a Gaussian
distribution with a much smaller variance than before
remeshing. An example of the result of the remeshing can
be seen in Fig. 2, where clear improvements in both vertex
valence and triangle uniformity is seen.
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Fig. 2. (a) The result of the Bloomenthal polygonizer and (b) the
remeshed result.
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4 RESULTS

In order to visualize the behavior of the different prior
models, the method has been tested on two artificial data
sets. The first consists of points randomly sampled over two
separated tubes and the second is points randomly
distributed over a more complex collection of primitives.
There is a clear difference in the results when using the two
different prior models as seen in Fig. 3. Fig. 3a clearly shows
that the result of using (5) is equal to stretching a membrane
over the point cloud. The higher order prior in (6) results in
a surface where there are no abrupt changes in the
curvature of the surface as seen in Fig. 3b.

The real data used to evaluate the method consist of 3D
scans of human headsmade using a 3dMD Cranial scanner.
The scanner uses structured light and multiple cameras to
capture stereo images of the head. Second, a proprietary
stereogrammetry algorithm is used for extracting the 3D
positions of the points on the head. As input to our method,
the raw points found by the 3dMD stereogrammetry algo-
rithm are used. Since the data typically consist of the human
face and not the whole head, the surface to be reconstructed
is not topologically equivalent to a sphere, but is a patchwith
open boundaries. Defining an inside and an outside is,
therefore, ambiguous. In practice, our method does not have
problemswith this ambiguity. One aim is to use the resulting
surfaces for 3D analysis of facial morphology [41] and
boundary element modeling of sound fields [42]. It is,
therefore, important that missing parts of the anatomy are
reconstructed in an anatomically plausible way.

In Fig. 4, a surface reconstructed using the describedMRF
method with the prior in (6) is seen. The surface is smooth
and interpolates the missing parts well. Especially, the area
under the chin is reconstructed well. Furthermore, the
algorithm is feature preserving, as can be seen in areas with
high curvature, for example, around the nose. The local
weights, �i, are visualized by projecting them on the
reconstructed surface. It is seen that areas with underlying
data are skin colored, meaning that the model is favoring the

original distance estimate and the surface, therefore, follows
the input points closely. The blue part of the surface has been
regularizedmore since themodel used here is closer to a pure
prior model. As expected, the blue parts of the surface are
shaped so the variation in curvature is minimized while at
the same time the surface connects smoothly to the skin-
colored areas. The example seen in Fig. 4 was created using a
volume with uniform voxel side lengths of 1.8 mm and
dimensions (121, 121, 105). There are 28,000 input pointswith
an average neighbor distance of 1.1 mm. The surface
reconstruction took 100 seconds. A value of � ¼ 0:9 was
used. As will be described later, the choice of � is mostly
critical when the input points are influenced by noise.

The robustness of the algorithm is tested by inspecting
the generated surfaces. In all our test cases, no degenerate
triangles or nonmanifold edges are found. Furthermore, it
can be proved that, if the scalar field contains no
singularities, the isosurface will be a manifold [43].

As described earlier, the choice of prior model should be
based on knowledge of the nature of the surface. The prior
models described in (5) and (6) have been tested by
applying them to data with a large hole. The result can be
seen in Fig. 5. As can be seen the prior from (6) seems well
suited for this type of data. Furthermore, it can be seen that
the results from the Poisson surface reconstruction algo-
rithm [8] are similar to the results based on (5) that
minimizes a membrane energy. In the following, the results
are based on the prior from (6).

The accuracy of the reconstructed surface is estimated by
computing the distances from the input points to the
nearest points on the surface. The accuracy is expressed as
the RMS value of the point distances.

The hole-filling capabilities are estimated by initially
extracting a set of points from the input data and then
fitting the surface to the remaining points. An example
input data set, where some points are removed, can be seen
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Fig. 3. Surface reconstruction on an artificial data set. The points are
used as input. (a) The results using the energy term in (5) and (b) with (6).

Fig. 4. Result of the MRF surface reconstruction using the prior in (6).
The local voxel weights �i are shown on the resulting isosurface. Here, 1
(skin color) is complete confidence in original samples and 0 (blue) is no
confidence. The blue part of the surface is, therefore, interpolated.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on June 09,2010 at 08:36:13 UTC from IEEE Xplore.  Restrictions apply. 



in Fig. 6. The gray points are used as input to the surface
reconstruction. Second, the distances from the removed
points to the reconstructed surface are calculated, as can be
seen as the color-coded points in Fig. 6. Finally, a measure
of the hole-filling capabilities is calculated as the RMS value
of these distances.

The presented algorithm has been tested on 10 scanned
human faces and the above measures of accuracy and hole-
filling capabilities computed. Furthermore, the data have
also been used as input to the multilevel partition of unity
implicit method (MPU) presented in [7] (default para-
meters) and the Poisson surface reconstruction method
(Poisson) by Kazhdan et al. [8] (default parameters and

depth ¼ 11). The results can be seen in Table 1. It can be
seen that the presented MRF method together with the
MPU method has excellent accuracy of around 0.13 mm,
while the Poisson method is consistently around 0.42 mm.
The accuracy of all the methods is influenced by the choice
of spatial resolution. The spatial resolution is difficult to
assess for the Poisson and MPU method due to their octree-
based implementation. The average volume size for the
MRF results is (120,120,120) and the average voxel side
length is 2.5 mm.

Surfaces reconstructed with the three methods can be
seen in Fig. 7, where it can clearly be seen that they all do an
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Fig. 5. Comparison of different priors. (a) The input data, where the blue
points are removed to test hole filling. (b) The result of the MRF
algorithm using the prior in (5). (c) The result using the prior in (6), and
(d) the result of the Poisson surface reconstruction.

Fig. 6. The data used for testing hole filling. The point-to-surface
distances are calculated using the points that were left out of the surface
reconstruction. The points are color coded according to their distance to
the resulting surface (blue to red). The gray points are used as input to
the surface reconstruction.

TABLE 1
Results from the Presented Algorithm and Two Alternative

Surface Reconstructors Computed on 10 Scans

Accuracy (Acc) and hole filling (HF) are in RMS (mm) and lower is
better.

Fig. 7. Comparison of three different algorithms. (a) The input data,
where the red points are removed to test hole filling. (b) The result of the
MRF algorithm. (c) The result of the Poisson algorithm and (d) the MPU
result.
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excellent job in fitting the surface where there is good input
data. The difference between the methods manifests itself in
the hole filling. Notably, theMPUmethod has not succeeded
in filling the hole in a plausible way. This is probably caused
by the method used to fit the local quadratic functions,
where the artifacts seen are due to the unconstrained tails of
a set of quadratic functions. As described earlier, the MRF
method with (6) fills the hole in a way that minimizes the
variation in curvature while at the same time smoothly
connecting the edges. The Poisson algorithm hole filling
should bemore closely related to a membrane stretched over
the hole. As seen in Table 1, the MRF approach is superior
with regards to hole filling with data of this nature. In
contrast to the accuracy, the hole-filling capabilities are
determined by the underlying principles of the method and
less by the choice of spatial resolution.

The average computation times for the results in Table 1
are 20 seconds for the Poisson method, 24 seconds for the
MPUmethod, 100 seconds for theMRFmethodwith theprior
in (6) and 70 seconds for the MRF method with the prior in
(5). The proposedmethod is, therefore, not as fast as the state-
of-the-art algorithms. However, several optimizations can be
applied that will at least halve the computation time.

The noise robustness has been tested by adding
Gaussian-distributed noise to a point cloud and visually
inspecting the resulting surfaces. As can be seen in Fig. 8,
the global parameter � can be used to adjust the balance
between the degree of smoothing and the degree of trust in
the data. The optimal estimation of � is far from trivial since
it partly depends on the nature and scale of the noise.
However, methods like L-curve analysis could probably be
used to determine the regularization parameter � [44]. In
this paper, visual inspection has been used to determine �.

The discrete approximation of the energy functions can
induce a grid bias. A detailed analysis of metrication effects
can be found in [45], where the L2 norm used in a binary
labeling problem is approximated using higher order terms.
In our case, the most relevant question is the rotation
invariance of the surface reconstruction. In particular, in
regions where the prior model is dominant. To test the
rotation invariance, an artificial data set is created. This
consists of points sampled randomly on a sphere with
radius 40. A cut has been made in the sphere as seen in

Fig. 9 (top left). These points are then used as input to the
MRF-based surface reconstruction. The point cloud is then
rotated around a non-axis-aligned axis and the surface is
reconstructed again. The resulting surface is rotated back
using the inverse rotation. The surfaces can be seen in Fig. 9,
where the point cloud has been rotated 0, 10, 30, and
45 degree. The surface is color coded so blue means a pure
prior model and pink is a pure observation model. The
patches in the pink part are the result of the random spacing
of the point cloud. It is observed that for a rotation of
0 degree the part of the surface that consists of pure prior
model is somewhat pointy, while for a rotation of 45 degree
it is approximating a sphere. The last case is a vague
indication that the Willmore energy is minimized by the
approach. The maximum difference between the surfaces is
2.47 as seen in the lower right corner of Fig. 9. This error
should be compared to the sphere radius of 40. However,
the experiment indicates that our approach is not comple-
tely rotation invariant. A future solution could be to use
higher order approximations of the energy functions.

5 SUMMARY AND CONCLUSIONS

A novel surface reconstruction method is proposed. The
novelty is primarily due to Markov Random Field based
regularization of a distance field. The Markov Random Field
framework allows us to express the probability of a voxel
value in terms of both a prior, which describes how likely
the voxel is given its neighbors, and a data term that
describes how likely it is given the original (observed) value.
This is a great advantage over previous work since it allows
us to integrate knowledge about data and desired properties
of the distance field with greater ease and orthogonality.

The method has been tested using 3D scans of human
faces captured in a real clinical environment. The algorithm
proved to have excellent accuracy and hole-filling capabil-
ities compared to two state-of-the art algorithms. In
conclusion, the presented method has the following benefits
when compared to existing methods:

. Robust and accurate: The generated surfaces are of
highquality in termsof both accuracyandgeometrical
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Fig. 8. Results with Gaussian noise (� ¼ 1 mm). In (a) more weight is on
the prior model (� ¼ 0:1). In (b) the observation model is favored
(� ¼ 0:5) causing a more bumpy result.

Fig. 9. From top left right to lower right. Input points generated from a cut
sphere with radius 40 (together with a reconstructed surface). Results
after input points were rotated 0, 10, 30, and 45 degree. The difference
between the result from the 0 and 45 degree rotated input points.
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properties. Furthermore, the noise sensitivity can be
handled by adjusting a single parameter.

. Hole filling: The algorithm has excellent hole-filling
capabilities. The nature of the hole filling can be
adapted using the prior energy term.

. Flexible: It is easy to incorporate knowledge of the
nature of the surface to be reconstructed and
information about the capture device in an orthogo-
nal way.

Furthermore, the algorithm is reasonably fast. Future work
will include speed optimization using a multicore imple-
mentation of the ICM algorithm. Furthermore, it will be
tested if it is feasible to limit the updating of the distance
field in a broad band around a previously estimated zero
level of the distance field at the higher levels at the
multiscale ICM. The software can be downloaded from
www.imm.dtu.dk/MRFSurface.

APPENDIX

In this appendix, it is demonstrated why the local
maximum likelihood estimate using (6) can be found as a
linear combination of voxel values. The Approximated
discrete Laplacian is:

LðdiÞ ¼
1

n

X

i�k

ðdi � dkÞ:

Partial differentiationwith respect to center voxel value di:

@LðdiÞ

@di
¼ 1: ð14Þ

Partial differentiation with respect to neighbor voxel
value dk:

@LðdiÞ

@dk
¼ �1=n: ð15Þ

Squared difference of Laplacians

ULðdiÞ ¼
X

i�j

ðLðdiÞ � LðdjÞÞ
2:

Partial differentiation:

@ULðdiÞ

@di
¼ 2

X

i�j

ðLðdiÞ � LðdjÞÞ
@LðdiÞ

@di
�
@LðdjÞ

@di

� �� �

:

According to (14) and (15), it can be seen that:

@LðdiÞ

@di
�
@LðdjÞ

@di

� �

is constant ð1þ 1=nÞ, which leads to:

@ULðdiÞ

@di
¼

X

i�j

LðdiÞ � LðdjÞ
� �

¼ 0;

for which the solution is a linear combination of voxel
values in the neighborhood of di.
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