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1 Introduction

Markov random fields based on the lattice Z2 have been extensively used in image analysis
in a Bayesian framework as a-priori models for the intensity field and on the dual lattice
(Z2)* as models for boundaries. The choice of these models has usually been based on
algorithmic considerations in order to exploit the local structure inherent in Markov fields.
No fundamental justification has been offered for the use of Markov random fields (see, for
example, GEMAN-GEMAN [1984], MARROQUIN-MITTER-POGGIO [1987]). It is well
known that there is a one-one correspondence between Markov fields and Gibbs fields on
a lattice and the Markov Field is simulated by creating a Markov chain whose invariant
measure is precisely the Gibbs measure. There are many ways to perform this simulation
and one such way is the celebrated Metropolis Algorithm. This is also the basic idea behind
Stochastic Quantization. We thus see that if the use of Markov Random fields in the context
of Image Analysis can be given some fundamental justification then there is a remarkable
connection between Probabilistic Image Analysis, Statistical Mechanics and Lattice-based
Euclidean Quantum Field Theory. We may thus expect ideas of Statistical Mechanics and
Euclidean Quantum Field Theory to have a bearing on Image Analysis and in the other
direction we may hope that problems in image analysis (especially problems of inference on
geometrical structures) may have some influence on statistical physics.

This paper deals with the issues just described and above all it suggests a program of
research for dealing with the fundamental issues of probabilistic image analysis.

What is the fundamental problem of Image Analysis? It may be stated as follows:
Given noisy images (possibly stereo) of the visual world in motion, represent and recognize
"structures" in some invariant manner. For example, if the structures of concern are three-
dimensional rigid objects then we want this recognition to be invariant under the action
of the euclidean group. Thus symmetries play an important role in the whole process.
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Ultimately, we want to identify the mechanisms (circuits) which perform the full recognition
task. There are three aspects to this problem: a) the identification and representation of
a priori knowledge of the visual world without which the recognition cannot take place; b)
the extraction of knowledge from the imprecise images available about the visual world and
c) understanding the correct interaction between a priori knowledge and the imprecise data
available in the form of images. It is this formulation of the problematique that suggests a
Bayesian framework. In this paper we deal only with some partial aspects of b) and c) and
it is here that the connection with statistical physics enters.

The visual world is a continuous world and if we believe that it is important to capture
symmetries then mathematical formulations should not be on the lattice £ but should ba
based on R 2 . Even if we are interested in algorithms on a digital machine which necessarily
involve discretization, then in order to capture the symmetries in the limit of lattice spacing
going to zero attention must be paid to the discrete formulations of the problem (see for
example, KULKARNI-MITTER-RICHARSON [1990]).

This paper is organized as follows. In section 2 we discuss Markov fields and Euclidean
fields and state the conjecture regarding Osterwalder-Schrader fields. Section 3 is concerned
with a variational problem in Image Analysis and its probabilistic interpretation and it
shows how these ideas are related to those of Section 2. Finally in Section 4 we discuss
Stochastic Quantization.

2 Markov Fields and Euclidean Fields. (NELSON [1973])

Let Rd denote Euchidean d-dimensional space (d- > 2) and let S(Rd) denote Schwartz
space. If V is a topological vector space, a linear process over V is a stochastic process ?o
indexed by V which is linear and such that if f= -* f in V then To(fa) -- T(f) in measure.
This implies that i(f) for f C V is a random variable over (Q, F., p).

Let c, be a linear process over S(Rd). If A C Rd is open, A(A) be the cr-algebra generated
by p(f) with support of f C A and if A is any subset of Rd let A(A) = n A(A') where A'

A'DA
ranges over all open sets containing A. A(A) will also denote the set of all random variables
which are measurable with respect to A(A). Let Ac denote the complement of A and dA
denote the boundary of A.

A Markov field on Rd is a linear process p over S(Rd) such that whenever A is open in
Rd and a is an integrable random variable in A(A) then E(alJA(AC)) = E(alA(0A)). Here
E denotes conditional expectation.

Let O(d) be the Euclidean group of Rd. By a representation T of O(d) on some prob-
ability space (Q,F,p) we mean a homomorphism r7 --+ T(r?) of O(d) into the group of
automorphisms of the measure algebra and this group acts in a natural way on random
variables.

A Euclidean field is a Markov field p over S(Rd) together with a representation T of
O(d) on (Q, F, 1p) such that Vtf S(Rd) and 77 C O(d)

(Covariance) T(7)To(f) = (p(f o 77-1), (2.1)

and if p in the reflection in the hyperplane R d - l

T(p)a = a, xa E A(Rd-'). (2.2)
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Consider the mapping

(Rd)n ?CSn (Rd) n C C
Sn(fil,., f,) = E(T(fi) . (fn))

and assume it is continuous. By the Schwartz Kernel Theorem, there exists a distribution
Sn E S$(Rdn) such that S,(fi,'', fXn) = S,(ftl Q." fn).

Nelson proves that the sequence of distributions Sn satisfy euclidean invariance, sym-
metry and Osterwalder-Schrader positivity, namely, if A is the half-space xd > 0, so that
0A is the hyperplane Rd-l and Ac is the half space xd < 0 then E[(T(p)&)a] > 0 where
ac E A(A) and T(p)& C A(AC).

An example of such a euclidean field is obtained as follows. Let SR(Rd) be the real
Schwartz space, let m > 0 and let H be the real Hilbert space completion of SR(Rd) with
respect to the scaler product < g, (-A + m 2 )-lf > where A is the Laplace operator. Let
c, be the unit Gaussian on H, i.e. Tp is a real Gaussian process indexed by H with mean
zero and covariance given by the scalar product on H. Extend T to the complexification
of H by linearity. Restricted to S(Rd), p is a linear process over it. Nelson proves that
cp is a Euclidean field, that is it is Markov and satisfies euclidean invariance, symmetry
and Osterwalder-Schrader positivity. Indeed the Markov property, covariance property and
reflection implies Osterwalder-Schrader positivity.

Non-gaussian random fields can be constructed using Multiplicative functionals or mea-
sure transformations. Let p, be a Markov field over S(Rd) with the underlying probability
space (Q, X1, ,p). We say, that a random variable 3 is multiplicative if for every open cover

{Ai} of Rd, there exists strictly positive /3i in A(Ai) with 3 = 7f/i. We shall see later how

we construct P(9 ) 2 fields using these ideas.
To see the connections with Gibbs density let us proceed formally. Let

Ho(x) = .((V9(x))2 + m2((o(2))2)

and consider the formal expression

exp(-J Ho(x)dx) II dT(x).
xER 2

The rigorous interpretation of this expression is as a Gaussian measure pc on S'(R2 )
with mean zero and covariance C = (-A + m 2 )- 1 . This measure corresponds to the free
euclidean field. Non-gaussian measures are obtained by considering formal expressions

exp(- j [Ho(x) +A P(o(x))]dx) In dT(x)e'~ven ZxER

2

where P is an even polynomial and A is a coupling constant. The above corresponds to
the canonical Gibbs density for transverse vibrations of an elastic membrane subject to the
non-linear restoring force F = -m 2 T(x) - AP'(p(z)), (after integration over momentum
variables ¢(x)), and' denotes derivative).
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Now if ;p is the unit Gaussian process over S(R 2 ), then P('p), for an even polynomial
does not make sense. To fix ideas let us consider the case where P(pO) = ;4. It turns out,
however that

: p :(g)f g() : (x) : dfor g c L'OLX

has a well-defined meaning in a limiting sense in L 2 (Q,. , p), where : (x) 4 is an element

of the 4th Homogeneous class. In a more concrete way, :3 :A p3 -3E(p2)-> and this is
well-defined. Now if we consider

exp(-fg(x) : 4 (x): dx)

E(exp(- f g(x): p4 (x) dx)

then / is a multiplicative random variable and we are able to construct the non-gaussian
measure

exp(-f: 04 : dx)
dM =dc.

E = exp(- f : 4 . dx)

This measure is the so-called (;p4 )2-measure.
The proof that (0o4) 2 -measure defines a Markov field is surprisingly difficult and has

been accomplished only recently (see ALBEVERIO, HOEGH-KROHN and ZEGARLINSKI
[1989]). It depends on the complicated theory of local specifications, related Gibbs states
and cluster expansions. On the other hand the property of Osterwalder-Schrader positivity
is much easier to verify. With a view to proving the Global Markov property and for
problems in Image Analysis we advance the following conjecture.

We define an Osterwalder-Schrader field (O-S) on R2 to be a linear process 'p over
S(R2 ) which satisfies the Euclidean covariance property (2.1) and Osterwalder-Schrader
positivity. For example an Osterwalder-Schrader field may be obtained by considering a
function of a Markov field. We conjecture that every Osterwalder-Schrader field can be
obtained as a function of a Markov Field. We call such a Markov field a Hidden Markov
Field for the O-S field.

Let us see this conjecture in the familiar context of stochastic processes. Let (pt It c R),
'p : Q -- V be a stochastic process, which is continuous in probability, stationary, symmetric
(i.e. 'pt and wp_t are stochastically equivalent). It is O-S positive if V 0 < t1 < ... < t• , V
f: V n

- C, bounded Borel (V is a topological vector space) we have

< f(;Ptl, I ... tn), f(;O-tl ,'' * 0-tn) >L2(Q,Y,P)> 0.

Now, let ¢t Q --- V, be a stationary, symmetric Markov process and let ;b: V -- V be
bounded and Borel.

Define a new process by

'pt(w)= =(t(@))-

¢t is called a Markov extension of opt. ;pt is symmetric and stationary and satisfies O-S
postivity but is not necessarily Markov. The conjecture would be:

Does every stationary, O-S process have a Markov extension?
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This conjecture in discrete-time is not true (cf. ARVESON [1986]) but in the form
stated previously may be true.

(It is clear that every bounded Borel function of a symmetric, stationary Markov process
is O-S positive).

3 Probabilistic View of Image Segmentation

We think of a noisy image as a function g: Q -- R where Q C R 2 is a bounded, open set.
We assume g E L'°°(Q). A variational formulation of the image segmentation problem due
to Mumford and Shah (cf. MUMFORD-SHAH [1989]) is as follows. Approximate g by a
function f and a closed set r C Q such that the following energy function is minimized:

E(f, r) = ij iI-g12dx + IVf[2dx + Hl'(r). (3.1)

Here f is required to be in W,12(Q\r), H1 (T) denotes the 1-dimensional Hausdorff measure
of r and /, a are positive constants. We would like to give a probabilistic interpretation of
E(f, r) by considering

exp(- IVf 1 2dx - aHl(r))

as a Gibbs density with respect to a suitable reference measure which is to serve as a prior
measure on (f, r) and exp(- f Ig - f12 d x) as a likelihood function of g given f. The choice
of the energy functional is dictated by the requirement that f should approximate g in
the L2-sense, it should be smooth away from the boundaries r and the total length of the
boundary should be short. Note that for fixed rF, exp(- J/r jVf 12d x) H-EQ\r df(x) would
have a rigorous interpretation as a Gaussian measure pc with mean zero and covariance
C = (-A)-1 on S'(t2/r). Using the recent work of Surgailis (cf. ARAK-SURGAILIS
[1989]) we can give a rigorous interpretation as a density to the following:

exp(-J n IAf l2dx-2 £ (Pri)- c(n))
Q\ LPi r

'i=l

n

which, for an appropriate tp(n), is a density over f G W' 2(2Q\ U ri), n and a set of straight
i=1

lines Pi which form together with O9Q a polygonal partition of f (cf. MITTER-ZEITOUNI
[1990]). We outline here the basic result of Surgailis which constructs a measure on closed
polygonal partitions of Qt.

Let Q2 be a closed convex subset of R 2 with smooth boundary. In R 2 , choose coordinates
(t,z) such that, for all y E Q, t(y), x(y) > O. Let flo denote the lines which intersect Q,
each line f£ C C is parameterized by its distance from the origin pt and the angle it forms
with the t = 0 axis, ace.

Let p(d£) be a uniform measure on the set cae, piel C En. The Poisson point process
with intensity p(d£) will be denoted /u, and the measure it induces on the boundary a2Q by
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the hitting points {(xe,te)lte = inf{tle E Q}} is again a Poisson point process on the triple
(x,t, v) with intensity p/° . Here and in the sequel, v denotes the velocity of the particle,
i.e. the tangent of the angle formed by the trajectory and the t axis.

For any line £ E a, let ve denote the slope of £. Clearly, p(d£) can be considered as a
measure on ve and xe, the intersection of f with the x axis. In the sequel, we consider the
measure p(dv, dx) obtained from the uniform measure /(de) on cr, p, i.e.

/l(de) = /(dv, dx) = dx dv (3.2)

Inside Q, construct a point process on the quadruple (t, y, v', v") with intensity

dv' dr"
P(dt, dy, dv', dv") = Iv'- v"ldydt(1 + (v')2) (1 + (v)2) (3.3)

(1+(V/)2)2 (1+(v1')2)2

Finally, construct a random partition of Q as follows:
Pick up on a9Q, no triples (t, x, v) according to the law pan, and inside Q, nl quadruples

(t, y, v', v") according to the Poisson process with intensity uP . At each of those points,
start a line of slope v (two lines of slopes v', v" in the case of interior points) and evolve v
according to the Markov transition law

dudt
P(vt+dt E dulvt = v) = lu1- - ±J (3.4)

(1 + U2)i

Finally, at each intersection of lines (when viewing it in the direction of growing t) kill the
intersected lines. Clearly, such dynamics describe a random partition of Q by polygons, c.f.
fig. 1. The basic result of Arak and Surgailis is:

FIgure Rando Polygonal P ion

Figure 1: Random Polygonal Parition
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Lemma 3.1

P(n, E dBi,i = 1,...n) i(d) · · (d£) exp(-2 E (i)) (3 5)
i=1

where LC(2) denotes the length of the i-th segment.
Note that due to the presence of n in (3.5), one can't consider (3.5) directly as a

candidate for a density: indeed, if one were to consider P(n,£ , C ft ± e), the required
normalization constant (as E - 0) would have depended on n and therefore, a path with
no jumps will be infinitely more likely than a path with one jump.

One way out of this problem is by using an appropriate definition: Let

n P(n, E E,,i 1= l, .1n)ED Doo

Z A Zn

(Z) is the probability of having n lines in a specific partition. Now, one may define:

Definition The prior density of a partition (n,£i) is given by

p(n, i)= (--) lim C (3.6)Z --+O 2E2n

Combining these ideas with some of the ideas contained in Dembo-Zeitouni (cf. DEMBO-
ZEITOUNI [submitted]) the desired result referred to before can be obtained. The more
general problem of interpreting exp(- f IVf12dx - H'(r)) as a density remains open.

The interpretation of / f If - gl2 dx + fa\r IVfI 2 dx + aHl(r) as a posterior density
accomplishes something important. It frees us from obtaining Maximum A Posteriori esti-

mates of (f, r) via minimization of the above functional. We can in principle obtain other

estimates such as conditional mean estimates. Indeed for closed, convex partitions of Q it

opens up the possibility of doing inference on geometries via Monte-Carlo simulations.

4 Stochastic Quantization (see BORKAR-CHARI-MITTEIE
[1988] for Stochastic Quantization of (04)2 fields).

The problem of stochastic quantization for the energy functional (3.1) is to create a Markov

process whose invariant measure is exp(-E(f, r)). In this section we wish to suggest a

program for achieving this goal. We concentrate on the prior density exp(- f IVfl2 dx -

aHl(r)). The first step in the procedure is to replace the above energy functional appearing
in the density by an approximating functional

£n(f , v)-- ivfl2(l v2 )dx + a ((IVfl 2 + 1v,12)(1 - 2)n d (4.1)
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In (4.1) the variable v(x) G [0, 1] should be thought of as a control variable, which controls
the gradient of f and depends on the discontinuity set r, n is a parameter which tends to
infinity. The above expression makes sense for f, v E W1"2 (Q). 1 - (1 - v 2 )n approximates
smoothed neighbourhoods of r and the approximate boundaries can be identified with
(1 - v2) n ' 0. If we denote by /,i(B) = 2(n + 1)fB v(1 - v 2 )nlVvldx, then essentially

nln(fQ) --> H 4 (r) in a weak sense. For details of this approximation scheme see AMBROSIO-

TORTORELLI [1990].

The first step in the program would be to identify exp(-£E(f, v)) Jl d(f(x), v(x))
xER 2

d,u as a measure in a suitable distribution space. The covariances involved will have
appropriate boundary conditions. One can then study the weak convergence of this measure
dpun as n - cxo. The functional derivatives of En with respect to f, v can be computed:

= -V. (Vf . (1-v 2 )n ) (4.2)
5f

on 2

£n =_- a-V . (Vv (1- v2)n) + n(Vf 2 + alVV 2 )(1- v2)n v + -v (4.3)
5v 16

(There are additional terms involving the normal derivatives).
In analogy with the study of stochastic quantization of (p4)2 fields, the problem of

stochastic quantization for fixed n is the study of the coupled pair of stochastic differential
equations

df(t) = .dt +dw(t) (4.4)
bf

dv(t) - d_ + dv(t) (4.5)

where w(.) and v(.) are infinite-dimensional independent Brownian motions.

5 Conclusions

The conceptual program outlined in this paper is quite general and may be applied to
other variational problems arising in Image Analysis, for example, those involving cur-
vature terms. These variational problems may be important to obtain non-overlapping
segmentations of images with a view to identifying occluded regions.
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