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MARKOV'S INEQUALITY FOR RANDOM VARIABLES
TAKING VALUES IN A LINEAR TOPOLOGICAL SPACE

BY ALBERT W. MARSHALL

University of British Columbia

Let X be a random variable taking values in the-linear topological space X and let
CCI^be the closed convex cone which generates the preordering < . For an appropriate
definition of EX and for c e C, a sharp upper found for P[X fc ε] is obtained in terms of
EX. Similarly, a lower bound for P[XH< ε] is obtained which is sharp in certain special
cases.

1. Introduction. If a random variable X satisfies

(1.1) P[X^0] = l, EX=μ,

and if ε > 0, then according to Markov's inequality,

(1.2) P[X^ε] ^ min{μ/ε,l}.

Moreover there is a distribution for X satisfying (1.1) for which (1.2) holds with equality.
Thus (1.2) is "sharp*' in the sense that the bound cannot be improved without information
in addition to (1.1) about the distribution of X.

This paper is concerned with inequalities similar to (1.2) which hold for random vari-
ables that need not be real-valued, but take values in a real or complex linear topological
space X To obtain such extensions, two preliminaries are required: First, meaning has to
be given to inequalities "α ̂  b" for a,b in X Second, meaning must be given to the notion
of an expectation.

For random variables taking values in the finite dimensional space J?1, the expected value
is naturally taken to be the vector of expected values. More generally, the expected value
can be defined, e.g., as a Pettis integral: see Perlman (1974) for a similar use of this integral
and for the references contained therein. In this paper, it is assumed only that when it exists,
EX = jXdP e Xand the following properites are satisfied:

(1.3) J(X + Y)dP = JXdP + $YdPy

(1.4) I f Λ C x i s closed and convex, P[XeΛ]=l implies JXdPeA,

(1.5) For all events E and ceX, JEcdP = cP(E).

The expression a^ b can be rewritten as a - be[09<χ>) and a > b can be rewritten as
a - &€(0,°°). Since [0,oo) is a closed convex cone with interior (0,<»), it is natural and stan-
dard when replacing (-o°,°°) by a linear topological space X to replace [O,o°) by a closed
convex cone G C X For x, yeX, write

(1.6) x^y ify-xeC,

(1.7) x^ty ify-JC€C°,

where C° is the interior of C. Defined in this way, :$ is a preordering of X, i. e.,

(1.8) x-£y forall ceX

(1.9) x ^ j a n d y ^ z implies JC ^ Z , x,y,zeJC.
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Moreover,*^ satisfies

(1.10) χ-£y implies x + z^y + z foralljc,y,z€X,

(1.11) x^y implies \xl6\y forallλ^O, .x,y*X.

Of course (1.2) is equivalent to

(1.2') P[X< ε] ̂  1 -min{μ/ε,l},

but such an equivalence does not hold when ^ is replaced by a partial order ̂ . In Section

2 below, upper bounds are obtained for P[X ^ ε] and in Section 3, lower bounds for

P[X -v ε] (upper bounds for P[X-fc ε]) are obtained.

For purposes of this paper, certain families 9 of real-valued functions defined on JTplay

akey role. Some conditions that may be imposed on ̂ are the following:

(1.12) x ̂  y if and only ifj{x) ^fiy) for all/e^7,

(1.12') JC-<V ifandonlyify(jc)<y(y)forall/€^,

(1.13) /<S 7 implies/(jc) > 0 for all xeC,

(1.14) /e^impliesy(αjc) ^a/(jc)foralla€[0,l],jc€C.

In what follows, infima or minima taken over empty sets are to be regarded as °o.

2. Upper Bounds for P [ X ^ ] .

2.1 PROPOSITION . Let C C Xbe a closed convex cone which determines the ordering
^ via (1.6). Let X be a random variable such thatP[XeC] = 1 and EX = μ exists. Let

9 be a set of functions satisfying (1.12), (1.13), (1.14). IfεeC, then

(2.1) P[X >r ε] ^ min{l, in

Proof. By using (1.3)-( 1.6) and (1.10) if follows that

μ = JXdp = ί{x^e)XdP + ί{^ε]XdP Ξ ί{x^ε]XdP>;S{x^εdP = εP[X *

But this implies that

fiμ) ^AεP\X >rβ]) ̂  FiX ^ε]/(ε) for all/€^,

i.e.,

P[X ^ ε] ̂ y(μ)//(ε) for all/e^such that/(ε) > 0.

2.2 PROPOSITION . If (1.14) holds with equality for all/e^, then for each μ, εeC, equal-

ity is attainable in (2.1).

Proof. Suppose first that upper bound p of (2.1) is 1 and let Y be a random variable such

that P[Y = μ] = 1. By (1.4), EY = μ so that Y satisfies the conditions of Proposition 2.1.

By (1.12) and (1.13) it follows that μ ^ ε, that is P[Y ̂  ε] = 1, so equality holds in

(2.1).

Next, suppose thatp < 1 and that

P[F=ε]=p, P[Y=α]=l-p

where α = (μ - ε/?)/(l - p). Because p < 1 it follows from (1.12) and (1.13) that

so μ-εp^-ε- εp or (l-p)α^r(l-p)ε. Thus α φ ε , so for this distribution,

>ϊε] = P[Y=ε]=p.

To show that P[Ye C] = 1, it is necessary to show only that α e C, since ε € C by assump-

tion. Since/(μ)//(ε) ̂  p for all ft? such that/(ε) > 0, it follows that/(μ) ̂  pf{ε) = fipε)

for all feJ hence μ ^pε, that is, α e C
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From (1.3) and (1.5), it follows that EY = pε + (1 - p)(μ - εp)/(l - p) = μ. Con-

sequently Y satisfies the condition of Proposition 2.1 and equality is achieved in (2.1). •

2.3 Example. Suppose JC= J? and C = {x = (JC,, ... , jcn):jcf ^ 0, i = 1, ... , n} =

#V is the nonnegative orthant. Let 9- consist of the coordinate functions/i, ... ,fn, where

fix) = x(. If ε € J?\. and ε Φ 0, then

(2.2) P[X, ̂  εi9 i = 1, ... , n] ^ ^

This inequality follows from (4.1) or (7.1) of Marshall and Olkin (1960). It is also equiva-

lent to Corollary 2.1 of Jensen and Foutz (1981).

2.4 Example. Let Xbe the linear space of nXn Hermitian matrices and let C be the

convex cone of positive semi-definite matrices. Take J to consist of functions of the form

fa where a is a unit vector (aa* = 1) of a complex numbers and/a(A) = aAa*. Suppose

that C is positive definite. If the random matrix X is positive definite with probability one,

inf/c /£X)//(C) = infaa£Xa*/aCa* = min^ = 1 be 1 / 2 £XC- 1 / 2 b* = λ π [e 1 / 2 (£X)e 1 / 2 ] , the

minimum characteristic root of C~1/2(£X)C~1/2. Thus

(2.3) P[X >ΓC] < λ,,[e1/2(£X)C-1/2].

This result is given in Corollary 3.3 of Jensen and Foutz (1981).

2.5 Example. Let JC = J? and suppose that "£w is the ordering of weak submajorization

(see Marshall and Olkin, 1979, p. 10). Restricted to 2) = {x:xλ ^ ... ^ jcn}, this ordering

is generated by the convex cone C = {X Σ ^ J C , ^ 0, k = 1, ... , n}. Replace the random

vector X = (Xl9 ... , Xn) by X| = (XΠ], ... , X[n]) where X m ^ ... ^ X[n] are obtained

by ordering X,, ... , Xn. Let C? consist of the functions fk(x) = ΣJ=1*[lΊ, k — 1, ... , n. If

εeC,

so that

(2.4) P[X ̂ wε] = { ^ = i ε [ ] }

The bound of this inequality is in terms of EX^ ,not of EX. Because EX is majorized

by EXi (Marshall and Olkin (1979), p. 348), it is not possible to replace E(XU]) by the i-th

largest component of EX in the above bound.

3. Upper Bounds for P{X-fc ε}. In general, X >r ε implies XH< ε but not conversely,

so it is to be expected that a sharp upper bound for P[X -£ ε] will be larger than the corres-

ponding bound forP[X >^ε] found in Section 2.

The following proposition is less satisfactory than Proposition 2.1 because it is little more

than Markov's inequality (1.2) and requires additional steps to yield a bound in terms of

EX.

3.1 PROPOSITION. Let C ' C x b e a closed convex cone and let X be a random variable

such that P[XeG] = 1 and that EX = μexists. Let 9 be a set of functions satisfying (1.12')

and(1.13).IfεeC°then

(3.1) P[X^ε] ^ min{l9Esupfe?j{X)/j{ε)}.

Remark. Because ε >-0, it follows from (1.12') and (1.13) that
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Proof. From (1.12'), (1.13), and Markov's inequality (1.2) it follows that

ε] = Pt/W ^/(ε) for some/e ^ ] =̂  P[sup/e >/(X)//(ε) ^ 1 ]

The following examples show that (3.1) sometimes leads to sharp bounds in terms of
EX.

3.2Example. SupposeX = J^y C = {x = (JC,, ... , JCJ JC,-^ 0, i = 1, ... , n} = ^ + .
Let ε = (ε!, ... , εn) where each ε, > 0 and let!? consist of the coordinate functions^, ... ,
fn where/(x) = xh If X is an X-valued random variable such that EX = μ exists, then

(3.2) P[Xt ^ Bi for some i = 1, ... , n] ̂  min{l, Σ?=, μ/ε,}.

Proof. Since sup/e 7J{x)lββ) ^ Σ / e 7./W//(ε) and since £/(X) = /(£X) for all/e ^, (3.2)
follows from (3.1). •

In spite of its apparent crudeness, inequality (3.2) is sharp. To see this, suppose first

that the upper bound is less than one and let e, be the vector with i-th coordinate 1 and all

other coordinates 0. Let Y be a random vector such that

P[Y = Bfil\ = μz/ε,, i = 1, ... ,n

P[Y = 0 ] = l - X μ ί / e l ,

Then EY = μ and equality is attained in (3.2).

Next, suppose the upper bound of (3.2) is one and let s = Σ"= iμz/ε/. Let Y be a random
vector such that

P[Y = sBfii] = μi/sεi.

Since s^\, P[Yι ^ εjorsome i = I, ... ,n]= I.

3.3 Example. Suppose X consists of nXn Hermitian matrices and C consists of the

positive semi-definite Hermitian matrices. If P[X e C] = 1, EX = μ exists and C is positive

definite, then

(3.3) P[X-^C] ^ min{l, trCr1/2μCr1/2}.

To obtain (3.3) from (3.1), take 7 as in Example 2.4. Denote the largest eigenvalue of

an Hermitian matrix H by λ i (H). Then

EsupaaXa*/aCa* = £sup { a : a a . = 1}aC-1/2XC->'2a* = £λ,(C-"2XC-"2)

« EtrC-1/2XC-1/2 = trC-1/2(EX)C-1/2.

Thus (3.3) follows from (3.1).

To see that (3.3) is sharp, suppose without loss of generality that C = I; otherwise replace

X by C-1/2XC-"2. Write μ in the form μ = ΓDΓ* where D = diag(rf,, ... , dn) is diagonal

and Γ is unitary. Suppose the bound is less than one and let E, = diag e, where e, is defined

in 3.2. If
P[Y = ΓE,Γ*] = dh i=\, ... ,n

then EY = Σ 4ΓE,Γ* = Γ(Σ4E,)Γ* = ΓDΓ* = μ. Moreover P[X •< I] = P[X = 0]

= 1 - tr μ so equality holds in (3.3).

In case the bound of (3.3) is one, the above example can be modified to show that equal-
ity is attainable using ideas similar to those used for Example 3.2.
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3.4 Example. Let X = J? and supposed that rζw is the ordering of weak submajoriza-

tion, as in Example 2.5. With C and ̂ as in Example 2.5, it follows from (3.1) that

( 3 4>
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