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Abstract We consider Markov-switching regression mod-
els, i.e. models for time series regression analyses where the
functional relationship between covariates and response is
subject to regime switching controlled by an unobservable
Markov chain. Building on the powerful hidden Markov
model machinery and the methods for penalized B-splines
routinely used in regression analyses, we develop a frame-
work for nonparametrically estimating the functional form
of the effect of the covariates in such a regression model,
assuming an additive structure of the predictor. The result-
ing class of Markov-switching generalized additive models
is immensely flexible, and contains as special cases the com-
mon parametric Markov-switching regression models and
also generalized additive and generalized linear models. The
feasibility of the suggested maximum penalized likelihood
approach is demonstrated by simulation. We further illustrate
the approach using two real data applications, modelling (i)
how sales data depend on advertising spending and (ii) how
energy price in Spain depends on the Euro/Dollar exchange
rate.
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1 Introduction

In regression scenarios where the data have a time series
structure, there is often parameter instability with respect to
time (Kim et al. 2008). A popular strategy to account for
such dynamic patterns is to employ regime switching where
parameters vary in time, taking on finitely many values,
controlled by an unobservable Markov chain. Such mod-
els are referred to as Markov-switching or regime-switching
regression models, following the seminal papers by Goldfeld
and Quandt (1973) and Hamilton (1989). A basic Markov-
switching regression model involves a time series {Yt }t=1,...,T

and an associated sequence of covariates x1, . . . , xT (includ-
ing the possibility of xt = yt−1), with the relation between
xt and Yt specified as

Yt = f (st )(xt ) + σst ǫt , (1)

where typically ǫt
i id
∼ N (0, 1) and st is the state at time t

of an unobservable N -state Markov chain. In other words,
the functional form of the relation between xt and Yt and
the residual variance change over time according to state
switches of an underlying Markov chain, i.e. each state
corresponds to a regime with different stochastic dynam-
ics. The Markov chain induces serial dependence, typically
such that the states are persistent in the sense that regimes
are active for longer periods of time, on average, than they
would be if an independent mixture model was used to select
among regimes. The classic example is an economic time
series where the effect of an explanatory variable may differ
between times of high and low economic growth (Hamilton
2008).

The simple model given in (1) can be (and has been)
modified in various ways, for example allowing for multiple
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covariates or for general error distributions from the gen-
eralized linear model (GLM) framework. An example for
the latter is the Markov-switching Poisson regression model
discussed in Wang and Puterman (2001). However, in the
existing literature the relationship between the target vari-
able and the covariates is commonly specified in parametric
form and usually assumed to be linear, with little investiga-
tion, if any, into the absolute or relative goodness of fit. The
aim of the present work is to provide effective and accessible
methods for a nonparametric estimation of the functional
form of the predictor. These build on a) the strengths of
the hidden Markov model (HMM) machinery (Zucchini and
MacDonald 2009), in particular the forward algorithm, which
allows for a simple and fast evaluation of the likelihood of a
Markov-switching regression model (parametric or nonpara-
metric), and b) the general advantages of penalized B-splines,
i.e. P-splines (Eilers and Marx 1996), which we employ
to obtain almost arbitrarily flexible functional estimators
of the relationship between target variable and covariate(s).
Model fitting is done via numerical maximum penalized like-
lihood estimation, using either generalized cross-validation
or an information criterion approach to select smoothing
parameters that control the balance between goodness-of-
fit and smoothness. Since parametric polynomial models
are included as limiting cases for very large smoothing
parameters, this procedure also comprises the possibility
to effectively reduce the functional effects to their para-
metric limiting cases, such that the conventional parametric
Markov-switching regression models effectively are nested
special cases of our more flexible models.

Our approach is by no means limited to models of the form
given in (1). In fact, the flexibility of the HMM machin-
ery allows for the consideration of models from a much
bigger class, which we term Markov-switching generalized

additive models (MS-GAMs). These are simply generalized
additive models (GAMs) with an additional time component,
where the predictor—including additive smooth functions of
covariates, parametric terms and error terms—is subject to
regime changes controlled by an underlying Markov chain,
analogously to (1). While the methods do not necessitate a
restriction to additive structures, we believe these to be most
relevant in practice and hence have decided to focus on these
models in the present work. Our work is closely related to
that of Souza and Heckman (2014). Those authors, however,
confine their consideration to the case of only one covariate
and the identity link function. Furthermore, we note that our
approach is similar in spirit to that proposed in Langrock et al.
(2015), where the aim is to nonparametrically estimate the
densities of the state-dependent distributions of an HMM.

The paper is structured as follows. In Sect. 2, we formulate
general Markov-switching regression models, describe how
to efficiently evaluate their likelihood, and develop the spline-
based nonparametric estimation of the functional form of the

predictor. The performance of the suggested approach is then
investigated in three simulation experiments in Sect. 3. In
Sect. 4, we demonstrate the feasibility and the potential of
the approach by applying it (i) to advertising data and (ii) to
Spanish energy price data. We conclude in Sect. 5.

2 Markov-switching generalized additive models

2.1 Markov-switching regression models

We begin by formulating a Markov-switching regression
model with arbitrary form of the predictor, encompass-
ing both parametric and nonparametric specifications. Let
{Yt }t=1,...,T denote the target variable of interest (a time
series), and let x p1, . . . , x pT denote the associated values
of the pth covariate considered, where p = 1, . . . , P .
We summarize the covariate values at time t in the vec-
tor x·t = (x1t , . . . , xPt ). Further let s1, . . . , sT denote the
states of an underlying unobservable N -state Markov chain
{St }t=1,...,T . Finally, we assume that conditional on (st , x·t ),
Yt follows some distribution from the exponential family and
is independent of all other states, covariates and observations.
We write

g
(

E(Yt | st , x·t )
)

= η(st )(x·t ), (2)

where g is some link function, typically the canonical link
function associated with the exponential family distribution
considered. That is, the expectation of Yt is linked to the
covariate vector x·t via the predictor function η(i), which
maps the covariate vector to R, when the underlying Markov
chain is in state i , i.e. St = i . Essentially there is one regres-
sion model for each state i , i = 1, . . . , N . In the following,
we use the shorthand μ

(st )
t = E(Yt | st , x·t ).

To fully specify the conditional distribution of Yt , addi-
tional parameters may be required, depending on the error
distribution considered. For example, if Yt is condition-
ally Poisson distributed, then (2) fully specifies the state-
dependent distribution (e.g. with g(μ) = log(μ)), whereas
if Yt is normally distributed (in which case g usually is the
identity link), then the variance of the error needs to be spec-
ified, and would typically be assumed to also depend on the
current state of the Markov chain. We use the notation φ(st ) to
denote such additional state-dependent parameters (typically
dispersion parameters), and denote the conditional density
of Yt , given (st , x·t ), as pY (yt , μ

(st )
t , φ(st )). The simplest and

probably most popular such model assumes a conditional
normal distribution for Yt , a linear form of the predictor and
a state-dependent error variance, leading to the model

Yt = β
(st )
0 + β

(st )
1 x1t + · · · + β(st )

p xPt + σst ǫt , (3)
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where ǫt
i id
∼ N (0, 1) (cf. Frühwirth-Schnatter 2006; Kim

et al. 2008).
Assuming homogeneity of the Markov chain—which can

easily be relaxed if desired—we summarize the probabili-
ties of transitions between the different states in the N × N

transition probability matrix (t.p.m.) Ŵ =
(

γi j

)

, where
γi j = Pr

(

St+1 = j |St = i
)

, i, j = 1, . . . , N . The initial
state probabilities are summarized in the row vector δ, where
δi = Pr(S1 = i), i = 1, . . . , N . It is usually convenient to
assume δ to be the stationary distribution, which, if it exists,
is the solution to δŴ = δ subject to

∑N
i=1 δi = 1.

2.2 Likelihood evaluation by forward recursion

A Markov-switching regression model, with conditional
density pY (yt , μ

(st )
t , φ(st )) and underlying Markov chain

characterized by (Ŵ, δ), can be regarded as an HMM with
additional dependence structure (here in the form of covari-
ate influence); see Zucchini and MacDonald (2009). This
opens up the way for exploiting the efficient and flexible
HMM machinery. Most importantly, irrespective of the type
of exponential family distribution considered, an efficient
recursion can be applied in order to evaluate the likelihood of
a Markov-switching regression model, namely the so-called
forward algorithm. To see this, consider the vectors of for-
ward variables, defined as the row vectors

αt =
(

αt (1), . . . , αt (N )
)

, t = 1, . . . , T,

where αt ( j) = p(y1, . . . , yt , St = j | x·1 . . . x·t )

for j = 1, . . . , N .

Here p is used as a generic symbol for a (joint) density. Then
the following recursive scheme can be applied:

α1 = δQ(y1) ,

αt = αt−1ŴQ(yt ) (t = 2, . . . , T ), (4)

where

Q(yt ) = diag
(

pY (yt , μ
(1)
t , φ(1)), . . . , pY (yt , μ

(N )
t , φ(N ))

)

.

The recursion (4) follows immediately from

αt ( j) =

N
∑

i=1

αt−1(i)γi j pY (yt , μ
( j)
t , φ( j)),

which in turn can be derived in a straightforward manner
using the model’s dependence structure. Thus, the forward
algorithm exploits the conditional independence assump-
tions to perform the likelihood calculation recursively, tra-
versing along the time series and updating the likelihood and

state probabilities at every step. The likelihood can then be
written as a matrix product:

L(θ) =

N
∑

i=1

αT (i) = δQ(y1)ŴQ(y2) . . . ŴQ(yT )1, (5)

where 1 ∈ RN is a column vector of ones, and where θ is a
vector comprising all model parameters. The computational
cost of evaluating (5) is linear in the number of observations,
T , such that a numerical maximization of the likelihood is
feasible in most cases, even for very large T and moderate
numbers of states N .

2.3 Nonparametric modelling of the predictor

Notably, the likelihood form given in (5) applies for any form
of the conditional density pY (yt , μ

(st )
t , φ(st )). In particular, it

can be used to estimate simple Markov-switching regression
models, e.g. with linear predictors, or in fact with any GLM-
type structure within states. Here we are concerned with
a nonparametric estimation of the functional relationship
between Yt and x·t . To achieve this, we consider a GAM-
type framework (Wood 2006), with the predictor comprising
additive smooth state-dependent functions of the covariates:

g(μ
(st )
t ) = η(st )(x·t ) = β

(st )
0 + f

(st )
1 (x1t ) + f

(st )
2 (x2t )

+ · · · + f
(st )
P (xPt ).

We simply have one GAM associated with each state of the
Markov chain. To achieve a flexible estimation of the func-
tional form, we use penalised splines as introduced by Eilers
and Marx (1996) (see also Fahrmeir et al. 2013, for an in-
depth discussion of penalised splines) and express each of the
functions f

(i)
p , i = 1, . . . , N , p = 1, . . . , P , as a finite linear

combination of a high number of B-spline basis functions,
B1, . . . , BK :

f (i)
p (x) =

K
∑

k=1

γi pk Bk(x). (6)

Note that different sets of basis functions can be applied to
represent the different functions, but to keep the notation
simple we here consider a common set of basis functions
for all f

(i)
p . B-splines have turned out to form a numeri-

cally stable, convenient basis for the space of polynomial
splines, i.e. piecewise polynomials that are fused together
smoothly at the interval boundaries; see Boor (1978) for
more details. We use cubic B-splines, in ascending order in
the basis used in (6), to obtain twice continuously differen-
tiable function estimates. The number of B-splines involved
in the specification of each of the functions, K , determines
the flexibility of the functional form, as an increasing number
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of basis functions allows for an increasing curvature of the
function being modeled. Instead of trying to select an opti-
mal number of basis elements, we follow Eilers and Marx
(1996) and modify the likelihood by including a difference
penalty on coefficients of adjacent B-splines. The number
of basis B-splines, K , then simply needs to be sufficiently
large in order to yield high flexibility for the functional esti-
mates. Once this threshold is reached, a further increase
in the number of basis elements no longer changes the fit
to the data due to the impact of the penalty. Considering
second-order differences—which leads to an approximation
of the integrated squared curvature of the function estimate
(Eilers and Marx 1996)—leads to the difference penalty
0.5λi p

∑K
k=3(�

2γi pk)
2, where λi p ≥ 0 are smoothing para-

meters and where �2γi pk = γi pk − 2γi p,k−1 + γi p,k−2. Note
that the integrated squared second derivative could of course
also be evaluated explicitly for cubic B-splines. However,
the approximation via a difference penalty allows to avoid
the associated implementational costs at basically no cost in
terms of the fit.

We then modify the (log-)likelihood of the MS-GAM—
specified by pY (yt , μ

(st )
t , φ(st )) in combination with (6)

and underlying Markov chain characterized by (Ŵ, δ)—by
including the above difference penalty, one for each of the
smooth functions appearing in the state-dependent predic-
tors:

lpen.(θ) = log
(

L(θ)
)

−

N
∑

i=1

P
∑

p=1

λi p

2

K
∑

k=3

(�2γi pk)
2. (7)

The maximum penalized likelihood estimate then reflects
a compromise between goodness-of-fit and smoothness,
where an increase in the smoothing parameters leads to an
increased emphasis being put on smoothness. We discuss
the choice of the smoothing parameters in more detail in
Sect. 2.5. As λi p → ∞, the corresponding penalty domi-
nates the log-likelihood, leading to a sequence of estimated
coefficients γi p1, . . . , γi pK that are on a straight line. Thus,
we obtain the common linear predictors, as given in (3), as a
limiting case. Similarly, we can obtain parametric functions
with arbitrary polynomial order q as limiting cases by con-
sidering (q + 1)th order differences in the penalty. Thus, the
common parametric regression models are essentially nested
within the class of nonparametric models that we consider.
One can of course obtain these nested special cases more
directly, by simply specifying parametric rather than non-
parametric forms for the predictor. On the other hand, it can
clearly be advantageous not to constrain the functional form
in any way a priori, though still allowing for the possibility of
obtaining constrained parametric cases as a result of a data-
driven choice of the smoothing parameters. Standard GAMs
and even GLMs are also nested in the considered class of

models (N = 1), but this observation is clearly less relevant,
since powerful software is already available for these special
cases.

2.4 Inference

For given smoothing parameters and given number of states,
all model parameters—including the parameters determining
the Markov chain, any dispersion parameters, the coeffi-
cients γi pk used in the linear combinations of B-splines and
any other parameters required to specify the predictor—can
be estimated simultaneously by numerically maximizing the
penalized log-likelihood given in (7). For each function f

(i)
p ,

i = 1, . . . , N , p = 1, . . . , P , one of the coefficients needs
to be fixed to render the model identifiable, such that the
intercept controls the height of the predictor function. A con-
venient strategy to achieve this is to first standardize each
sequence of covariates x p1, . . . , x pT , p = 1, . . . , P , shift-
ing all values by the sequence’s mean and dividing the shifted
values by the sequence’s standard deviation, and second con-
sider an odd number of B-spline basis functions K with
γi p,(K+1)/2 = 0 fixed.

The numerical maximization is carried out subject to well-
known technical issues arising in all optimization problems,
including parameter constraints and local maxima of the
likelihood. The latter can be either easy to deal with or a chal-
lenging problem, depending on the complexity of the model
considered. Numerical underflow (or overflow), which would
typically arise for large T if the likelihood itself was consid-
ered, is prevented via the consideration of the log-likelihood.
Since the likelihood is a product of matrices, this requires the
implementation of a scaling algorithm (for details, see, e.g.,
Zucchini and MacDonald 2009). Any suitable optimization
routine can be applied to perform the likelihood maximiza-
tion. In this work, we used R and the optimizer nlm, which
is a non-linear minimizer based on a Newton-type optimiza-
tion routine. For more details on the algorithm, see Schnabel
et al. (1985).

Uncertainty quantification, on both the estimates of para-
metric parts of the model and on the function estimates, can
be performed based on the approximate covariance matrix
available as the inverse of the observed Fisher informa-
tion, or alternatively using a parametric bootstrap (Efron and
Tibshirani 1993). The latter avoids relying on asymptotics,
which is particularly problematic when the number of B-
spline basis functions increases with the sample size. From
the bootstrap samples, we can obtain pointwise as well as
simultaneous confidence intervals for the estimated regres-
sion functions. Pointwise confidence intervals are simply
given via appropriate quantiles obtained from the bootstrap
replications. Simultaneous confidence bands are obtained by
scaling the pointwise confidence intervals until they contain
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a pre-specified fraction of all bootstrapped curves completely
(Krivobokova et al. 2010).

For the closely related class of nonparametric HMMs,
identifiability holds under fairly weak conditions, which in
practice will usually be satisfied, namely that the t.p.m. of
the unobserved Markov chain has full rank and that the state-
specific distributions are distinct (Gassiat et al. in press). This
result transfers to the more general class of MS-GAMs if,
additionally, the state-specific GAMs are identifiable. Con-
ditions for the latter are simply the same as in any standard
GAM. In particular, the nonparametric functions have to be
centered around zero. Furthermore, in order to guarantee
estimability of a flexible smooth function on a given domain,
it is necessary that the covariate values cover that domain
sufficiently well. In practice, i.e. when dealing with finite
sample sizes, parameter estimation will be difficult if the
level of correlation, as induced by the unobserved Markov
chain, is low, and also if the state-specific GAMs are similar.
The stronger the correlation in the state process, the clearer
becomes the pattern and hence the easier it is for the model
to allocate observations to states. Similarly, the estimation
performance will be best, in terms of numerical stability, if
the state-specific GAMs are clearly distinct. (See also the
simulation experiments in Sect. 3 below.)

2.5 Choice of the smoothing parameters

In Sect. 2.4, we described how to fit an MS-GAM to
data for a given smoothing parameter vector. To choose
adequate smoothing parameters in a data-driven way, gen-
eralized cross-validation can be applied. A leave-one-out
cross-validation will typically be computationally infeasi-
ble. Instead, for a given time series to be analyzed, we
generate C random partitions such that in each partition a
high percentage of the observations, e.g. 90 %, form the
calibration sample, while the remaining observations con-
stitute the validation sample. For each of the C partitions
and any λ = (λ11, . . . , λ1P , . . . , λN1, . . . , λN P ), the model
is then calibrated by estimating the parameters using only the
calibration sample (treating the data points from the valida-
tion sample as missing data, which is straightforward using
the HMM forward algorithm; see Zucchini and MacDon-
ald 2009). Subsequently, proper scoring rules (Gneiting and
Raftery 2007) can be used on the validation sample to assess
the model for the given λ and the corresponding calibrated
model. For computational convenience, we consider the log-
likelihood of the validation sample, under the model fitted
in the calibration stage, as the score of interest (now treat-
ing the data points from the calibration sample as missing
data). From some pre-specified grid � ⊂ R

N×P
≥0 , we then

select the λ that yields the highest mean score over the C

cross-validation samples. The number of samples C needs to
be high enough to give meaningful scores (i.e. such that the

scores give a clear pattern rather than noise only; from our
experience, C should not be smaller than 10), but must not
be too high to allow for the approach to be computationally
feasible.

An alternative, less computer-intensive approach for
selecting the smoothing parameters is based on the Akaike
Information Criterion (AIC), calculating, for each smooth-
ing parameter vector from the grid considered, the following
AIC-type statistic:

AICp = −2 log L + 2ν. (8)

Here L is the unpenalized likelihood under the given model
(fitted via penalized maximum likelihood), and ν denotes
the effective degrees of freedom, defined as the trace of the
product of the Fisher information matrix for the unpenalized
likelihood and the inverse Fisher information matrix for the
penalized likelihood (Gray 1992). Using the effective degrees
of freedom accounts for the effective dimensionality reduc-
tion of the parameter space resulting from the penalization.
From all smoothing parameter vectors considered, the one
with the smallest AICp value is chosen.

2.6 Choice of the number of states

Choosing an appropriate number of states, N , is by no
means a straightforward task. Even for the simpler paramet-
ric Markov-switching models, there is a variety of possible
criteria for selecting N , including the AIC, the Bayesian
Information Criterion, the Integrated Completed Likelihood
criterion, the Hannan-Quinn criterion and cross-validated
likelihood (see, e.g., Psaradakis and Spagnolo 2003; Celeux
and Durand 2008), and it is our impression that most users
pick their method of choice rather arbitrarily. For MS-GAMs,
it is conceptually straightforward to choose N for example
based on cross-validated likelihood or on the AIC-type sta-
tistic (8). However, especially with information criteria, we
have made the experience that these tend to favor overly
complex state processes, often due to additional states being
included simply to capture artefacts such as a few outlying
observations. Thus, it is our view that one should not blindly
trust these criteria when choosing N , and instead use them
for guidance only. In addition, thoroughly checking the good-
ness of fit for different N is important. In particular, this can
help to (i) identify for which N the fit is satisfactory, given
the aim of the analysis (e.g. inference on the state-switching
dynamics or prediction of future values), and (ii) reveal the
sources of any lack of fit. Regarding (i), it is in our view often
advisable to use a relatively small N to guarantee computa-
tional tractability (e.g. if the state transition probabilities are
functions of covariates) at the expense of a minor lack of fit.
Regarding (ii), some typical problems of Markov-switching
regression models are the following:
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• N is too small;
• the distribution of the response variable is inadequate

(e.g. due to overdispersion);
• the functional form of the predictor is not flexible enough.

While we would not generally claim that the choice of N is
easier for MS-GAMs than for the parametric counterparts,
we do think that it is an advantage that the last of the three
problems above can be excluded for MS-GAMs, since these
models allow for arbitrary (smooth) functional forms (cf.
Langrock et al. 2015). Thus, model checking for MS-GAMs
centers around the autocorrelation and distribution of the
residuals (the former to check the adequacy of the choice
of N , the latter to check for a possible misspecification of
the response distribution). Pseudo-residuals (also known as
quantile residuals) allow for a comprehensive residual analy-
sis in Markov-switching models (Zucchini and MacDonald
2009).

3 Simulation experiments

3.1 Scenario I

We first consider a relatively simple scenario, with a Poisson-
distributed target variable, a 2-state Markov chain selecting
the regimes and only one covariate:

Yt ∼ Poisson(μ
(st )
t ),

where

log(μ
(st )
t ) = β

(st )
0 + f (st )(xt ).

The functional forms of the predictors were chosen arbitrarily
as

f (1)(xt ) = 0.3x2
t + sin(−xt )

and

f (2)(xt ) = −0.5 − 1.4xt + 0.1x2
t

+ 0.6 sin(−xt ) + 0.5 cos(2xt );

these functions are displayed by the dashed curves in Fig. 1.
Both functions go through the origin. We further set β

(1)
0 =

β
(2)
0 = 2 and

Ŵ =

(

0.9 0.1
0.1 0.9

)

.

All covariate values were drawn independently from a uni-
form distribution on [−3, 3]. We ran 200 simulations, in
each run generating T = 300 observations from the model

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4
6

xt

f(s
t)
(x

t)

 (state 1)st=1

st=2 (state 2)

Fig. 1 Displayed are the true functions f (1) and f (2) used in Scenario I

(dashed lines) and their estimates obtained in 200 simulation runs (green

and red lines for states 1 and 2, respectively). (Color figure online)

described. An MS-GAM, with Poisson-distributed response
and log-link, was then fitted via numerical maximum penal-
ized likelihood estimation as described in Sect. 2.4 above.
We set K = 15, hence using 15 B-spline basis densities in
the representation of each functional estimate.

We implemented both generalized cross-validation and
the AIC-based approach for choosing the smoothing para-
meter vector from a grid � = 1 × 2, where 1 = 2 =

{0.125, 1, 8, 64, 512, 4096}, considering C = 25 folds in
the cross-validation. For both approaches, we estimated the
mean integrated squared error (MISE) for the two functional
estimators, as follows:

M̂ISE f ( j) =
1

200

200
∑

z=1

(

∫ 3

−3

(

f̂
( j)
z (x) − f ( j)(x)

)2

dx

)

,

for j = 1, 2, where f̂
( j)
z (x) is the functional estimate of

f ( j)(x) obtained in simulation run z. Using cross-validation,
we obtained M̂ISE f (1) = 1.808 and M̂ISE f (2) = 0.243,
while using the AIC-type criterion we obtained the slightly
better values M̂ISE f (1) = 1.408 and M̂ISE f (2) = 0.239. In
the following, we report the results obtained using the AIC-
based approach.

The sample mean estimates of the transition probabilities
γ11 and γ22 were obtained as 0.894 (Monte Carlo standard
deviation of estimates: 0.029) and 0.896 (0.032), respec-
tively. The estimated functions f̂ (1) and f̂ (2) from all 200
simulation runs are visualized in Fig. 1. The functions have
been shifted so that they go through the origin. All fits are
fairly reasonable. The sample mean estimates of the predictor
value for xt = 0 were obtained as 2.002 (0.094) and 1.966
(0.095) for states 1 and 2, respectively.

3.2 Scenario II

The second simulation experiment we conducted is slightly
more involved, with a normally distributed target variable,
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f 1(s
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1
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st=1 (state 1)

st=2 (state 2)
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−
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−
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x2t

f 2(s
t)
(x

2
t)

st=1 (state 1)
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Fig. 2 Displayed are the true functions f
(1)
1 , f

(2)
1 , f

(1)
2 and f

(2)
2 used in

Scenario II (dashed lines) and their estimates obtained in 200 simulation
runs (red and green lines for states 1 and 2, respectively; f

(1)
1 and f

(2)
1 ,

which describe the state-dependent effect of the covariate x1t on the

predictor, and corresponding estimates are displayed in the left panel;
f
(1)
2 and f

(2)
2 , which describe the state-dependent effect of the covariate

x2t on the predictor, and corresponding estimates are displayed in the
right panel). (Color figure online)

an underlying 2-state Markov chain and now two covariates:

Yt ∼ N (μ
(st )
t , σst ),

where

μ
(st )
t = β

(st )
0 + f

(st )
1 (x1t ) + f

(st )
2 (x2t ).

The functional forms were chosen as

f
(1)
1 (x1t ) = 0.2x1t + 0.4x2

1t , f
(2)
1 (x1t ) = −x1t ,

f
(1)
2 (x2t ) = x2t + 1.2 sin(x2t ) and

f
(2)
2 (x2t ) = −0.2x2t − 0.25x2

2t − sin(x2t );

see Fig. 2. Again all functions go through the origin. We
further set β

(1)
0 = 1, β

(2)
0 = −1, σ1 = 3, σ2 = 2 and

Ŵ =

(

0.95 0.05
0.05 0.95

)

.

The covariate values were drawn independently from a uni-
form distribution on [−3, 3]. In each of 200 simulation runs,
T = 1000 observations were generated.

For the choice of the smoothing parameter vector, we con-
sidered the grid � = 1 × 2 × 3 × 4, where 1 =

2 = 3 = 4 = {0.25, 4, 64, 1024, 16384}. The AIC-
based smoothing parameter selection led to MISE estimates
that overall were marginally lower than their counterparts
obtained when using cross-validation (0.555 compared to
0.565, averaged over all four functions being estimated), so
again in the following we report the results obtained based
on the AIC-type criterion. The (true) function f

(2)
1 is in fact

a straight line, and, notably, the associated smoothing para-
meter was chosen as 16384, hence as the maximum possible
value from the grid considered, in 129 out of the 200 cases,
whereas for example for the function f

(2)
2 , which has a mod-

erate curvature, the value 16384 was not chosen even once
as the smoothing parameter.

In this experiment, the sample mean estimates of the
transition probabilities γ11 and γ22 were obtained as 0.950
(Monte Carlo standard deviation of estimates: 0.011) and
0.948 (0.012), respectively. The estimated functions f̂

(1)
1 ,

f̂
(2)
1 , f̂

(1)
2 and f̂

(2)
2 from all 200 simulation runs are displayed

in Fig. 2. Again all have been shifted so that they go through
the origin. The sample mean estimates of the predictor value
for x1t = x2t = 0 were 0.989 (0.369) and −0.940 (0.261)
for states 1 and 2, respectively. The sample mean estimates of
the state-dependent error variances, σ1 and σ2, were obtained
as 2.961 (0.107) and 1.980 (0.078), respectively. Again the
results are very encouraging, with not a single simulation run
leading to a complete failure in terms of capturing the overall
pattern.

3.3 Scenario III

The estimator behavior both in Scenario I and in Scenario II is
encouraging, and demonstrates that inference in MS-GAMs
is clearly practicable in these two settings, both of which may
occur in similar form in real data. However, as discussed in
Sect. 2.4, in some circumstances, parameter identification in
finite samples can be difficult, especially if the level of cor-
relation as induced by the Markov chain is low. To illustrate
this, we re-ran Scenario I, using the exact same configuration
as described above except that we changed Ŵ to
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Fig. 3 Displayed are the true functions f (1) and f (2) used in Scenario

III (dashed lines) and their estimates obtained in 200 simulation runs
(green and red lines for states 1 and 2, respectively). (Color figure
online)

Ŵ =

(

0.6 0.4
0.4 0.6

)

.

In other words, compared to Scenario I, there is substantially
less autocorrelation in the series that are generated.

Figure 3 displays the estimated functions f̂ (1) and f̂ (2)

in this slightly modified scenario. Due to the fairly low level
of autocorrelation, the estimator performance is substantially
worse than in Scenario I, and in several simulation runs the
model failed to capture the overall pattern, by allocating pairs
(yt , xt ) with high values of the covariate xt to the wrong
state of the Markov chain. The deterioration in the estimator
performance is also reflected by higher standard errors: The
sample mean estimates of the transition probabilities γ11 and
γ22 were obtained as 0.590 (Monte Carlo standard deviation
of estimates: 0.082) and 0.593 (0.088), respectively, and the
sample mean estimates of the predictor value for xt = 0 were
obtained as 1.960 (0.151) and 2.017 (0.145) for states 1 and
2, respectively.

4 Real data examples

4.1 Advertising data

We first consider a classic data set on Lydia Pinkham’s annual
sales and advertising expenditures during the period 1907–
1960. The data set and its background are described in detail
in Palda (1965). It comprises the sales in year t , yt , and the
annual advertising expenditures, xt , of the company. Both
figures are given in millions of U.S. dollars. The time series
of annual sales displays two distinct peaks, in 1925 and 1945,
respectively (see Fig. 1 in Palda 1965). Statistical analyses of
such data can aid managers in determining the effectiveness
of advertising (Smith et al. 2006).

As a baseline parametric Markov-switching model, we
consider the model formulation suggested by Smith et al.
(2006):

yt = β
(st )
0 + β

(st )
1 xt + β

(st )
2 yt−1

+ σst ǫt , t = 1908, . . . , 1960,

where ǫt
i id
∼ N (0, 1) and where st is the state of a 2-state

(stationary) Markov chain. This model, which involves 10
parameters, will be labeled MS-LIN in the following. Via
numerical maximum likelihood, we obtained parameter esti-
mates indicating that advertising was more effective in the
model’s state 1 than in state 2 (β(1)

1 = 0.746 > 0.397 =

β
(2)
1 ), with state 2 involving a stronger carryover effect

(β(2)
2 = 0.562 > 0.434 = β

(1)
2 ). For the given model, the

Viterbi algorithm allocated the years 1917–1924 and 1939–
1944 to state 1, and all other years to state 2. The first switch to
the state involving more effective advertising—i.e. the entry
to state 1 in 1916/1917—followed the re-labeling of Lydia
Pinkham’s Vegetable Compound, which had been advertised
as an almost universal remedy prior to 1914, and was now
being sold primarily as a relief of “female troubles” (Palda
1965). A possible reason for the first departure from the state
with the more effective advertising—i.e. the departure from
state 1 in 1924/1925—could be the fact that in 1925 Lydia
Pinkham was ordered to stop advertising their Vegetable
Compound as acting “directly upon female organs”, such
that they labeled it as “vegetable tonic” instead, which led
to a drop in sales (Palda 1965). Similarly, the re-entering of
state 2 in 1938/1939 could be related to the Federal Trade
Commission re-allowing Lydia Pinkham to use their ear-
lier, more effective marketing strategy in 1940. From 1946
onwards, sales plummeted due to a changed general percep-
tion of Lydia Pinkham as a “pseudoremedy from the previous
century” (Applegate 2012), and this may explain the switch
back to state 2. These findings are notably different to those
given in Smith et al. (2006), who reported only one state
switch, such that their model’s two regimes divided the data
into a pre-war and a post-war period. We note that Smith
et al. (2006) analyzed a slightly shorter data set, covering the
period 1914–1960. However, we obtained different results—
very similar to those reported here—also when fitting the
model to that shorter series.

Next we fitted the following MS-GAM to the advertising
data:

yt = β
(st )
0 + f (st )(xt ) + β

(st )
1 yt−1

+ σst ǫt , t=1908, . . . , 1960,

again with ǫt
i id
∼ N (0, 1). This formulation is a semiparamet-

ric version of the general MS-GAM formulation, where we
nonparametrically model the effect of the advertising expen-
diture xt but assume a simple linear effect of the previous
year’s sales, yt−1, on the current year’s sales, yt . This model
will be labeled MS-GAM in the following. We used this rel-
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Fig. 4 Lydia Pinkham data
example: estimated
state-dependent mean sales as
functions of advertising
expenditure (state 1 in green,
state 2 in red), for the MS-LIN
model (left plot) and for the
MS-GAM (right plot).
Displayed are the predictor
values when fixing the regressor
yt−1 at its overall mean, 1.84.
(Color figure online)
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Fig. 5 Lydia Pinkham data
example: sample autocorrelation
function and quantile-quantile
plot (against the standard
normal) of the forecast
pseudo-residuals, for the fitted
MS-LIN model (top plots) and
for the fitted MS-GAM (bottom

plots)
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atively parsimonious model formulation as the fairly short
time series does not contain sufficient information to fit the
fully nonparametric model (i.e. also allowing for nonpara-
metric effects of yt−1).

Figure 4 compares the estimated effect of the advertis-
ing expenditure on the sales using the MS-LIN model and
the MS-GAM, respectively. Overall, the regression structure
within the two states is very similar for the two differ-
ent models. In particular, for the MS-GAM considered, the
Viterbi-decoded state sequence is identical to that obtained
using the MS-LIN model. However, the more flexible MS-
GAM does reveal some interesting nuances. In particular, for

state 2 there is a strong indication of a wearout effect in the
benefits of advertising, suggesting that further increases of
already high advertising expenditures do not increase sales as
much as would be expected if a linear relation was assumed.
This phenomenon is well-known in marketing (see, e.g.,
Corkindale and Newall 1978, Bass et al. 2007).

We additionally investigated the goodness of fit for the
two models considered. Figure 5 displays the sample auto-
correlation functions and quantile-quantile plots (against the
standard normal) of the forecast pseudo-residuals obtained
under the two different models (MS-LIN and MS-GAM).
These pseudo-residuals, which can easily be obtained using
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Fig. 6 Spanish energy prices
example: observed energy price
against Euro/Dollar exchange
rate (gray points), with
estimated state-dependent mean
energy prices (solid lines) for
one-state (blue) and two-state
(green and red) nonparametric
and linear models;
nonparametric models are
shown together with associated
approximate 95 % pointwise
confidence intervals obtained
based on 999 parametric
bootstrap samples (dotted lines).
(Color figure online)
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the forward variables, are approximately standard normally
distributed if the model is adequate (Zucchini and Mac-
Donald 2009). Overall, both models appear to fit the data
adequately. However, for the parametric MS-LIN model
there is some residual autocorrelation, which is often an
indication that more states are required to fully capture the
correlation structure of the time series (under the given model
formulation). No such lack of fit is observed for the MS-
GAM.

4.2 Spanish energy prices

Next we analyze the data collected on the daily price of
energy in Spain between 2002 and 2008. The data, 1784
observations in total, are available in the R package MSwM
(Sanchez-Espigares et al. 2014). We consider the relation-
ship over time between the price of energy, yt , and the
Euro/Dollar exchange rate, xt . The commonly observed sto-
chastic volatility of financial time series renders it unlikely
that the relationship between these two variables is constant
over time, and a possible, computationally efficient way to
account for this is to consider a Markov-switching model.
It is also probable that the two variables’ unknown relation-
ship within a regime has a non-linear functional form. As in
the previous example, in the following we illustrate potential
advantages of considering Markov-switching models with

flexible nonparametric predictor functions, i.e. MS-GAMs,
rather than GAMs or parametric Markov-switching models
when analyzing time series regression data.

To this end, we consider four different models for the
energy price data. As benchmark models, we considered
two parametric models with state-dependent linear predic-
tor β

(st )
0 + β

(st )
1 xt , with one (LIN) and two states (MS-LIN),

respectively, assuming the response variable yt to be nor-
mally distributed with state-dependent variance. Addition-
ally, we considered two nonparametric models as introduced
in Sect. 2.3, with one state (hence a basic GAM) and two
states (MS-GAM), respectively. In these two models, we
assumed yt to be gamma-distributed, applying the log link
function to meet the range restriction for the (positive) mean.

Figure 6 shows the fitted curves for each model. For each
one-state model (GAM and LIN), the mean curve passes
through a region with no data (for values of xt around −1).
This results in response residuals with clear systematic devi-
ation. It is failings such as this which demonstrate the need
for regime-switching models.

Models were also formally compared using an out-of-
sample one-step-ahead forecast evaluation, by means of the
sum of the log-likelihoods of observations yu under the
models fitted to all preceding observations, y1, . . . , yu−1,
considering u = 501, . . . , 1784 (such that models are fit-
ted to a reasonable number of observations). We obtained
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Fig. 7 Spanish energy prices example: globally decoded state
sequence for the two-state (red and green) MS-LIN model and the
two-state MS-GAM. (Color figure online)

the following log-likelihood scores for each model: −2314
for LIN, −2191 for GAM, −2069 for MS-LIN and −1703
for MS-GAM. Thus, in terms of out-of-sample forecasts, the
MS-GAM performed much better than any other model con-
sidered. Both two-state models performed much better than
the single-state models, however the inflexibility of the MS-
LIN model resulted in a poorer performance than that of its
nonparametric counterpart, as clear non-linear features in the
regression data are ignored.

For the MS-GAM, the transition probabilities were esti-
mated to be γ11 = 0.991 (standard error: 0.006) and γ22 =

0.993 (0.003). The estimated high persistence within states
gives evidence that identifiability problems such as those
encountered in Scenario III in the simulation experiments did
not occur here. Figure 7 gives the estimated regime sequence
from the MS-GAM and the MS-LIN model obtained using
the Viterbi algorithm. Both sequences are similar, with one
state relating to occasions where price is more variable and
generally higher. However, the MS-LIN model does tend to
predict more changes of regime than the MS-GAM, which
may be a result of its inflexibility.

While this second example is simplistic—for example,
other explanatory covariates such as the oil price will also
heavily affect the energy price—it nevertheless does illustrate
the substantially increased flexibility, and hence increased
potential to fit the data at hand, of MS-GAMs compared to
their simpler parametric counterparts. At the very least, these
models can prove useful as exploratory tools to identify key
features in time series data with regime-switching patterns,
without making any restrictive assumptions on the functional
relationships a priori.

5 Concluding remarks

We have exploited the strengths of the HMM machinery
and of penalized B-splines to develop a flexible new class
of models, MS-GAMs, which show promise as a useful
tool in time series regression analysis. A key strength of
the inferential approach is ease of implementation, in par-
ticular the ease with which the code, once written for any
MS-GAM, can be modified to allow for various model for-
mulations. This makes interactive searches for an optimal
model among a suite of candidate formulations practically
feasible. Model selection, although not explored in detail in
the current work, can be performed along the lines of Celeux
and Durand (2008) using cross-validated likelihood, or can
be based on AIC-type criteria such as the one we considered
for smoothing parameter selection. For more complex model
formulations, local maxima of the likelihood can become a
challenging problem. In this regard, estimation via the EM
algorithm, as suggested in Souza and Heckman (2014) for
a smaller class of models, could potentially be more robust
(cf. Bulla and Berzel 2008), but is technically more chal-
lenging, not as straightforward to generalize and hence less
user-friendly (MacDonald 2014).

In the first example application, to advertising data, we
demonstrated that the additional flexibility offered by MS-
GAMs can make an important difference regarding the exact
quantification of the effect of some covariate (here: adver-
tising expenditure) on some target variable (here: sales),
in particular allowing to accurately quantify advertising
wearout effects. In the second example application, to energy
price data, the MS-GAM clearly outperformed the competing
models in an out-of-sample comparison. This improvement
is due to its accommodation of both the need for regime
switches over time and the need to capture non-linear rela-
tionships within a regime. However, even the very flexible
MS-GAM exhibited some shortcomings in this example. In
particular, it is apparent from the plots, but also from the
estimates of the transition probabilities, which indicated a
very high persistence of regimes, that the regime-switching
model addresses long-term dynamics, but fails to capture
the short-term (day-to-day) variations within each regime.
In this regard, it would be interesting to explore models
that incorporate regime switching (for capturing long-term
dynamics induced by persistent market states) but for exam-
ple also autoregressive error terms within states (for capturing
short-term fluctuations). Furthermore, the plots motivate a
distributional regression approach, where not only the mean
but also variance and potentially other parameters are mod-
eled as functions of the covariates considered. In particular, it
is conceptually straightforward to use the suggested type of
estimation algorithm also for MS-GAMs for location, shape
and scale (GAMLSS; Rigby and Stasinopoulos 2005).
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There are various other ways to modify or extend the
approach, in a relatively straightforward manner, in order
to enlarge the class of models that can be considered. First,
as already seen in the application to advertising data, it is
of course straightforward to consider semiparametric ver-
sions of the model, where some of the functional effects are
modeled nonparametrically and others parametrically. Espe-
cially for complex models, with high numbers of states and/or
high numbers of covariates considered, this can improve
numerical stability and decrease the computational burden
associated with the smoothing parameter selection. Second,
the consideration of interaction terms in the predictor is possi-
ble via the use of tensor products of univariate basis functions.
Third, the likelihood-based approach also allows for the
consideration of more involved dependence structures (e.g.
semi-Markov state processes; Langrock and Zucchini 2011).
In particular, in the current model formulation we assume that
a single univariate state process determines the GAM, such
that changes in the state process affect all GAM parameters
simultaneously. Conceptually there is no difficulty in devis-
ing models where different parts of the GAM are driven by
different Markov state processes. However, with such models
the dimensionality of the state process and hence the com-
putational burden will increase rapidly. Finally, in case of
multiple time series, random effects can be incorporated into
a joint MS-GAM formulation.
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