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Abstract

This paper aims to provide a comprehensive review on Markovian arrival processes (MAPS),
which constitute a rich class of point processes used extensively in stochastic modelling. Our
starting point is the versatile process introduced by Neuts (1979) which, under some simplified
notation, was coined as the batch Markovian arrival process (BMAP). On the one hand, a general
point process can be approximated by appropriate MAPs and, on the other hand, the MAPs
provide a versatile, yet tractable option for modelling a bursty flow by preserving the Markovian
formalism. While a number of well-known arrival processes are subsumed under a BMAP as
special cases, the literature also shows generalizations to model arrival streams with marks, non-
homogeneous settings or even spatial arrivals. We survey on the main aspects of the BMAP,
discuss on some of its variants and generalizations, and give a few new results in the context of a
recent state-dependent extension.
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1. Introduction

The versatile Markovian point procegstroduced by Neuts (1979) was the seminal
work, in conjunction with thgghase(PH) type distribution, for getting beyond two com-
mon and extended assumptions in stochastic modelling, Iyatf@® the exponential
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distribution and thePoisson proces$PP), which are the key tools for constructing
Markovian models; and (b) the independence and equidisipito of the successive
inter-arrival intervals, which are inherent features & 8P and the renewal processes.
Later, it was proved that tHeatch Markovian arrival proces8MAP) is equivalent to
the versatile Neuts process. Since the former presents a trarsparent notation, at
present it is widely accepted to refer to the BMAP rather tlwaine Neuts process.

The popularity of the BMAP and other Markovian arrival preses comes from the
following important features:

(i) They provide a natural generalization of the PP and thewal processes.
(i) They take into account the correlation aspect, whicisesr naturally in many
applications where the arrival flow is bursty.
(iif) They preserve the tractable Markovian structure.

As a result, the use of Markovian arrival processes in coathin with the impetus
provided by the modern computational advances explainspleetacular growth of
applications to queueing, inventory, reliability, marattaing, communication systems,
and risk and insurance problems.

The use of BMAPs and PH distributions in stochastic modglteadily leads to the
so called matrix-analytic formalism where scalar quagsitare replaced by matrices.
The main resulting structured Markov chains have been skiely studied; see the
monographs by Binet al. (2005), Latouche and Ramaswami (1999), Li (2010) and
Neuts (1981,1989). Qualitatively, the consideration a&@ BMAP for modelling the
arrival input greatly enhances the versatility of the sastic model. For practical use,
presenting the model under a suitable structured matrir foekes it easy to be studied
in a unified manner and in an algorithmically tractable wagwidver, it should be
pointed out that the cost lies in the risk of finding compwtadil problems derived from
an excessive dimensionality caused by the matrix formalism

This survey paper is aimed on providing information on Mai&a arrival processes,
putting emphasis on the discussion of extensions and vartdithe BMAP, as well as
on the wide use of this class of processes in applicationowiag the leads in this
paper and the guidance provided by the bibliographicalsyoeaders can get access to
the background materials where technical details and praxaf available.

This survey is organized as follows. In Section 2, we firstadtice the BMAP
and the continuous PH distribution. A number of importantipalar cases, the basic
properties and descriptors of the BMAP, as well as some eqijins in queueing,
reliability and inventory models are presented in subseggections. In Section 3,
we consider a number of generalizations and variants of th&B including the
discrete counterpart (D-BMAP), thearked Markovian arrival proces8MAP), the
HetSigmaapproach, the Markov-additive processes of arrivals aatltick-structured
state-dependent eve(BSDE) approach. The consideration of these extensions and
variants enriches the methodology and enhances the \igysaitithe arrival processes
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in different directions. Based on the fact that the BSDE agph allows us to deal with
modulated non-homogeneous settings, but keeping the diorality of the underlying

matrices tractable, Section 4 applies this approach to I8eefidemic model. Some
new results concerning with the extinction time and the elation between events
are obtained. We conclude the survey with a few bibliogregotes. A glossary of
notation is presented in Appendix.

2. The BMAP

The PP is the basic renewal process where inter-renewas tareeexponentially dis-
tributed. The PH distribution and the BMAP can be thoughtothee natural generaliza-
tions of the exponential distribution and the PP, respeltii hey are both based on the
method of stages, which was introduced by A.K. Erlang andrestvely generalized by
M.F. Neuts. On the other hand, the PH distribution and the B\MAn be viewed as par-
ticular cases of the matrix-exponential distribution aineél tational arrival process; the
interested reader is referred to the papers by Asmussenladtd(B999), and Nielseet
al. (2007).

Although our main interest is put on the BMAP and its extensjdhe PH distribu-
tion is used many times along the paper. Thus, before fatgissi a description of the
BMAP, we briefly introduce the continuous PH distribution.

The class of probability distributions of PH type providesimple framework to
demonstrate how one may extend many results on exponeigtabdtions to more
complex models, but without losing computational tradighiThe key idea is to exploit
the fact that many distributions derived from the exporaéiw can be formulated as
the distribution of the time till absorption in suitably dedd Markov processes. This
allows one to deal with PH distributions by appealing to ingoée dependence structure
underlying Markov processes.

To define a PH distribution we consider an absorbing Markaircan the state space
{0,1,...,n} with initial probability vector(1— te,,7) and infinitesimal generator

0 0O,
t T )’
wheret = —Te,. Then, a PH distribution corresponds to the distributiorihaf time

L until absorption into the state 0. Thus, we have the follguvaxpressions for the
distribution function, the density function and the monsent

F(x)=1—7exp{Tx}e,, x>0,
f(x) =Texp{Tx}t, x>0,
E[LN =kt (-T Y%, k>1
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An important question to be examined is when the absorptmours in a finite
interval almost surely. By using the above expression ferdistribution function, it is
readily verified thaf (o) = 1 if and only if the matriXT is non-singular. Furthermore,
this is certain if and only if states ifil,...,n} are all transient.

For practical use, the class of PH distributions provideseeéa conditioning argu-
ments, results in a Markovian structure of models involvaxgonential assumptions
and leads to significant simplifications in various integwad differential equations aris-
ing in their analysis. An excellent summary of closure prtipe can be found in As-
mussen (2000), Latouche and Ramaswami (1999, Sectionrid@)euts (1981, Chap-
ter 2). Among these, we emphasize three properties. Hirsglass is dense, in the sense
of weak convergence, in the class of all distributiong@m). Second, sums and mix-
tures of a finite number of independent PH random variable®ar random variables.
Third, all order statistics of a set of independent PH randan|bles are themselves
PH random variables.

The PP has served as the main arrival flow for many years aretgjerations have
frequently concentrated on renewal processes. Their gyimg feature is the indepen-
dence and equidistribution of successive inter-renewahials. Thus, in queueing and
other applications (see Neuts (1992)), the class of rerawetsses is not flexible enough
and, in particular, arrivals that tend to occur in burstsncarbe modelled in this way.

We present here the BMAP, which is thought to be a fairly gelngoint process
where the correlation aspect is not ignored. It is, in gdnamon-renewal process hav-
ing the feature of making many analytic properties explciat least computationally
tractable. The key idea is to generate counting processe®dglling the transitions of
a Markov chain; see also Rudemo (1973).

We begin with a constructive description of the BMAP. The BRIfs a bivariate
Markov process{(N(t),J(t));t > 0} on . = N x {1,...,m}, whereN(t) represents
the number of arrivals up to time while the states of the background Markov chain
{J(t);t > 0} are called phases. Let us assume timat  and denote byD the
infinitesimal generator of the background Markov chain, ckhis assumed to be
irreducible. At the end of a sojourn time(n,i) € ., which is exponentially distributed
with paramete#.,;, there occurs a transition to another or (possibly) the gatmase state.
That transition may or not correspond to an arrival epoclec8igally, with probability
R;(k), it corresponds to a transition to stgtevith a batch arrival of siz&, for k > 1,
and similarly, with probabilityR; (0), the transition corresponds to no arrival and state
of the underlying Markov chain if, for j #i. Therefore,J(t) can go from stateto state
i only through an arrival and

m m

R;(0) + Ri(k=1 1<i<m
jzl,zj¢i ! JZlkZl ’

Define the matriceBy = (djj (k)) with entriesd; (0) = —2;, dij (0) = A;iR;(0), for j #1,
andd;j (k) = AiRj(k), for k > 1, from which it is clear thab = S, Dx. The particular
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choiceDg # D andDg = Omxm, for k > 2, means single arrivals and yields tlarkovian
arrival process(MAP). In this formulation, the introduction of phases ig tkey to get
dependent non-exponential inter-arrival time distribng, and correlated batch sizes.

Our preceding construction shows that the bivariate pop@é(t),J(t));t > 0} has
the structured infinitesimal generator

Do D1 D2 D3
Do D1 D»
Q= Do Di

The sequence of matriceDy;k > 0} contains all information forQ and thus is
usually called the characteristic sequence of a BMAP. Algiowe often ignore the
determination 08(0), a complete specification requires specification of theidision
of J(0). We may do this in terms of a row vectarwith ith entry given byP(J(0) =),
forl<i<m.

By assumindd, to be non-singular, the inter-arrival times are finite, witbbability
one. An additional assumption is that the vectbe= D&y, is finite, whereD; =
Y k-1 kDk. This condition is equivalent to require tHafN(t)] < c over finite intervals.
The fundamental arrival rate is then definedby 6d, wheref is the unique positive
probability vector satisfyin@D = 0, and@ e, = 1, and consequently it amounts to the
expected number of single arrivals per unit of time in théiatary version of a BMAP.

This family of counting processes has received several samihe literature. The
currently used term batch Markovian arrival process ewbfvem versatile Markovian
point process (see Neuts (1979)) ddduts procesgsee Ramaswami (1980)) twn-
renewal arrival procesg¢see Lucantonet al. (1990)), until it was settled down at batch
Markovian arrival process by Lucantoni (1991). Lucantdt®9q1) also introduced a
simple matrix representation for the BMAP, which made itygasinterpret parameters
of Markovian arrivals and to use this class of arrival preessn stochastic modelling.

We next present two alternative definitions of the BMAP ancbw &xamples of
BMAPs with special characteristics.

Remark 2.1 The BMAP can be thought of as a semi-Markovian arrival precBgfine
the sequencé(Jn, Kn, 7n);n > 0}, whereJ, is the phase ofJ(t);t > O} right after the
nth batch arrivalK, is the size of thath batch, and, is the inter-arrival time between
the (n— 1)st and thenth arrival events. Ther{,(J,,Kn, 7n); n > 0} satisfies

P(Jn - j7Kn - k7Tn < X’ Iho1= i) = (/oXeXp{DOU}dUDk>”
= ((Im—exp{Dox}) (—Dg ") D);;

for1<i,j<m,k>1andx>0.
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Remark 2.2 Equivalently, we may present a definition of the BMAP basedPs.
Let m be a finite positive integef,ai; 1 < i < m} be non-negative numbers satisfying
Siai =1, and{d;j(0);1 <i,j <m,j #i} and{djj(k);1 <i,j <m}, fork>1, be
non-negative numbers. Assume that; (0) > 0, where

00

—dii(O) = g dij(o)-i-g Zdij(k), 1<i<m
{4 =1

The bivariate procesgN(t),J(t));t > 0} can be defined as follows:

(i) Define independent PPs with parameté§g0), for 1 <i,j <mandj # i, and

dij (k), for 1 <i,j <mandk > 1. If d;j (k) = 0, then the corresponding PP has no
event.

(i) DetermineJ(0) by the probability distributiof aj; 1 <i < m}. SetN(0) = 0.

(iii) If J(t) =i, for L<i<m, we letd(t) andN(t) remain the same until the first event
occurs in the set of PPs with ratdg(0), for 1 <i,j < mandj # i, andd;j(k),
for 1 <i,j <mandk > 1. If the next event comes from the PP of reg0), then
J(t) changes from phaseo phasej andN(t) does not change at this epoch, for
1< j<mandj #i. On the contrary, if the next event comes from the PP of rate
di; (k), then the phase variablEt) transits from phaseto phasej, andN(t) is
increased bk units at this epoch, for £ | < mandk > 1; in this case, a batch of
k units is associated with the event.

For use in simulations, it is easy to generate realizatidna BMAP from the
dynamics described in Remark 2.2. The visualization of ed paths of a BMAP, and
their effect as input streams to queues, is an excellent srigyréctitioners to appreciate
the versatility of this class of point processes; see FigureExample 2.1.
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Figurel: A simulated sample path of a BMAP.



Artalejo, Gobmez-Corral, He 107

Example 2.1 Consider a BMAP with non-null characteristic matrices

1 0 0 O© 0000 0100
0 -2 1 0 0010 0000
Do=1 17 0o 5 0o |'P"=[1002['P"|010o0
2 0 0 -10 000 3 000O0TG5

Figure 1 shows a typical sample path of the bivariate prof@d&),J(t));t > 0}.

The following three choices of the BMAP are related to spezharacteristics:

-50 O 49 1
o-(20 5) (5 0)
A widely accepted definition of burstiness does not existtead, several different
measures can be used. In this paper, we assume the definitem fyy Neuts
(1993). Qualitatively, the process is bursty as, over imtisrof significant length,
the actual number of arrivals is far in excess or far belowaherage. Positive
autocorrelation between inter-arrival times explains,atdarge extend, traffic
burstiness. Obviously, the PP has independent interahtiimes so it is not the

appropriate model in case of bursty traffic.
(i) Cyclic arrivals

-1 0 01 00
(o %) o=(o0) == (z0)
In this case, batches of size 1 and batches of size 2 arriVieaije
(i) Bursty vs smooth

-1 0 0 0 01
DO_( 0 —50)’ Dl_(l 49)’ D2_<0 o)'

The process related to batches of size 1 is bursty, whiledtohes of size 2 the
process is smooth.

(i) Bursty arrivals

In Subsection 2.1, we give a few examples to illustrate threetyaof models sub-
sumed under the matrix formulation of a BMAP as special ca&elssection 2.2 begins
by introducing the time-dependent distribution of the b procesg(N(t),J(t));t >
0}. We then examine basic properties that make the BMAP a Versédss for mod-
elling purposes. We present in Subsection 2.3 some integedéscriptors. Our focus
in Subsection 2.4 is on four examples showing the interesh@BMAP in different
applications, such as reliabilty, queueing and inventoopfems.
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2.1. Particular cases

We describe in this subsection several special cases oft#BWe begin by listing a
selected sample of processes obtained as particular dabesMAP.

()
(ii)

(iii)

(iv)

Poisson procesg he PP of raté. > 0 corresponds to the simple scalar case where
m=1,Dg=—A andD; = A.

Markov modulated Poisson proceg8dMPP). The MMPP is a PP whose rate varies
according to a finite Markov chain serving as a random enwiremt. LetQ, be

its underlying infinitesimal generator. The arrival ratéis> 0 when the random
environmental state isThen, the MMPP is a MAP withy = Q,—A andD; = A,
whereA = diag(61,...,0m).

PH renewal processThis is a renewal process in which the inter-renewal times
follow a PH distribution with representatignr, T). Thus, we have the correspon-
denceDg =T andD; = tt.

A sequence of PH inter-arrival times governed via a Marko&iichThis process

is also namedPH semi-Markov processee Latouche and Ramaswami (1999).
Consider PH distributions with representatio(rs;, T;) of ordern;, for 1 <i <|
andy!_;n = m. The successive inter-arrival distributions are seletrtaa these
PH distributions according to a discrete Markov chain wittestep transition
probability matrixP, = (pj-) of dimension. We then hav®, = diag(T4,...,T))
andD; = (dii/(l)), Wheredii/(l) = tipiiTi, for 1< i,i/ <I, witht = (ti) and

T = (7j). The choicd = 2 andpi2 = p21 = 1 leads to armlternating PH renewal
process

It should be noted that the PH renewal process can be viewdtkdsvial special
case of (iv), where all the PH distributions are chosen talbatical. More interesting is
theMarkov switched Poisson proce®8SPP) obtained by choosing the PH distributions
as exponential distributions of ratge > 0; see Chakravarthy (2001). We also remark
that the modulation in the MSPP is of a discrete nature andcitis at arrival epochs,
whereas the modulation of the MMPP is performed in contiisutoue.

We now give some examples where arrivals occur properly tichies.

(v) Compound Poisson procefSPP). The classical scalar PP with batch arrivals of

(vi)

rateA > 0 and jump size distributiofigy; k > 1} is a BMAP withm=1,Do = —2A
andDg = Ag, fork > 1.

MAP with i.i.d. batch arrivals A MAP with independent and identically dis-
tributed batch arrivals amounts to a BMAP witly = D§ and Dy = g«D{, for

k > 1, where the paifD§,D}) is the representation of the underlying MAP of or-
derm. This example shows a choice of the BMAP where the batch sies dot
depend on phase transitions.
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(vii) Bacth PH semi-Markov proces§his process is the batch version of (iv) in which
diir (K) = oktipii» i, for k > 1. A batch Markov switched Poisson procéB8/SPP)
follows by reducing the PH distribution to the exponentase.

(viiiy Batch PP with correlated batch arrivalsThis is a CPP where the jump size
distribution is selected according to a Markov chain withe-@tep transition
probability matrixP, of dimensionm. The resulting BMAP has matricd3; =
—Alm andDy = (dji: (K)), whered;, (k) = Agikpjir, for 1 <i,i’ <mandk > 1. The
notationgi stands for the probability that a batch of skzarrives when the phase
state ig.

We notice that the auxiliary transition matrix is used in Bh8PP to modulate arrival
rates. However, the role &% in the batch PP with correlated arrivals is to modulate jump
sizes.

2.2. Basic properties of the BMAP

We are next interested in the counting compori¢fty of the BMAP, the superposition
and thinning mechanisms, the local poissonification of a M&# the denseness

property.

2.2.1. The counting function

Consider the matrice3(n,t), for n > 0 andt > 0, with (i, j)th element
Rj(n,t) =P(N(t) =n,J(t) = jIN(0) =0,3(0) =1i), 1<i,j<m

From the Kolmogorov forward equations of the procééN(t),J(t));t > 0}, we
obtain
dP(n,t)

n
— 2 =S Pt)Dy, N>1t>0,
dt £

and the initial conditior?(0,0) = Iy,
The corresponding matrix generating functieh(z,t) = 5,,_,Z'"P(n,t), for |z < 1
andt > 0, is given by the exponential matrix

P*(z,t) = exp{D*(2)t},

with D*(2) = o ZDy, for |z < 1. The numerical computation &{n,t) can be based
on the uniformization method; see Neuts and Li (1997).

By routine calculations, we can find that the first moment ixat,(t) and the
column vectoM 4 (t)en are given by
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_ dP*(zt)

Ma(t) 0z

o tn n—-1
= Z e %DI(E:LDnilik7
==

) tn L
My(t)em= Z ﬁDn 'Dienm.
n=1""

yi—

By using the above expression, it can be shown (see Neut8)|1that the Palm function
E[N(t)] is given by

E[N(t)] = At +a (exp{Dt} — I ) (D —en0) 'Dian, t>0.

Sinceaexp{Dt} converges t@ ast — « (see Latouche and Ramaswami (1999)), we
find that lim_,.. E[N(t)]/t = A, soA is the expected number of arrivals per unit time.

If the initial phase vector i# (i.e., we seta = 0), the Palm function reduces to
E[N(t)] = At. For the variance of the number of arrivals(iit] and the covariance of
the counts, we refer to the results summarized in Subse2iB)rsee also Narayana and
Neuts (1992).

2.2.2. Superposition and thinning

The class of BMAPs is closed under superposition. For siitpliwe consider two
independent BMAP$(N;(t),Ji(t));t > 0} with characteristic sequencéb; k > 0} of
orderm;, for i € {1,2}, but the construction can be readily extended to an arpitrar
number of BMAPS. Then, the resulting superposition prog¢skt),J(t));t > 0} is a
BMAP with matrices{Di @ DZ;k > 0}. We notice that the cour(t) is defined by
Ni(t) + No(t) and the phase procedd) has the form(Ji(t),J(t)).

Thinning is a mechanism to split or remove a part of the asigenerated by
the BMAP. As a result, thinning can be thought of as an opamatipposite to the
superposition. One way to single out arrivals from the o@giBMAP flow is just to
discard any individual arrival with probabilitp independently of the rest of arrivals.
The resulting BMAP has a matrix representat{@y, ; k > 0}, where

D} =Do+y p'D;,
=1

Dl = ;(D p*1-p*D;, k>1
J:

Another more sophisticated way to understand the thinrsnassociated with the
arrivals of a BMAP and a clock with a PH distribution with repentation(z,T). An
auxiliary state O indicates that the PH clock is active, sat tfuring this period the
BMAP arrivals are not registered. As soon as the clock egpittee process turns to
the auxiliary state 1 and the next arrival is registered. &édiately after one arrival is
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registered, the PH clock is restarted. This descriptiodd¢a a BMAP with matrices

DT Inh®t T Omn Omnxm
< Omxmn Do ) k < Dk®7T  Omxm )7 -

Decomposition of BMAPS provides another related operatiéemay decompose a
BMAP into n types of arrivals by considering independent markings witibabilities
pi, for 1 <i <n, wherey', pi = 1. Then, the split procesgN;(t),J(t));t > 0} is a
BMAP with D}y = Do + (1 — p;)Do, D} = piDx, for k > 1 and each X i < n, where
Do =D —Dso.

2.2.3. Local poissonification of a MAP

The local poissonification (see Newtsal. (1992)) is an approach to quantifying the
burstiness of a stationary point process. The events inessa@ intervals of lengta
are independently and uniformly redistributed over thedervals. The resulting local
poissonification process mimics the behaviour of a PP owdr edierval.

For the MAP, the local poissonification construction canrbetably investigated by
using matrix-analytic methods. To construct the statiphacal poissonification of the
MAP, we first choose the phase according to the vetand a grid of points, regularly
placed at a distance Then, the time origin is chosen randomly in one of the rasylt
intervals. Denote biN,(t) the counting process of the poissonification in any inteo¥al
lengtht.

The Palm function ofN4(t) is E[Na(t)] = At, for t > 0, thus showing that the
poissonification preserves the fundamental rate of thenalig//AP. On the other hand,

the variance of the coum,(t) is given by
1/t-a\°
=) V(=
3< a) (t a))

12 t—ka\? t—(k+1)a\?
+§kzopk+1(a) (( 3 ) V(t—ka)—Z(T> V(t—(k+1)a)

3
4 (t_(kT*z)a> Vit— (k+ 2)a)> ,

whereV (x) = 1 if x> 0, and it equals 0 otherwise, wheréd¥a) and px(a) denote
respectively the variance of the number of event$Gra] and the covariance of the
counts in the intervalg0,a] and (ka (k+ 1)a], in the stationary given MAP; see
Subsection 2.3.1.

A number of computationally implementable descriptorslude the dispersion
function and the exponential peakedness (see Subsecti®rdsahd 2.3.3), as well as

a a

Var(Na(t)) = At + (VO(a) - Aa) ((i)z—g (L)~
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the distribution of the interval length. The latter is defirees the probability distribution
of the interval between an arbitrary point and the next euretitie poissonification of
the stationary MAP. Its Laplace-Stieltjes transfopg(s) is given by

s ¢a
SDa(S)—l—XJFT

(0 LL(s)an+6L2(s) (Im—e 2exp{Doa}) Lg(s)em) ,
where the matrices?(s) andL }(s) are defined by
1
Lg(s):/0 exp{D*(u)a}e ¥ Ydy,

1
Li(s) = / uexp{D*(u)a}e ¥ duy,
0

The meanu, and the variance'2 of the inter-arrival time are given by

B 1
Ma—?
,  2a 1 0 1,0 1
Ta= > <9La(0)em+9|-a(0) (Im—exp{Doa}) La(o)em> 2

2.2.4. Denseness property

Asmussen and Koole (1993) prove that a general claswoked point process€sPP)
can be approximated by appropriate MAPs. The MPP can bed=resi either at an
arbitrary time or at selected discrete epochs. In the latise the MPP is represented as
a bivariate proces§(Ty, Y,);n > 0}, where the random variabl@g denote inter-arrival
times and the mark¥, are allowed to vary if0,). In the arbitrary time version, an
MPP is viewed as a point process taking values on the state gpev) x (0,). A class
of Markovian arrival streamgMAS) is also defined to approximate the given MPP. In
a MAS there exists a finite state space of phases modulateddynatrices playing
the same role thddy andD; in the MAP. When an arrival occurs, a mark is assigned
according to a distributioB;; on (0,). The mark depends on the current phasad
the destination phaself all B;; are degenerate at 1, then the MAS agrees with the MAP.
The main result in Asmussen and Koole (1993) establishegtibaclass of MASs
is dense in the class of MPPs in both time scales. The conveggaust be viewed in
distribution. However, related results for stationarygasses and convergence of the
moments also hold. It is interesting to remark that the cayesmce result does not hold
when the class of MASs is replaced by MMPPs.
The above property is the analogue of the denseness pragfelt distributions
in the set of all probability distributions 0@, «); see Neuts (1989). The proof follows
from the fact that any probability distribution ¢@, «o) may be suitably approximated by
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a discrete distribution with a finite support, which is indeediscrete PH distribution;
see Latouche and Ramaswami (1999, Section 2.5) and Ne@®%,(&6ction 2.2).

2.3. Some interesting descriptors

The quantification of the main quality characteristics & BMAP is of primarily theo-
retical and practical utility. This important objectivere&ached through the consideration
of a variety of computationally implementable descriptors

We distinguish three categories of descriptors for BMARBSdescriptors associated
with the counting function, (b) descriptors associatedhviriter-arrival times, and (c)
other descriptors.

2.3.1. Descriptors associated with the counting function

To begin with, we recall that expressions for the fundamesmtdval rate A and the
expected number of arrival§[N(t)] were already given in preceding subsections. Other
descriptors related to the counting function are

(i) The variance of the number of arrivalGiven the initial distributior®, we have

Var(N(t)) = (A2 — 22> — 26Dy (D — en0) 'Diem)t
420D (D —enf) t(exp{Dt} — ) (D —end) 'Diem,

wherel, = 6D,ey andD; = S, k2D
(i) The dispersion functiont is defined as

~ Var(N(t))
R = "EN)

We observe that the dispersion function is a minor varianthefcoefficient of
variation, which is defined as the ratio between the standewhtion and the
expectation. The dispersion function is also known as texrof dispersions for
the counts; see Chakravarthy (2001).

(iii) The covariance and the correlation of the cour@$ven the positive real numbers
t, u, r ands, we construct the time interva(s,t +uj and(t +u+r,t +u+r+g|.
The stationary versions of the covarianeg@l, s, r) and the correlatiop (u,s,r) in
these intervals are given by

¢(u,s,r) =OD1(D —ey0) L(exp{Du} — I ) exp{Dr} (exp{Ds} — I m)
x (D—enf) Dien—A%us

B e(u,sr)

-~ JVar(N(u))Var(N(s))

p(usr)
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Those readers interested in the derivation of the aboveulasrare referred to the
papers by Narayana and Neuts (1992), and Netas (1992).

2.3.2. Descriptors associated with inter-arrival times

Assume thatl(0) has a distributiom. The random vectofzs,...,7n) of inter-arrival
times follows a multivariate continuous PH distributiomésKulkarni (1989)). There-
fore, thenth inter-arrival timet, has a PH distribution with representation

(@((-D")Do)" Do) .

Then, it is immediate to obtain the expressions for the meattae variance in the list
below.

() The mean ot
Eltn] =a((~-DgY)Do)" ' (~Dg')em, n>1.

(i) The variance of,

Var(tn) = 2a ((~Dy ) Do) * (Do) 2&m— (a ((~Dg*) Do) (~Dg?) em)z,

(iii) The coefficient of variation

Var(tn)

. n>1
E[7n

cV(Tn) =

(iv) The covariance and the correlation betwegnand 7,

¢(71,70) =@ (~Dg") ((-Dg") Do) " (~D5*) em
~ (a(~DgY)em) (@ ((-Dg")Do)" " (~Dgh)em), n=1,

(P(Tl? Tﬂ)
VVar(ti)Var(tyn)

p(TlﬂTn)

Settinga = 1*1650, we obtain simplified expressions for the mgas= 11, the
varianceo? = 2uf (—Dy ') e — u? and the correlation

p6 ((~Do") Do)" " (~Dp") en— 112

p(Tl,Tn) =

)
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Wherpi is the batch arrival rate defined b3y: 0Doen; see Neuts (1995). Thus,
a = A~10D, represents the stationary distribution of the phase riffet he arrival
of a batch.

Example 2.2 We illustrate here the computation of the inter-arrival atiggors for
the BMAP described in Example 2.1. The stationary probgbilector@ is given by
0 = (8/17,5/17,2/17,2/17). Then, the arrival rated, = ODye4 of batches of sizé,
for k € {1,2}, are given byA; = 1.0 andA, = 1.17647, while the batch and the total
arrival rates are given bﬁt = A1+ Az andA = A, + 2A,, respectively.

By takinga = 1*1050, we easily obtain the valuds|ti] = 0.45945Var(t1) =
0.48619,p(71,75) = 0.00832 andp (71, 75) = 0.01711.

2.3.3. Other descriptors

(i) PeakednessThe peakedness functional is a second order descriptar nse
communication engineering. It is a functional of the hogditnme distribution
defined as the ratio between the variance and the expectditiogm number of busy
servers in a queue with infinite servers and independemtiaidly distributed
service times, which is feeded by a certain arrival proc&bg. particular case
where the service times are exponentially distributed wdtbu > O is called the
exponential peakedness.

Eckberg (1983) has shown that the exponential peakedgggs) and the Laplace-
Stieltjes transforng ., (S) of the expected number of arrivals(i@, t], starting from
an arbitrary arrival, are related by the formula

ZeXp(uu‘) =1+ ¢arr (M) - %

Following Neutset al. (1992), we observe that the exponential peakedness for the
MAP is obtained from the explicit formulas for theh factorial moments of the
number of customers in tHdAP/M /e queue, which are given by

f = KIOD; (ulm—D) *D1 (2ulm—D)*---Dy (kulm—D) ™%, k>1.
Thus, we have

foem+ frem — (frem)?
Zol1t) = 2 1felmem ()"

For the exponential peakedness of the local poissonificatithe MAP, we refer
the reader to Neutst al. (1992).

(i) Index of burstinessThe term burstiness is referred to an arrival process whose
flow exhibits short intervals with a large number of arrivakparated by long
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intervals with few arrivals. In order to quantify burstisedleuts (1993) proposed
to thinning the original arrival process with the help of amxidiary labeling
process.

Assume that the arrival process islarkov renewal procegdRP) whose Markov
renewal sequence has a kerkgk) = (h;;(x)), where the transition probabilities
pij = hij () take values on the finite sgt, . . ., r }; see Kulkarni (1995). We choose
the labeling process to be a stationary MAP independente™MRP. A point
of the MRP is registered if and only if it is immediately prdee by an arrival
of the labeling MAP. If the fundamental rafe decreases, typically only a few
arrivals of the MRP are registered. More importantly, the R&rivals occurring
in intense short runs are most likely to be unregisteredsTine proposed labeling
mechanism removes the bursts of the MRP.

Suppose that, in the stationary version of the MRP, arrivatair at rated. Let
be the invariant distribution of the stochastic matii¢o) = (pjj). Then, we define
the indexy (p) of burstiness by

2(p)==x"Hp), 0<p<1,

wherex~1(p) is the inverse function of (1) defined by
k() = 1—/ 6 exp{Doulend (TH (U)er)
0

Thus, 6y (p) is interpreted as the rate of the MAP labeling process forcivtai
fraction p of the arrivals of the MRP are registered.

In Neuts (1993), the analysis is even extended to investigatrelations and run
distributions.

We conclude this subsection by illustrating the calcutatid y (p) for the inter-
rupted Poisson procegiPP).

Example 2.3 An IPP is a bursty MAP withm= 2 and matrices

_( —(Aa+061) 61 (2 O
DO_( 52 5 ) P70 o)

This means that a PP of ratg can be interrupted with probabilityy (A4 + 61) 2. If
this occurs, then an interruption period (exponentialstrithuted of rated,) takes place.

Assume that the MAP labeling process is Poisson of katBy using the fact that
the IPP is equivalent to a certain hyperexponential renpweadess (see Milne (1982)),
it is easy to find that
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Aa(A+62)
A2+ A(Aa+ 614 62) + Aab2

kK(A)=1—

By normalizing the fundamental rate of the IPP to be one, wainlihe following
expression for the index of burstiness:

_ Ppt—po+/(ppt—po)?+4ppo
2p ’

x(p) 0<p<l,

wherep=1—-p,o0 =681+ 682 andp = 6,/0.

2.4. Some applications

The next examples in queueing, reliability and inventorydede are intended to help the
reader acquire some feeling for the range of applicatiorte@BMAP and its variants.
By means of them, we briefly motivate the use of structureddglachains; see Bingt
al. (2005), Latouche and Ramaswami (1999), Li (2010) and Né1981(,1989).

2.4.1. The BMAP/G/1 queue

Consider a single-server queue whose arrival process isafBMth sequencéDy; k >
0}. Let the service times have an arbitrary probability disttion functionH (x).

We may find many similarities between tB&MAP/G/1 and theM /G/1 queues. To
begin with, we construct an embedded Markov ch@i@,,J);n > 0} at the times of
service completions by defining the p&®n,J,) as the queue length and the phase of
the BMAP immediately after theth service completion. Define the matrices

An:/ P(n,u)dH(u), n>0,
0

n+1

Bn= Z/ exp{Dou}duDk/ P(n+1—k,v)dH(v)
k=10 0

ln+1
=—-Dgy Z DkAni1-k, N=>0.
K=l

The matrixA, = (aj(n)) consists of the conditional probabilities thatustomers
arrive during a service time starting from phasad finishing at phasgof the BMAP.
We can therefore describe some of the transition probigsilibr the embedded Markov
chain by

P(Qi=14+n-13=j|Q=I,Jo=i)=aj(n), n>0,1<i,j<m,
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independently of > 1. It can be readily verified that the matrix generating fiorct
A*(z2) = ShoZ'Aqis given by

A*(z) = /0.00 exp{D*(z)u}dH(u).

Similarly, the matrixB, = (bj;(n)) contains the probabilities that first a batchkof
customers arrives and then+ 1 — k additional customers arrive during the subsequent
service time, for 1< k < n+ 1. Note that this situation occurs whenever a service
completion leaves the queue empty. Hence, we can write down

P(Ql: nJ = j|Q0:07J0: I) = bij(n)v n= 071§ I?J <m
As a result, the one-step transition probability matriX @, J,); n > 0} is given by

Bp B:1 By Bs

Ag A1 A, Aj

P= Ao A1 A2
Ay A,

A matrix of this structured form is said to be bf/G/1-type (see Neuts (1989)), which
underlines the similarity to the univariate embedded Madtmain of theM /G/1 queue.

The BMAP/G/1 was first analyzed in Ramaswami (1980), where the BMAP was
used under its older, more complicated notation. An outih®amaswami’s results
under the present matrix formulation, along with some nesults, are presented in
Lucantoni (1991). For a historical survey on the model, seeahtoni (1993).

2.4.2. The D-BMAP/D/1/K queue

Consider a discrete-time queue in which arrivals are geeefayM independent input
sources. Incoming arrivals are queued in a shared buffeapdatyK, with K < M.
The time needed to serve an arrival is selected as time utibamed slot. Each input
source in a slot takes either ON state or OFF state. When abhgoprce is in ON state,
one arrival is generated with probabiligy If the source is in OFF state, then no arrival
is generated. Suppose also that any OFF (or ON) source iresstohchanges to the ON
(or OFF) state with probability (or g) in the next slot. This superposition of sources
can be modelled as @discrete-time batch Markovian arrival proce@3-BMAP); see
Subsection 3.1.

Let Q, andJ, be the queue length and the number of ON sources (phase)m@ththe
slot. Then, the sequendéQn,J,);n > 1} is a discrete-time Markov chain on the state
space{0,1,...,K} x {0,1,...,M} with one-step transition probability matrix



Artalejo, Gobmez-Corral, He 119

Do Di D, --- Dk.1 YM«Dx
Do Di D, --- Dk1 YWDk

p— Do D1 -+ Dka2 YKk 1Dk |,
Do Zylek

where the matriceBy have the following elements:

o= (,)da-a . 0<ksi,

andf;,, for 0<i,i” <M, is given by

fij = J;Z)(;)qj(l—q)i_j (i’T— J__I i) (A M,

The binomial term ird; (k) is the probability ofk arrivals in the current slot, given
that the number of ON sourcesiisOn the other handf; is the probability that in the
next slot there will be’ ON sources, given that in the current slot thereiare

The structure oP shows thaf (Qn,Jy);n > 1} is a finite Markov chain oM /G/1-
type. This structured Markov chain, but involving a moretssficated sequend®y; k >
0}, is the analytical model used by Blondia and Casals (1992) $tatistical multiplexer
whose input consists of the superpositiorvafiable bit rate(VBR) sources.

2.4.3. A reliability system subject to failures

Consider a system subject to internal and external failukasnternal failure causes a
fatal failure of the system and implies that the system meseplaced. External failures
affect the system in two ways: some of them cause damageghiecrepaired, whereas
others cause fatal failure and consequently the systembreusplaced. Assume that the
replacement and repair operations are instantaneous.

In practice, itis frequent that a system can bear only a icentamber of failures, in
such a way that when the next failure occurs it is replacetlke1 be the maximum
number of imperfect repairs that the system can undergo.nAdraitrary time, the
state of the system can be described by means of the nuftbeof imperfect repairs
suffered by the system in process at tim&he random variablK (t) takes values in the
set{0,1,...,k} and, in particular, it records the state 0 if the system ircess at time
is new.

Montoro-Cazorla and &ez-O6n (2006) use a matrix-analytic approach when the
lifetime of the system due to wear out follows a PH distribafiwith representation
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(7, T) of ordern. Arrivals of external failures are modelled by a MMAP (sedSection
3.2) with two types of marks referring to external failureghaminimal repair and
external failures causing a replacement. In the charatiternatrices{Do,D1,D;} of
dimensionm, the matrixD; refers to the occurrence of an external failure with minimal
repair, andD, refers to a failure that causes the replacement of the syJteenmatrix

Do records those changes that do not imply any failure.

Then, a Markovian description of the system state followsnfthe Markov chain
{(K(t),J(1),da(t));t > 0}, whereJ, (t) andJ,(t) denote the lifetime phase and the phase
of the arrival process, respectively, at tilméhis is a Markov chain on the space state
{0,1,...,k} x{1,...,n} x {1,...,m} and infinitesimal generator

(T+tr)®Do+er®Dy 1h,®Dy
tTRIm+ent®Dy TeDy 1hw®Dq

tT @Im+enT ®D2 T®Do Ih®Dq
tT®Im+eT®(D1+D2) T® Do

Therefore, the structural form @ yields a finite Markov chain o61/M /1-type; see
Neuts (1981).

2.4.4. A multi-location inventory system

The next example (see Ching (1997)) is an inventory systeaminlti-location situation
under continuous review and one-for-one replenishment.

Consider a multi-location inventory system consistindg<dbcations that replenish
their stocks from a common main depot. For ttielocation, the inventory system is
modelled by theM /M /s /g queue with arrival ratél; and exponentially distributed
lead times of each server with parametgrThe overflow process of demand of title
location can be approximated by a two-state MMPP with uryitegimatrices

_( —oi1 o (A0

The first state is equivalent to the evelihe ith location is ful}, and the second one
amounts to the everitthe ith location is not yet full. Note that, in the former case,
the maximum level of backlogs is attained and, consequeatfyrther demand will
overflow to the main depot whenever the queue remains fulthdnatter case, a further
demand will be acceptable. Based on the stationary disioiibwof the M/M /s /g
queue, the parameters; ando, are approximated asj; = Su; andoi, = bisui/(1—
bi), whereb; denotes the blocking probability at tité location
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S S—|J i

b j:Zqi 2 pimin(k,s)’

Therefore, we may regard théMPP/M /s/q queue describing the inventory system
at the main depot as a finite Markov chaffQ(t),J(t));t > 0} on the state space
{—q,...,s} x {1,...,2%}, whereQ(t) is the inventory level at the depot ad¢t) is the
phase of the underlying Markov chain with infinitesimal getterQ, = Q15 ® ... ® Qka-
Negative values for the inventory lev@(t) amount to backlog.

The infinitesimal generata® of {(Q(t),J(t));t > O} has the following structured
form:

Qa_A A
ulox Qu—A—plx A

SMI2K Qa—A—SullzK A 5
S‘U,|2K Qa—A—s‘llzK A

sul ok Qa — sulx

whereA =A1 D ... D Ak.

The stationary distribution o can be readily derived from the general theory of
finite QBD processes; see e.g. Latouche and Ramaswami (Ca&8@ter 10). For more
information on finite QBD processes arising in manufacwipnoblems, the reader is
referred to the monograph by Ching (2001).

3. Variants and extensions of the BMAP

In this section we collect several generalizations andawdsi of the BMAP. We start
in Subsection 3.1 by presenting the D-BMAP; that is, the réigstime analogue of
the BMAP. The use of discrete-time models is motivated by ynapplications in
communication systems where the basic units are digita.cbmsideration of Markov
arrival processes with marked transitions opens new diresto investigate stochastic
models with multiple types of items, fluid input, spatialieats, etc. In Subsection
3.2 we follow the original formulation by He and Neuts (1998) introduce the
MMAP. The HetSigma approach summarized in Subsection J8iges a versatile
way to get joint modulation of the arrival and service preass In Subsection 3.4,
under the title Markov-additive arrival processes, weftyi@troduce some generalized
arrival processes which allow the counting/marked and dpaeknd processes to take
values on more general spaces. The time-inhomogeneousandsie possibility of
incorporating spatial features can also be subsumed uipgeo@riate versions of the
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Markov-additive umbrella. Finally, in Subsection 3.5 weabwith the BSDE approach
which has been recently presented by Artalejo adn€&z-Corral (2010) as a tool for
constructing Markov modulated stochastic models taking &Tcount the reduction of
dimensionality inherent to the matrix formulation.

3.1. The D-BMAP

The D-BMAP was introduced by Blondia and Casals (1992) asdiserete-time
analogue of the BMAP. They showed that many useful disdiste-arrival processes
can be obtained as particular cases of the D-BMAP and howéhssatile arrival pattern
can be used assynchronous transfer mo@A&TM) source model.

The key point in the constructive description of the D-BMAthe consideration
of finite matrices{D; k > 0}, which govern phase transitions and batch sizes. Suppose
that at timek the phase in progressiisfor 1 <i < m. At the next time epock+ 1, a
transition to another or the same phase takes place andhadrat@l may occur or not.
More concretely, the elemends (0) of matrix Do give the probabilities that the phase
goes to statg with no arrival, given that the initial phase iisOn the other hand, the
elementd;; (k) of Dy denote that, in the next time unit, there is a transition frimase
i to phasegj with a batch of sizé& > 1. We notice that

m oo
di(k)=1, 1<i<m.
J;kzo i (k)

We also assume that the mattix— Dg is hon-singular, so the D-BMAP has an arrival
with probability one.

With the help of{Dy;k > 0}, we formally define the D-BMAP as the bivariate
process|(Nk, Jk); k > 0}, where{Ji; k > 0} is the background phase Markov chain and
Nk denotes the counting variable. The one-step transitiobgtitity matrix of the D-
BMAP is given by

Do D; D, Ds
D, D; D,
P= D, D

A number of well-known processes are obtained by choosimgogpiately the
sequence of matrice§Dy;k > 0}. The list includes theBernoulli arrival process
the Markov modulated Bernoulli procesthe batch Bernoulli process with correlated
arrivals and many other processes which, in general, can be condidsrine discrete
counterparts of those particular cases of the BMAP listeé8lubsection 2.1. For further
details of other special cases of the D-BMAP, we refer to thgeps by Chakravarthy
(2001,2010).
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We also remark that, like in the continuous-time BMAP, mantgiesting properties
(such as counting, descriptors, superpositions, etc heamvestigated. Since arguments
are similar, these results will not be presented here, butrefer to the paper by
Chakravarthy (2010) for a summary of basic results for thBNDAP.

In what follows, we focus on the class piatoon arrival processefPAP).

Example 3.1 The following description of the PAP is based on the paper lig and
Neuts (1995), who used the PAP to model vehicular traffic.eRtyg, Breuer and Alfa
(2005) used a terminating D-MAP to generalize the concepdd.

The PAP is a discrete-time arrival process composed of @iatoSuppose that the
number of arrivals in a platoon is a discrete PH of ordevith representationté, D)
and absorption vectod. Moreover, we assume thay = 69 = 1 — ey > 0 is the
probability of a platoon consisting of a single vehicle.(itbe probability of starting in
the absorbing state) amy = §D%2d, for k > 2, is the probability of having arrivals in
the platoon. In a first general approach, intraplatoon vatsrseparating two arrivals in
the same platoon, have the probability mass funcfipiik);k > 1}. On the other hand,
the interplatoon interval separating the last arrival inaqgon and the first one of the
immediately following platoon, have the probability masadtion{ p,(k);k > 1}.

Let S, be thenth arrival epoch and suppose thatrecords the phase of the discrete
PH distribution observed at tin+, whose representation is given (@, D). Then, the
PAP is the MRP associated with the Markov renewal sequéf¢eS,); n > 0}, whose
kernel is described by the matrices

o Gop2(j) &pa(]) :
1= () oma ) 122

For practical purposes, the MRP formalism can be simplifigdabsuming that
the intraplatoon intervals and the interplatoon intenaas distributed as discrete PH
distributions with representationia;, T;) with m phases and absorption vectarsfor
i € {1,2}, respectively. The vectors, fori € {1,2}, are now assumed to be probability
vectors. Thus, the PAP can be now seen as a D-MAP with ma@igasidD; given by

Do — T2 Ompxdm D, — Ootoatz O ®trag
° Odmlxmz lg®Ty 7 ! d®t1a2 D®tiai ’

where the underlying statés j) denote the phase of the discrete PH law with represen-
tation (8,D) and the phase of the (interplatoon or intraplatoon) inténvprocess.

3.2. The marked Markovian arrival process

The MMAP can be viewed as a multi-class extension of the BM##ough the anal-
ysis can be presented both in discrete- and continuous-timeestrict our exposition
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to the latter case. Similar to the BMAP, the MMAP definitiorbesed on a background
Markov chain{J(t);t > 0}, often called phase chain, with states, which determines
the arrivals of some marks taking values on a%et The set of markg® may have
different interpretations, as we show in the sequel.

Let #° be a finite or countable set of indices. More specifically, wayrassume
that a generic elemehtof € is aK-tuple (hy,...,hg), whereh, € N, for 1 <k <K,
and at least one coordinate is strictly positive. Define the-negative matrice®y and
{Dn;h € €°} of orderm. The entries oD, describe the motion of the phase Markov
chain without any arrivalDg is assumed to be a non-singular matrix with negative
diagonal elements. The matricBs are non-negative and give the transition rates of
the phase Markov chain with a mark Then,D = Dg + S p,.0Dn is an infinitesimal
generator. The counting proce§d\y(t),J(t));h € €, t > 0} is called a MMAP.

Alternatively, we may define the MMAP in terms of PPs. To thisl git is enough
to replace the role of the ratgslj(k);1 <i,j < mj}, for k > 1, in Remark 2.2 by
the analogue marked versidaij(h);1 <i,j < m}, for h € ¥°. The semi-Markovian
representation in Remark 2.1 for the BMAP also holds for thdARr.

Itis clear that the choick = 1 and%® = N — {0} reduces the MMAP to the BMAP.
The caseK = 1 and%® = {1,...,C} determines arrivals of different types of cus-
tomers or items; that is, the MMAP is interpreted as a propdtirolass generalization
of the BMAP.

The following specifications of the matric€ and{Dn;h € ¢°} show interesting
features captured under the MMAP formulation:

(i) A reinterpretation of the batch sizes in terms of differelasses of customers
allows us to see example (ii) for cyclic arrivals in Sectioa2an arrival process
where type-1 and type-2 customers arrive cyclically.

(i) Individual vs group

-1 0 05 0 0 05
(0 %) oo (1) e (3%)
First, we notice that the marks® = {{1},{2,1}} can be put in correspondence
with the caseK = 1 and%® = {1,2}. This comment can be readily extended to
any arbitrary finite set™°.
In this arrival process, there are individual arrivals gbeyl and group arrivals
where the group consists of one type-2 customer accompéayiedtype-1 cus-

tomer.
(iii) Type-2 follows type-1

-4 0 31 00
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A group arrival{2, 1} is always preceded by the arrival of a customer of type-1.
(iv) Orders within batches

-15 O 14 O 0 1
Do:< 0 —10>’ D{112}:<0 9>7 D{121}:<1 O>'

The marks{112} and {121} are associated with group arrivals of size 3. Each
group consists of two type-1 customers and one customepef2y The orders in
which individuals are scheduled within a group do mattertheotwo marks are
distinguished.

Among the descriptors of the MMAP, we stress the interegtércounting functions.
The generating function df(t) = (Ny(t),...,Nk(t)) is given by

P*(z,t) = Zz” P(n,t) = exp{D*(z)t},

wheren = (ny,...,ng) with n; > 0, for 1 <i <K, and P(n t) is the matrix with
elementsk;j (n,t) = P(N(t) = n,J(t) = jIN(0) = Ok, J(t) = i), while 2" = Z* ... Z¥
andD*(z) = Do+ ¥ pey02"Dp, for |z] < 1 and 1< k < K.

Now the covariances and correlations betwébi(t);t > 0}, for h € €9, can be
explicitly expressed; see He and Neuts (1998).

For easiness, we assurd@ = {1,2}; i.e., we have two types of arrivals.

Given any initial probability distributior for the phase Markov chain, we have

E[Na (1)) = Ant + & (€xp{Dt} —Im) (D —€nf) “Dhem, he %P t>0,
where@ is the stationary distribution dd and A, = @Dy e, is the fundamental arrival

rate of typeh marks.
If we takea = 0, then

Var(Nn(t)) = (;\h — 222 20Dn (D —ex8) " Dhaﬂ) t
426Dy, (D —en8) *(exp{Dt} — 1) (D —enf) * Dnéem,

and the covariance betwedh(t) andNa(t) is given by

2
@(Ng(t),No(t)) = — <2k17t2+9 (Z Dk(D—end) D3k> em>t
=

+6
K

N

Dy (D —enf) * (exp{Dt} — I ) (D—eme)—lD3k> em.
1
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We illustrate the computation of the counting moments by meeaf the BMAP
considered in Examples 2.1 and 2.2. Obviously, the batehlstzomes here the mark
in the MMAP terminology.

Example 3.2 If the MMAP with matrices{Dg, D1, D} given in Example 2.1 is station-
ary, fort = 2.5, we get

E[Ny(t)] = 2.5, E[Na(t)] = 2.94117
Var(Ny(t)) = 4.2498Q  Var(N(t)) = 6.17905

The covariance and correlation betweérit) andN,(t) are given by
@(N1(t),No(t)) =3.30791  p(Na(t),N(t)) = 0.64551

The mean and variance of the total number of cotnis = Nj(t) + 2N,(t) are
E[N(t)] =8.38235 and/ar(N(t)) = 42.19772.

A good account of results for other basic properties of the ARMincluding
thinning, type of arrivals, peakedness and closure prigserre found in He and Neuts
(1998), and He (2010).

3.3. The HetSigma approach

The HetSigma approach (see Chakka and Do (2007)) has bepaspiin order to
evaluate the performance of queueing models with burstinesl correlation arising
from applications to wireless broadband networks. The gsed modulation mecha-
nism could be subsumed under a MMAP pattern. However, th&iblea approach
presents some interesting features which justify its pradi@n in this specific subsec-
tion.

In the HetSigma approach both the arrival and service pseseare modulated in
continuous-time by a single infinitesimal genera@gg, with mmodulating phase states.
This assumption includes as a particular case the situati@ne the arrival and service
processes are modulated individually by infinitesimal getoesQ, andQ with m, and
ms phases, respectively. This independent modulation casbecaonverted into a joint
modulation by takin@) . = Q,® Qs andm = myms.

Arrivals, under each modulating phageconsist of the superposition &f inde-
pendent CPPs of positive arrivals and an independent CPRBgattine arrivals. More
concretely, th&k + 1 CPPs are described in termsgaieralized exponentidGGE) dis-
tributions, which govern exponential inter-arrival timegh batches having geometric
size distribution. For example, during phaséhe stream of negative arrivals follows a
GE distribution with representatigip;, 5;), which means that a negative batch arrives
to the system after an exponential time of rateand its size ik > 1 with probability
(1— 8;)6%"L. On the other hand, the service facility habeterogeneous servers. Each
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server is labeled and has its own independent GE servicettith@arametersuin, ¢in),
forl<n<cand1l<i<m.

The model description must be completed with a number of gjnguspecifications
including the first come first scheduled for service disaiplia switching policy guaran-
teing that the servers labeled with lowest indexes are tresgering service, a killing
policy which removes customers at the end of the queue whegatiue arrival takes
place, and other necessary specifications which are dedcirbdetail in Chakka and
Do (2007).

3.4. Markov-additive processes of arrivals

In this subsection, we follow Pacheco and Prabhu (1995) ttmdnce the class of
Markov-additive processes of arrivalBirst of all, we remark that the acronym MAP
is used in the literature both for the Markovian arrival pse introduced in Section 2
and for the Markov-additive processes of arrivals. For @idesof clarity, here we shall
denote the latter as MAPA.

A MAPA is a Markov process with two componerfsandJ. In generalX is a non-
Markovian component called the additive component sincesiments oX correspond
to arrivals. The Markov componedtsometimes represents an environment factor. In
other applications, the phenomenon under study leadsaligtto the pair(X, J).

The state space assumed in Pacheco and Prabhu (1995FiR" x E, whereE is a
discrete set. Moreover, it is also assumed {iat)) is a continuous-time process. Then,
aprocesgX,J) = {(X(t),J(t));t > 0} on.” is a MAPA if

(i) (X,J)is a Markov process.
(i) For all s> 0 andt > 0, the conditional distribution ofX(t +s) — X(s),J(t+5s)),
given(X(s),J(s)), depends only od(s).

The above definition follows the spirit of Cinlar (19723,b)ho assumed a more
general spack. It is convenient to extenH including a special stat#® which indicates
the termination of the proceg¥,J). Some interesting properties including closure
properties under linear transformations and linear coatimns can be investigated. On
the other hand, to study the lack of memory property, intaxa times, moments of the
number of counts and other structural properties, it is enrent to reduce to the state
space¥ = N' x E. In this context, the dynamics of the MAPA comprise threesty/pf
transitions: (a) arrivals without change of statelinb) changes of state i without
arrivals; and (c) arrivals with change of statelin

Secondary recording of the MAPA is a mechanism that geresasecondary arrival
process from the original arrival process. This mechanistudes interesting features
like thinning and marking.

Closely related to the MAPA is the class of MMAPs defined far tase wher&
is finite; see Subsection 3.2. The BMAP corresponds to thplsicase withr = 1 and
E={1,...,m}.
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The contribution by Pacheco and Prabhu (1995) is genedalizdBreuer (2003)
to cover the inhomogeneous case. The inhomogeneous BMAEfileed as a MAPA
(X,J) with additive spacy, finite phase spade = {1,...,m} and time-inhomogenous
structure for the generator functions

Do(t) Da(t) Da(t) Ds(t)
Do(t) Di(t) Da(t) -
QW= Do(t) Dift) - |

where the(i, j)th entry of D¢(t) can be interpreted as the infinitesimal transition rate
of recordingk arrivals during the infinitesimal intervét,t + dt] while changing from
phasei to phasej. Likewise, other interpretations for BMAPs can be adaptethe
time-inhomogeneous case. For example, the maXtix= 3’ D«(t) is a generator for
all't > 0. If the phase proceskhas a stationary distributiof, then starting the phase
process in this distribution without prior arrivals yielihe following expression for the
mean number of arrivals until tinte

t 00
/ 0 S KDK(U)endu
0 k=

Breuer (2003) also generalizes the notion of characterstiguence slightly in
order to define a class of fluid MAPs. In this generalizatitwe, phase space is finite
E ={1,...,m} and the additive space is given [ ). Unlike the additive spack
which allows us to arrange the matrices containing arrigggs in a single sequence,
an analogue for the additive spaffec) is a characteristic measule providing an
arrival rate matrix for every Borel-measurable subseflof). For the homogeneous
fluid MAP, the measurd is specified by the matrice&(x), whose(i, j)th elements
are given by the corresponding infinitesimal transitiorsa(i; [0,x] x {j}), forx >0
and 1<, j < m. Thus, the matriA(x) has an analogous meaning as the maixor
the BMAP. The infinitesimal generator dfis given byD = lim,_,»A(x). Let 8 be its
stationary probability vector. Then,

/0 " udA(u)ent

gives the expected number of arrivals until timé the process starts without prior ar-
rivals and in phase equilibriugh. It can be also shown that lim., X (t) /t = [ @udA(u)
em, almost surely for all initial phase distributions.

The concept of BMAP can be even generalized towards a clagsnetspace
processes, called spatial MAPs; see Breuer (2003, Chap&@ysand Breuer and Baum
(2005, Chapter 14). This generalization addresses thssnal points: (a) the phase
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stateE is allowed to be general; (b) the generator functions of fhetial MAP may
depend on time; and (c) arrivals may assume a location in spaee.

Based on an underlying MAPA, Sengupta (1989) defines a hiwakilarkov process
(X,J) with a special structure, which can be seen as a continumesand continuous-
space version of the Markov chains 6f/M/1-type studied by Neuts (1981). The
Sengupta procesgelds a notably simplified characterization of the waitimge and
the queue length distributions in ti&& /PH/1 queue. Specifically, the phase space is
finite E = {1,...,m}, and the additive componeXtis skip-free to the right, takes values
in [0,00) and increases at a linear rate of 1, if there is no downwarg juvtoreover,
changes in the state of the procéXsJ) may also occur in one of two ways:

(x—u,j)and(x—u+du, j) at a rate ofla; (u), forue [0,x) and 1<i,j <m.
(i) If (X(t),J(t)) = (x,i), then it may transit fronfx,i) to (0, j) at a rate oby;j(x), for
x>0and 1<i,j <m.

The level-dependent rateg (x) andby; (x) satisfy the condition

i(aij(x)+bij(x)) =—d, x>0,1<i<m,
=

where—d; is the rate at which the next state change can occur from ite Btate(x, i).
This equality clearly implies that the probability that theditive componenX takes a
downward jump ofu € [0,X) units fromx, given that a downward jump occurs, does not
depend on the initial level.

For a related work, we also refer to the bivariate Markov pes¢X,J) analyzed
by Tweedie (1982), where the additive componeriakes values ifN and the Markov
component] takes values on a general set such as an interval of themeal li

3.5. The BSDE approach

The rationale for using Markovian arrival processes and Rdtridutions has been
already discussed in Section 2. However, the price to be foagliently in practice
is a significant burden on computational time and memory egatlie to the high
dimensionality of the resulting block-structured Markdwams. The complexity of the
underlying stochastic models increases drastically inimamogeneous settings, where
an arbitrary, even infinite number of MAPs and/or PH disthitnos could be involved.
The BSDE approach provides a versatile tool to deal with agxgonential model with
correlated flows, but keeping the dimensionality of the klstructured Markov chain
tractable.

In the BSDE approach, we are concerned with a multidimemasicontinuous-
time Markov chain(X,Y) = {(Xq(t),..., X(t),Yi(t),...,Yi(t));t > 0}. We assume
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that (X,Y) is regular and time-homogeneous; in applications, it i®rofassumed
to be irreducible. The sub-vectot(t) = (Xy(t),...,X(t)) provides ak-dimensional
description of the fundamental aspects of the system stéiteat. On the other hand,
the sub-vectol (t) = (Yi(1),...,Yi(t)) is al-dimensional phase vector which completes
the Markovian system description. The state spa¢XoY ) is a discrete se¥/x y) with
(k+1)-dimensional elements.

The sojourn timeE, ) that the Markov chain remains in the stdiey) is expo-
nentially distributed with raté., ). For a given stat¢x,y), the p-dimensional random
vectorN| vy = (Ng,...,Np)|xy) counts the events taking place whgn,, expires. The
case when no event is observed is denotetpyy) = Op, whereas the occurrence of
an event of typesis associated witlN| ,y = nep(s), wheren € Z — {0}. For example,

n > 1 denotes a multiple positive jump= —1 represents a negative jump, etc.

The fundamental state is updated in the light of the observed valueNfy ).
More concretely, we assume that the resulting fundamenmadt 8’ is of the form
X' = f (x,N|«xy)), where the fundamental state functibrhas to be specified for each
particular Markov chairtX,Y). We notice thak’ = x if N|( ) = Op.

It should be noted that the callg;, ) = O, implies that the phase staggumps to a
new statey’ # y. In contrast, the existence of proper events may or not benaganied
by a phase change.

The kernel{P}; (x,n) € x )} completes the specification of the BSDE approach.
The elementp} (y;y’) of the matrixP} record the probabilities of generating the event
n and a transition from phaseto phasey’, given that the system state wasy) just
beforeE, y) expires. Sinc&y ) is a sojourn time, we notice tha}?p(y; y)=0.

Finally, the infinitesimal generat@® = (q)x,) Of the Markov chain(X,Y) is
given by

_A(va)’ if (X/7y/) = (Xay)v
Aoy xy) =3 Ay PRY;Y), if X' = (%,Nxy)
0, otherwise

If it is desired, then the BSDE approach can be used to carstnly a part of
the stochastic model. In fact, the BMAP can be readily oletdins a particular case
of the BSDE approach; see Artalejo andr@ez-Corral (2010, Example 2.1). The
BSDE approach can be easily adapted to the discrete-tirtingsdhdeed, the above
BSDE construction is inspired in a similar discrete mechiamicalled discrete block
state-dependent arrival distribution, which was intraetlm Artalejo and Li (2010) to
generate the arrival input of a certain discrete-time queue
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4. Application of the BSDE approach to epidemic models

In this section, we show how the BSDE approach presented lisegtion 3.5 can be
used to extend many stochastic systems that use Markovsctaimodel a biological
population. More concretely, we consider te@te-dependent susceptible-infected-
susceptibldSD-SIS) epidemic model which generalizes the scalar Si&efradlowing
non-exponential infection and recovery times, as well asekistence of correlation.
Once the SD-SIS model is constructed, we focus in Subseétiban the time until the
extinction. In Subsection 4.3, the counterpart of the coeffit of correlation between
inter-arrival times in the BMAP (see Subsection 2.3.2) tedduced.

4.1. Construction of the SD-SIS model

Firstly, we recall the scalar SIS model (see also Allen (2D0Gonsider a closed
population of sizeK. At time t, the population consists dft) infected individuals
and S(t) = K — I (t) susceptible individuals. In this context, the procébd);t > 0}
is assumed to be a birth-and-death process on the state{fpace.,K}. Let § andy
denote the contact and recovery rates, respectively. Therirth rates are defined by
Ai = Pi(K—i)/K, for 0<i < K. These rates correspond to transitions occurring when a
susceptible individual becomes infected in agreementthiigtcurrent contacts between
I(t) andS(t). On the other hand, the death ratgs= yi, for 1 <i <K, are associated
with the recovery of infected individuals.

The construction of the SD-SIS model is based on a BSDE appndhk = 1 and
| = p= 2. The fundamental state= i represents the number of infected individuals,
whereas the phase state= (m,n) consists of the infection and recovery phases in
process at timé. The state space/x v) is given by

Lxv) ={0pU{(i,mn);1<i<K,1<m<M,1<n<N}.

We notice that the epidemic ends as soon as there are noedfewividuals in
the population. Thus, we consider an absorbing macro$tatéh rate Ay = 0. The
individuals do not develop immunity after they recover. Aseault, the Markov chain
(X,Y) is reducible and the absorption occurs in a finite time withbability one. The
events are associated with infections (i.e., single p@sijtimps) and recoveries (i.e.,
single negative jumps). It means that the SD-SIS model caridveed as a particular
case of a finitestate-dependent quasi-birth-and-deé8D-QBD) process; see Artalejo
and @mez-Corral (2010, Section 3).

Then, the infinitesimal generat@ of the SD-SIS model has the following non-
homogeneous block-tridiagonal structure:
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0 0
o Qu1 Q12

QZl Q22 QZS

QK—l,K—Z QK—l,K—l QK—l,K

Qk k-1 Qkk

where the block®);, are square matrices of dimensiga= MN, for 1 <i,i’ <K. The
column vecton, o describes the motion from statgls m, n) to the absorbing stat for
I1<m<Mand1<n<N.

For the derivation of the block®;,, we need to introduce families of rate matrices
(Af1<i<K-1}and{D1<i<K}, forke {0,1}. The elementsl{m;n) are
defined by

éia( ) )L(l m)»
ad(mm) = A% @ (myn), m #m,
&l (mm') = A3 & (m; ).

We observe thaxﬁym) denotes the rate of the exponential sojourn tiEfig which ends
either when an infection takes place (with or without phasange) or simply when
the infection phase is changed (no arrival case)=AfK, then the whole population is
infected, so we havéf ., = 0. In contrastAf; ) > 0 for 1<i < K — 1. The kernel
probabilitiesal(m, nv) are the probabilities df € {0,1} infections (i.e., positive jumps)
and a transition from phasato phaseaY, given thatx = i. The description of the rate
matricesﬁ:( is similar and thus it is omitted. By assuming independerete/éenEA,
and the analogue recovery sojourn tifgfg, we have thafl j mn) = Aﬁ’m) + A'(Di’n) > 0.

Under the above BSDE specifications, we finally obtain théofghg non-zero
blocks

Q10 = (' M ®51) ey,
Qiic1=1Iwm ®5i1, 2<i <K,
Qi=A @D, 1<i<K-1,
Qkk = Im ®5E,
Qi=A ®ly, 1<i<K-1
We now turn our attention to the dimensionality problem. Digective is to deal
with a particularization of the rate matrices such that drenulation remains sufficiently

tractable, yet enough versatile for computational purpo$e reach this objective, we
consider the choice
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0 A 1A .
AP:IIDS’ A?:T'D’f, 1<i<K-1,

D ="pp D = HMpP 1<i<Kk,
u u

where(D},D?) and (DY, DY) denote the characteristic matrices of two auxiliary MAPs

of ordersM andN, respectively. Their corresponding fundamental ratestaaadu.
SinceA; and u; are the birth-and-death rates of the scalar SIS model, waroht

BSDE formulation that, given that the current number of dtdéel individuals equals

the expectations until the next infection and recovery Bpounatch the corresponding

expected values in the scalar SIS model.

4.2. Extinction in the SD-SIS model

The extinction time quantifies the spread of the epidemidiempbpulation and describes
the time until the end of the epidemic process. Thus, the timextinction is an
important measure of the persistence of an infection. Tleaists a vast literature
studying the extinction time of stochastic biological misdén this subsection, we
extend the study to the SD-SIS model.

We distinguish between a conditional version of the exiimctime given an initial
state and an unconditional version properly defined. Thelitional extinction time
Li,mn) is defined as the absorption timeGngiven that the initial state of the SD-SIS
model is(x,y) = (i,m,n). Let v mn) () be its Laplace-Stieltjes transform. The vectors
@i(S) = (9(.21)(S)s- - Pimm(9), for 1< i <K, andp(s) = (91(S),-...0k(S))’
comprise the Laplace-Stieltjes transforms according &lévels determined by the
number of infected individuals.

By introducing an initial distributiorr on the state space/x y), we arrive to the
unconditional versiom. of the extinction time. From the general theory for continsto
time Markov chains (see e.g. Kulkarni (1995), and Latouat Ramaswami (1999)),
we know that follows a PH distribution of ordelKg with representatiofr,M ), where
M is the submatrix 0Q corresponding to the set of transient staég v) — {0}.

Since the set¥|xy) — {0} is irreducible, the existence of the inversé ! is
guaranteed. We may also observe that the starting poinealehsity function is given
by fL(0) = —TtMexg = 71010, Wheret is the sub-vector ot containing the initial
probabilitiest (1 mp) of the leveli = 1.

Coming back to the unconditional version, we notice thatwbetor ¢ (s) satisfies
the block-tridiagonal system

M -sgp(s = oM ).

O/(K—l)g
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By using Euler and Post-Widder algorithms, we can numdyicalvert the above
expression to get the conditional density functidrg&m,n) (x) and, consequently, the
unconditional densityf, (x); see Cohen (2007).

Finally, we observe that the conditional momemts, = E[Lf

imm: for (i,mn)
“x,y)— 10} andk > 1, can be computed from the formula

mk =kt (-M 1) g, k> 1,
or, alternatively, from the recursive expressions

m° = exg,
m<=—kM mk1 k>1,

wheremX denotes the column vector of dimensikig containing the momemsf(ﬁ?m‘n)
in lexicographic order.

The unconditional time to extinction depends on the initistributiont. In epi-
demiology, it is often known that a certain epidemic has b&aiving for a long time
and that it has not reached the extinction yet. However, it beavery difficult to know
the exact distributiorr. In this case, the use of the quasi-stationary distribuis@spe-
cially interesting. The starting point is the conditionablpabilities

Uimn (1) =P((X(t),Y(t) = (i,mn)L>t) =

for (i,m,n) € .#(x v) — {0}, wherep mn (t) and pg(t) are the transient probabilities of
the Markov chain(X,Y).

Suppose that the Markov chain starts with the initial distion 7y, =
P((X(0),Y(0)) = (i,m,n)), for (i,mn) € .*x vy — {0}. If there exists a starting dis-
tribution 7 j mn) = Ugimn), SUch that; mpn) (t) = Ui mn), forallt > 0, thenu = (U mn))
is called a quasi-stationary distribution. Moreover, ghaliso exists a limiting interpreta-
tion which states that lign,e Ui mn) (t) = Ui mn), independently of the initial distribution.

In our case, the se¥x v) — {0} is finite and irreducible. Then, the quasi-stationary
distribution u amounts to the left eigenvector associated with the eideavaith
maximal real part of the matrikl; see Darroch and Seneta (1967). This result gives
a method for numerical computation.

In what follows, we set = u and generalize the existing approach for the study of
the extinction time., in the scalar SIS model (see Norden (1982)) to the SD-SIS mode

By differentiatingu; mn) (t) with respect td, we obtain

p/(i,m,n) (t) Pi,mn) (t) p%(t)

=T T Aoz M € Foun — {0}

u/(i,m,n) (t)
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By combining the above formula and the Kolmogorov forwardatpn for the absorb-
ing state0, we find that

o8 (t) Pim (t) N _ _ _
u/(i,m,n) (t) = 1(I_7mr7;;(t) + 1(I_mpn;(t d%(nv ')u(l,-,n) (t)7 (Iama n) € ‘Sﬂ(XA,Y) - {O}v

whered}(n;-) = SN _, di(n;n') andu(y. ) (t) = ¥M 3 U mn (), for L<n < N.
Now, we appeal to the fact that the initial distribution isand we thus put
u’(Lm’n) (t) = 0. Hence, for eacki,m,n) € .#x v) — {0}, we get the differential equation

z

p/(i,m,n) (t) = —Pi,mn) (t) d:]L-(n; ')u(l,-,n)a
n=1

Piimn) (0) = Ugimn),
which yields the solution
p(i,m,n) (t) = Ugi,mn) exp{ —t

Finally, for pg(t), we now havep(t) = z,’;‘zld_}(n; ) PL-m (t), with p5(0) = 0, so
that

N
P(L, <t)=pp(t) = 1—exp{—t > di(m; ')u(l,-,n)}7 t>0.
n=1

This establishes that the time to extinction, when theahiistribution is the quasi-
stationary distribution, has an exponential distributioth rate YE[L ] = SN_; di(n; )
U, n)-

The following example illustrates the influence of the cltgdstic matrices and the
correlation in the distribution df,,.

Example 4.1 We consider the following three choices for the charadierimatrices
(Dg, Dy) and(Dg, DY):

(i) Exponential kerneMWe takeM =N = 1,D) = DY = —1 andD} =D = 1.
(i) Erlang-hyperexponential kerndlve takeM = 3,N = 2 and

3 3 0 000
DA o 3 3|, DpA=|o0o0 0],
0O 0 -3 300

po_ (19 0 oo (171 019
o=\ 0o -019 )’ 1=\ 0171 Qo019 )
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(i) MAP-MAP kernelWe takeM = N = 3 and

—1.00221 100221 0 0 O 0
Df = 0 —1.00221 0 , D)= 0.99219 0 001002 |,
0 0 —22575 2.2575 0 2234925
—0.87478 087478 0 0 0 0
DP = 0 —0.87478 0 , DP=| 078730 0 008748
0 0 —94.76811 7.28985 0 8747826

For the above three scenarios, the fundamental rates as=sbevith infection and
recovery characteristic matrices axe= u = 1.0. We notice that scenarios (i) and (ii)
are associated with renewal processes and, on the corgcatyario (iii) has positive
correlated infection and recovery times. The values of tedficients of correlation are
0.48890 and #3482, respectively.

Table1: E[u], o(u) and EL,] for three scenarios.

Scenario (i) Scenario (ii) Scenario (iii)
E[u] 64.48076 60.04070 38.91698
o(u) 11.87236 20.12606 44.42737
E[Ly] 2094831.60843 1140.40538 7.75147

For a population siz& = 200 and the rate8 = 1.5 andy = 1.0, we summarize in
Table 1 the main statistical descriptors; that is, the memhthe standard deviation of
u, and the expected vallgL].

In Figure 2, we turn our attention to the probability distrfion functionP(L, <t).

In this case, we deal with scenario (iii) wikh= 200,y = 1.0 andf € {0.5,1.0,1.5}.

09 S e
08
07 -
06 3 .
05 - /
041 [1S

/ — = (8,y)=(1.0,1.0)
0,2 1/,
01 i

0 10 20 30 0 50

Figure 2: The probability distribution function f, <t).
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In the light of the numerical results, the conclusion is ttte influence of the
scenario is significant. In other words, the underlyingribstion and the correlation
are important features which cannot be ignored.

4.3. Correlation between successive events

In this subsection we define a coefficient of correlation leefmvtwo successive events
of the SD-SIS process. Assume that the initial distributton and denote the first two
inter-event intervals a¥ andY. To avoid trivialities, we also assume that> 2.

First of all, we observe that the one-step transition prdlalnatrix governing the
embedded Markov chain at event epochs is given by

1
(—Q11)010 Ogxg (—Q11)Q12

(_QEEl,K—l)QK—l,K—Z ngg (_leil,K—l)QK—l,K
(—Qxk)Qk k1 Ogg

To construct a coefficient of correlation, we must guarattieeexistence of at least
two events before the process reaches its extinction. Thus; 1, we correct matrix
P by imposing that the next event is an infection. This modifaaonly affects to
the blocks associated with the leviek 1 of Q, which are now given by, = 0,
Qf, = Q12 andQf; = Qq; + diag(ey(1)dy, - - -, €4(9)d10). As a result, the second row
of the corrected matrif® becomeg0y, Oy, (—QF;) 'Q12,0gsg, --.), While the rest of

row blocks does not vary.

In calculating the correlation betweéhandY, we shall need the marginal density
functions of X andY, and the joint density function diX,Y). It is easy to show that
they are as follows:

K
fx (X) = (1) exp{QIx} (—Q71) &g+ .;T(i) exp{Q;ix} (—Qj)€, x>0,

T(i)exp{Qix} (—Qii) &, y=0,

Wx

fy(y) = _

fxy) (% Y) = 7(1) exp{Qi1x} Q12€xp{Qa22y} (—Q22) &

K-1
+ ZZ 7 (i) exp{Qiix} Qi1 eXp{Qi+1.i+1Y} (—Qi+1,i+1) €

K
+ ;T(i) exp{Qix} Qi 1exp{Qi_1; 1Y} (—Qi_1j 1)&, X>0,y>0,
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where the vector = (7(1),...,7(K)) is given by

7(1) = 7(2) (-Qz) Qa1

2) =7(1) (—Q5) Qo+ 7(3) (—Qs3) Qa2

T(i)=7(i—1) (—Q 4 1) Qri+(1—8w)7(i+1) (—Qi 1) Qiriy 3<i<K.
The vectorr can be readily obtained by noticing thH&;,7) = (0g, 7)P°.

From the density functions, it is straightforward to find fhret two moments oX
andY, as well as the cross expectati&fXY]. They are given by

K
£ =7(1) (-Qh) eyt 3 7l (-Qi) ey

K
E[X?) =2 (r(l) (~Qf) Peyt 3 7(0) (—in)zeg> ,

K

Y] = 3 7 (-Qi) e

E[Y3 =2 Z (—Qih) ey,

E[XY] = 7(1) (—Q%1) *Qu2(—Qs7) &
+ 22 Q.. Q| ji— 1( Qi:l17i71) +(1-6ik)Qii1 (_Qilll,wl)) .

The combination of the above expressions leads to the desvedficient of correla-
tion
E[XY]—E[X]E[Y]

Var(X)Var(Y)

p(X,Y) =

The initial distribution can be chosen as= ug, whereugr denotes the quasi-stationary
distribution of the embedded Markov chain between two r@gelent epochs, with
transition matrixP.

5. Bibliographical notes

Within the list of references we may distinguish betweendategories of contributions,
depending on whether or not they have been cited througheumiain body of this
survey.
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Papers and books of the first category have allowed us towehie main aspects
of the BMAP and its basic properties, as well as related w#sjegeneralizations and
new results in the context of the BSDE approach. The readebd&an also addressed to
the existing survey papers by Asmussen (2000), Chakravé2001,2010) and Neuts
(1992) on the PH distribution and the BMAP and, in a more gansetting, to the
monographs by Binet al. (2005), Latouche and Ramaswami (1999), Li (2010) and
Neuts (1981,1989) which present the main results and &hgosiof the matrix-analytic
theory.

Regarding to the second category, we associate those paped® not cite in
preceding sections to our desire to present a few selectertbnees dealing with the
problem of estimating parameters, multiple types of custenand applications. They
are classified as follows:

(i) Estimation and fitting

Bodroget al. (2008), Breuer (2002), Breuer and Alfa (2005), Hattvet al. (2010),
Okamuraet al. (2009), and Telek and Hoath (2007).

(i) Marked arrivals and multiple types of customers

Alfa et al. (2003), He (1996,2000), He and Alfa (2000), Takine and Haaeg(1994),
and Van Houdt and Blondia (2002).

(iii)y Applications

In queueing and communication systems: Artalejo abth€z-Corral (2008), As-
mussen and Mgller (2001), Baek al. (2008), Chakravarthet al. (2006),
Choi et al. (2004), Daikokuet al. (2007), Dudin and Nishimura (1999), He
(2001), Kim and Kim (2010), Kinet al. (2010), Lamberet al. (2006), Liet
al. (2006), Lucantoneét al. (1994), Ost (2001), Shin (2004), Squillargeal.
(2008), Takine (1999), and Tian and Zhang (2006).

In reliability and maintenance models: Chakravarthy arn@z-Corral (2009),
Frostig and Kenzin (2009), and Montoro-Cazorla agde2-Oén (2008).

In inventory systems: Cheng and Song (2001), ddeal. (2002), Manuelet al.
(2007) and Ramaswami (1981).

In risk and insurance problems: Ahn and Badescu (2007), &acs al. (2007),
and Cheung and Landriault (2009).

Since an exhaustive bibliographical work should includeesg hundreds of papers
on the subject in stochastic modelling, we have elabordtedabove list only for
illustrative purposes.
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Appendix: Glossary of notation

To begin with, matrices have uppercase letters and vectwsrtase letters. The
transpose oA is written asA’. The matrix diadaa, ..., ap) is the square matrix having
elementsy, ..., ap along its diagonal and zeros elsewhere.

We denote byl , and Op,4 the identity matrix of ordemp and the null matrix of
dimensionp x g, respectively. We leg¢, be the column vector of ordgr of 1s, and0,
be the row vector of ordep of 0s. The vectoey(j) is a column vector of ordgp such
that all entries equal 0, except for thl one which is equal to 1.

For a square matriR, the matrix exponential, denoted by €x¥y}, is defined by

© 1
exp{A} =S Ak
2.k

Consider a matribA = (&) of dimensionp x g and a matrixB of dimensionr x s.
The Kronecker product of these matrices, denoted IayB, is defined as the structured
matrix of dimensiorpr x gs

aB a,B .- aqu
aB ayB --- aqu
AxB= : : :

Given two square matricesandB of ordersp andq, respectively, their Kronecker sum,
denoted byA © B, is defined as the matrik ©B =A® 14+ 1,®B.
The Kronecker delta;; takes the values 1 if= j, and O ifi # j.
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Matrix-analytic methods (MAMs) have become an importardl tfor studying
complex systems. They preserve the Markovian structurepaesent the results in a
tractable manner. These methods are based in two funddrekameents: the phase-type
distributions (PH-distributions) and the Markovian aatiprocesses (MAPs). Given the
potential of these methods, new results and applicatiass iequently, and a survey of
these methods is very useful from time to time. The papeaate& considering the batch
Markovian arrival processes (BMAPs) and describing thempprties. The associated
counting processes and the descriptors for quantifyingrthan quantities are given.
These processes are introduced in a methodological wagjdaying examples and
particular cases for a better comprehension of how theyab@efhe application of the
methods in queueing, inventories, and reliability is ieg#ing. Variants of the BMAPs
that are proven to be useful in applications, the MMAPs aedMAPAs are presented.
The BMAPSs occupy a central role in the queueing theory, angl éxpected that the
study and use of these variants will be increasing with tirg, only in queueing,
but in others domains of application. This part of the papsumes and illustrates the
properties and applications of these classes of procéBsesonstruction of algorithms
and computational programs would complete the presentrpaps a challenge for
specialists in these topics.

The introduction of block-structured state-dependenhe{SDE) approach for the
treatment of stochastic models is an important contrilbut®ased in the Markovian
structure by means of the introduction of phases, this gmprallows constructing
stochastic models for complex systems. It can be used inifzeete and continuous
cases, and some Markovian stochastic models governed bgytar MAPs can be
deduced from the BSDE approach. The application of the BSDthe epidemic mod-
els illustrates the power of the method, and contributetwsicler non-homogeneous
stochastic models, involving non-exponential times aredetkistence of correlation be-
tween successive events. The introduction of the non-hemaity in the MAMs en-
larges the possibility of applications that would be veff§iclilt to do following another
methodology. The results are complex, but they can be pregénan algorithmic form
as a consequence of the MAMs. The incorporation of a metloggaind algorithms to
elucidate the structure of the BSDE would be useful in thdieajon of this technique
for solving problems in different domains of activity.
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In the study of stochastic models three are the elementsdormdered: modelling,
applications, and inference. Modelling and applicationsstrinvolve methods to be
tractable mathematically. The present survey completes ugpdates previous ones
related to modelling and application. Given the complexifythe methods and the
speediness of the applications, this is an excellent papknow the state of the art
of the Markovian arrival processes at the present moment.

Thinking of the applications, the paper can be extended pre@s of inference.
Essential for the use of MAPs in practice are the numeriogbrithms to fit these
processes, and the statistical methods for applying tosdatén the Bibliographical
notes in the paper some references about estimation and &ité given. Related to the
fit of phase-type distributions and to the Markov-module@eisson process (MMPP),
the paper of Asmussen (1997) shows that the EM algorithm a@arsuzcessfully
applied to maximum-likelihood (ML) estimates in Markov n&dsl, even in the case
of incomplete data, and computational programs for thetrtreat of the data are
constructed and their properties commented. The paper ofufsen alludes to the
previous one of Ryden (1996), where the problem on identiifialand the order of
the involved Markov processes in these two particular cespsesented. An area for
future research is the inclusion of problems related todkatifiability of general MAPs
into the matrix-analytic methods. This will allow to extetige use of MAPs and solve
problems that cannot be addressed with the actual knowlefigee inference about
these processes.

Asmussen (1997). Phase-type Distributions and Relatett Pobcesses: Fitting and Recent Advances. In:
Matrix-analytic methods in stochastic modeGhakravarthy, S. R. and Alfa, A. S. (Eds). Marcel
Dekker, New York, 137-149.

Ryden (1996). On identifiability and order of continuousi¢iaggregated Markov chains, Makov-modulated
Poisson processes, and phase-type distributlimsnal of Applied Probability33, 640-653.
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The paper mainly presents a survey of Markovian arrival@seenodels. It is always
hard to decide the level of knowledge of the aimed audience mdper or a scientific
presentation. | think that the goal of a survey paper shoalgblintroduce the main con-
cepts of a field to those who are not that familiar with them pssuming it is the goal
of this paper | recommend to be more detailed and precisethdtintroduction of the
applied concepts, a list of explicit points for consideyasi are forwarded to the authors.

Section 2 starts with the introduction of BMAPs. It is basedishort summary of PH
distributions. I would recommend to unify all PH distriltirelated content into this part.

In a paper like this | prefer derivations starting from a teci number of initial
expression than list of final expressions! The majorityhefppresented complex expressions
on MAP properties can be obtained in simple steps from the pénsity functions. |
recommend at least indicating how to obtain the presentgolpties (e.g. on page 113).

The relation of structured Markov processes, like quaghlieath processes (QBD),
and those generalization of MAPs which account for the aliénd departure of cus-
tomers (HetSigma, BSDE) is not expressed in the paperseThesdels can be viewed
as queueing systems resulting structured Markov proce&sesconsequence efficient
computational methods developed for the analysis of stradtMarkov processes can
be applied for the analysis of these arrival processes. éudon about this relation
would further enhance the paper.

The paper introduces the basic theory of various Markovianah processes and
presents several examples to indicate the wide spreadapipity of this versatile set of
models. To make this picture complete it would be interggiiradd the basic limitations
of these models which needs to be considered when applyémg it practice.

Some of these limitations are inherited from PH distribngiorhe most well know one
is about the coefficient of variation of the inter-eventeiwtistribution which is greater or
equal to ¥n when the state space of the modulating process is composedstate.
An other typical feature of these models is the exponensigingtotic decay. It holds
for a lot of properties like inter-event time distributicatocorrelation, lag correlation.
Beyond these two most well-known ones a set of further mraldtmitations are published
recently. A summary of these limits would be a nice contidoutof the manuscript.

Consequently, real systems with quasi deterministic {et@nt times or strange
decay behaviour or any other property in conflict with theitisnof these models cannot
be closely modelled with Markovian arrival models. But torately also in these cases,
in accordance with the denseness property (Section 2&2cmputational complexity
—accuracy trade-off can be found by increasing the sizeeoftarkovian model.
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First, | would like to congratulate the authors on this ebasglcomprehensive review
on BMAP. This review paper provides readers with easy actesdl the important
aspects of the BMAP, from its definition to its basic propestifrom its history to its
extensions; from theoretical aspects to applications.

Applying BMAP in modelling is popular not only because it inatural generaliza-
tion of the Poisson process and captures correlations bataivals, but also because
of the more important fact that the use of BMAPs in modellifigio leads to a matrix-
structured formalism, to which the powerful matrix-anayhethod can be applied.

The variants and generalizations touched on in the revigveiphave been well
chosen by the authors, as they also lead to matrix formuisitfor which analysis
can be carried out in terms of matrix-analytic methods. Towtents of Section 4 are
interesting, though structurally this section seems sid&ed from the main focus of
the review. The variants and generalizations of BMAPs ctialde also gone in a few
different directions. One of such alternatives is a conguerj of modelling properties, of
the arrival models discussed in the review paper and othenmamly seen arrivals, such
as arrivals with long-range dependence, Gaussian quesrésdic arrivals and possibly
others.

Markov additive processes deserve special attention armatbrgeneralizations of
BMAPSs. The reason for this goes back to the core of the mamiadytic method. The
quasi-birth-and-death (QBD) process is considered anllert@xample for explicitly
demonstrating some of the key techniques in the core of thexyanalytic method,
such as duality, probabilistic measures under taboo orocegstechnique. A compre-
hensive summary of QBD processes can be found in LatouchRamaswami (1999).
These techniques, together with Wiener-Hopf factorizetiocluding RG-factorizations
and block-form generating functions (or exponential cleaofgmatrix (measure)), lead
to a concise treatment of the more general matrix-strudtpagadigm, the GI/G/1 type
of matrices in parallel to that for the QBD process, for exlangee Zhao, Li and Braun
(1998, 2003). The sequence of the non-boundary matriceeiGl/G/1 paradigm leads
to a Markov additive process with finitely many backgrourates. It is of interest to
notice that the above mentioned techniques are in fact kagrgktools and methods for
queues in applied probability, for example, see Asmussed3R

Standard matrix-analytic methods deal with matrices otdimize, like BMAPS,
since the method, in both theoretical and computationacsprelies on properties of
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finite dimensional linear spaces or finite matrices. Attentiptgeneralize finite matrices
to infinite ones have a long history dating back to the early, 8dcluding Tweedie
(1982), Ramaswami and Taylor (1996), and Shi, Guo and Li9§),9%among others.
Although basic formalizations stand valid for models wittfinite matrices, such as
the operator-geometric solution and generalized phase digiributions described by
an absorbing Markov chain with infinitely many states, theme two main challenges
when finite matrices are extended to infinite ones: (1) mawyypkeperties from linear
algebra are no longer valid for infinite matrices and instedidite dimensional linear
operators now play a key role; and (2) additional non-theifiorts should be made
to address computational issues of the R- and G-measures siay are no longer
finite matrices. Recently, analysis of exact tail asympgotin the stationary probability
distribution for a model whose non-boundary matrices defareadditive process with
an infinite background space has been a central topic in tefnextended) matrix-
analytic methods. Tail asymptotics can lead to variousquardnce bounds and accurate
approximations. The core of extended matrix-analytic méshconsists of the same
general tools used in the applied probability mentionedrapsuch as limit theorems for
Markov renewal processes, censoring, RG-factorizatidnality, exponential change
of matrix. These tools and properties of Markov additivegasses are the key for
the success of expanding matrix-analytic methods. Refeseim this direction include
Takahashi, Fujimoto and Makimoto (2001), Haque (2003),d$m Scheinhardt and
Taylor (2004), Miyazawa (2004), Miyazawa and Zhao (2004) &le, Li, and Zhao
(2009), among others.

Finally, it was a great pleasure for me to be invited as a disant for this interesting
review paper.
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Rejoinder

First of all, we would like to thank the three invited discasts for the time spent
commenting on our paper. We appreciate their constructigeiasightful comments,
which have made valuable contributions to the understgndinvarious interesting
problems.

We now briefly respond to some of their comments.

Comments from Prof. R. P érez-Oco6n

Prof. Rerez-Oén comments on the important role played by the matrix-ditafgr-
malism and the Markovian arrival processes in stochastidatiing. We thank the dis-
cussant for his positive and kind remarks on the recentlpihiced BSDE approach.
At a first glance, the BSDE approach and the matrix-analy&thmds present common
elements; e.g. structured Markov chains, phase metholdoédth the BSDE approach
is closely related to the methods developed for structuratkbl/ chains, the aim of the
BSDE approach is to reduce the cost caused from an excessiemglonality in the
matrix representation, which frequently occurs in non-bgemnous settings where an
arbitrary number of MAPs and/or PH distributions are simmdtously involved. In this
sense, the BSDE approach goes beyond the commonly usec-auadtytic methods.
Thus, we completely agree with the remarks of the discusgamit the need of devel-
oping methodological and algorithmic tools for practicatwf the BSDE approach. In
particular, efforts leading to a suitable treatment of thsitive recurrence of infinite
structured non-homogeneous Markov chains would be welcome

Other relevant points commented by the discussant are tivggfaind inference
aspects. We touched these matters only in the bibliographates, where some selected
references were given. We are happy that the discussantiisgaldasic references that
will assist readers who are interested in pursuing thisesatbjirther.

Comments from Prof. M. Telek

Prof. Telek pointed out in a separate communication a nurmbleelpful comments to
improve the paper presentation. These comments have bagilypsaken into account.
We have also incorporated some additional citations ingk which should be helpful
for those readers desirous of knowing how to derive the pitesgleproperties.
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In the opinion of the discussant, the HetSigma and the BSOEoaghes can be
viewed as queueing systems resulting in structured Markoegsses. Regarding to
the HetSigma approach, Chakka and Do (2007) clearly adsartransitions from a
level to any other level are possible. Therefore, the matrincture is general and the
standard matrix-analytic methods cannot be used direéttystress that our interest
in the HetSigma approach comes from the fact that both theahand the service
processes are modulated by the same Markov process. Onhtiiehaind, the BSDE
approach is intended to construct either a specific part the arrival process) or
a whole stochastic model in state-dependent frameworksemheither a well-posed
matrix structure or the reducibility of the resulting Mavkohain are assumed. In this
setting, it is our opinion that the possibility of using tHassical matrix-analytic tools
is limited. Further methodological and computational eff@re definitively needed, as
it was mentioned by Prof.@ez-Oén.

The discussant accurately points out some limitationsePtH distribution and con-
sequently of the BMAP, whose distribution of inter-arritiahes is of PH type; see Sub-
section 2.3.2 of the paper. This fact leads to a geometlyidaitaying correlation struc-
ture which makes the MAPs less suitable to model certairetated input processes.
Despite of this difficulty, Markovian arrival processes édeen also used to model ar-
rivals with long-range dependence whose autocovarianmueiin decays slower than
exponentially; see the references given in our reply to.Riodo.

As a general comment, it should be noticed that catchingegstpgome real inputs
with time dependence implies to use MAPs of an excessive larder. This important
issue connects with the computational cost inherent to tagixaanalytic formalism.
Thus, the use of MAPs in practice is limited by the existingifg methods. The
development of good fitting methods for MAPs is a very inténgsresearch topic,
which has received a significant attention during the lastrgeln addition to the
references in Section 5 of our paper (see also the commerRsdbyFerez-Oén), we
now just add one more recent paper by Casale et al. (2010hidrpaper, the MAP
fitting is based on the Kronecker product composition methidte paper provides
an exhaustive study that includes a discussion on some rugral difficulties of
MAP fitting. In another related work, Bause et al. (2009) mlevan experimental
comparison between MAPs and ARMAUto regressive moving averggand ARTA
(auto regressive to anythifdrased models. The authors conclude that MAP fitting is
most demanding in terms of running time.

Comments from Prof. Y.Q. Zhao

Prof. Zhao points out that the paper did not give a completeeyuon the possible
variants and generalizations of the BMAP. More concretlg, discussant mentions
arrivals with long-range dependence, periodic arrivald @aussian queues as other
alternative arrival processes. There exists a number oérgafe.g. Andersen and
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Nielsen (1998), Casale et al. (2008), and Salvador et aD4R0where Markovian
arrival processes and, specifically, superpositions of @slBre used as a very versatile
tool to model variable packet traffic exhibiting long-randependence. The Hurst
parameter introduced by Willinger et al. (1995) is freqlenised to measure long-
range dependence. Periodic arrivals are related to tilmerilmgeneous structures; see
Section 3.4 in the paper. We agree that periodic arrival® haterest in modelling
communication networks. These arrival inputs include, agnothers, the periodic
Poisson process (see Margolius (2007)) and the periodic BNB&e Breuer (2003)).
Despite of the interest in Gaussian sources and Gaussiaresjueis our opinion that
they are not commonly analyzed through those techniquesgielg to the core of the
matrix-analytic methods. We would recommend the book by djis (2007) to the
interested readers.

Other important comments from the discussant are regatditige relevance of a
variety of techniques, such as duality, taboo and censpandRG-factorizations, in
the core of the matrix-analytic methods. The discussanirately makes observations
on these techniques as in fact very general and powerful adstfor investigating
challenging problems including generalization from firitecks to Markov chains with
infinite blocks. Prof. Zhao provides a set of referencesdleat with this issue, putting
emphasis on tail asymptotic results. These comments are netevant to matrix-
analytic methods in general, rather than Markovian arfqiracesses. We thank Prof.
Zhao for this valuable addition.

Finally, we would like to thank once again the discussants. dicerely hope
that our review paper and their comments will be of interesttfie audience of this
journal. We also take this opportunity to thank the Edite«Ghief, M. Guillen, and the
Executive Editor, P. Puig, for their kind invitation to waithe paper and for organizing
the stimulating discussion.
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