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Faculty of Mathematics, Complutense University of Madrid,Madrid 28040, Spain

Qi-Ming He

Department of Management Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Abstract

This paper aims to provide a comprehensive review on Markovian arrival processes (MAPs),
which constitute a rich class of point processes used extensively in stochastic modelling. Our
starting point is the versatile process introduced by Neuts (1979) which, under some simplified
notation, was coined as the batch Markovian arrival process (BMAP). On the one hand, a general
point process can be approximated by appropriate MAPs and, on the other hand, the MAPs
provide a versatile, yet tractable option for modelling a bursty flow by preserving the Markovian
formalism. While a number of well-known arrival processes are subsumed under a BMAP as
special cases, the literature also shows generalizations to model arrival streams with marks, non-
homogeneous settings or even spatial arrivals. We survey on the main aspects of the BMAP,
discuss on some of its variants and generalizations, and give a few new results in the context of a
recent state-dependent extension.
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1. Introduction

The versatile Markovian point processintroduced by Neuts (1979) was the seminal
work, in conjunction with thephase(PH) type distribution, for getting beyond two com-
mon and extended assumptions in stochastic modelling, namely: (a) the exponential

Received: April 2010
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distribution and thePoisson process(PP), which are the key tools for constructing
Markovian models; and (b) the independence and equidistribution of the successive
inter-arrival intervals, which are inherent features of the PP and the renewal processes.
Later, it was proved that thebatch Markovian arrival process(BMAP) is equivalent to
the versatile Neuts process. Since the former presents a more transparent notation, at
present it is widely accepted to refer to the BMAP rather thanto the Neuts process.

The popularity of the BMAP and other Markovian arrival processes comes from the
following important features:

(i) They provide a natural generalization of the PP and the renewal processes.
(ii) They take into account the correlation aspect, which arises naturally in many

applications where the arrival flow is bursty.
(iii) They preserve the tractable Markovian structure.

As a result, the use of Markovian arrival processes in combination with the impetus
provided by the modern computational advances explains thespectacular growth of
applications to queueing, inventory, reliability, manufacturing, communication systems,
and risk and insurance problems.

The use of BMAPs and PH distributions in stochastic modelling readily leads to the
so called matrix-analytic formalism where scalar quantities are replaced by matrices.
The main resulting structured Markov chains have been extensively studied; see the
monographs by Biniet al. (2005), Latouche and Ramaswami (1999), Li (2010) and
Neuts (1981,1989). Qualitatively, the consideration of the BMAP for modelling the
arrival input greatly enhances the versatility of the stochastic model. For practical use,
presenting the model under a suitable structured matrix form makes it easy to be studied
in a unified manner and in an algorithmically tractable way. However, it should be
pointed out that the cost lies in the risk of finding computational problems derived from
an excessive dimensionality caused by the matrix formalism.

This survey paper is aimed on providing information on Markovian arrival processes,
putting emphasis on the discussion of extensions and variants of the BMAP, as well as
on the wide use of this class of processes in applications. Following the leads in this
paper and the guidance provided by the bibliographical notes, readers can get access to
the background materials where technical details and proofs are available.

This survey is organized as follows. In Section 2, we first introduce the BMAP
and the continuous PH distribution. A number of important particular cases, the basic
properties and descriptors of the BMAP, as well as some applications in queueing,
reliability and inventory models are presented in subsequent sections. In Section 3,
we consider a number of generalizations and variants of the BMAP including the
discrete counterpart (D-BMAP), themarked Markovian arrival process(MMAP), the
HetSigmaapproach, the Markov-additive processes of arrivals and the block-structured
state-dependent event(BSDE) approach. The consideration of these extensions and
variants enriches the methodology and enhances the versatility of the arrival processes
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in different directions. Based on the fact that the BSDE approach allows us to deal with
modulated non-homogeneous settings, but keeping the dimensionality of the underlying
matrices tractable, Section 4 applies this approach to the SIS epidemic model. Some
new results concerning with the extinction time and the correlation between events
are obtained. We conclude the survey with a few bibliographical notes. A glossary of
notation is presented in Appendix.

2. The BMAP

The PP is the basic renewal process where inter-renewal times are exponentially dis-
tributed. The PH distribution and the BMAP can be thought of as the natural generaliza-
tions of the exponential distribution and the PP, respectively. They are both based on the
method of stages, which was introduced by A.K. Erlang and extensively generalized by
M.F. Neuts. On the other hand, the PH distribution and the BMAP can be viewed as par-
ticular cases of the matrix-exponential distribution and the rational arrival process; the
interested reader is referred to the papers by Asmussen and Bladt (1999), and Nielsenet
al. (2007).

Although our main interest is put on the BMAP and its extensions, the PH distribu-
tion is used many times along the paper. Thus, before focussing on a description of the
BMAP, we briefly introduce the continuous PH distribution.

The class of probability distributions of PH type provides asimple framework to
demonstrate how one may extend many results on exponential distributions to more
complex models, but without losing computational tractability. The key idea is to exploit
the fact that many distributions derived from the exponential law can be formulated as
the distribution of the time till absorption in suitably defined Markov processes. This
allows one to deal with PH distributions by appealing to the simple dependence structure
underlying Markov processes.

To define a PH distribution we consider an absorbing Markov chain on the state space
{0,1, . . . ,n} with initial probability vector(1−τττen,τττ) and infinitesimal generator

(

0 0n

t T

)

,

wheret = −Ten. Then, a PH distribution corresponds to the distribution ofthe time
L until absorption into the state 0. Thus, we have the following expressions for the
distribution function, the density function and the moments:

F(x) = 1−τττexp{Tx}en, x≥ 0,

f (x) =τττexp{Tx}t, x≥ 0,

E
[

Lk
]

= k!τττ
(

−T−1
)k

en, k≥ 1.
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An important question to be examined is when the absorption occurs in a finite
interval almost surely. By using the above expression for the distribution function, it is
readily verified thatF(∞) = 1 if and only if the matrixT is non-singular. Furthermore,
this is certain if and only if states in{1, . . . ,n} are all transient.

For practical use, the class of PH distributions provides ease in conditioning argu-
ments, results in a Markovian structure of models involvingexponential assumptions
and leads to significant simplifications in various integraland differential equations aris-
ing in their analysis. An excellent summary of closure properties can be found in As-
mussen (2000), Latouche and Ramaswami (1999, Section 2.6) and Neuts (1981, Chap-
ter 2). Among these, we emphasize three properties. First, this class is dense, in the sense
of weak convergence, in the class of all distributions on[0,∞). Second, sums and mix-
tures of a finite number of independent PH random variables are PH random variables.
Third, all order statistics of a set of independent PH randomvariables are themselves
PH random variables.

The PP has served as the main arrival flow for many years and generalizations have
frequently concentrated on renewal processes. Their simplifying feature is the indepen-
dence and equidistribution of successive inter-renewal intervals. Thus, in queueing and
other applications (see Neuts (1992)), the class of renewalprocesses is not flexible enough
and, in particular, arrivals that tend to occur in bursts cannot be modelled in this way.

We present here the BMAP, which is thought to be a fairly general point process
where the correlation aspect is not ignored. It is, in general, a non-renewal process hav-
ing the feature of making many analytic properties explicitor at least computationally
tractable. The key idea is to generate counting processes bymodelling the transitions of
a Markov chain; see also Rudemo (1973).

We begin with a constructive description of the BMAP. The BMAP is a bivariate
Markov process{(N(t),J(t)); t ≥ 0} on S = N×{1, . . . ,m}, whereN(t) represents
the number of arrivals up to timet, while the states of the background Markov chain
{J(t); t ≥ 0} are called phases. Let us assume thatm < ∞ and denote byD the
infinitesimal generator of the background Markov chain, which is assumed to be
irreducible. At the end of a sojourn time in(n, i)∈S , which is exponentially distributed
with parameterλi , there occurs a transition to another or (possibly) the samephase state.
That transition may or not correspond to an arrival epoch. Specifically, with probability
Pi j (k), it corresponds to a transition to statej with a batch arrival of sizek, for k ≥ 1,
and similarly, with probabilityPi j (0), the transition corresponds to no arrival and state
of the underlying Markov chain isj, for j 6= i. Therefore,J(t) can go from statei to state
i only through an arrival and

m

∑
j=1, j 6=i

Pi j (0)+
m

∑
j=1

∞

∑
k=1

Pi j (k) = 1, 1≤ i ≤ m.

Define the matricesDk = (di j (k)) with entriesdii (0) =−λi , di j (0) = λiPi j (0), for j 6= i,
anddi j (k) = λiPi j (k), for k≥ 1, from which it is clear thatD = ∑∞

k=0 Dk. The particular
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choiceD0 6=D andDk = 0m×m, for k≥ 2, means single arrivals and yields theMarkovian
arrival process(MAP). In this formulation, the introduction of phases is the key to get
dependent non-exponential inter-arrival time distributions, and correlated batch sizes.

Our preceding construction shows that the bivariate process{(N(t),J(t)); t ≥ 0} has
the structured infinitesimal generator

Q =











D0 D1 D2 D3 · · ·

D0 D1 D2 · · ·

D0 D1 · · ·
.. . . . .











.

The sequence of matrices{Dk;k ≥ 0} contains all information forQ and thus is
usually called the characteristic sequence of a BMAP. Although we often ignore the
determination ofJ(0), a complete specification requires specification of the distribution
of J(0). We may do this in terms of a row vectorααα with ith entry given byP(J(0) = i),
for 1≤ i ≤ m.

By assumingD0 to be non-singular, the inter-arrival times are finite, withprobability
one. An additional assumption is that the vectord = D1em is finite, whereD1 =

∑∞
k=1 kDk. This condition is equivalent to require thatE[N(t)] < ∞ over finite intervals.

The fundamental arrival rate is then defined byλ = θθθd, whereθθθ is the unique positive
probability vector satisfyingθθθD = 0m andθθθem = 1, and consequently it amounts to the
expected number of single arrivals per unit of time in the stationary version of a BMAP.

This family of counting processes has received several names in the literature. The
currently used term batch Markovian arrival process evolved from versatile Markovian
point process (see Neuts (1979)) andNeuts process(see Ramaswami (1980)) tonon-
renewal arrival process(see Lucantoniet al. (1990)), until it was settled down at batch
Markovian arrival process by Lucantoni (1991). Lucantoni (1991) also introduced a
simple matrix representation for the BMAP, which made it easy to interpret parameters
of Markovian arrivals and to use this class of arrival processes in stochastic modelling.

We next present two alternative definitions of the BMAP and a few examples of
BMAPs with special characteristics.

Remark 2.1 The BMAP can be thought of as a semi-Markovian arrival process. Define
the sequence{(Jn,Kn,τn);n≥ 0}, whereJn is the phase of{J(t); t ≥ 0} right after the
nth batch arrival,Kn is the size of thenth batch, andτn is the inter-arrival time between
the(n−1)st and thenth arrival events. Then,{(Jn,Kn,τn);n≥ 0} satisfies

P(Jn = j,Kn = k,τn ≤ x|Jn−1 = i) =

(

∫ x

0
exp{D0u}duDk

)

i j

=
(

(Im−exp{D0x})
(

−D−1
0

)

Dk
)

i j ,

for 1≤ i, j ≤ m, k≥ 1 andx≥ 0.
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Remark 2.2 Equivalently, we may present a definition of the BMAP based onPPs.
Let m be a finite positive integer,{αi;1 ≤ i ≤ m} be non-negative numbers satisfying
∑m

i=1αi = 1, and{di j (0);1 ≤ i, j ≤ m, j 6= i} and{di j (k);1 ≤ i, j ≤ m}, for k ≥ 1, be
non-negative numbers. Assume that−dii (0)> 0, where

−dii (0) =
m

∑
j=1, j 6=i

di j (0)+
m

∑
j=1

∞

∑
k=1

di j (k), 1≤ i ≤ m.

The bivariate process{(N(t),J(t)); t ≥ 0} can be defined as follows:

(i) Define independent PPs with parametersdi j (0), for 1≤ i, j ≤ m and j 6= i, and
di j (k), for 1≤ i, j ≤ m andk≥ 1. If di j (k) = 0, then the corresponding PP has no
event.

(ii) DetermineJ(0) by the probability distribution{αi ;1≤ i ≤ m}. SetN(0) = 0.
(iii) If J(t) = i, for 1≤ i ≤ m, we letJ(t) andN(t) remain the same until the first event

occurs in the set of PPs with ratesdi j (0), for 1≤ i, j ≤ m and j 6= i, anddi j (k),
for 1≤ i, j ≤ mandk≥ 1. If the next event comes from the PP of ratedi j (0), then
J(t) changes from phasei to phasej andN(t) does not change at this epoch, for
1≤ j ≤ m and j 6= i. On the contrary, if the next event comes from the PP of rate
di j (k), then the phase variableJ(t) transits from phasei to phasej, andN(t) is
increased byk units at this epoch, for 1≤ j ≤ mandk≥ 1; in this case, a batch of
k units is associated with the event.

For use in simulations, it is easy to generate realizations of a BMAP from the
dynamics described in Remark 2.2. The visualization of simulated paths of a BMAP, and
their effect as input streams to queues, is an excellent way for practitioners to appreciate
the versatility of this class of point processes; see Figure1 in Example 2.1.

Figure 1: A simulated sample path of a BMAP.
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Example 2.1 Consider a BMAP with non-null characteristic matrices

D0 =









−1 0 0 0
0 −2 1 0
1 0 −5 0
2 0 0 −10









, D1 =









0 0 0 0
0 0 1 0
1 0 0 2
0 0 0 3









, D2 =









0 1 0 0
0 0 0 0
0 1 0 0
0 0 0 5









.

Figure 1 shows a typical sample path of the bivariate process{(N(t),J(t)); t ≥ 0}.

The following three choices of the BMAP are related to special characteristics:

(i) Bursty arrivals

D0 =

(

−50 0
1 −1

)

, D1 =

(

49 1
0 0

)

.

A widely accepted definition of burstiness does not exist; instead, several different
measures can be used. In this paper, we assume the definition given by Neuts
(1993). Qualitatively, the process is bursty as, over intervals of significant length,
the actual number of arrivals is far in excess or far below theaverage. Positive
autocorrelation between inter-arrival times explains, toa large extend, traffic
burstiness. Obviously, the PP has independent inter-arrival times so it is not the
appropriate model in case of bursty traffic.

(ii) Cyclic arrivals

D0 =

(

−1 0
0 −2

)

, D1 =

(

0 1
0 0

)

, D2 =

(

0 0
2 0

)

.

In this case, batches of size 1 and batches of size 2 arrive cyclically.
(iii) Bursty vs smooth

D0 =

(

−1 0
0 −50

)

, D1 =

(

0 0
1 49

)

, D2 =

(

0 1
0 0

)

.

The process related to batches of size 1 is bursty, while for batches of size 2 the
process is smooth.

In Subsection 2.1, we give a few examples to illustrate the variety of models sub-
sumed under the matrix formulation of a BMAP as special cases. Subsection 2.2 begins
by introducing the time-dependent distribution of the bivariate process{(N(t),J(t)); t ≥
0}. We then examine basic properties that make the BMAP a versatile class for mod-
elling purposes. We present in Subsection 2.3 some interesting descriptors. Our focus
in Subsection 2.4 is on four examples showing the interest ofthe BMAP in different
applications, such as reliabilty, queueing and inventory problems.
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2.1. Particular cases

We describe in this subsection several special cases of the BMAP. We begin by listing a
selected sample of processes obtained as particular cases of the MAP.

(i) Poisson process. The PP of rateλ> 0 corresponds to the simple scalar case where
m= 1, D0 =−λ andD1 = λ.

(ii) Markov modulated Poisson process(MMPP). The MMPP is a PP whose rate varies
according to a finite Markov chain serving as a random environment. LetQa be
its underlying infinitesimal generator. The arrival rate isδi > 0 when the random
environmental state isi. Then, the MMPP is a MAP withD0 =Qa−ΛΛΛ andD1 =ΛΛΛ,
whereΛΛΛ = diag(δ1, . . . ,δm).

(iii) PH renewal process. This is a renewal process in which the inter-renewal times
follow a PH distribution with representation(τττ,T). Thus, we have the correspon-
denceD0 = T andD1 = tτττ.

(iv) A sequence of PH inter-arrival times governed via a Markov chain. This process
is also namedPH semi-Markov process; see Latouche and Ramaswami (1999).
Considerl PH distributions with representations(τττi ,Ti) of orderni , for 1≤ i ≤ l
and∑l

i=1ni = m. The successive inter-arrival distributions are selectedfrom these
PH distributions according to a discrete Markov chain with one-step transition
probability matrixPa = (pii ′) of dimensionl . We then haveD0 = diag(T1, . . . ,Tl )

and D1 = (dii ′(1)), wheredii ′(1) = ti pii ′τi′ , for 1 ≤ i, i′ ≤ l , with t = (ti) and
τττ= (τi). The choicel = 2 andp12 = p21 = 1 leads to analternating PH renewal
process.

It should be noted that the PH renewal process can be viewed asthe trivial special
case of (iv), where all the PH distributions are chosen to be identical. More interesting is
theMarkov switched Poisson process(MSPP) obtained by choosing the PH distributions
as exponential distributions of rateδi > 0; see Chakravarthy (2001). We also remark
that the modulation in the MSPP is of a discrete nature and it occurs at arrival epochs,
whereas the modulation of the MMPP is performed in continuous time.

We now give some examples where arrivals occur properly in batches.

(v) Compound Poisson process(CPP). The classical scalar PP with batch arrivals of
rateλ> 0 and jump size distribution{gk;k≥ 1} is a BMAP withm= 1, D0 =−λ

andDk = λgk, for k≥ 1.

(vi) MAP with i.i.d. batch arrivals. A MAP with independent and identically dis-
tributed batch arrivals amounts to a BMAP withD0 = Da

0 and Dk = gkDa
1, for

k≥ 1, where the pair(Da
0,D

a
1) is the representation of the underlying MAP of or-

derm. This example shows a choice of the BMAP where the batch size does not
depend on phase transitions.
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(vii) Bacth PH semi-Markov process. This process is the batch version of (iv) in which
dii ′(k) = gkti pii ′τi′ , for k≥ 1. A batch Markov switched Poisson process(BMSPP)
follows by reducing the PH distribution to the exponential case.

(viii) Batch PP with correlated batch arrivals. This is a CPP where the jump size
distribution is selected according to a Markov chain with one-step transition
probability matrixPa of dimensionm. The resulting BMAP has matricesD0 =

−λIm andDk = (dii ′(k)), wheredii ′(k) = λgik pii ′ , for 1≤ i, i′ ≤ m andk≥ 1. The
notationgik stands for the probability that a batch of sizek arrives when the phase
state isi.

We notice that the auxiliary transition matrix is used in theMSPP to modulate arrival
rates. However, the role ofPa in the batch PP with correlated arrivals is to modulate jump
sizes.

2.2. Basic properties of the BMAP

We are next interested in the counting componentN(t) of the BMAP, the superposition
and thinning mechanisms, the local poissonification of a MAPand the denseness
property.

2.2.1. The counting function

Consider the matricesP(n, t), for n≥ 0 andt ≥ 0, with (i, j)th element

Pi j (n, t) = P(N(t) = n,J(t) = j|N(0) = 0,J(0) = i) , 1≤ i, j ≤ m.

From the Kolmogorov forward equations of the process{(N(t),J(t)); t ≥ 0}, we
obtain

dP(n, t)
dt

=
n

∑
k=0

P(k, t)Dn−k, n≥ 1, t ≥ 0,

and the initial conditionP(0,0) = Im.
The corresponding matrix generating functionP∗(z, t) = ∑∞

n=0znP(n, t), for |z| ≤ 1
andt ≥ 0, is given by the exponential matrix

P∗(z, t) = exp{D∗(z)t},

with D∗(z) = ∑∞
k=0zkDk, for |z| ≤ 1. The numerical computation ofP(n, t) can be based

on the uniformization method; see Neuts and Li (1997).
By routine calculations, we can find that the first moment matrix M1(t) and the

column vectorM1(t)em are given by
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M1(t) =
∂P∗(z, t)

∂z

∣

∣

∣

∣

z=1
=

∞

∑
n=1

tn

n!

n−1

∑
k=0

DkD1Dn−1−k,

M1(t)em =
∞

∑
n=1

tn

n!
Dn−1D1em.

By using the above expression, it can be shown (see Neuts (1989)) that the Palm function
E[N(t)] is given by

E[N(t)] = λt +ααα(exp{Dt}− Im)(D− emθθθ )
−1 D1em, t ≥ 0.

Sinceαααexp{Dt} converges toθθθ ast → ∞ (see Latouche and Ramaswami (1999)), we
find that limt→∞ E[N(t)]/t = λ, soλ is the expected number of arrivals per unit time.

If the initial phase vector isθθθ (i.e., we setααα = θθθ ), the Palm function reduces to
E[N(t)] = λt. For the variance of the number of arrivals in(0, t] and the covariance of
the counts, we refer to the results summarized in Subsection2.3; see also Narayana and
Neuts (1992).

2.2.2. Superposition and thinning

The class of BMAPs is closed under superposition. For simplicity, we consider two
independent BMAPs{(Ni(t),Ji(t)); t ≥ 0} with characteristic sequences{Di

k;k≥ 0} of
order mi, for i ∈ {1,2}, but the construction can be readily extended to an arbitrary
number of BMAPs. Then, the resulting superposition process{(N(t),J(t)); t ≥ 0} is a
BMAP with matrices{D1

k ⊕D2
k;k ≥ 0}. We notice that the countN(t) is defined by

N1(t)+N2(t) and the phase processJ(t) has the form(J1(t),J2(t)).
Thinning is a mechanism to split or remove a part of the arrivals generated by

the BMAP. As a result, thinning can be thought of as an operation opposite to the
superposition. One way to single out arrivals from the original BMAP flow is just to
discard any individual arrival with probabilityp independently of the rest of arrivals.
The resulting BMAP has a matrix representation{DT

k ;k≥ 0}, where

DT
0 = D0+

∞

∑
j=1

p jD j ,

DT
k =

∞

∑
j=k

(

j
k

)

p j−k(1− p)kD j , k≥ 1.

Another more sophisticated way to understand the thinning is associated with the
arrivals of a BMAP and a clock with a PH distribution with representation(τττ,T). An
auxiliary state 0 indicates that the PH clock is active, so that during this period the
BMAP arrivals are not registered. As soon as the clock expires, the process turns to
the auxiliary state 1 and the next arrival is registered. Immediately after one arrival is
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registered, the PH clock is restarted. This description leads to a BMAP with matrices

DT
0 =

(

D⊕T Im⊗ t
0m×mn D0

)

DT
k =

(

0mn 0mn×m

Dk⊗τττ 0m×m

)

, k≥ 1.

Decomposition of BMAPs provides another related operation. We may decompose a
BMAP into n types of arrivals by considering independent markings withprobabilities
pi , for 1≤ i ≤ n, where∑n

i=1 pi = 1. Then, the split process{(Ni(t),J(t)); t ≥ 0} is a
BMAP with Di

0 = D0 +(1− pi)D0, Di
k = piDk, for k ≥ 1 and each 1≤ i ≤ n, where

D0 = D−D0.

2.2.3. Local poissonification of a MAP

The local poissonification (see Neutset al. (1992)) is an approach to quantifying the
burstiness of a stationary point process. The events in successive intervals of lengtha
are independently and uniformly redistributed over those intervals. The resulting local
poissonification process mimics the behaviour of a PP over each interval.

For the MAP, the local poissonification construction can be tractably investigated by
using matrix-analytic methods. To construct the stationary local poissonification of the
MAP, we first choose the phase according to the vectorθθθ and a grid of points, regularly
placed at a distancea. Then, the time origin is chosen randomly in one of the resulting
intervals. Denote byNa(t) the counting process of the poissonification in any intervalof
lengtht.

The Palm function ofNa(t) is E[Na(t)] = λt, for t ≥ 0, thus showing that the
poissonification preserves the fundamental rate of the original MAP. On the other hand,
the variance of the countNa(t) is given by

Var(Na(t)) = λt +(V0(a)−λa)

(

( t
a

)2
−

1
3

( t
a

)3
+

1
3

(

t −a
a

)3

V(t −a)

)

+
1
3

∞

∑
k=0

ρk+1(a)

(

(

t −ka
a

)3

V(t −ka)−2

(

t − (k+1)a
a

)3

V(t − (k+1)a)

+

(

t − (k+2)a
a

)3

V(t − (k+2)a)

)

,

whereV(x) = 1 if x ≥ 0, and it equals 0 otherwise, whereasV0(a) andρk(a) denote
respectively the variance of the number of events in(0,a] and the covariance of the
counts in the intervals(0,a] and (ka,(k+ 1)a], in the stationary given MAP; see
Subsection 2.3.1.

A number of computationally implementable descriptors include the dispersion
function and the exponential peakedness (see Subsections 2.3.1 and 2.3.3), as well as



112 Markovian arrivals in stochastic modelling: a survey and some new results

the distribution of the interval length. The latter is defined as the probability distribution
of the interval between an arbitrary point and the next eventin the poissonification of
the stationary MAP. Its Laplace-Stieltjes transformϕa(s) is given by

ϕa(s) = 1−
s
λ
+

s2a
λ

(

θθθL1
a(s)em+θθθL0

a(s)
(

Im−e−saexp{D0a}
)−1 L0

a(s)em

)

,

where the matricesL0
a(s) andL1

a(s) are defined by

L0
a(s) =

∫ 1

0
exp{D∗(u)a}e−sa(1−u)du,

L1
a(s) =

∫ 1

0
uexp{D∗(u)a}e−sa(1−u)du.

The meanµa and the varianceσ2
a of the inter-arrival time are given by

µa =
1
λ
,

σ2
a =

2a
λ

(

θθθL1
a(0)em+θθθL0

a(0)(Im−exp{D0a})−1 L0
a(0)em

)

−
1
λ2

.

2.2.4. Denseness property

Asmussen and Koole (1993) prove that a general class ofmarked point processes(MPP)
can be approximated by appropriate MAPs. The MPP can be considered either at an
arbitrary time or at selected discrete epochs. In the lattercase the MPP is represented as
a bivariate process{(Tn,Yn);n≥ 0}, where the random variablesTn denote inter-arrival
times and the marksYn are allowed to vary in(0,∞). In the arbitrary time version, an
MPP is viewed as a point process taking values on the state space[0,∞)×(0,∞). A class
of Markovian arrival streams(MAS) is also defined to approximate the given MPP. In
a MAS there exists a finite state space of phases modulated by two matrices playing
the same role thatD0 andD1 in the MAP. When an arrival occurs, a mark is assigned
according to a distributionBi j on (0,∞). The mark depends on the current phasei and
the destination phasej. If all Bi j are degenerate at 1, then the MAS agrees with the MAP.

The main result in Asmussen and Koole (1993) establishes that the class of MASs
is dense in the class of MPPs in both time scales. The convergence must be viewed in
distribution. However, related results for stationary processes and convergence of the
moments also hold. It is interesting to remark that the convergence result does not hold
when the class of MASs is replaced by MMPPs.

The above property is the analogue of the denseness propertyof PH distributions
in the set of all probability distributions on[0,∞); see Neuts (1989). The proof follows
from the fact that any probability distribution on[0,∞) may be suitably approximated by
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a discrete distribution with a finite support, which is indeed a discrete PH distribution;
see Latouche and Ramaswami (1999, Section 2.5) and Neuts (1981, Section 2.2).

2.3. Some interesting descriptors

The quantification of the main quality characteristics of the BMAP is of primarily theo-
retical and practical utility. This important objective isreached through the consideration
of a variety of computationally implementable descriptors.

We distinguish three categories of descriptors for BMAPs: (a) descriptors associated
with the counting function, (b) descriptors associated with inter-arrival times, and (c)
other descriptors.

2.3.1. Descriptors associated with the counting function

To begin with, we recall that expressions for the fundamental arrival rateλ and the
expected number of arrivalsE[N(t)] were already given in preceding subsections. Other
descriptors related to the counting function are

(i) The variance of the number of arrivals. Given the initial distributionθθθ , we have

Var(N(t)) =
(

λ2−2λ2−2θθθD1(D− emθθθ )
−1D1em

)

t

+2θθθD1(D− emθθθ )
−1(exp{Dt}− Im)(D− emθθθ )

−1D1em,

whereλ2 = θθθD2em andD2 = ∑∞
k=1k2Dk.

(ii) The dispersion function. It is defined as

Fd(t) =
Var(N(t))

E[N(t)]
.

We observe that the dispersion function is a minor variant ofthe coefficient of
variation, which is defined as the ratio between the standarddeviation and the
expectation. The dispersion function is also known as the index of dispersions for
the counts; see Chakravarthy (2001).

(iii) The covariance and the correlation of the counts. Given the positive real numbers
t, u, r ands, we construct the time intervals(t, t +u] and(t +u+ r, t +u+ r + s].
The stationary versions of the covarianceϕ(u,s, r) and the correlationρ(u,s, r) in
these intervals are given by

ϕ(u,s, r) = θθθD1(D− emθθθ )
−1(exp{Du}− Im)exp{Dr}(exp{Ds}− Im)

× (D− emθθθ)
−1D1em−λ2us,

ρ(u,s, r) =
ϕ(u,s, r)

√

Var(N(u))Var(N(s))
.
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Those readers interested in the derivation of the above formulas are referred to the
papers by Narayana and Neuts (1992), and Neutset al. (1992).

2.3.2. Descriptors associated with inter-arrival times

Assume thatJ(0) has a distributionααα. The random vector(τ1, . . . ,τn) of inter-arrival
times follows a multivariate continuous PH distribution (see Kulkarni (1989)). There-
fore, thenth inter-arrival timeτn has a PH distribution with representation

(

ααα
((

−D−1
0

)

D0
)n−1

,D0

)

.

Then, it is immediate to obtain the expressions for the mean and the variance in the list
below.

(i) The mean ofτn

E[τn] =ααα
((

−D−1
0

)

D0
)n−1(

−D−1
0

)

em, n≥ 1.

(ii) The variance ofτn

Var(τn) = 2ααα
((

−D−1
0

)

D0
)n−1

(−D0)
−2 em−

(

ααα
((

−D−1
0

)

D0
)n−1(

−D−1
0

)

em

)2
,

n≥ 1.

(iii) The coefficient of variation

cv(τn) =

√

Var(τn)

E[τn]
, n≥ 1.

(iv) The covariance and the correlation betweenτ1 andτn

ϕ(τ1,τn) =ααα
(

−D−1
0

)((

−D−1
0

)

D0
)n−1(

−D−1
0

)

em

−
(

ααα(−D−1
0 )em

)

(

ααα
(

(−D−1
0 )D0

)n−1
(−D−1

0 )em

)

, n≥ 1,

ρ(τ1,τn) =
ϕ(τ1,τn)

√

Var(τ1)Var(τn)
.

Settingααα = λ̂−1θθθD0, we obtain simplified expressions for the meanµ = λ̂−1, the
varianceσ2 = 2µθθθ

(

−D−1
0

)

em−µ2 and the correlation

ρ(τ1,τn) =
µθθθ
((

−D−1
0

)

D0
)n−1(

−D−1
0

)

em−µ2

σ2
,
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where λ̂ is the batch arrival rate defined bŷλ = θθθD0em; see Neuts (1995). Thus,
ααα = λ̂−1θθθD0 represents the stationary distribution of the phase right after the arrival
of a batch.

Example 2.2 We illustrate here the computation of the inter-arrival descriptors for
the BMAP described in Example 2.1. The stationary probability vectorθθθ is given by
θθθ = (8/17,5/17,2/17,2/17). Then, the arrival ratesλk = θθθDke4 of batches of sizek,
for k ∈ {1,2}, are given byλ1 = 1.0 andλ2 = 1.17647, while the batch and the total
arrival rates are given bŷλ= λ1+λ2 andλ= λ1+2λ2, respectively.

By takingααα = λ̂−1θθθD0, we easily obtain the valuesE[τ1] = 0.45945,Var(τ1) =

0.48619,ϕ(τ1,τ5) = 0.00832 andρ(τ1,τ5) = 0.01711.

2.3.3. Other descriptors

(i) Peakedness. The peakedness functional is a second order descriptor used in
communication engineering. It is a functional of the holding time distribution
defined as the ratio between the variance and the expectationof the number of busy
servers in a queue with infinite servers and independent, identically distributed
service times, which is feeded by a certain arrival process.The particular case
where the service times are exponentially distributed withrateµ> 0 is called the
exponential peakedness.
Eckberg (1983) has shown that the exponential peakednesszexp(µ) and the Laplace-
Stieltjes transformφarr(s) of the expected number of arrivals in(0, t], starting from
an arbitrary arrival, are related by the formula

zexp(µ) = 1+φarr(µ)−
λ

µ
.

Following Neutset al. (1992), we observe that the exponential peakedness for the
MAP is obtained from the explicit formulas for thekth factorial moments of the
number of customers in theMAP/M/∞ queue, which are given by

fk = k!θθθD1 (µIm−D)−1 D1(2µIm−D)−1 · · ·D1 (kµIm−D)−1 , k≥ 1.

Thus, we have

zexp(µ) =
f2em+ f1em− (f1em)

2

f1em
.

For the exponential peakedness of the local poissonification of the MAP, we refer
the reader to Neutset al. (1992).

(ii) Index of burstiness. The term burstiness is referred to an arrival process whose
flow exhibits short intervals with a large number of arrivalsseparated by long
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intervals with few arrivals. In order to quantify burstiness, Neuts (1993) proposed
to thinning the original arrival process with the help of an auxiliary labeling
process.
Assume that the arrival process is aMarkov renewal process(MRP) whose Markov
renewal sequence has a kernelH(x) = (hi j (x)), where the transition probabilities
pi j = hi j (∞) take values on the finite set{1, . . . , r}; see Kulkarni (1995). We choose
the labeling process to be a stationary MAP independent of the MRP. A point
of the MRP is registered if and only if it is immediately preceded by an arrival
of the labeling MAP. If the fundamental rateλ decreases, typically only a few
arrivals of the MRP are registered. More importantly, the MRP arrivals occurring
in intense short runs are most likely to be unregistered. Thus, the proposed labeling
mechanism removes the bursts of the MRP.
Suppose that, in the stationary version of the MRP, arrivalsoccur at rateδ. Letπππ
be the invariant distribution of the stochastic matrixH(∞) = (pi j ). Then, we define
the indexχ(p) of burstiness by

χ(p) =
1
δ
κ−1(p), 0≤ p≤ 1,

whereκ−1(p) is the inverse function ofκ(λ) defined by

κ(λ) = 1−
∫ ∞

0
θθθ exp{D0u}emd(πππH(u)er) .

Thus,δχ(p) is interpreted as the rate of the MAP labeling process for which a
fraction p of the arrivals of the MRP are registered.
In Neuts (1993), the analysis is even extended to investigate correlations and run
distributions.

We conclude this subsection by illustrating the calculation of χ(p) for the inter-
rupted Poisson process(IPP).

Example 2.3 An IPP is a bursty MAP withm= 2 and matrices

D0 =

(

−(λa+δ1) δ1

δ2 −δ2

)

, D1 =

(

λa 0
0 0

)

.

This means that a PP of rateλa can be interrupted with probabilityδ1(λa+δ1)
−1. If

this occurs, then an interruption period (exponentially distributed of rateδ2) takes place.
Assume that the MAP labeling process is Poisson of rateλ. By using the fact that

the IPP is equivalent to a certain hyperexponential renewalprocess (see Milne (1982)),
it is easy to find that
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κ(λ) = 1−
λa(λ+δ2)

λ2+λ(λa+δ1+δ2)+λaδ2
.

By normalizing the fundamental rate of the IPP to be one, we obtain the following
expression for the index of burstiness:

χ(p) =
pρ−1− p̄σ+

√

(pρ−1− p̄σ)2+4pp̄σ
2p̄

, 0< p< 1,

wherep̄= 1− p, σ = δ1+δ2 andρ = δ2/σ.

2.4. Some applications

The next examples in queueing, reliability and inventory models are intended to help the
reader acquire some feeling for the range of applications ofthe BMAP and its variants.
By means of them, we briefly motivate the use of structured Markov chains; see Biniet
al. (2005), Latouche and Ramaswami (1999), Li (2010) and Neuts (1981,1989).

2.4.1. The BMAP/G/1 queue

Consider a single-server queue whose arrival process is a BMAP with sequence{Dk;k≥
0}. Let the service times have an arbitrary probability distribution functionH(x).

We may find many similarities between theBMAP/G/1 and theM/G/1 queues. To
begin with, we construct an embedded Markov chain{(Qn,Jn);n ≥ 0} at the times of
service completions by defining the pair(Qn,Jn) as the queue length and the phase of
the BMAP immediately after thenth service completion. Define the matrices

An =

∫ ∞

0
P(n,u)dH(u), n≥ 0,

Bn =
n+1

∑
k=1

∫ ∞

0
exp{D0u}duDk

∫ ∞

0
P(n+1−k,v)dH(v)

=−D−1
0

n+1

∑
k=1

DkAn+1−k, n≥ 0.

The matrixAn = (ai j (n)) consists of the conditional probabilities thatn customers
arrive during a service time starting from phasei and finishing at phasej of the BMAP.
We can therefore describe some of the transition probabilities for the embedded Markov
chain by

P(Q1 = l +n−1,J1 = j|Q0 = l ,J0 = i) = ai j (n), n≥ 0,1≤ i, j ≤ m,
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independently ofl ≥ 1. It can be readily verified that the matrix generating function
A∗(z) = ∑∞

n=0znAn is given by

A∗(z) =
∫ ∞

0
exp{D∗(z)u}dH(u).

Similarly, the matrixBn = (bi j (n)) contains the probabilities that first a batch ofk
customers arrives and thenn+1− k additional customers arrive during the subsequent
service time, for 1≤ k ≤ n+ 1. Note that this situation occurs whenever a service
completion leaves the queue empty. Hence, we can write down

P(Q1 = n,J1 = j|Q0 = 0,J0 = i) = bi j (n), n≥ 0,1≤ i, j ≤ m.

As a result, the one-step transition probability matrix of{(Qn,Jn);n≥ 0} is given by

P =















B0 B1 B2 B3 . . .

A0 A1 A2 A3 . . .

A0 A1 A2 . . .

A0 A1 . . .
. . . . . .















.

A matrix of this structured form is said to be ofM/G/1-type (see Neuts (1989)), which
underlines the similarity to the univariate embedded Markov chain of theM/G/1 queue.

The BMAP/G/1 was first analyzed in Ramaswami (1980), where the BMAP was
used under its older, more complicated notation. An outlineof Ramaswami’s results
under the present matrix formulation, along with some new results, are presented in
Lucantoni (1991). For a historical survey on the model, see Lucantoni (1993).

2.4.2. The D-BMAP/D/1/K queue

Consider a discrete-time queue in which arrivals are generated byM independent input
sources. Incoming arrivals are queued in a shared buffer of capacityK, with K < M.
The time needed to serve an arrival is selected as time unit and named slot. Each input
source in a slot takes either ON state or OFF state. When an input source is in ON state,
one arrival is generated with probabilityg. If the source is in OFF state, then no arrival
is generated. Suppose also that any OFF (or ON) source in a time slot changes to the ON
(or OFF) state with probabilityp (or q) in the next slot. This superposition of sources
can be modelled as adiscrete-time batch Markovian arrival process(D-BMAP); see
Subsection 3.1.

Let Qn andJn be the queue length and the number of ON sources (phase) at thenth
slot. Then, the sequence{(Qn,Jn);n≥ 1} is a discrete-time Markov chain on the state
space{0,1, . . . ,K}×{0,1, . . . ,M} with one-step transition probability matrix
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P =





















D0 D1 D2 · · · DK−1 ∑M
k=K Dk

D0 D1 D2 · · · DK−1 ∑M
k=K Dk

D0 D1 · · · DK−2 ∑M
k=K−1 Dk

. . . . . .
...

...

D0 ∑M
k=1 Dk





















,

where the matricesDk have the following elements:

dii ′(k) =

(

i
k

)

gk(1−g)i−k fii ′ , 0≤ k≤ i,

and fii ′ , for 0≤ i, i′ ≤ M, is given by

fii ′ =
i

∑
j=0

(

i
j

)

q j(1−q)i− j

(

M− i
i′+ j − i

)

pi′+ j−i(1− p)M−i′− j .

The binomial term indii ′(k) is the probability ofk arrivals in the current slot, given
that the number of ON sources isi. On the other hand,fii ′ is the probability that in the
next slot there will bei′ ON sources, given that in the current slot there arei.

The structure ofP shows that{(Qn,Jn);n≥ 1} is a finite Markov chain ofM/G/1-
type. This structured Markov chain, but involving a more sophisticated sequence{Dk;k≥
0}, is the analytical model used by Blondia and Casals (1992) for a statistical multiplexer
whose input consists of the superposition ofvariable bit rate(VBR) sources.

2.4.3. A reliability system subject to failures

Consider a system subject to internal and external failures. An internal failure causes a
fatal failure of the system and implies that the system must be replaced. External failures
affect the system in two ways: some of them cause damage that can be repaired, whereas
others cause fatal failure and consequently the system mustbe replaced. Assume that the
replacement and repair operations are instantaneous.

In practice, it is frequent that a system can bear only a certain number of failures, in
such a way that when the next failure occurs it is replaced. Let k ≥ 1 be the maximum
number of imperfect repairs that the system can undergo. At an arbitrary time, the
state of the system can be described by means of the numberK(t) of imperfect repairs
suffered by the system in process at timet. The random variableK(t) takes values in the
set{0,1, . . . ,k} and, in particular, it records the state 0 if the system in process at timet
is new.

Montoro-Cazorla and Ṕerez-Oćon (2006) use a matrix-analytic approach when the
lifetime of the system due to wear out follows a PH distribution, with representation
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(τττ,T) of ordern. Arrivals of external failures are modelled by a MMAP (see Subsection
3.2) with two types of marks referring to external failures with minimal repair and
external failures causing a replacement. In the characteristic matrices{D0,D1,D2} of
dimensionm, the matrixD1 refers to the occurrence of an external failure with minimal
repair, andD2 refers to a failure that causes the replacement of the system. The matrix
D0 records those changes that do not imply any failure.

Then, a Markovian description of the system state follows from the Markov chain
{(K(t),Jl(t),Ja(t)); t ≥ 0}, whereJl (t) andJa(t) denote the lifetime phase and the phase
of the arrival process, respectively, at timet. This is a Markov chain on the space state
{0,1, . . . ,k}×{1, . . . ,n}×{1, . . . ,m} and infinitesimal generator

Q =





















(T+ tτττ)⊕D0+ enτττ⊗D2 In⊗D1

tτττ⊗ Im+ enτττ⊗D2 T⊕D0 In⊗D1

...
. . . . . .

tτττ⊗ Im+ enτττ⊗D2 T⊕D0 In⊗D1

tτττ⊗ Im+ enτττ⊗ (D1+D2) T⊕D0





















.

Therefore, the structural form ofQ yields a finite Markov chain ofGI/M/1-type; see
Neuts (1981).

2.4.4. A multi-location inventory system

The next example (see Ching (1997)) is an inventory system ina multi-location situation
under continuous review and one-for-one replenishment.

Consider a multi-location inventory system consisting ofK locations that replenish
their stocks from a common main depot. For theith location, the inventory system is
modelled by theM/M/si/qi queue with arrival rateλi and exponentially distributed
lead times of each server with parameterµi . The overflow process of demand of theith
location can be approximated by a two-state MMPP with underlying matrices

Qia =

(

−σi1 σi1

σi2 −σi2

)

, ΛΛΛi =

(

λi 0
0 0

)

.

The first state is equivalent to the event{the ith location is full}, and the second one
amounts to the event{the ith location is not yet full}. Note that, in the former case,
the maximum level of backlogs is attained and, consequently, a further demand will
overflow to the main depot whenever the queue remains full. Inthe latter case, a further
demand will be acceptable. Based on the stationary distribution of the M/M/si/qi

queue, the parametersσi1 andσi2 are approximated asσi1 = siµi andσi2 = bisiµi/(1−
bi), wherebi denotes the blocking probability at theith location
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bi =
si

∑
j=−qi

si− j

∏
k=1

λi

µi min(k,si)
.

Therefore, we may regard theMMPP/M/s/q queue describing the inventory system
at the main depot as a finite Markov chain{(Q(t),J(t)); t ≥ 0} on the state space
{−q, . . . ,s}×{1, . . . ,2K}, whereQ(t) is the inventory level at the depot andJ(t) is the
phase of the underlying Markov chain with infinitesimal generatorQa =Q1a⊕ ...⊕QKa.
Negative values for the inventory levelQ(t) amount to backlog.

The infinitesimal generatorQ of {(Q(t),J(t)); t ≥ 0} has the following structured
form:

























Qa−ΛΛΛ ΛΛΛ
µI2K Qa−ΛΛΛ−µI2K ΛΛΛ

. . . . . . .. .
sµI2K Qa−ΛΛΛ−sµI2K ΛΛΛ

sµI2K Qa−ΛΛΛ−sµI2K ΛΛΛ
.. . . . .

sµI2K Qa−sµI2K

























,

whereΛΛΛ =ΛΛΛ1⊕ ...⊕ΛΛΛK.
The stationary distribution ofQ can be readily derived from the general theory of

finite QBD processes; see e.g. Latouche and Ramaswami (1999,Chapter 10). For more
information on finite QBD processes arising in manufacturing problems, the reader is
referred to the monograph by Ching (2001).

3. Variants and extensions of the BMAP

In this section we collect several generalizations and variants of the BMAP. We start
in Subsection 3.1 by presenting the D-BMAP; that is, the discrete-time analogue of
the BMAP. The use of discrete-time models is motivated by many applications in
communication systems where the basic units are digital. The consideration of Markov
arrival processes with marked transitions opens new directions to investigate stochastic
models with multiple types of items, fluid input, spatial arrivals, etc. In Subsection
3.2 we follow the original formulation by He and Neuts (1998)to introduce the
MMAP. The HetSigma approach summarized in Subsection 3.3 provides a versatile
way to get joint modulation of the arrival and service processes. In Subsection 3.4,
under the title Markov-additive arrival processes, we briefly introduce some generalized
arrival processes which allow the counting/marked and background processes to take
values on more general spaces. The time-inhomogeneous caseand the possibility of
incorporating spatial features can also be subsumed under appropriate versions of the
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Markov-additive umbrella. Finally, in Subsection 3.5 we deal with the BSDE approach
which has been recently presented by Artalejo and Gómez-Corral (2010) as a tool for
constructing Markov modulated stochastic models taking into account the reduction of
dimensionality inherent to the matrix formulation.

3.1. The D-BMAP

The D-BMAP was introduced by Blondia and Casals (1992) as thediscrete-time
analogue of the BMAP. They showed that many useful discrete-time arrival processes
can be obtained as particular cases of the D-BMAP and how thisversatile arrival pattern
can be used asasynchronous transfer mode(ATM) source model.

The key point in the constructive description of the D-BMAP is the consideration
of finite matrices{Dk;k≥ 0}, which govern phase transitions and batch sizes. Suppose
that at timek the phase in progress isi, for 1≤ i ≤ m. At the next time epochk+1, a
transition to another or the same phase takes place and a batch arrival may occur or not.
More concretely, the elementsdi j (0) of matrix D0 give the probabilities that the phase
goes to statej with no arrival, given that the initial phase isi. On the other hand, the
elementsdi j (k) of Dk denote that, in the next time unit, there is a transition fromphase
i to phasej with a batch of sizek≥ 1. We notice that

m

∑
j=1

∞

∑
k=0

di j (k) = 1, 1≤ i ≤ m.

We also assume that the matrixIm−D0 is non-singular, so the D-BMAP has an arrival
with probability one.

With the help of{Dk;k ≥ 0}, we formally define the D-BMAP as the bivariate
process{(Nk,Jk);k≥ 0}, where{Jk;k≥ 0} is the background phase Markov chain and
Nk denotes the counting variable. The one-step transition probability matrix of the D-
BMAP is given by

P =











D0 D1 D2 D3 · · ·

D0 D1 D2 · · ·

D0 D1 · · ·
. . . . . .











.

A number of well-known processes are obtained by choosing appropriately the
sequence of matrices{Dk;k ≥ 0}. The list includes theBernoulli arrival process,
the Markov modulated Bernoulli process, thebatch Bernoulli process with correlated
arrivals and many other processes which, in general, can be considered as the discrete
counterparts of those particular cases of the BMAP listed inSubsection 2.1. For further
details of other special cases of the D-BMAP, we refer to the papers by Chakravarthy
(2001,2010).
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We also remark that, like in the continuous-time BMAP, many interesting properties
(such as counting, descriptors, superpositions, etc.) canbe investigated. Since arguments
are similar, these results will not be presented here, but werefer to the paper by
Chakravarthy (2010) for a summary of basic results for the D-BMAP.

In what follows, we focus on the class ofplatoon arrival processes(PAP).

Example 3.1 The following description of the PAP is based on the paper by Alfa and
Neuts (1995), who used the PAP to model vehicular traffic. Recently, Breuer and Alfa
(2005) used a terminating D-MAP to generalize the concept ofPAP.

The PAP is a discrete-time arrival process composed of platoons. Suppose that the
number of arrivals in a platoon is a discrete PH of orderd with representation(δδδ,D)

and absorption vectord. Moreover, we assume thatp1 = δ0 = 1−δδδed > 0 is the
probability of a platoon consisting of a single vehicle (i.e., the probability of starting in
the absorbing state) andpk =δδδDk−2d, for k≥ 2, is the probability of havingk arrivals in
the platoon. In a first general approach, intraplatoon intervals separating two arrivals in
the same platoon, have the probability mass function{p1(k);k≥ 1}. On the other hand,
the interplatoon interval separating the last arrival in a platoon and the first one of the
immediately following platoon, have the probability mass function{p2(k);k≥ 1}.

Let Sn be thenth arrival epoch and suppose thatYn records the phase of the discrete
PH distribution observed at timeSn+, whose representation is given by(δδδ,D). Then, the
PAP is the MRP associated with the Markov renewal sequence{(Yn,Sn);n≥ 0}, whose
kernel is described by the matrices

H( j) =

(

δ0p2( j) δδδp2( j)
dp1( j) Dp1( j)

)

, j ≥ 1.

For practical purposes, the MRP formalism can be simplified by assuming that
the intraplatoon intervals and the interplatoon intervalsare distributed as discrete PH
distributions with representations(αααi ,Ti) with mi phases and absorption vectorsti, for
i ∈ {1,2}, respectively. The vectorsαααi , for i ∈ {1,2}, are now assumed to be probability
vectors. Thus, the PAP can be now seen as a D-MAP with matricesD0 andD1 given by

D0 =

(

T2 0m2×dm1

0dm1×m2 Id ⊗T1

)

, D1 =

(

δ0t2ααα2 δδδ⊗ t2ααα1

d⊗ t1ααα2 D⊗ t1ααα1

)

,

where the underlying states(i, j) denote the phase of the discrete PH law with represen-
tation(δδδ,D) and the phase of the (interplatoon or intraplatoon) interval in process.

3.2. The marked Markovian arrival process

The MMAP can be viewed as a multi-class extension of the BMAP.Although the anal-
ysis can be presented both in discrete- and continuous-time, we restrict our exposition
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to the latter case. Similar to the BMAP, the MMAP definition isbased on a background
Markov chain{J(t); t ≥ 0}, often called phase chain, withm states, which determines
the arrivals of some marks taking values on a setC 0. The set of marksC 0 may have
different interpretations, as we show in the sequel.

Let C 0 be a finite or countable set of indices. More specifically, we may assume
that a generic elementh of C 0 is aK-tuple (h1, . . . ,hK), wherehk ∈ N, for 1≤ k ≤ K,
and at least one coordinate is strictly positive. Define the non-negative matricesD0 and
{Dh;h ∈ C 0} of orderm. The entries ofD0 describe the motion of the phase Markov
chain without any arrival.D0 is assumed to be a non-singular matrix with negative
diagonal elements. The matricesDh are non-negative and give the transition rates of
the phase Markov chain with a markh. Then,D = D0 +∑h∈C 0 Dh is an infinitesimal
generator. The counting process{(Nh(t),J(t));h ∈ C 0, t ≥ 0} is called a MMAP.

Alternatively, we may define the MMAP in terms of PPs. To this end, it is enough
to replace the role of the rates{di j (k);1 ≤ i, j ≤ m}, for k ≥ 1, in Remark 2.2 by
the analogue marked version{di j (h);1 ≤ i, j ≤ m}, for h ∈ C 0. The semi-Markovian
representation in Remark 2.1 for the BMAP also holds for the MMAP.

It is clear that the choiceK = 1 andC 0 =N−{0} reduces the MMAP to the BMAP.
The caseK = 1 andC 0 = {1, . . . ,C} determines arrivals ofC different types of cus-
tomers or items; that is, the MMAP is interpreted as a proper multi-class generalization
of the BMAP.

The following specifications of the matricesD0 and{Dh;h ∈ C 0} show interesting
features captured under the MMAP formulation:

(i) A reinterpretation of the batch sizes in terms of different classes of customers
allows us to see example (ii) for cyclic arrivals in Section 2as an arrival process
where type-1 and type-2 customers arrive cyclically.

(ii) Individual vs group

D0 =

(

−1 0
0 −2

)

, D1 =

(

0.5 0
0 1

)

, D2,1 =

(

0 0.5
1 0

)

.

First, we notice that the marksC 0 = {{1},{2,1}} can be put in correspondence
with the caseK = 1 andC 0 = {1,2}. This comment can be readily extended to
any arbitrary finite setC 0.
In this arrival process, there are individual arrivals of type-1 and group arrivals
where the group consists of one type-2 customer accompaniedby a type-1 cus-
tomer.

(iii) Type-2 follows type-1

D0 =

(

−4 0
0 −5

)

, D1 =

(

3 1
0 0

)

, D2,1 =

(

0 0
5 0

)

.
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A group arrival{2,1} is always preceded by the arrival of a customer of type-1.
(iv) Orders within batches

D0 =

(

−15 0
0 −10

)

, D{112} =

(

14 0
0 9

)

, D{121} =

(

0 1
1 0

)

.

The marks{112} and{121} are associated with group arrivals of size 3. Each
group consists of two type-1 customers and one customer of type-2. The orders in
which individuals are scheduled within a group do matter, sothe two marks are
distinguished.

Among the descriptors of the MMAP, we stress the interest in the counting functions.
The generating function ofN(t) = (N1(t), . . . ,NK(t)) is given by

P∗(z, t) = ∑
n

zn P(n, t) = exp{D∗(z)t} ,

where n = (n1, . . . ,nK) with ni ≥ 0, for 1≤ i ≤ K, and P(n, t) is the matrix with
elementsPi j (n, t) = P(N(t) = n,J(t) = j|N(0) = 0K ,J(t) = i), while zn = zn1

1 · · ·znK
K

andD∗(z) = D0+∑h∈C 0 zhDh, for |zk| ≤ 1 and 1≤ k≤ K.
Now the covariances and correlations between{Nh(t); t ≥ 0}, for h ∈ C 0, can be

explicitly expressed; see He and Neuts (1998).
For easiness, we assumeC 0 = {1,2}; i.e., we have two types of arrivals.
Given any initial probability distributionααα for the phase Markov chain, we have

E[Nh(t)] = λht +ααα(exp{Dt}− Im)(D− emθθθ )
−1 Dhem, h ∈ C

0, t ≥ 0,

whereθθθ is the stationary distribution ofD andλh = θθθDhem is the fundamental arrival
rate of type-h marks.

If we takeααα= θθθ , then

Var(Nh(t)) =
(

λh −2λ2
h −2θθθDh (D− emθθθ )

−1 Dhem

)

t

+2θθθDh (D− emθθθ )
−1 (exp{Dt}− Im)(D− emθθθ )

−1 Dhem,

and the covariance betweenN1(t) andN2(t) is given by

ϕ(N1(t),N2(t)) =−

(

2λ1λ2+θθθ

(

2

∑
k=1

Dk (D− emθθθ )
−1 D3−k

)

em

)

t

+θθθ

(

2

∑
k=1

Dk (D− emθθθ )
−1 (exp{Dt}− Im)(D− emθθθ )

−1 D3−k

)

em.
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We illustrate the computation of the counting moments by means of the BMAP
considered in Examples 2.1 and 2.2. Obviously, the batch size becomes here the mark
in the MMAP terminology.

Example 3.2 If the MMAP with matrices{D0,D1,D2} given in Example 2.1 is station-
ary, fort = 2.5, we get

E[N1(t)] = 2.5, E[N2(t)] = 2.94117,

Var(N1(t)) = 4.24980, Var(N2(t)) = 6.17905.

The covariance and correlation betweenN1(t) andN2(t) are given by

ϕ(N1(t),N2(t)) = 3.30791, ρ(N1(t),N2(t)) = 0.64551.

The mean and variance of the total number of countsN(t) = N1(t) + 2N2(t) are
E[N(t)] = 8.38235 andVar(N(t)) = 42.19772.

A good account of results for other basic properties of the MMAP, including
thinning, type of arrivals, peakedness and closure properties, are found in He and Neuts
(1998), and He (2010).

3.3. The HetSigma approach

The HetSigma approach (see Chakka and Do (2007)) has been proposed in order to
evaluate the performance of queueing models with burstiness and correlation arising
from applications to wireless broadband networks. The proposed modulation mecha-
nism could be subsumed under a MMAP pattern. However, the HetSigma approach
presents some interesting features which justify its presentation in this specific subsec-
tion.

In the HetSigma approach both the arrival and service processes are modulated in
continuous-time by a single infinitesimal generatorQas, with mmodulating phase states.
This assumption includes as a particular case the situationwhere the arrival and service
processes are modulated individually by infinitesimal generatorsQa andQs with ma and
ms phases, respectively. This independent modulation case can be converted into a joint
modulation by takingQas= Qa⊕Qs andm= mams.

Arrivals, under each modulating phasei, consist of the superposition ofK inde-
pendent CPPs of positive arrivals and an independent CPP of negative arrivals. More
concretely, theK +1 CPPs are described in terms ofgeneralized exponential(GE) dis-
tributions, which govern exponential inter-arrival timeswith batches having geometric
size distribution. For example, during phasei, the stream of negative arrivals follows a
GE distribution with representation(ρi ,δi), which means that a negative batch arrives
to the system after an exponential time of rateρi , and its size isk ≥ 1 with probability
(1−δi)δ

k−1
i . On the other hand, the service facility hasc heterogeneous servers. Each
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server is labeled and has its own independent GE service timewith parameters(µin,φin),
for 1≤ n≤ c and 1≤ i ≤ m.

The model description must be completed with a number of queueing specifications
including the first come first scheduled for service discipline, a switching policy guaran-
teing that the servers labeled with lowest indexes are thoserendering service, a killing
policy which removes customers at the end of the queue when a negative arrival takes
place, and other necessary specifications which are described in detail in Chakka and
Do (2007).

3.4. Markov-additive processes of arrivals

In this subsection, we follow Pacheco and Prabhu (1995) to introduce the class of
Markov-additive processes of arrivals. First of all, we remark that the acronym MAP
is used in the literature both for the Markovian arrival process introduced in Section 2
and for the Markov-additive processes of arrivals. For the sake of clarity, here we shall
denote the latter as MAPA.

A MAPA is a Markov process with two componentsX andJ. In general,X is a non-
Markovian component called the additive component since increments ofX correspond
to arrivals. The Markov componentJ sometimes represents an environment factor. In
other applications, the phenomenon under study leads naturally to the pair(X,J).

The state space assumed in Pacheco and Prabhu (1995) isS = Rr ×E, whereE is a
discrete set. Moreover, it is also assumed that(X,J) is a continuous-time process. Then,
a process(X,J) = {(X(t),J(t)); t ≥ 0} onS is a MAPA if

(i) (X,J) is a Markov process.
(ii) For all s≥ 0 andt ≥ 0, the conditional distribution of(X(t + s)−X(s),J(t + s)),

given(X(s),J(s)), depends only onJ(s).

The above definition follows the spirit of Çinlar (1972a,b), who assumed a more
general spaceE. It is convenient to extendE including a special state∆ which indicates
the termination of the process(X,J). Some interesting properties including closure
properties under linear transformations and linear combinations can be investigated. On
the other hand, to study the lack of memory property, inter-arrival times, moments of the
number of counts and other structural properties, it is convenient to reduce to the state
spaceS = Nr ×E. In this context, the dynamics of the MAPA comprise three types of
transitions: (a) arrivals without change of state inJ; (b) changes of state inJ without
arrivals; and (c) arrivals with change of state inJ.

Secondary recording of the MAPA is a mechanism that generates a secondary arrival
process from the original arrival process. This mechanism includes interesting features
like thinning and marking.

Closely related to the MAPA is the class of MMAPs defined for the case whereE
is finite; see Subsection 3.2. The BMAP corresponds to the simple case withr = 1 and
E = {1, . . . ,m}.



128 Markovian arrivals in stochastic modelling: a survey and some new results

The contribution by Pacheco and Prabhu (1995) is generalized in Breuer (2003)
to cover the inhomogeneous case. The inhomogeneous BMAP is defined as a MAPA
(X,J) with additive spaceN, finite phase spaceE = {1, . . . ,m} and time-inhomogenous
structure for the generator functions

Q(t) =













D0(t) D1(t) D2(t) D3(t) · · ·

D0(t) D1(t) D2(t) · · ·

D0(t) D1(t) · · ·

. . . . . .













,

where the(i, j)th entry ofDk(t) can be interpreted as the infinitesimal transition rate
of recordingk arrivals during the infinitesimal interval(t, t +dt] while changing from
phasei to phasej. Likewise, other interpretations for BMAPs can be adapted to the
time-inhomogeneous case. For example, the matrixD(t) = ∑∞

k=0 Dk(t) is a generator for
all t ≥ 0. If the phase processJ has a stationary distributionθθθ , then starting the phase
process in this distribution without prior arrivals yieldsthe following expression for the
mean number of arrivals until timet:

∫ t

0
θθθ

∞

∑
k=1

kDk(u)emdu.

Breuer (2003) also generalizes the notion of characteristic sequence slightly in
order to define a class of fluid MAPs. In this generalization, the phase space is finite
E = {1, . . . ,m} and the additive space is given by[0,∞). Unlike the additive spaceN
which allows us to arrange the matrices containing arrival rates in a single sequence,
an analogue for the additive space[0,∞) is a characteristic measure∆∆∆ providing an
arrival rate matrix for every Borel-measurable subset of[0,∞). For the homogeneous
fluid MAP, the measure∆∆∆ is specified by the matrices∆∆∆(x), whose(i, j)th elements
are given by the corresponding infinitesimal transition ratesq(i; [0,x]×{ j}), for x≥ 0
and 1≤ i, j ≤ m. Thus, the matrix∆∆∆(x) has an analogous meaning as the matrixDk for
the BMAP. The infinitesimal generator ofJ is given byD = limx→∞ ∆∆∆(x). Let θθθ be its
stationary probability vector. Then,

∫ ∞

0
θθθud∆∆∆(u)emt

gives the expected number of arrivals until timet, if the process starts without prior ar-
rivals and in phase equilibriumθθθ . It can be also shown that limt→∞ X(t)/t =

∫ ∞
0 θθθud∆∆∆(u)

em, almost surely for all initial phase distributions.
The concept of BMAP can be even generalized towards a class oftime-space

processes, called spatial MAPs; see Breuer (2003, Chapters7-9), and Breuer and Baum
(2005, Chapter 14). This generalization addresses three essential points: (a) the phase
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stateE is allowed to be general; (b) the generator functions of the spatial MAP may
depend on time; and (c) arrivals may assume a location in somespace.

Based on an underlying MAPA, Sengupta (1989) defines a bivariate Markov process
(X,J) with a special structure, which can be seen as a continuous-time and continuous-
space version of the Markov chains ofGI/M/1-type studied by Neuts (1981). The
Sengupta processyields a notably simplified characterization of the waitingtime and
the queue length distributions in theGI/PH/1 queue. Specifically, the phase space is
finite E = {1, . . . ,m}, and the additive componentX is skip-free to the right, takes values
in [0,∞) and increases at a linear rate of 1, if there is no downward jump. Moreover,
changes in the state of the process(X,J) may also occur in one of two ways:

(i) If (X(t),J(t)) = (x, i), then (X,J) may change its state to somewhere between
(x−u, j) and(x−u+du, j) at a rate ofdai j (u), for u∈ [0,x) and 1≤ i, j ≤ m.

(ii) If (X(t),J(t)) = (x, i), then it may transit from(x, i) to (0, j) at a rate ofbi j (x), for
x> 0 and 1≤ i, j ≤ m.

The level-dependent ratesai j (x) andbi j (x) satisfy the condition

m

∑
j=1

(ai j (x)+bi j (x)) =−di , x> 0, 1≤ i ≤ m,

where−di is the rate at which the next state change can occur from the initial state(x, i).
This equality clearly implies that the probability that theadditive componentX takes a
downward jump ofu∈ [0,x) units fromx, given that a downward jump occurs, does not
depend on the initial levelx.

For a related work, we also refer to the bivariate Markov process(X,J) analyzed
by Tweedie (1982), where the additive componentX takes values inN and the Markov
componentJ takes values on a general set such as an interval of the real line.

3.5. The BSDE approach

The rationale for using Markovian arrival processes and PH distributions has been
already discussed in Section 2. However, the price to be paidfrequently in practice
is a significant burden on computational time and memory needed due to the high
dimensionality of the resulting block-structured Markov chains. The complexity of the
underlying stochastic models increases drastically in non-homogeneous settings, where
an arbitrary, even infinite number of MAPs and/or PH distributions could be involved.
The BSDE approach provides a versatile tool to deal with a non-exponential model with
correlated flows, but keeping the dimensionality of the block-structured Markov chain
tractable.

In the BSDE approach, we are concerned with a multidimensional continuous-
time Markov chain(X,Y) = {(X1(t), . . . ,Xk(t),Y1(t), . . . ,Yl (t)); t ≥ 0}. We assume
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that (X,Y) is regular and time-homogeneous; in applications, it is often assumed
to be irreducible. The sub-vectorX(t) = (X1(t), . . . ,Xk(t)) provides ak-dimensional
description of the fundamental aspects of the system state at time t. On the other hand,
the sub-vectorY(t) = (Y1(t), . . . ,Yl (t)) is al -dimensional phase vector which completes
the Markovian system description. The state space of(X,Y) is a discrete setS(X,Y) with
(k+ l)-dimensional elements.

The sojourn timeE(x,y) that the Markov chain remains in the state(x,y) is expo-
nentially distributed with rateλ(x,y). For a given state(x,y), the p-dimensional random
vectorN|(x,y) = (N1, . . . ,Np)|(x,y) counts the events taking place whenE(x,y) expires. The
case when no event is observed is denoted byN|(x,y) = 0p, whereas the occurrence of
an event of types is associated withN|(x,y) = nep(s), wheren∈ Z−{0}. For example,
n> 1 denotes a multiple positive jump,n=−1 represents a negative jump, etc.

The fundamental statex is updated in the light of the observed value ofN|(x,y).
More concretely, we assume that the resulting fundamental state x′ is of the form
x′ = f

(

x,N|(x,y)
)

, where the fundamental state functionf has to be specified for each
particular Markov chain(X,Y). We notice thatx′ = x if N|(x,y) = 0p.

It should be noted that the caseN|(x,y) = 0p implies that the phase statey jumps to a
new statey′ 6= y. In contrast, the existence of proper events may or not be accompanied
by a phase change.

The kernel{Pn
x ;(x,n) ∈ S(X,N)} completes the specification of the BSDE approach.

The elementspn
x(y;y′) of the matrixPn

x record the probabilities of generating the event
n and a transition from phasey to phasey′, given that the system state was(x,y) just

beforeE(x,y) expires. SinceE(x,y) is a sojourn time, we notice thatp
0p
x (y;y) = 0.

Finally, the infinitesimal generatorQ = (q(x,y)(x′,y′)) of the Markov chain(X,Y) is
given by

q(x,y)(x′,y′) =











−λ(x,y), if (x′,y′) = (x,y),

λ(x,y)p
n
x(y;y′), if x′ = f

(

x,N|(x,y)
)

,

0, otherwise.

If it is desired, then the BSDE approach can be used to construct only a part of
the stochastic model. In fact, the BMAP can be readily obtained as a particular case
of the BSDE approach; see Artalejo and Gómez-Corral (2010, Example 2.1). The
BSDE approach can be easily adapted to the discrete-time setting. Indeed, the above
BSDE construction is inspired in a similar discrete mechanism, called discrete block
state-dependent arrival distribution, which was introduced in Artalejo and Li (2010) to
generate the arrival input of a certain discrete-time queue.
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4. Application of the BSDE approach to epidemic models

In this section, we show how the BSDE approach presented in Subsection 3.5 can be
used to extend many stochastic systems that use Markov chains to model a biological
population. More concretely, we consider thestate-dependent susceptible-infected-
susceptible(SD-SIS) epidemic model which generalizes the scalar SIS model allowing
non-exponential infection and recovery times, as well as the existence of correlation.
Once the SD-SIS model is constructed, we focus in Subsection4.2 on the time until the
extinction. In Subsection 4.3, the counterpart of the coefficient of correlation between
inter-arrival times in the BMAP (see Subsection 2.3.2) is introduced.

4.1. Construction of the SD-SIS model

Firstly, we recall the scalar SIS model (see also Allen (2003)). Consider a closed
population of sizeK. At time t, the population consists ofI(t) infected individuals
and S(t) = K − I(t) susceptible individuals. In this context, the process{I(t); t ≥ 0}
is assumed to be a birth-and-death process on the state space{0,1, . . . ,K}. Let β andγ
denote the contact and recovery rates, respectively. Then,the birth rates are defined by
λi = β i(K− i)/K, for 0≤ i ≤ K. These rates correspond to transitions occurring when a
susceptible individual becomes infected in agreement withthe current contacts between
I(t) andS(t). On the other hand, the death ratesµi = γi, for 1≤ i ≤ K, are associated
with the recovery of infected individuals.

The construction of the SD-SIS model is based on a BSDE approach withk= 1 and
l = p = 2. The fundamental statex = i represents the number of infected individuals,
whereas the phase statey = (m,n) consists of the infection and recovery phases in
process at timet. The state spaceS(X,Y) is given by

S(X,Y) = {0̄}∪{(i,m,n);1≤ i ≤ K,1≤ m≤ M,1≤ n≤ N}.

We notice that the epidemic ends as soon as there are no infected individuals in
the population. Thus, we consider an absorbing macrostate0̄ with rateλ0̄ = 0. The
individuals do not develop immunity after they recover. As aresult, the Markov chain
(X,Y) is reducible and the absorption occurs in a finite time with probability one. The
events are associated with infections (i.e., single positive jumps) and recoveries (i.e.,
single negative jumps). It means that the SD-SIS model can beviewed as a particular
case of a finitestate-dependent quasi-birth-and-death(SD-QBD) process; see Artalejo
and Ǵomez-Corral (2010, Section 3).

Then, the infinitesimal generatorQ of the SD-SIS model has the following non-
homogeneous block-tridiagonal structure:
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Q =



















0 0g

q10 Q11 Q12

Q21 Q22 Q23
. . . . . . . . .

QK−1,K−2 QK−1,K−1 QK−1,K

QK,K−1 QKK



















,

where the blocksQii ′ are square matrices of dimensiong= MN, for 1≤ i, i′ ≤ K. The
column vectorq10 describes the motion from states(1,m,n) to the absorbing statē0, for
1≤ m≤ M and 1≤ n≤ N.

For the derivation of the blocksQii ′ , we need to introduce families of rate matrices

{A
k
i ;1 ≤ i ≤ K − 1} and{D

k
i ;1 ≤ i ≤ K}, for k ∈ {0,1}. The elements ¯ak

i (m;m′) are
defined by

ā0
i (m;m) =−λA

(i,m),

ā0
i (m;m′) = λA

(i,m)a
0
i (m;m′), m′ 6= m,

ā1
i (m;m′) = λA

(i,m)a
1
i (m;m′).

We observe thatλA
(i,m) denotes the rate of the exponential sojourn timeEA

im, which ends
either when an infection takes place (with or without phase change) or simply when
the infection phase is changed (no arrival case). Ifi = K, then the whole population is
infected, so we haveλA

(K,m) = 0. In contrast,λA
(i,m) > 0 for 1≤ i ≤ K − 1. The kernel

probabilitiesak
i (m,m′) are the probabilities ofk∈ {0,1} infections (i.e., positive jumps)

and a transition from phasem to phasem′, given thatx = i. The description of the rate
matricesD

k
i is similar and thus it is omitted. By assuming independence betweenEA

im

and the analogue recovery sojourn timeED
in, we have thatλ(i,m,n) = λ

A
(i,m)+λ

D
(i,n) > 0.

Under the above BSDE specifications, we finally obtain the following non-zero
blocks

q10 =
(

IM ⊗D
1
1

)

eg,

Qi,i−1 = IM ⊗D
1
i , 2≤ i ≤ K,

Qii = A
0
i ⊕D

0
i , 1≤ i ≤ K−1,

QKK = IM ⊗D
0
K ,

Qi,i+1 = A
1
i ⊗ IN, 1≤ i ≤ K−1.

We now turn our attention to the dimensionality problem. Theobjective is to deal
with a particularization of the rate matrices such that the formulation remains sufficiently
tractable, yet enough versatile for computational purposes. To reach this objective, we
consider the choice
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A
0
i =
λi

λ
DA

0 , A
1
i =

λi

λ
DA

1 , 1≤ i ≤ K −1,

D
0
i =
µi

µ
DD

0 , D
1
i =

µi

µ
DD

1 , 1≤ i ≤ K,

where(DA
0 ,D

A
1) and(DD

0 ,D
D
1 ) denote the characteristic matrices of two auxiliary MAPs

of ordersM andN, respectively. Their corresponding fundamental rates areλ andµ.
Sinceλi andµi are the birth-and-death rates of the scalar SIS model, we obtain a

BSDE formulation that, given that the current number of infected individuals equalsi,
the expectations until the next infection and recovery epochs match the corresponding
expected values in the scalar SIS model.

4.2. Extinction in the SD-SIS model

The extinction time quantifies the spread of the epidemic on the population and describes
the time until the end of the epidemic process. Thus, the timeto extinction is an
important measure of the persistence of an infection. Thereexists a vast literature
studying the extinction time of stochastic biological models. In this subsection, we
extend the study to the SD-SIS model.

We distinguish between a conditional version of the extinction time given an initial
state and an unconditional version properly defined. The conditional extinction time
L(i,m,n) is defined as the absorption time in̄0, given that the initial state of the SD-SIS
model is(x,y) = (i,m,n). Letϕ(i,m,n)(s) be its Laplace-Stieltjes transform. The vectors
ϕϕϕi(s) = (ϕ(i,1,1)(s), . . . ,ϕ(i,M,N)(s))

′, for 1 ≤ i ≤ K, andϕϕϕ(s) = (ϕϕϕ1(s), . . . ,ϕϕϕK(s))′

comprise the Laplace-Stieltjes transforms according to the levels determined by the
number of infected individuals.

By introducing an initial distributionτττ on the state spaceS(X,Y), we arrive to the
unconditional versionL of the extinction time. From the general theory for continuous-
time Markov chains (see e.g. Kulkarni (1995), and Latouche and Ramaswami (1999)),
we know thatL follows a PH distribution of orderKg with representation(τττ,M), where
M is the submatrix ofQ corresponding to the set of transient statesS(X,Y)−{0̄}.

Since the setS(X,Y) − {0̄} is irreducible, the existence of the inverseM−1 is
guaranteed. We may also observe that the starting point of the density function is given
by fL(0) = −τττMeKg = τττ1q10, whereτττ1 is the sub-vector ofτττ containing the initial
probabilitiesτ(1,m,n) of the leveli = 1.

Coming back to the unconditional version, we notice that thevectorϕϕϕ(s) satisfies
the block-tridiagonal system

(M−sIKg)ϕϕϕ(s) =−

(

q10

0′(K−1)g

)

.
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By using Euler and Post-Widder algorithms, we can numerically invert the above
expression to get the conditional density functionsfL(i,m,n)

(x) and, consequently, the
unconditional densityfL(x); see Cohen (2007).

Finally, we observe that the conditional momentsmk
(i,m,n) = E[Lk

(i,m,n)], for (i,m,n) ∈

S(X,Y)−{0̄} andk≥ 1, can be computed from the formula

mk = k!
(

−M−1
)k

eKg, k≥ 1,

or, alternatively, from the recursive expressions

m0 = eKg,

mk =−kM−1mk−1, k≥ 1,

wheremk denotes the column vector of dimensionKg containing the momentsmk
(i,m,n)

in lexicographic order.
The unconditional time to extinction depends on the initialdistributionτττ. In epi-

demiology, it is often known that a certain epidemic has beenevolving for a long time
and that it has not reached the extinction yet. However, it may be very difficult to know
the exact distributionτττ. In this case, the use of the quasi-stationary distributionis espe-
cially interesting. The starting point is the conditional probabilities

u(i,m,n)(t) = P((X(t),Y(t)) = (i,m,n)|L > t) =
p(i,m,n)(t)

1− p0̄(t)
,

for (i,m,n) ∈ S(X,Y)−{0̄}, wherep(i,m,n)(t) andp0̄(t) are the transient probabilities of
the Markov chain(X,Y).

Suppose that the Markov chain starts with the initial distribution τ(i,m,n) =

P((X(0),Y(0)) = (i,m,n)), for (i,m,n) ∈ S(X,Y) −{0̄}. If there exists a starting dis-
tributionτ(i,m,n) = u(i,m,n), such thatu(i,m,n)(t) = u(i,m,n), for all t ≥ 0, thenu = (u(i,m,n))

is called a quasi-stationary distribution. Moreover, there also exists a limiting interpreta-
tion which states that limt→∞ u(i,m,n)(t)= u(i,m,n), independently of the initial distribution.

In our case, the setS(X,Y)−{0̄} is finite and irreducible. Then, the quasi-stationary
distribution u amounts to the left eigenvector associated with the eigenvalue with
maximal real part of the matrixM; see Darroch and Seneta (1967). This result gives
a method for numerical computation.

In what follows, we setτττ = u and generalize the existing approach for the study of
the extinction timeLu in the scalar SIS model (see Norden (1982)) to the SD-SIS model.

By differentiatingu(i,m,n)(t) with respect tot, we obtain

u′(i,m,n)(t) =
p′(i,m,n)(t)

1− p0̄(t)
+

p(i,m,n)(t)p
′
0̄(t)

(1− p0̄(t))2
, (i,m,n) ∈ S(X,Y)−{0̄}.
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By combining the above formula and the Kolmogorov forward equation for the absorb-
ing state0̄, we find that

u′(i,m,n)(t) =
p′(i,m,n)(t)

1− p0̄(t)
+

p(i,m,n)(t)

1− p0̄(t)

N

∑
n=1

d̄1
1(n; ·)u(1,·,n)(t), (i,m,n) ∈ S(X,Y)−{0̄},

whered̄1
1(n; ·) = ∑N

n′=1 d̄1
1(n;n′) andu(1,·,n)(t) = ∑M

m=1u(1,m,n)(t), for 1≤ n≤ N.
Now, we appeal to the fact that the initial distribution isu and we thus put

u′(i,m,n)(t) = 0. Hence, for each(i,m,n) ∈ S(X,Y)−{0̄}, we get the differential equation

p′(i,m,n)(t) =−p(i,m,n)(t)
N

∑
n=1

d̄1
1(n; ·)u(1,·,n),

p(i,m,n)(0) = u(i,m,n),

which yields the solution

p(i,m,n)(t) = u(i,m,n)exp

{

−t
N

∑
n=1

d̄1
1(n; ·)u(1,·,n)

}

.

Finally, for p0̄(t), we now havep′0̄(t) = ∑N
n=1 d̄1

1(n; ·)p(1,·,n)(t), with p′0̄(0) = 0, so
that

P(Lu ≤ t) = p0̄(t) = 1−exp

{

−t
N

∑
n=1

d̄1
1(n; ·)u(1,·,n)

}

, t ≥ 0.

This establishes that the time to extinction, when the initial distribution is the quasi-
stationary distribution, has an exponential distributionwith rate 1/E[Lu] = ∑N

n=1 d̄1
1(n; ·)

u(1,·,n).
The following example illustrates the influence of the characteristic matrices and the

correlation in the distribution ofLu.

Example 4.1 We consider the following three choices for the characteristic matrices
(DA

0 ,D
A
1) and(DD

0 ,D
D
1 ):

(i) Exponential kernel. We takeM = N = 1, DA
0 = DD

0 =−1 andDA
1 = DD

1 = 1.
(ii) Erlang-hyperexponential kernel. We takeM = 3, N = 2 and

DA
0 =





−3 3 0
0 −3 3
0 0 −3



 , DA
1 =





0 0 0
0 0 0
3 0 0



 ,

DD
0 =

(

−1.9 0
0 −0.19

)

, DD
1 =

(

1.71 0.19
0.171 0.019

)

.
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(iii) MAP-MAP kernel. We takeM = N = 3 and

DA
0 =





−1.00221 1.00221 0
0 −1.00221 0
0 0 −225.75



 , DA
1 =





0 0 0
0.99219 0 0.01002
2.2575 0 223.4925



 ,

DD
0 =





−0.87478 0.87478 0
0 −0.87478 0
0 0 −94.76811



 , DD
1 =





0 0 0
0.78730 0 0.08748
7.28985 0 87.47826



 .

For the above three scenarios, the fundamental rates associated with infection and
recovery characteristic matrices areλ = µ = 1.0. We notice that scenarios (i) and (ii)
are associated with renewal processes and, on the contrary,scenario (iii) has positive
correlated infection and recovery times. The values of the coefficients of correlation are
0.48890 and 0.43482, respectively.

Table 1: E[u], σ(u) and E[Lu] for three scenarios.

Scenario (i) Scenario (ii) Scenario (iii)

E[u] 64.48076 60.04070 38.91698

σ(u) 11.87236 20.12606 44.42737

E[Lu] 2094831.60843 1140.40538 7.75147

For a population sizeK = 200 and the ratesβ = 1.5 andγ = 1.0, we summarize in
Table 1 the main statistical descriptors; that is, the mean and the standard deviation of
u, and the expected valueE[Lu].

In Figure 2, we turn our attention to the probability distribution functionP(Lu ≤ t).
In this case, we deal with scenario (iii) withK = 200,γ= 1.0 andβ ∈ {0.5,1.0,1.5}.

Figure 2: The probability distribution function P(Lu ≤ t).
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In the light of the numerical results, the conclusion is thatthe influence of the
scenario is significant. In other words, the underlying distribution and the correlation
are important features which cannot be ignored.

4.3. Correlation between successive events

In this subsection we define a coefficient of correlation between two successive events
of the SD-SIS process. Assume that the initial distributionisτττ and denote the first two
inter-event intervals asX andY. To avoid trivialities, we also assume thatK ≥ 2.

First of all, we observe that the one-step transition probability matrix governing the
embedded Markov chain at event epochs is given by

P =



















1

(−Q−1
11 )q10 0g×g (−Q−1

11 )Q12

. . . . . . . . .

(−Q−1
K−1,K−1)QK−1,K−2 0g×g (−Q−1

K−1,K−1)QK−1,K

(−Q−1
KK)QK,K−1 0g×g



















.

To construct a coefficient of correlation, we must guaranteethe existence of at least
two events before the process reaches its extinction. Thus,if i = 1, we correct matrix
P by imposing that the next event is an infection. This modification only affects to
the blocks associated with the leveli = 1 of Q, which are now given byqc

10 = 0′g,
Qc

12 = Q12 andQc
11 = Q11+diag(eg(1)q10, . . . ,eg(g)q10). As a result, the second row

of the corrected matrixPc becomes(0′g,0g×g,(−Qc
11)

−1Q12,0g×g, ...), while the rest of
row blocks does not vary.

In calculating the correlation betweenX andY, we shall need the marginal density
functions ofX andY, and the joint density function of(X,Y). It is easy to show that
they are as follows:

fX(x) =τττ(1)exp{Qc
11x}(−Qc

11)eg+
K

∑
i=2

τττ(i)exp{Qii x}(−Qii )eg, x≥ 0,

fY(y) =
K

∑
i=1

τττ(i)exp{Qii x}(−Qii )eg, y≥ 0,

f(X,Y)(x,y) =τττ(1)exp{Qc
11x}Q12exp{Q22y}(−Q22)eg

+
K−1

∑
i=2

τττ(i)exp{Qii x}Qi,i+1exp
{

Qi+1,i+1y
}(

−Qi+1,i+1

)

eg

+
K

∑
i=2

τττ(i)exp{Qii x}Qi,i−1exp
{

Qi−1,i−1y
}(

−Qi−1,i−1

)

eg, x≥ 0,y≥ 0,
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where the vectorτττ= (τττ(1), . . . ,τττ(K)) is given by

τττ(1) =τττ(2)
(

−Q−1
22

)

Q21,

τττ(2) =τττ(1)(−Qc
11)

−1 Q12+τττ(3)
(

−Q−1
33

)

Q32,

τττ(i) =τττ(i −1)
(

−Q−1
i−1,i−1

)

Qi−1,i +(1−δiK )τττ(i +1)
(

−Q−1
i+1,i+1

)

Qi+1,i , 3≤ i ≤ K.

The vectorτττ can be readily obtained by noticing that(0g,τττ) = (0g,τττ)Pc.
From the density functions, it is straightforward to find thefirst two moments ofX

andY, as well as the cross expectationE[XY]. They are given by

E[X] =τττ(1)(−Qc
11)

−1 eg+
K

∑
i=2

τττ(i)
(

−Q−1
ii

)

eg,

E[X2] = 2

(

τττ(1)(−Qc
11)

−2 eg+
K

∑
i=2

τττ(i)
(

−Q−1
ii

)2
eg

)

,

E[Y] =
K

∑
i=1

τττ(i)
(

−Q−1
ii

)

eg,

E[Y2] = 2
K

∑
i=1

τττ(i)
(

−Q−1
ii

)2
eg,

E[XY] =τττ(1)(−Qc
11)

−2 Q12

(

−Q−1
22

)

eg

+
K

∑
i=2

τττ(i)
(

−Q−1
ii

)2(
Qi,i−1

(

−Q−1
i−1,i−1

)

+(1−δiK )Qi,i+1

(

−Q−1
i+1,i+1

))

eg.

The combination of the above expressions leads to the desired coefficient of correla-
tion

ρ(X,Y) =
E[XY]−E[X]E[Y]
√

Var(X)Var(Y)
.

The initial distribution can be chosen asτττ = uR, whereuR denotes the quasi-stationary
distribution of the embedded Markov chain between two regular event epochs, with
transition matrixP.

5. Bibliographical notes

Within the list of references we may distinguish between twocategories of contributions,
depending on whether or not they have been cited throughout the main body of this
survey.
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Papers and books of the first category have allowed us to review the main aspects
of the BMAP and its basic properties, as well as related variants, generalizations and
new results in the context of the BSDE approach. The reader has been also addressed to
the existing survey papers by Asmussen (2000), Chakravarthy (2001,2010) and Neuts
(1992) on the PH distribution and the BMAP and, in a more general setting, to the
monographs by Biniet al. (2005), Latouche and Ramaswami (1999), Li (2010) and
Neuts (1981,1989) which present the main results and algorithms of the matrix-analytic
theory.

Regarding to the second category, we associate those paperswe do not cite in
preceding sections to our desire to present a few selected references dealing with the
problem of estimating parameters, multiple types of customers and applications. They
are classified as follows:

(i) Estimation and fitting

Bodrog et al. (2008), Breuer (2002), Breuer and Alfa (2005), Horváth et al. (2010),
Okamuraet al. (2009), and Telek and Horváth (2007).

(ii) Marked arrivals and multiple types of customers

Alfa et al. (2003), He (1996,2000), He and Alfa (2000), Takine and Hasegawa (1994),
and Van Houdt and Blondia (2002).

(iii) Applications

In queueing and communication systems: Artalejo and Gómez-Corral (2008), As-
mussen and Møller (2001), Baeket al. (2008), Chakravarthyet al. (2006),
Choi et al. (2004), Daikokuet al. (2007), Dudin and Nishimura (1999), He
(2001), Kim and Kim (2010), Kimet al. (2010), Lambertet al. (2006), Liet
al. (2006), Lucantoniet al. (1994), Ost (2001), Shin (2004), Squillanteet al.
(2008), Takine (1999), and Tian and Zhang (2006).

In reliability and maintenance models: Chakravarthy and Gómez-Corral (2009),
Frostig and Kenzin (2009), and Montoro-Cazorla and Pérez-Oćon (2008).

In inventory systems: Cheng and Song (2001), Heet al. (2002), Manuelet al.
(2007) and Ramaswami (1981).

In risk and insurance problems: Ahn and Badescu (2007), Badescuet al. (2007),
and Cheung and Landriault (2009).

Since an exhaustive bibliographical work should include several hundreds of papers
on the subject in stochastic modelling, we have elaborated the above list only for
illustrative purposes.
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Appendix: Glossary of notation

To begin with, matrices have uppercase letters and vectors lowercase letters. The
transpose ofA is written asA′. The matrix diag(a1, . . . ,ap) is the square matrix having
elementsa1, ...,ap along its diagonal and zeros elsewhere.

We denote byIp and 0p×q the identity matrix of orderp and the null matrix of
dimensionp×q, respectively. We letep be the column vector of orderp of 1s, and0p

be the row vector of orderp of 0s. The vectorep( j) is a column vector of orderp such
that all entries equal 0, except for thejth one which is equal to 1.

For a square matrixA, the matrix exponential, denoted by exp{A}, is defined by

exp{A}=
∞

∑
k=0

1
k!

Ak.

Consider a matrixA = (ai j ) of dimensionp×q and a matrixB of dimensionr × s.
The Kronecker product of these matrices, denoted byA⊗B, is defined as the structured
matrix of dimensionpr×qs

A⊗B =











a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB











.

Given two square matricesA andB of ordersp andq, respectively, their Kronecker sum,
denoted byA⊕B, is defined as the matrixA⊕B = A⊗ Iq+ Ip⊗B.

The Kronecker deltaδi j takes the values 1 ifi = j, and 0 ifi 6= j.
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Matrix-analytic methods (MAMs) have become an important tool for studying
complex systems. They preserve the Markovian structure andpresent the results in a
tractable manner. These methods are based in two fundamental elements: the phase-type
distributions (PH-distributions) and the Markovian arrival processes (MAPs). Given the
potential of these methods, new results and applications arise frequently, and a survey of
these methods is very useful from time to time. The paper initiates considering the batch
Markovian arrival processes (BMAPs) and describing their properties. The associated
counting processes and the descriptors for quantifying themain quantities are given.
These processes are introduced in a methodological way, considering examples and
particular cases for a better comprehension of how they operate. The application of the
methods in queueing, inventories, and reliability is interesting. Variants of the BMAPs
that are proven to be useful in applications, the MMAPs and the MAPAs are presented.
The BMAPs occupy a central role in the queueing theory, and itis expected that the
study and use of these variants will be increasing with time,not only in queueing,
but in others domains of application. This part of the paper resumes and illustrates the
properties and applications of these classes of processes.The construction of algorithms
and computational programs would complete the present paper; it is a challenge for
specialists in these topics.

The introduction of block-structured state-dependent event (BSDE) approach for the
treatment of stochastic models is an important contribution. Based in the Markovian
structure by means of the introduction of phases, this approach allows constructing
stochastic models for complex systems. It can be used in the discrete and continuous
cases, and some Markovian stochastic models governed by particular MAPs can be
deduced from the BSDE approach. The application of the BSDE to the epidemic mod-
els illustrates the power of the method, and contributes to consider non-homogeneous
stochastic models, involving non-exponential times and the existence of correlation be-
tween successive events. The introduction of the non-homogeneity in the MAMs en-
larges the possibility of applications that would be very difficult to do following another
methodology. The results are complex, but they can be presented in an algorithmic form
as a consequence of the MAMs. The incorporation of a methodology and algorithms to
elucidate the structure of the BSDE would be useful in the application of this technique
for solving problems in different domains of activity.
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In the study of stochastic models three are the elements to beconsidered: modelling,
applications, and inference. Modelling and applications must involve methods to be
tractable mathematically. The present survey completes and updates previous ones
related to modelling and application. Given the complexityof the methods and the
speediness of the applications, this is an excellent paper to know the state of the art
of the Markovian arrival processes at the present moment.

Thinking of the applications, the paper can be extended in aspects of inference.
Essential for the use of MAPs in practice are the numerical algorithms to fit these
processes, and the statistical methods for applying to dataset. In the Bibliographical
notes in the paper some references about estimation and fitting are given. Related to the
fit of phase-type distributions and to the Markov-modulatedPoisson process (MMPP),
the paper of Asmussen (1997) shows that the EM algorithm can be successfully
applied to maximum-likelihood (ML) estimates in Markov models, even in the case
of incomplete data, and computational programs for the treatment of the data are
constructed and their properties commented. The paper of Asmussen alludes to the
previous one of Ryden (1996), where the problem on identifiability and the order of
the involved Markov processes in these two particular casesis presented. An area for
future research is the inclusion of problems related to the identifiability of general MAPs
into the matrix-analytic methods. This will allow to extendthe use of MAPs and solve
problems that cannot be addressed with the actual knowledgeof the inference about
these processes.

Asmussen (1997). Phase-type Distributions and Related Point Processes: Fitting and Recent Advances. In:
Matrix-analytic methods in stochastic models. Chakravarthy, S. R. and Alfa, A. S. (Eds). Marcel
Dekker, New York, 137-149.

Ryden (1996). On identifiability and order of continuous-time aggregated Markov chains, Makov-modulated
Poisson processes, and phase-type distributions.Journal of Applied Probability, 33, 640-653.
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The paper mainly presents a survey of Markovian arrival process models. It is always
hard to decide the level of knowledge of the aimed audience ofa paper or a scientific
presentation. I think that the goal of a survey paper should be to introduce the main con-
cepts of a field to those who are not that familiar with them yet. Assuming it is the goal
of this paper I recommend to be more detailed and precise withthe introduction of the
applied concepts, a list of explicit points for considerations are forwarded to the authors.

Section 2 starts with the introduction of BMAPs. It is based on a short summary of PH
distributions. I would recommend to unify all PH distribution related content into this part.

In a paper like this I prefer derivations starting from a limited number of initial
expression than list of final expressions! The majority of the presented complex expressions
on MAP properties can be obtained in simple steps from the joint density functions. I
recommend at least indicating how to obtain the presented properties (e.g. on page 113).

The relation of structured Markov processes, like quasi birth death processes (QBD),
and those generalization of MAPs which account for the arrival and departure of cus-
tomers (HetSigma, BSDE) is not expressed in the papers. These models can be viewed
as queueing systems resulting structured Markov processes. As a consequence efficient
computational methods developed for the analysis of structured Markov processes can
be applied for the analysis of these arrival processes. A discussion about this relation
would further enhance the paper.

The paper introduces the basic theory of various Markovian arrival processes and
presents several examples to indicate the wide spread applicability of this versatile set of
models. To make this picture complete it would be interesting to add the basic limitations
of these models which needs to be considered when applying them in practice.

Some of these limitations are inherited from PH distributions. The most well know one
is about the coefficient of variation of the inter-event time distribution which is greater or
equal to 1/n when the state space of the modulating process is composed byn state.
An other typical feature of these models is the exponential asymptotic decay. It holds
for a lot of properties like inter-event time distribution,autocorrelation, lag correlation.
Beyond these two most well-known ones a set of further practical limitations are published
recently. A summary of these limits would be a nice contribution of the manuscript.

Consequently, real systems with quasi deterministic inter-event times or strange
decay behaviour or any other property in conflict with the limits of these models cannot
be closely modelled with Markovian arrival models. But fortunately also in these cases,
in accordance with the denseness property (Section 2.2.4),a computational complexity
– accuracy trade-off can be found by increasing the size of the Markovian model.
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First, I would like to congratulate the authors on this excellent comprehensive review
on BMAP. This review paper provides readers with easy accessto all the important
aspects of the BMAP, from its definition to its basic properties; from its history to its
extensions; from theoretical aspects to applications.

Applying BMAP in modelling is popular not only because it is anatural generaliza-
tion of the Poisson process and captures correlations between arrivals, but also because
of the more important fact that the use of BMAPs in modelling often leads to a matrix-
structured formalism, to which the powerful matrix-analytic method can be applied.

The variants and generalizations touched on in the review paper have been well
chosen by the authors, as they also lead to matrix formulations for which analysis
can be carried out in terms of matrix-analytic methods. The contents of Section 4 are
interesting, though structurally this section seems sidetracked from the main focus of
the review. The variants and generalizations of BMAPs couldhave also gone in a few
different directions. One of such alternatives is a comparison, of modelling properties, of
the arrival models discussed in the review paper and other commonly seen arrivals, such
as arrivals with long-range dependence, Gaussian queues, periodic arrivals and possibly
others.

Markov additive processes deserve special attention amongall generalizations of
BMAPs. The reason for this goes back to the core of the matrix-analytic method. The
quasi-birth-and-death (QBD) process is considered an excellent example for explicitly
demonstrating some of the key techniques in the core of the matrix-analytic method,
such as duality, probabilistic measures under taboo or censoring technique. A compre-
hensive summary of QBD processes can be found in Latouche andRamaswami (1999).
These techniques, together with Wiener-Hopf factorizations including RG-factorizations
and block-form generating functions (or exponential change of matrix (measure)), lead
to a concise treatment of the more general matrix-structured paradigm, the GI/G/1 type
of matrices in parallel to that for the QBD process, for example, see Zhao, Li and Braun
(1998, 2003). The sequence of the non-boundary matrices in the GI/G/1 paradigm leads
to a Markov additive process with finitely many background states. It is of interest to
notice that the above mentioned techniques are in fact key general tools and methods for
queues in applied probability, for example, see Asmussen (2003).

Standard matrix-analytic methods deal with matrices of finite size, like BMAPs,
since the method, in both theoretical and computational aspects, relies on properties of
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finite dimensional linear spaces or finite matrices. Attempts to generalize finite matrices
to infinite ones have a long history dating back to the early 80s, including Tweedie
(1982), Ramaswami and Taylor (1996), and Shi, Guo and Liu (1996), among others.
Although basic formalizations stand valid for models with infinite matrices, such as
the operator-geometric solution and generalized phase type distributions described by
an absorbing Markov chain with infinitely many states, thereare two main challenges
when finite matrices are extended to infinite ones: (1) many key properties from linear
algebra are no longer valid for infinite matrices and insteadinfinite dimensional linear
operators now play a key role; and (2) additional non-trivial efforts should be made
to address computational issues of the R- and G-measures since they are no longer
finite matrices. Recently, analysis of exact tail asymptotics in the stationary probability
distribution for a model whose non-boundary matrices defines an additive process with
an infinite background space has been a central topic in termsof (extended) matrix-
analytic methods. Tail asymptotics can lead to various performance bounds and accurate
approximations. The core of extended matrix-analytic methods consists of the same
general tools used in the applied probability mentioned above, such as limit theorems for
Markov renewal processes, censoring, RG-factorizations,duality, exponential change
of matrix. These tools and properties of Markov additive processes are the key for
the success of expanding matrix-analytic methods. References in this direction include
Takahashi, Fujimoto and Makimoto (2001), Haque (2003), Kroese, Scheinhardt and
Taylor (2004), Miyazawa (2004), Miyazawa and Zhao (2004), and He, Li, and Zhao
(2009), among others.

Finally, it was a great pleasure for me to be invited as a discussant for this interesting
review paper.
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Rejoinder

First of all, we would like to thank the three invited discussants for the time spent
commenting on our paper. We appreciate their constructive and insightful comments,
which have made valuable contributions to the understanding of various interesting
problems.

We now briefly respond to some of their comments.

Comments from Prof. R. P érez-Ocón

Prof. Ṕerez-Oćon comments on the important role played by the matrix-analytic for-
malism and the Markovian arrival processes in stochastic modelling. We thank the dis-
cussant for his positive and kind remarks on the recently introduced BSDE approach.
At a first glance, the BSDE approach and the matrix-analytic methods present common
elements; e.g. structured Markov chains, phase method. Although the BSDE approach
is closely related to the methods developed for structured Markov chains, the aim of the
BSDE approach is to reduce the cost caused from an excessive dimensionality in the
matrix representation, which frequently occurs in non-homogenous settings where an
arbitrary number of MAPs and/or PH distributions are simultaneously involved. In this
sense, the BSDE approach goes beyond the commonly used matrix-analytic methods.
Thus, we completely agree with the remarks of the discussantabout the need of devel-
oping methodological and algorithmic tools for practical use of the BSDE approach. In
particular, efforts leading to a suitable treatment of the positive recurrence of infinite
structured non-homogeneous Markov chains would be welcome.

Other relevant points commented by the discussant are the fitting and inference
aspects. We touched these matters only in the bibliographical notes, where some selected
references were given. We are happy that the discussant is adding basic references that
will assist readers who are interested in pursuing this subject further.

Comments from Prof. M. Telek

Prof. Telek pointed out in a separate communication a numberof helpful comments to
improve the paper presentation. These comments have been partially taken into account.
We have also incorporated some additional citations in the text, which should be helpful
for those readers desirous of knowing how to derive the presented properties.
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In the opinion of the discussant, the HetSigma and the BSDE approaches can be
viewed as queueing systems resulting in structured Markov processes. Regarding to
the HetSigma approach, Chakka and Do (2007) clearly assert that transitions from a
level to any other level are possible. Therefore, the matrixstructure is general and the
standard matrix-analytic methods cannot be used directly.We stress that our interest
in the HetSigma approach comes from the fact that both the arrival and the service
processes are modulated by the same Markov process. On the other hand, the BSDE
approach is intended to construct either a specific part (i.e., the arrival process) or
a whole stochastic model in state-dependent frameworks where neither a well-posed
matrix structure or the reducibility of the resulting Markov chain are assumed. In this
setting, it is our opinion that the possibility of using the classical matrix-analytic tools
is limited. Further methodological and computational efforts are definitively needed, as
it was mentioned by Prof. Ṕerez-Oćon.

The discussant accurately points out some limitations of the PH distribution and con-
sequently of the BMAP, whose distribution of inter-arrivaltimes is of PH type; see Sub-
section 2.3.2 of the paper. This fact leads to a geometrically decaying correlation struc-
ture which makes the MAPs less suitable to model certain correlated input processes.
Despite of this difficulty, Markovian arrival processes have been also used to model ar-
rivals with long-range dependence whose autocovariance function decays slower than
exponentially; see the references given in our reply to Prof. Zhao.

As a general comment, it should be noticed that catching properly some real inputs
with time dependence implies to use MAPs of an excessive large order. This important
issue connects with the computational cost inherent to the matrix-analytic formalism.
Thus, the use of MAPs in practice is limited by the existing fitting methods. The
development of good fitting methods for MAPs is a very interesting research topic,
which has received a significant attention during the last years. In addition to the
references in Section 5 of our paper (see also the comments byProf. Ṕerez-Oćon), we
now just add one more recent paper by Casale et al. (2010). In this paper, the MAP
fitting is based on the Kronecker product composition method. The paper provides
an exhaustive study that includes a discussion on some fundamental difficulties of
MAP fitting. In another related work, Bause et al. (2009) provide an experimental
comparison between MAPs and ARMA (auto regressive moving average) and ARTA
(auto regressive to anything) based models. The authors conclude that MAP fitting is
most demanding in terms of running time.

Comments from Prof. Y.Q. Zhao

Prof. Zhao points out that the paper did not give a complete survey on the possible
variants and generalizations of the BMAP. More concretely,the discussant mentions
arrivals with long-range dependence, periodic arrivals and Gaussian queues as other
alternative arrival processes. There exists a number of papers (e.g. Andersen and
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Nielsen (1998), Casale et al. (2008), and Salvador et al. (2004)) where Markovian
arrival processes and, specifically, superpositions of MMPPs are used as a very versatile
tool to model variable packet traffic exhibiting long-rangedependence. The Hurst
parameter introduced by Willinger et al. (1995) is frequently used to measure long-
range dependence. Periodic arrivals are related to time-inhomogeneous structures; see
Section 3.4 in the paper. We agree that periodic arrivals have interest in modelling
communication networks. These arrival inputs include, among others, the periodic
Poisson process (see Margolius (2007)) and the periodic BMAP (see Breuer (2003)).
Despite of the interest in Gaussian sources and Gaussian queues, it is our opinion that
they are not commonly analyzed through those techniques belonging to the core of the
matrix-analytic methods. We would recommend the book by Mandjes (2007) to the
interested readers.

Other important comments from the discussant are regardingto the relevance of a
variety of techniques, such as duality, taboo and censoring, andRG-factorizations, in
the core of the matrix-analytic methods. The discussant accurately makes observations
on these techniques as in fact very general and powerful methods for investigating
challenging problems including generalization from finiteblocks to Markov chains with
infinite blocks. Prof. Zhao provides a set of references thatdeal with this issue, putting
emphasis on tail asymptotic results. These comments are more relevant to matrix-
analytic methods in general, rather than Markovian arrivalprocesses. We thank Prof.
Zhao for this valuable addition.

Finally, we would like to thank once again the discussants. We sincerely hope
that our review paper and their comments will be of interest for the audience of this
journal. We also take this opportunity to thank the Editor-in-Chief, M. Guilĺen, and the
Executive Editor, P. Puig, for their kind invitation to write the paper and for organizing
the stimulating discussion.
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