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Abstract. We give a rigorous proof that under certain technical conditions the memory
effects in a quantum-mechanical master equation become negligible in the weak coupling
limit. This is sufficient to show that a number of open systems obey an exponential decay
law in the weak coupling limit for a rescaled time variable. The theory is applied to a fairly
general finite dimensional system weakly coupled to an infinite free heat bath.

§ 1. Introduction

In the last fifteen years there has been a growing realisation by
physicists of the importance of master equations for the study of the time
evolution of open quantum-mechanical systems. As well as providing
a suitable framework for the consideration of the fundamental property
of irreversibility [1], they have proved an important technique in the
analysis of a variety of models, such as harmonic oscillators and lasers.
It becomes clear in the excellent survey article of Haake [2] that one
of the main reasons for the usefulness of master equations is the radical
simplification obtained when memory effects are neglected.

It is rather surprising, therefore, that in the recent rigorous studies
of these models, the use of master equations has been avoided. This
appears to be because, although it is possible to give a rigorous proof
of the master equation itself, conditions under which the memory effects
can be neglected have not been found.

In this paper we give a rigorous proof that the time evolution of an
open system is Markovian in the weak coupling limit. As the coupling
coustant converges to zero we rescale the time variable to compensate
for the slower decay of the system. The theory is developed in a general
form and its application to a variety of models is outlined. The case of a
general finite-dimensional system weakly coupled to an infinite free
heat bath is investigated in some detail and relaxation to the Gibbs
state is proved.
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§ 2. The Abstract Theory of the Weak Coupling Limit

In order to establish our notation we start with the derivation of the
master equation. For motivation and a historical discussion we refer
the reader to [1,2]. We let P, be a projection on a Banach space #
and put P, =1— P,. We refer to #, = P,# as the system and to 4,
= P, 4 as the bath. We suppose that the free evolution of both is deter-
mined by a strongly continuous one-parameter group U, of isometries on
2% which leaves each of #,, #, invariant. The infinitesimal generator Z
is then closed and densely defined and

[Z,Py]=0. 2.1)

We define Z; = P, Z for later use.

We introduce a perturbation 4 which is supposed to be a bounded
operator on 4. Writing A;; = P,AP;, we suppose from here onwards
that

Apgo=0. 2.2)

We let U} be the one-parameter group generated by Z+ A4, so that
for all ¢

(U4 P]=0. (2.3)

We also let ¥;* be the one-parameter group generated by Z + 14, so
that by a well-known formula [3]

t
V,’1 = Uf + A j U[’I,S(AOI +A4,4) VS’1 ds. (2.4)
=0

s

In this and all subsequent integrals, the integrand is everywhere bounded
and strongly continuous, so no difficulties of interpretation occur.
From Eq. (2.4) we can obtain

t
Pol/tiPO:UtAP‘)"i'/{ j‘ Ut};sA01P1 I/slP()dS (2.5)
5=0

and

t
P1 I/tlpozi j‘ U[l_sAlopoVYlPodS. (2.6)
=0

5

Putting W;* = P, V,* P, we obtain by substitution

t N
Wi=UrP+ 4% | | UL Ao UL, Ao Wrduds.  (27)

s=0 u=0
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Using Eq. (2.2) we finally obtain

t s
Wr=U+A | | U_Ap UL, A W duds (2.8)

s=0 u=0

where we have dropped reference to P, since we shall from now on work
entirely within 4, .

This is an integrated form of the master equation constructed by
Nakajima, Prigogine, Resibois, and Zwanzig. To see this we put ¢, = W,*p
where ¢ € 4, to get

| U U2 Ao, duds) 29
0
so that formally

0o,
ot

t
=ZO¢t+12 j AOl Utl~uA10(pu du. (210)
=0

u

However we prefer not to work with this equation because it necessitates
consideration of domain questions. It does indicate that in Eq. (2.8)
the integral contains memory terms. We now come to the problem of
going to the weak coupling limit.

Since the memory term is smalil compared with the free term we
change to the interaction representation before letting A—0. Putting

Yr=U_, W (2.11)
where 7 = 12t we obtain
Yr=1+ | H(hi—0,0) Y do (2.12)
=0
where
H(,7,0)=U_,», K(h1) U, -2, 2.13)
and
A 2¢
K(A,1)= [ U_, Ao UfAdx. (2.14)
x=0

If the kernel H(A, 1, o) converges as A—0 to an operator H on 4%,
which is independent of © and ¢ then the convergence of V* to a limit
operator Y, as A—0 may easily be proved. However upon examining
the dependence of H(4, 1, ¢) on ¢ it becomes apparent that such limiting
behaviour is unlikely, and that a more sophisticated approach is
necessary.
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We now restrict attention to the case where %, is finite dimensional.
If {Q,} are the spectral projections of Z, on %, then we can write

P, U, Z Q, e (2.15)
where the w, are distinct and real. If X is any operator on %, we define
=2.0.X0, (2.16)
or, equivalently
‘ t
X' = %Lm";? [ UXU_ dx 2.17)
-1

which makes no reference to the spectral projections of Z,.

Theorem 2.1. Suppose that for all t, >0 there is a constant ¢ such
that

IK(4, )| Sc (2.18)

provided |A| £1 and 0t =rt,. Suppose also that there is a bounded
operator K on % such that if 0 <ty <1, <0 then

lim |K(2,7) - K| =0 (2.19)

uniformly with respect to T if 1o St =<7t,. Then if B, is finite-dimensional
andbe 4%,
lim Y5 — Y.b|| =0 (2.20)

uniformly on each interval 0 £t £ 1., where

Y, =exp{K't} (2.21)
where
KU = UK (2.22)

as operators on %, for all t e R

Proof. We let ¥~ be the Banach space of continuous %,-valued
functions on [0, 1, ]. If 5, : ¥ — ¥ is defined by
(A, 1) f H(At—0,7) f(o)do (2.23)

then f, = Y b is the solution of
Li=g+#, 1, (2.24)
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where g(t)=b for 0< 1 <t,. We now define #,: 7" —7" by
BN@= | VoK Uy 20 f0)do (225)
By Egs. (2.13) and (2.19) it is easy to show that (#, — ,) converges
strongly to zero as A—0.
Using Eq. (2.15) we can put
)6 = T 0,K0, I eeserefode. 026)
As A0 this converges uniformly for 0 <71 =1, to
hz) = ZﬁQ,;KQaéal, jof(o)da. (227)
Therefore #;, and hence 1’ L, converges strongly to A : ¥ —%" where
(A f)(z)= i (2.28)

Now f(z) = Y.b is the solution of

f=g+Xf (2.29)
50
f=g+AHg+H3g+ (2.30)
and a similar equation holds for f,. Therefore
Ifi—=flls Y 147 g—A"g). (2.31)
n=1

Since ¢, converges strongly to " each term of this series converges
to zero. Also since J¢; and . are Volterra integral operators

|59 —A"g) < 2lgll c"<i/n! (2.32)

Therefore f, converges in norm to f as A—0.
A simple condition for the existence of the limit operator is given
below.

Theorem 2.2. [f A;, =0 and
{ 4oy UcAyol dx < o0 (2.33)
0
then the conditions of Theorem 2.1 are satisfied with

K= [ U_ Ay U, Ay, dx. (2.34)
0
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Proof. This is immediate once it is realized that when 4,4, = A;; =0,
the operator U/ is independent of 4.

In order to deal with the more physically interesting case where
Ay, #+0 we introduce the notation

A4, =U_, AU, . (2.35)
Theorem 2.3. Suppose that

[ 1Py Ag AP, dt<o0. (2.36)
0
Defining

t th-1
a,)= | ... | PyAgP A, P,..P AP AP, dt,...dty (2.37)

to=0 =0

suppose that for n2 1

la, ()] < ¢, "2 (2.39)
w0
where the series Y. c,z" has infinite radius of convergence. Suppose also

n=

1
that for some ¢>0,d, and all t =0
la, Ol £d, 27?75, (2.39)

Then the conditions of Theorem 2.1 are satisfied with
K= [ PyA AP, dt,. (2.40)
0
Proof. Expanding U} as a power series in A we obtain

Ky —KIS | |PodoAPyldto+ Y 2la,@).  (241)
A 2¢ =

n=1

By Eq. (2.36) the integral vanishes as A — 0 uniformly for 7 in any compact
subset of the open interval (0, o0). By Eq. (2.38) if 0 <7 < 1, the series is

dominated by the convergent series Y. ¢,7,"2 But by Eq. (2.39) the nth
n=1

term of the series is also dominated by
A2ed, Ty e (2.42)

which converges to zero as 4—0. Therefore the series converges to zero
uniformly if 0 <t = 1.

The above theorems complete the abstract theory and we give some
remarks and applications.
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(1) The Wigner-Weisskopf Atom. The solution in [4,5] of the
evolution equations for a harmonic oscillator weakly coupled to an
infinite free heat bath reduces to a single-particle problem for the Wigner-
Weisskopf atom. This and its multi-dimensional version [6], can be
solved in a few lines using the above formalism. We remark, however,
that the results obtained in [4, 6] are stronger than those given here in
that the convergence was shown to be uniform in time. This is very
important when discussing the interchange of the limits A—-0 and
I —00.

(2) Stochastic Differential Equations. There is a strong formal
similarity of this work to a problem on stochastic differential equations
on a Banach space %,. See [7]. If (Q,dw) is a probability space then
one can define

B =1(Q, B,,dow) (2.43)
and let the projection P, be
P f= {j)f(w) dw. (2.44)
The interaction is then
(A1) (w) = A(w) f(w) (2.45)

where A(w) is a “random” operator-valued function, and the free
evolution is

(U fHw) = f(tw) (2.46)

where toe Q for allteR and we Q.

(3) On the Condition || P} = 1. If the condition || P, || = 1 were satisfied
than a lot of the technical trouble involved in verifying the conditions of
Theorem 2.1 could be avoided. However in the example of the next
section it may be seen that || P, || = 2. This difficulty also arose in [8] and
was the reason for the condition on the spectrum of (1 — P) L(1 — P) in
Theorem 3.3 of that paper.

(4) Extensions of the Theorems. The theorems can be extended to
certain cases where 4, is infinite dimensional and the operators involved
are unbounded. However, a necessary restriction is that Z, has discrete
spectrum, since otherwise the operation & is not defined.

(5) The Origin of Irreversibility. We started with an evolution
equation on # which is fully reversible and ended up with a semigroup
on %,, which represents an irreversible dissipative process. The origin
of the irreversibility in this case clearly lies in the initial conditions
rather than in any dubious procedure such as coarse-graining.
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§ 3. System in an Infinite Free HeatBath

We show that an N-level atom weakly coupled to an infinite free
heat bath relaxes to equilibrium in a Markovian fashion and that the
equilibrium state is its Gibbs state at the temperature of the heat bath.
This behaviour has already been proved in two particular cases [4, 9].
Our contribution is therefore to show that the result is of a very general
type, being essentially independent of the nature of the system, and of
whether the coupling to the bath is linear in the field operators (at least
in the fermion cases). The problem could, as in [9], be solved without
the use of master equations, but we believe they form a useful device
for extracting the terms which contribute to the limiting behaviour.
We make comments on possible variations of the model at the end of
the section.

The atom is described by an N-dimensional Hilbert space %
with a free Hamiltonian H,. The heat bath is described by a quasi-free
representation of the canonical anticommutation relations (CAR'’s)
with an infinite number of degrees of freedom [10]. To be specific we
let the complex Hilbert space ¥~ be the test function space and S the
single particle Hamiltonian on #". For each fe ¥ we have a bounded
operator ¢, on a space A satisfying the CAR’s

P, + @9, =2Re{f,9> 1. (3.1)

There is given a cyclic vector € in ., and a Hamiltonian Hy on A
such that

H,Q=0 (3.2)
and

ot o(f) e Bt — (p(eiStf) . (3.3)

The representation is determined by its correlation functions as follows.
For any integer n we define the set 2, of pairings as the set of all permuta-
tions p of (1, ...,2n) such that

pRr—1)<p2r) and pQR2r—1)<p(2r+1) (3.4)

for all . Then writing <...» for the expectation with respect to @,

n

<o(fi)...0(f2)) = Z signp n <§0(fp(2r—1))(9(fp(2r))> (3.5)

pePn r=1

@) @(fons1)> =0. (3.6)

while
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The formula for the two-point functions at the inverse temperature f is

Cp(No@s=L{fg>+{(+e g f)
—{(1+e "5 fg>.

The Hilbert space for the composite system is A = X, ® A and the
Hamiltonian is

(3.7)

where the interaction term is

H=0Q%. (3.9)

Here Q is an arbitrary self-adjoint operator on £ and the self-adjoint
operator @ is given by

P=ip(f)e(/-1) (3.10)

where the test functions f; and f_; are supposed to have disjoint energy
spectra, that is

i, f1>=0 (3.11)

forall teR.

We now state the problem in the terminology of Section 2. Let the
Banach space # be the space of trace class operators on " and let 4,
be the space of trace class operators on J,. The projection P, : # — %,
is the partial trace, which is determined by

tr[Po(o) X1 =trle(X®1)] (3.12)

if ¢ is an arbitrary trace class operator on % and X is an arbitrary
bounded operator on .#,. For this to be a projection we have to identify
B, as a subspace of 4, and we do this by the injection ¢ - o ® ¢ where ¢
is the state |2) <Q| on A5.

The free evolution is the one parameter group of isometries on %
given by

U, (@) = e” ot g P! (3.13)
whose infinitesimal generator is formally
Z(g)=—i[Hy,0]. (3.14)

The necessary and sufficient condition for U, to leave %, and %,
=(1 - Py) # invariant is that HzQ =0, which we have assumed. The
perturbation introduced is the derivation 4 on % given by

Al =—-i[Q®2.0]. (3.15)
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The evolution group of the total system is therefore
Vo) = e g etht
The condition Ay, =0 is satisfied provided
{PQ,2>=0
and this is a consequence of Egs. (3.10) and (3.11).

(3.16)

(3.17)

We have now set up the problem in the notation of Section 2 and
have to check that the conditions of Theorem 2.3 are satisfied. We first

introduce the following abbreviated notation.
Ar: U-trA Utr’ Qr:eiHAtrQe—iHAtr

q; — eiHBt,- @e—iHBrr
@, (f) = o(f) e = (e f)

and define
h(t) =P @e ' PQ, Q)

hi(t) = <™ o (f) e o (f) Q, Q) .
It may easily be proved from Egs. (3.5) and (3.11) that
h(t)=h, () h_, (2).

Theorem 3.1. If T) thy ()] dt < o then
0
[ 1Py Ao AP, | dtg<oo.
0

Proof. If g € %, then
PyAgAPyo=~P[Qo®@P, [Q®P,0®0]]
=—0Q0Qotr[P,Po]+ Q0@ tr[Po0 D]
+000 tr[B0d,] - 000, tr[c D P,].
Therefore
1Po Ao APyl < 41Q11* hto)l
S 4012 1o thy (o)l
which immediately yields the result.
Lemma 3.2. a,,, (1) =0 for all t 2 0 and

t f2n-1

a3 ()= [ .. | PyAgA P Ay AP ... P Ay, APy dt,,...d1,

to=0 t2n=0

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

. (3.24)
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Proof. Let N be the operator counting the number of particles whose
energy lies in the energy spectrum of f;, so that [N, ¢(f_;)]=0, and
define & : # - % by

8@ = (1@ ot @e ™).
Then for all g€ B, and all t =0

EU,=UE, EPy=P,&

(3.25)
EA=—A&, €Ep=09.
The statements of the lemma follow by applying the symmetry & to the
integrand.
In the following we shall occasionally write A,,,, for A4; this is
equivalent to introducing a dummy variable ¢,,,, =0.

Lemma 3.3. Let h, be integrable on [0, 0o]]. Then if 7 is any permutation
of (0,...,2n+1)

tan-1 1

t
S oo f Ik 1(tep @n = Lepren) dlzy...dlg (3.26)

p to=0 t;_y.—O =0

S fh T2 (1)

Proof. For every permutation ¢ of (0, ...,2h + 1) we obtain a pairing
by associating ¢(2r) with ¢(2r + 1) and then reordering appropriately.
After counting repetitions this shows that the integral is dominated by

i t tzn-1 B
) D), f o H thy (teiry — to@ripl Aty dig
geSon+2 : = t2n=0r=
{ ¢ (3.27)
= 71 11)! jo j H hy (t2, — b2y 4 )l iy, diy
T fo= t2,=0 r=

since |h,| is an even function. Integrating with respect to the even variables
and remembering that t,, ., = 0, the result follows.

Theorem 3.4. If ||k, ||, < oo then Eq. (2.38) of Theorem 2.3 is satisfied
for constants c, of the required type.

Proof. We put
Pr(0)=9,0, P}(0)=09, (3.28)

and similarly for Q and A, so that

A0 =47 + A4 (@ =(—iQr &y +iQf ) (o) - (3:29)
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We now expand

i f2n—1
a,,(t) o= f v ) Po(AS+ AR AT+ AR - Fy)...
tg=0 tan=0 (3.30)

(1= Py) (A5, + AR, (AY + A®) Py o dt,,...dt,
to obtain

t fan-1
4, (o= Y signa [ .. [ PyAB© AP0 48

a,f to=0 t2n=0
APV Py ARG | 4Baim ) p gRG (331)
2 2n+1
AR 480 P gy gy

In this equation we sum over all functions £:{0,...,2n+1} > {L,R}.
We sum over all sequences «(0), ..., x(k+ 1) of even integers such that

O=a@)<a(l)< - <alb)<a(k+1)=2n+2. (3.32)

We have put signa = (—1)¥ and have introduced the dummy variable
tan+ry =0.

It may be observed that the operators in the above integral are

tensor products and that P, acts only on the second component. This
leads immediately to the estimate

i tan-1

|1azn(t)9|1§ZﬂHQHZ"”HQH § oo § digy,..di.

=0 tan=0
k
[T tr[@fe b . @bl o] (3.33)
j=0
t oan—1

=Y ler el | ... | Ilumty...ty,)dty,...dty  (3.34)
B

to=0 t2,=0

where
k
Ho,mtg...t) = ]—[ K(Pn(aj)... qﬁ,,(aj+1_1)>| (3.35)
i=0

and the permutation n of {0, ...,2n+ 1} depends on a and B.
We now use the quasi-free hypothesis (for the first time) and Eq. (3.11)
to deduce that

Hio,m,ty .. 1) S ’|f—1”2n+2 1;[0 K(Pn(aj)(ﬁ)---(Pn(aj+1—1)(f1)>| (3.36)

UL 072 S TT K@npan () @aparan ()] 337)
p r=0
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The use of Lemma 3.3 now yields

laz, (0] = Z,; QU™ 2 S 122 " [y 71 /277 (n + 1)

(3.38)
S 22MTHQIPTT R AT e I i+ 1)
which is the required estimate.
Theorem 3.5. Suppose that for i=1,2 and some ¢ >0
[ Ih e (1 + ]t de<oo. (3.39)
0

Then Eq. (2.39) of Theorem 2.3 is satisfied.

Proof. This is harder than Theorem 3.4 in that we must make use of
some cancellations of the situation, but easier in that we do not need to
control the dependence of d, on n.

We replace Eq. (3.31) by

t tan-1
- 2
ar, (o= Y signa | ... [ PyAf@OAfD AP
a,p to=0 t2,=0

-1 -1 +1 2n+1
...Afl("_‘l >POA£,<“”...A£,§°2<1 )PO{Af,i“k)Af,fﬁ"l >...A§;+"1 )POQ
+1 2n—-1 2 2n+1
- Ag;ﬁak) Ag:ﬂcl )~~~A123£1—n1 )Po Ag(n " Ag(rﬁt’l )POQ} (3-40)
dty,...dtg .

In this equation f is as before but we sum over all sequences ¢ (0), ..., a(k)
of even integers such that

O=a@)<a(l)< - <alk)y<2n. (3.41)
As before this leads to the estimate

t tan-1

Ilazn(t)QlléZﬁHQIl“”HQII oo § o de,dy.

0=0  1,=0
k—1 L L
; + -
T [tr[@2 G .. 61D g
j=0

+1 2n+1
jtr [@E @BV ph22E 1 6]

(3.42)

+1 2n-1 2 2n+1
— 1 [@B DAV DAZRD 6] [ BAZY ARV o).
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Using the quasi-free hypothesis and Eq. (3.11) the last term of Eq. (3.42)
can be written as

J(ﬂa tk) tk+1’ "'>t2n)

=| [T trlof™ () b (... o8 (f) o]
= (3.43)

= I trlof(f) ... 0§27 D (f) o] e [@fP7 (1) 2Rt V(£ 0]

i=+1

=laya_; —bycib_yc 4|
in an obvious notation,
Slay —biegllay[+1biedllay —boyey|. (3.44)

Now again using the quasi-free hypothesis

Tty st s Y 12 2= ]
p

i=+1 r=4a

(3.45)
: |<(Pp(2r)(fi) (pp(2r+1)(fi)>t

where X, indicates the sum over all pairings p of {o,, 0, +1,...,2n+1}
such that 2n is not paired with (2rn + 1). Therefore

lasa IS 3 X X7 QI 2 f*?

a,pi=+1 p

tan—-1 B

So | H hi(tp2m = tpzrr )l dlgy. . (3.46)

2,=0 r=

where X, indicates the sum over all pairings of {0,...,2n+1} such

that 27 is not paired with (2rn 4+ 1). Carrying out one-half of the integra-

tions we see that each integral is dominated by an expression of the form
t Sn-1

(hllp § ..o | th(slds,...dso (3.47)

s0=0 $h=0

where 1<k <n,

t
<const. | (¢£—sy ¥ |h(s) s*ds
= (3.48)
Zconst.t"™* [ s'|h(s) ds.
s=0

Together with Eq. (3.39) this proves the required estimate.
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This completes the proof of all the estimates required for the applica-
tion of Theorem 2.3 to this model. We conclude this section with some
comments on possible variations of the model. The interaction can be
changed by putting

H=0®¢(f)...o(f)"" D2 (3.49)

provided the test functions f;, ..., f,€ ¥ satisfy

KeStf, f>=0 (3.50)

for all » # s and all t % 0. In the more singular Boson case, however, one
seems to be restricted to the case n=1, or possibly n=2, because of the
difficulty of even proving the Hamiltonian is a self-adjoint operator.
The proof can be extended to the case where the system is coupled to a
finite number of heat baths at different temperatures. The space £,
need not be finite-dimensional provided Q is bounded and H, has
purely discrete spectrum. The theory can be developed in an algebraic
form, as in [11], without any essential changes.

§ 4. Dynamics of the Limit System

We have shown that the model of the last section satisfies all the
conditions of Theorem 2.3 provided Eq. (3.39) is satisfied. The operator
K* on the space %, of density matrices on % is given explicitly by

a

1 =
K'(o)= lﬁ%‘g}sia t=jo {~ Q4,00 h(t) @.1)

+ Qt+sQ Qsm+ Qs@Qt-f—sh([)_-QQsQH-sE(—t)} dtdS

where
Q,=eHatQ ¢ Hat 4.2)
and h(t) is defined by Eq. (3.19).

Lemma 4.1. The function h(t) is continuous and integrable, and its
transform satisfies

h(—x)=e P*h(x) (4.3)

for all x e R, where  is the inverse temperature of the heat bath.
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Proof. The integrability of h(t) follows from Egs. (3.20) and (3.39).
By Eq. (3.7)
hi(t) = (e fi fo + KU+ P57 f e f)
— (L +e P e S £
so by the spectral theorem
hi(—x)=e P hy(x). (4.5)
Now by Eq. (3.20) and Fourier analysis

4.4)

= | RO - dy (4.6)

which together with Eq. (4.5) yields Eq. (4.3).
We now expand

QtEeiHAth'iHAr: zAwefiwt (47)

so that the operator 4, on £, is zero unless w is the difference of two
eigenvalues of H,.

Theorem 4.2. There exist real constants a{w), e(w), and s(w) satisfying

alw)=e #e(w)=0 (4.8)
such that
K'@= ) e@{-34_,A,0+A,04_,—}0A_,A,)

w=0

+ z a(w){_%AwAAwQ+A—wQAw—_%QAwA—w} (49)
w>0

+ Y is(@)[A-,A4 0]
welR

Comment. In the standard description of atomic radiation the three
terms are respectively the emission term, the absorption term and a
term describing a shift of the free energy levels (of order A?).

Proof. Substituting the expression for @, in the definition of K* and
evaluating the integral with respect to x leads to

K@=Y | {—AyA_0eh()

@ =0 o . (4.10)
+A,0A_ e th(t)+ A_ ,0A4,¢ T h(Y)

h
—0A__ A, e T h(t)} dt.
Now

T h() ¢ dr = Lh(w) + is@) 4.11)
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where h(w) and s(w) are real, so
K'(@Q=%) (-4 ,4,0(h(w)+2is(w)

+ A, 0A_ ,(h(w)—2is(w)

4.12)
+ Ay 0 A, (h(w) + 2is(w))
— 04, Ay(h(w) = 2is(~ w))}
which is the required result if for =0
e(w)=h(w) and a(w)=h(—w). (4.13)

Theorem 4.3. The operator exp(K" 1) is for © =20 a positivity and trace
preserving semigroup on %, .

Proof. This result is true because of the limiting procedure we used to
obtain K’, but we give an independent proof.
The formula
trlexp(K' 1) o] = tr[o] (4.14)
for all T = 0 is equivalent to
tr[K o] =0 (4.15)

for all ¢, which is valid by inspection. The positivity will follow by the
Trotter product formula [12] if we can write K* as a sum of generators
of semigroups which preserve positivity. Now if K, (¢)=A¢4* and 9 =0
then

eK17(g) = Z—ZTA"QA*"gO. (4.16)
If K,(@)=—A*A49—0A*A and ¢ = 0 then

eKZ‘C(Q) — e—A*ArQ e-A*A‘c g 0 (417)
while if H;(g) =i[A* A4, ¢] and ¢ = 0 then

€K3t(g) — eiA*ArgviA*Ar g 0. (418)

This completes the proof.
The above results give a complete justification for regarding the
equation
d
2 K (4.19)
dz
as a quantum-mechanical Fokker-Planck equation. We draw the reader’s
attention to [ 137, where more general equations of this type have been
studied from the point of view of quantum stochastic processes. In [14]
it is shown that semigroups of this type can always be regarded as
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arising from interactions with singular heat baths, instead of from
regular heat baths in the weak coupling limit. This is the point of view
taken by Hepp and Lieb in [15]. They however work in the Heisenberg
picture, which has some advantages.

We finally use the above equations to investigate the question of

convergence to equilibrium. For the sake of simplicity we let u,, ..., u,
be an orthonormal basis of 4, and suppose
Hu, =o,u, (4.20)

where the w, are all different.

Theorem 4.4. The semigroup exp{K't} on B, leaves the subspace 9
of diagonal matrices invariant and defines a classical Markov process on
the integers {1, ...,n}.

Proof. We first observe that
D ={poecB,:Ug=gforal telR}. 4.21)
If g € Z then by Eq. (2.22)
U(K'9)=K'Ugp=K"¢ 4.22)
so K* g € 9. Therefore

exp{K't}o= ) K'"gt"/nled. (4.23)
n=0
Now put
Ay =<Au,, ug) (4.24)

and define v, € Z by

v, (ug) = 0, uy . (4.25)
Then

K'(v,) = To { =Y et 4, e A, v, ht)
0= s
+ Y et A, et A, v h(— 1)
+ ) Ay e O A, e v h(t)
LY A et A, e, h(— t)} dt (4.26)
== X Ay Ay hlm, — o) v,

+ 3 Ay, A h(m, — o) v, (4.27)
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Therefore
Kﬁ (U,) = Z a,s Vs — <Z ars) U, (428)
where ) ) ’
Ops = ArsAsr h (mr - CL)S) g 0. (429)

Identifying the diagonal matrices on #, with the functions on {1, ...,n}
by

n
{Asees Ay o Y A, (4.30)
r=1

the density matrices on J£, correspond to the probability measures on
{1,...,n}. K" is then the generator of a Markov semigroup on {1, ..., n}.
If the process is ergodic (which certainly occurs if a,,>0 for all r,s)
then there is a unique equilibrium state and every state converges to the
equilibrium state as t— co. However ergodicity is not necessary for the
existence of an equilibrium state.

Theorem 4.5, If the heat bath is at the inverse temperature f5 then

0= 3 e‘ﬁ“”v,/z e For (4.31)

r=1 r=1

is an equilibrium state for the Markov process on {1, ...,n}.
Proof. We have to show that

0=K'g;=Y e a,v,— 3 a,e o, (4.32)

r,s

which is equivalent to

Y e Forg, =3 a,e s, (4.33)

¥

This follows from Egs. (4.3) and (4.29).
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