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Abstract: 

A new Markovian model for checkpointing and rollback recovery in a 

transactional system is considered, in which checkpoints are performed 

after the processing of a specified number of transactions. 

Failures may occur during any of the different modes of operation of 

the system (Le. "available for processing transactions", "checkpoint

ing" or "recovery after a failure"). The limiting state probabilities 

can be recursively expressed in terms of a finite set of boundary state 

probabilities. The set of boundary state probabilities can be deter-

mined by solving a set of linear equations. For two special cases; 

namely, heavily-and lightly-loaded situations, appropriate 

approximations will yield explicit forms for the system availability 

and the mean response time of a transaction. 
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1. Introduction 

A common strategy to keep the integrity of information and to enhance 

the reliability of operation in information processing and storage 

systems (database systems), is to save copies of the relevant informa

tion (i.e. the information needed to restore the system to its status 

at the time when the copy is made) in a secondary storage device (disk 

or tape) at successive instants of time. This saving process is called 

a checkpoint operation. During a checkpoint the system is unavailable 

for useful processing of transactions (a transaction may be defined as 

one or more tasks to be performed by the computer system). The proces

sed transactions since the last checkpoint are recorded in a file cal

led an audit trail. 

Failures which invalidate the integrity of the information stored in 

the system, occur at random, due to hardware, software, program, oper-

ator, .... etc. 

When a failure is detected (we assume that failures are detected as 

soon as they occur) and a corrective action is performed, a recovery 

operation is initiated. In a recovery operation a rollback procedure 

is performed which makes use of the saved information (the information 

saved during the last checkpoint operation) to restore the system to 

its status at the last checkpoint. The rollback procedure is followed 

by the reprocessing of all transactions which were processed since the 

last checkpoint. 

The recovery operation is completed when reprocessing reaches the point 

at which the failure occurred (or was detected). During a recovery 

operation the system is unavailable for useful processing of trans

actions. 

In this report we consider the case in which checkpoints are performed 

after the completion of a predetermined number of transactions. It is 

obvious that the more completed transactions between checkpOints, the 

greater will be the amount of time spent by the system in reprocessing 

during recoveries after random failures, and the fewer the completed 

transactions between checkpoints, the greater the amount of time spent 
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by the system in checkpointing. 

Thus, it is reasonable to expect the existence of an optimum number of 

completed transactions between successive checkpoints. 

Several authors [l,3,4,5,6,7,ll,12J have presented models in which 

checkpoints are performed at subsequent time steps (independent of the 

number of completed transactions during these time intervals). They 

assumed certain time distribution for the interval between successive 

checkpoints and considered the problem of determining the optimum in

terval which maximizes the system availability (i.e. the fraction of 

time in which the system is available for useful processing). 

Mikou and Tucci [10] considered a model in which checkpoints are per

formed after the completion of a fixed number of transactions. They 

proposed an MIMII queue subject to breakdowns as a model, and assumed 

that the departure process is a Poisson (i.e. exponential time distri

bution between successive completions of transactions). They also 

assumed a small failure rate and determined the optimum number of com

pletions between checkpoints which maximizes the system availability. 

In almost all previous work, a small failure rate was an essential 

assumption in order to keep the models simple and the analysis 

tractable. 

In this report we present and analyse two Markovian models, for check

pointing and rollback recovery strategies, supporting a transactional 

system in saturated and non-saturated conditions. 

Checkpoints are performed after the completion of a number of transac

tions. Failures may occur randomly at any state of the system opera

tion (i.e. available, checkpointing and recovery). 

A saturated condition arises when the system is operating in a batch 

environment in which transactions are processed one after another. The 

system may become unavailable for useful processing (due to checkpoints 

or recoveries) but it is never idle (as long as the batch is not com

pleted). For such a system it is of interest to determine the optimum 

number of completed transactions between successive checkpoints 

.1 
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which maximizes the system availability (this minimizes the batch exe

cution time). 

A non-saturated condition arises when the system is operating in an on

line environment in which transactions arrive randomly at the system. 

They are processed according to a "First come - first served" disci

pline when the system is available for useful processing. The system 

may be unavailable for useful processing (due to checkpoints or recov

eries) but transactions keep arriving randomly at the system. The 

system is idle when there are no transactions waiting for processing 

(or being processed) while the system is available. For such a system, 

it is of interest to determine the optimum number of completed trans

actions between successive checkpoints which maximizes the system 

availability or which minimizes the mean response time of a trans

action. 

In chapter 2, a model of the saturated system is considered; this 

model is analytically tractable. An expression for the system availa

bility is obtained for a deterministic or a random number of completed 

transactions between successive checkpoints. The optimum number which 

maximizes the system availability is determined. 

In chapter 3, a model of the non-saturated system is considered. 

Section 3.1 is devoted to the numerical computation of the limiting 

state-probabilities (and the performance variables). In section 3.2., 

a state-space analysis approach is used to derive expressions for the 

performance variables in terms of a set of state probabilities (bound

ary states). Explicit expressions for the performance variables are 

difficult to obtain in the general case. 

In special cases, simplifying approximations will enable us to obtain 

explicit expressions for the performance variables. Two of these 

cases, namely heavily-loaded and lightly-loaded systems will be consi

dered in chapter 4. 
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2. Model of the saturated system 

In this chapter we introduce a mathematical model of the saturated 

system and consider its analysis. This model also correponds to a 

system operating in a batch environment, where transactions are proces

sed one after another. The system is never idle during a batch execu

tion. 

Each transaction requires an exponential service time with a mean ~1. 

Checkpoints are performed after the completion of a fixed number (n) of 

transactions (a random number (n) will be considered later in this 

chapter). Checkpoint durations are exponential with a mean 6- 1• 

Failures occur (and are instantaneously detected) according to a 

Poisson process at a rate y. 

When a failure is detected during the processing of the j-th trans

action after the most recent checkpoint, a recovery action is initi

ated. It starts with a rollback operation which restores the system to 

its status at the most recent checkpoint. The rollback duration is 

exponential with a mean ~O-1 This is followed by the reprocessing of 

j transactions corresponding (but not identical) to the transactions 

processed since the last checkpoint. Each transaction requires an 

exponential reprocessing time with a mean ~-1 (here we assume identical 

processing and reprocessing time distributions of transactions). 

A recovery operation is completed when reprocessing reaches the point 

at which the failure was detected. 

Failures may occur during a checkpoint or a recovery operation (we 

assume identical failure processes during different system operations) 

in which case a corresponding (but not identical) operation is re-star

ted. 

Transaction processing is blocked during checkpointing and recovery 

operations. 

A state transition diagram which represents the behaviour of this model 

is shown in figures (2.1) and (2.2), in which we make use of the fol

lowing notations. 

The state "c" corresponds to the checkpointing mode of operation. 

The state "a, j" corresponds to the available mode of operation, during 
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the processing of the j-th transaction after the most recent 

checkpoint. 

The state "a" corresponds to the set of states "a,j", j = 1,2, ... ,n. 

n is the number of completed transactions between successive 

checkpoints. 

The state "r,j,k" corresponds to the recovery mode of operation, in 

which j transactions have to be reprocessed, during the re

processing of the k-th transaction (k = 0 corresponds to a 

rollback operation). 

The state "r,j" corresponds to the set of states "r,j,k", k D 

O,1,2, •.• ,j. 

The state "r" corresponds to the set of states "r,j", j = 1,2, ... ,n. 
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Fig. (2.1) State transition diagram representing the model of the 

saturated system with checkpointing and recovery operations. 

The circle (~) 
residence time. 
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Fig. (2.2) State transition diagram representing the model of the 

rollback recovery operation followed by a failure detected during the 

processing of the j-th transaction after the last checkpoint. 
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2.1 Determination of the limiting state probabilities 

In this section we determine analytically the limiting state probabili

ties in the model of the saturated system. This will yield an expres

sion for the system availability (i.e. the fraction of time the system 

is available for processing transactions). 

Consider the following state probabilities 

p(c) corresponding to the state 

p( a. j) corresponding to the state 

p(r.j .k) corresponding to the state 

p(r.j) corresponding to the state 

p( r) corresponding to the state 

pea) corresponding to the state 

It follows. from earlier definitions 

(2.1) pea) 

(2.2) p(r.j) = 

(2.3) p( r) 

n 

I p(a.j) 
j=l 

! p(r.j.k) 
k=O 

n 
I p(r.j) 

j=l 

"c" 

" a,j", 1 

tor,j,k", 0 

"r,j", 1 
"r"o 

"a" 

of the states 

( j ( n 

( k ( j. 1 ( j ( n 

( j ( n 

that 

The state probabilities p(r.j.k). 0 ( k ( j. can be expressed in terms 

of the state probability p(a.j) as follows. 

Transition balance at the state "r.j" yields 

(2.4) p(r.j.j) 
y 
- p(a.j) 
~ 

Transition balance at the states "r. j. k+1". k = j-1. j-2 •••• 1 yield the 

following recursive equations 

(2.S) p(r.j.k) = (y:~) p(r.j.k+1). k = j-1. j-2 •••••• 1 

and 
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(y+~ ) p(r,j,l) 
~O 

It follows from equations (2.4), (2.5) and (2.6) that 

(2. 7) p(r,j,k) = p(a,j), 

and 

(2.8) p(r,j,O) = 

Using equations (2.7) and (2.8) in equation (2.2) we get p(r,j) expres

sed in terms of p(a,j) 

(2.9) p(r,j) = 

Equations (2.7), (2.8) and (2.9) hold for all j, 1 ( j ( n. 

The state probabilities p(a,j), 2 ( j ( n, can be expressed in terms of 

the state probability p(a,l) as follows. 

Transition balance at the states "a,j", j = 2,3, ••• ,n, yields the fol

lowing recursive equations: 

(2.10) p(a,j) = p(a,j-l), j 2,3, ... ,n, 

It follows that 

(2.11) p( a, j) p(a,l), 

and from equation (2.1) we get 

(2.12) pea) = n p (a,l) 

The state probability p(c) can be expressed in terms of p(a,l) as fol

lows. Transition balance at the state "a, 1" yields 
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(2.13) 
. II 

p(c) = B p(a,l) 

Substituting from equations (2.9) and (2.11) in equation (2.3) yields 

(2.14) per) = 
Y+1I0 

[(-) 
110 

n 
Y+II Y+II 

(7) (-11-) - 1) - n] p(a,l) 

It follows from equations (2.12) and (2.14) that 
n 

Y+1I0 frll Y+II 
(2.15) pea) + per) = (--) (-) (-) - 1) p(a,l) 

110 Y II 

Equations (2.13) and (2.15) together with the normalizing condition 

pea) + per) + p(c) - 1 

yield an explicit expression for p(a,l) given by 
n 

Y+llo frll Y+II 
(2.16) p(a,l) = ~+ 

8 
( - 1 )]

-1 
(-) (-) (-) 

110 Y II 

Now all state probabilities can be determined by substituting from 

equation (2.16) into their appropriate expressions. 

2.2 The system availability and performance optimization 

In this section we obtain expressions for the system availability for a 

fixed and a random number of completed transactions between successive 

checkpoints. The system availability (A) can be defined as follows: 

where 

E [a] 
A = 

E[a] + E[C] + E[r] 

E[a] is the expected time spent by the system in the avail

able state between successive checkpoints 

E[c] is the expected time spent by the system in the check

pointing state, and 

E[r] is the expected time spent by the system in the recov

ery state between successive checkpoints. 

For a fixed number (n) of completed transactions between checkpoints, 
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we have 

E [a] n 
~ 

E [c ] 1 = Ii 

y 1 
Y+~ 0 Y+jJ j 

E[r,j] = [(-)(-) - 1] 
~ Y ~o ~ 

n 
E [r] = I E[r,j] 

j=l 

1 n 
= - I 

\1 j=l 

Y+\10 Y+\1 j 
[(-)(-) - 1] 

~O \1 

n 
= 

It follows that the system availability A(n), for a fixed n, is given 

by 

(2.17) A( n) = n 
\1 Y+\10 Y+\1 

[-+ (-)(-) 
S \10 Y 

n 
Y+\1 

[(-~-) - 1] r 1 

which is equal to p(a) as determined from equations (2.12) and (2.16). 

Differentiating equation (2.17) with respect to n and equating to zero 

yields 

(2.18) Y+\l.. n [ Y+\1 ] (--) 1 - n In (-) 
\1 \1 

~ 

The optimal number n which maximizes the system availability is the 

closest integer to the real solution ~ of equation (2.18) in n. 
~ 

For small values of y, an approximation of n is the closest integer 

to the real value n given by 
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(2.19) n = [ 2 Y]l.i ~ ..".,,- (l --) 
Yo ~O 

Let n be a random number with the generating function defined by 

G (z) 
n 

where Pk = p[n = k] is the probability that n takes the integer value 

k 

~ 

(thus I P = 1). 
k=O k 

The expected time spent by the system in different states is given by 

E [a] = 

E [c ] 
1 

= Ii 

k 
~ 00 1 Y+~O Y+~ Y+~ 

E [r ] = - (-)(-) I (-) p-l]-.!.Ikp 
~ ~o Y ~ k ~ k=O k k=O 

An expression for the system availability (A) follows 

(2.20) A = 
~ Y+~O y+~ Y+~ -1 

n [ii+ (JjQ) (y) [Gn(""""'iJ) - 1]] 

with n (= I k Pk) is the mean of the random integer n. 
k=O 

If n is a Poisson random integer with mean n, then 

G (z) = 
n 

= 

~ (n)k -n k 
L k' e z 

k=O . 

n(z-l) e 
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The system availability A(n), for a Poisson random number of completed 

transactions between successive checkpoints is given by 

y+~O y+~ - 1 
(2.21) A(n) = n [~+ (--)(_) [en ~ - 11r1 

p ~O y 

A 

The optimum n which maximizes the system availability is the solution 

of the following equation 

(2.22) 
-1 

en ~ (1 - n 1.) = 
~ 

For small values of y, an approximation of ~ is given by equation 

(2.19). 
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3. Model of the non-saturated system 

The mathematical model of the non-saturated system is similar to the 

mathematical model described in chapter 2, except for some essential 

differences which are mentioned here. This model corresponds to a 

system operating in an on-line environment, where transactions arrive 

randomly at the system and are processed according to a "First Come -

First Served" discipline. The system is idle when it is available and 

there are no transactions to be processed. Transactions arrive accord

ing to a Poisson process at a rate A, indpendently of the mode of the 

the system operation (i.e. available, checkpointing or recovery). 

They are processed at a rate ~ when the system is available. 

Processed transactions since the most recent checkpoint are recorded in 

a file called an audit trail. They are reprocessed during a recovery 

operation when a failure is detected. 

Checkpoints are performed after the completion of a fixed number (n) of 

transactions. 

Failures occur (and are instantaneously detected) according to a 

Poisson process at a rate y, independently of the mode of the system 

operation. When a failure is detected during normal (available) oper

ation, it is followed by a recovery operation (rollback and reproces

sing of the recorded transactions in the audit trail). When a failure 

is detected during a checkpoint or a recovery operation, a correspond

ing (but not identical) operation is restarted. 

No transactions are processed during checkpointing or recovery oper

ations. 

A state transition diagram representing the model of the non-saturated 

system is shown in figure (3.1), in which the following notations are 

used. 

The index "m" (m = a for available, c for checkpointing or r for 

recovery) indicates the mode of the system oper

ation. 



The index "i" 

The index "j" 

The index ok" 

The state "c,i" 

The state "a,j,i" 
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(0 , i , N) indicates the number of transactions 

in the system (queued and in processing). N is 

the size of the waiting room. 

(1 , j , n) indicates the number of processed 

transactions since the most recent checkpoint 

(including the transaction in processing). n is 

the number of completed transactions between suc

cessive checkpoints. 

(0 , k , j) indicates the number of reprocessed 

transactions in a recovery operation in which j 

transactions have to be reprocessed (k = 0 corres

ponds to the rollback operation). 

corresponds to the checkpointing mode of operation 

with i transactions in the system. p(c,i) is the 

associated probability. 

corresponds to the available mode of operation 

during the processing of the j-th transaction 

after the most recent checkpoint, and with i 

transactions in the system. p(a,j,i) is the 

associated probability. 

The state "r,j,k,i" corresponds to the recovery mode of operation, in 

which j transactions have to be reprocessed, dur-

The state °r,j,i" 

ing the reprocessing of the k-th transaction and 

with i transactions in the system (k = 0 corres

ponds to the rollback operation). p(r,j,k,i) is 

the associated probability. 

corresponds to the set of states "r,j,k,i", k = 

0,1,2, ••• ,j. p(r,j,i) is the associated probabi

lity. 



Fig. (3.1) 
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State transitions diagram representing the model of the 

non-saturated system with checkpointing and recovery 

operations (number of completions between checkpoints 

(n) = 3. a waiting room of size N). 
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3.1 Recursive computation of the limiting state probabilities 

In this section we describe a numerical algorithm for the computation 

of the limiting state probabilities for the model of the non-saturated 

system with a limited waiting room equal to N. 

Consider the Markov chain representing the model in fig. (3.1). This 

( 
n2+5n+2 ) Markov chain contains D D = ( 2 ) (N+1) states. These 

states can be determined by making use of (D-1) independent transition 

balance equations at (D-1) different states. together with the normal

izing condition (all state probabilities sum to one). This forms a 

system of linear equations in the D unknown state probabilities. It is 

obvious that D can be large for small values of nand N. Significant 

reduction of the size of the system of linear equations can be achieved 

by making use of the model structure. The system in the D unknown 

state probabilities can be solved partially in a recursive manner. 

This results in a reduced system of linear equations in the n unknown 

boundary state probabilities (p(a.j.O). j = 1.2 ••••• n). 

In the remainder of this section we show how to express all state prob

abilities recursively in terms of the boundary state probabilities. 

For this we use (D-n) transition balance equations at (D-n) different 

states. The remaining (n-1) independent transition balance equations. 

together with the normalizing condition. form the reduced system in the 

n unknown boundary state probabilities. This system of n linear equa

tions can be solved simulatenously to determine the values of the un

known boundary state probabilities. They can be used in the expres

sions of the other state probabilities (or the performance variables) 

to determine their actual values. 

First we express the probabilities p(r.j.k.O). k = O.1.2 ••••• j. and 

p(r.j.O) in terms of the probability p(a.j.O). 

Transition balance at the states "r.j.k+1.0". k = j-l. j-2 •••••• 1. 

yield the following recursive relations 
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(3.1) p(r.j.k.O) = (HY+lI) p(r.j.k+l.O). k = j-l. j-2 •••••• 1. 
II 

and 

(3.2) p(r,j,O,O) = ( HY+lI) ( j 1 0) p r. • • 
lIO 

From (3.1) and (3.2) we can express p(r.j.k.O). ° ( k ( j-l. and 

p(r.j.O) in terms of p(r.j.j.O) 

(3.3) 

(3.4) 

and 

(3.5) 

with 

p(r,j,k,O) = 
j-k 

(HY+lI) p(r.j.j.O). 1 ( k ( j-l 
II 

lIo 
- p(r.j.O.O) = 
II 

~ 1 p(r.j.O) L p(r.j.k,O) 
k=O 

p(r.j.j.O) 

= p(r.j.j.O) 

lIO II k 
Qk ~ (Hfrllo) (X+Y+lI) 

Note that Qk is the probability of no failure or arrival during the 

rollback operation and the reprocessing of the first k transactions in 

a recovery operation. 

Transition balance at the state "r.j.O" yields 

(3.6) p(r.j,j,O) = 1 p(a,j,O) - ~ p(r.j,O) 
II II 

Substitution from (3.5) in (3.6) yields an expression for p(r.j.j.O) in 

terms of p(a,j,O) 



(3.7) p(r.j.j.O) = 
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( HY)Qj 

( HYQ ) 
j 

p(a.j.O) 

Finally we can express p(r.j.k.O). k = 0.1.2 •••••• j. and p(r.j.O) in 

terms of p(a.j.O). as follows 

(3.8) 

(3.9) 

and 

(3.10) 

p(r.j.k.O) = (1) 
~ 

p(r,j,O,O) = 

p(r.j.O) = 

( HY)Qk 
(X+YQ ) p(a.j.O). 

j 

p(a.j.O). 

p(a.j.O) 

1 < k < j 

The sum [p(r.j.O) + p(a.j.O)] will be used later in balance equations; 

it can be expressed in terms of p(a.j.O). From (3.10) we get 

(3.11) ( Hy ) p(r.j.O) + p(a,j.O) = A+yq p(a,j.O) 
j 

Equations (3.8). (3.9). (3.10) and (3.11) hold for all j. 1 < j < n. 

The probability p(c.O) can be expressed in terms of the probability 

p(a.1.0) as follows. 

Transition balance at the set of states "a.1.0" and or .1.0·'. making use 

of (3.11). yields 

(3.12) A ( Hy ) p(c.O) = a Hyq p(a.l.O) 
1 

Now we have expressed all state probabilities with the index "i" is 

equal to zero (i=O) in terms of the boundary state probabilities 

p(a.j.O). j = 1.2 •••••• n. 

The next step is to express the state probabilities p(a.j.l). j = 
1.2 •••••• n. in terms of the boundary state probabilities. This can be 

accomplished as follows. 
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Transition balance at the set of states "a,j+1,0" and "r,j+1,O", 

1 ~ j ~ n-1, making use of (3.11), yields an expression for p(a,j,1), 

1~j~n-1, 

(3.13 ) p(a,j,l) (~) ( 
II 

) p(a,j+l,O), 1 ~ j ~ n-1 

Transition balance at the state "c,O", using (3.12) yields an 

expression for p(a,n,l) in terms of p(a,l,O) 

(3.14) ( 1) ~ (AH) ( Hy) ( 1 0) p a, n, = B II X+yQ I P a, , 

The state probabilities p(r,j,k,i), 0 ~ k ~ j, 1 ~ j ~ n, for i = 
1,2, ••• ,N-1, can be expressed in terms of previously determined state 

probabilities; namely, p(a,j,i) and p(r,j,k,i-1), k = O,l, ••• ,j, as 

follows. 

Transition balance at the state "r,j,k+1,i", k = j-l,j-2, ... ,1, yield 

the following recursive relations 

(3.15) p(r,j.k.i) = 

and 

(3.16) p(r.j.O.i) 

( HY+II) ( j k 1 i) A ( j k ) pr •• +. --pr •• +1.i-1. II II 

k = j-1. j-2 ••••• 1. 

A p(r.j.1.i) - -- p(r.j.1.i-1) 
110 

From (3.15) and (3.16) we can express p(r.j.k.i). 0 ~ k ~ j-1 and 

p(r,j.i) in terms of p(r.j,j.i) and previously determined probabilities 

j-k 
(3.17) p(r.j,k,i) = (A+~+II) p(r,j,j,i) 

A 1 HY+II .t-k-1 
II l. ( II) p(r,j,.t,i-l) 

.t=k+l 

1 ~ k ~ j-l 

(3.18) 
110 
IJ p(r,j,O.i) = 

j 
( HY+II) ( j j i) II P r, , , 

A i 
II .t= 1 

.t-1 
( HY+II) ( " ) II P r,j,.,i-l 



and 

(3.19) 
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( "')'" J. (jk) p r,J,J ,1 = l. p r, , ,i 

~(l-Qj) 

= (X+Y)Qj 

k=O 

p(r,j,i) 
A j-1 

L 
~ k=l 

R.-l 

j R.-k-1 
L ( A+yf-~) 

R.=k+l ~ p(r,j,R.,i-l) 

A f 
~O R.=1 

( A+Y+~) ~ p(r,j,R.,i-l) 

Transition balance at the state "r, j, i" yields 

(3.20) p(r,j,j,i) = ~ (p(r,j,i-l) - p(r,j,i») + ~ p(a,j,i) 

Substitution from (3.19) in (3.20) yields an expression for p(r,j,j,i) 

in terms of previously determined probabilities 

(3.21) p(r,j,j,i) = (~) 
~ 

( A+Y)Qj 
(A+yQ) [p(a,j,i) 

j 

A 
+

Y 

j-1 
[.! L 
~ k=l 

! 
R.=k+1 

R.-k-1 
( 

A+y+lJ,. 
~~~~-) p(r,j,R.,i-1) 

A +
~O 

! 
R.=1 

A+yf- R.-1 
( ~!!) p(r,j,R.,i-l) + p(r,j,i-l) II 

Substitution from (3.21) in (3.17), (3.18) and (3.19) yields the desi

red expressions for p(r,j,k,i), 0 ( k ( j, and p(r,j,i) in terms of 

previously determined probabilities; namely, p(a,j,i) and p(r,j,k,i-

1), k = O,l, ••• j. 

The probability p(c,i), for i = 1,2, ••• ,N-1, can be determined from the 

transition balance equation at the set of states "a,1,i" and "r,l,i", 

this yields 

(3.22) p(c,i) = ~[p(a,l,i) + p(r,l,i) - p(a,l,i-l) -p(r,1,i-1)] 

~ +"6 p(a,l,i), for 1=1,2 ••..• N-l. 

In (3.22) p(c,i) is expressed in terms of previously determined probab

ilities. 
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The probability p(a.j.i+l). 1 ~ j ~ n-1. for i a 1.2 ••••• N-1. can be 

determined from the transition balance equation at the set of states 

"a.j+l.i" and "r.j+l.i". this yields 

(3.23) p(a.j.i+1) = ~ [p(a.j+1.i) + p(r.j+1.i) - p(a.j+l.i-l) 
~ 

- p(r.j+l.i-l) J. I ~ j ~ n-1. for i 1,2, ... ,N-I. 

The probability p(a.n.i+1). for i = 1.2 ••••• N-1. can be determined from 

the transition balance equation at the state "c. i". this yields 

(3.24) p(a.n.i+1) = (A+a) p(c.i) - ~ p(c.i-1) 
~ ~ 

Thus from (3.23) and (3.24) we can express the probabilities 

p(a.j.i+1). 1 ~ j ~ n. for i - 1.2 ••••• N-1. in terms of previously 

determined probabilities. 

The last probabilities to be determined are p(r.j.k.N). 0 ~ k ~ j. 

1 ~ j ~ nand p(c.N). Equations (3.17). (3.18) and (3.19) do not hold 

for i = N. 

Transition balance at the states "r.j.k+1.N". k a j-1.j-2 ••••• 1 yield 

the following recursive relations 

(3.25) 

and 

(3.26) 

p(r.j.k.N) = (y:~) p(r.j.k+1.N) - ~ p(r.j.k+1.N-1). 

p(r.j.O.N) = 

k = j-1. j-2 ...• .• 1 

( y+~) ( j 1 N) P r. • • 
~O 

A 
p(r.j.l.N-1) 

~O 

It follows from (3.25) and (3.26) that 

j-k 
(3.27) p(r.j.k.N) = (y+~) p(r.j.j.N) 

~ 

A j £-k-1 
- - L (y+~) 

~ £=k+l ~ 

p(r.j.£.N-1) • 1 ~ k ~ j-1. 



(3.28) 

and 

(3.29) 

with 
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j £-1 ~o 

Ii p(r,j,O,N) = 
y+-~ j . A 
(~) p(r,j,J,N)- ~ I (y+~) p(r,j,£,N-l) 

t=1 ~ 

p(r,j,N) 

p(r,j,.t,N-l) 

__ A 1 
~o 

£-1 
(r:~) p(r,j,£,N-l) 

Transition balance at the state "r,j,N" yields an expression for 

p(r,j,j,N) in terms of previously determined probabilities 

(3.30) Y A p(r,j,j,N) = - p(a,j,N) + - p(r,j,N-l) 
~ ~ 

Substitution from (3.30) in (3.27), (3.28) and (3.29) yields expres

sions for p(r,j,k,N), 0 ( k < j and p(r,j,N) in terms of previously 

determined probabilities; namely, p(a,j,N) and p(r,j,k,N-l), k = 
O,l, ••• ,j. 

Transition balance at the state "c,N" yields an expression for p(c,N) 

in terms of p(c,N-l) 

(3.31) 
A 

p(c,N) = B p(c,N-l) 

So far we have expressed, recursively, all the state probabilities of 

the Markov chain in fig. (3.1), in terms of the boundary state probabi

lities p(a,j,O), 1 < j < n. There are n transition balance equations 

at the states "a, j ,N"", 1 < j , n, which were not used in the 
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recursive procedure. They contain (n-1) independent equations which 

can also be obtained from the transition balance equations at the sets 

of states "a,j,N·· and "r,j,N". for j - 2,3 •... ,n, 

(3.32) II p(a.j.N) = A[p(a.j.N-l) + p(r.j.N-l) 1 • j 2,3, ... ,n. 

Equations (3.32) together with the normalizing equation (all state 

probabilities add up to one) form a system of n linear independent 

equations in the unknown boundary state probabilities. p(a.j.O). 

1 < j < n. This system of linear equations can be solved simultaneous

ly to determine the values of the boundary state probabilities. These 

values can be substituted in the expressions of other state probabili

ties (or performance vsriables) to get their actual values. 

A simple numerical algorithm for the recursive determination of the 

state probabilities is proposed in the following. 

Any state probability (p) in the Markov chain in fig. (3.1) can be 

written as a linear sum of the n boundary state probabilities p(a.j.O). 

1 < j ( n. as follows 

(3.33) 
n 

p = I gJo p(a.j.O) 
j=l 

where gj is the coefficient of p(a.j.O) in the linear sum. It is 

then possible to determine the values of all the coefficients 8j 

for all the state probabilities in the Markov chain by letting p(a.j.O) 

be equal to one and all other boundary state probabilities set equal to 

zero. The recursive procedure. described above is then used to evalu-

ate the coefficients gj By evaluating all the coefficients gj • 

for j = 1.2 ••••• n. we have expressions for all state probabilities as a 

linear sum of the boundary state probabilities. 

3.2 Analytical derivation of performance variables 

It is of much interest to derive relations for some performance quanti

ties such as the system availability and the average number of trans

actions in the system. In this section we use a state-space analysis 

approach to derive these relations. The resulting expressions for the 
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performance quantities are not explicit forms; they are functions of 

the system parameters as well as the boundary state probabilities 

p(a,j,a), 1 ( j ( n. 

In the following analysis we will consider the Markov chain of fig. 

(3.1) with an infinite state space (representing a system with unlimi

ted waiting room, N = "). 

Define the following sets of states and the associated probabilities. 

The set of states "c" corresponds to all the states "c,i", for i = 
0,1, ... 00. 

A(C) is the associated probability. 

The set of states "a,j" corresponds to all the states "a,j,i" for i 

0,1, ... 0). 

A(a,j) is the associated probability. 1 ( j ( n. 

The set of states "a" corresponds to all the sets of states "a,j", for 

j = l,2, ••• n. 

A(a) is the associated probability. 

The set of states "r,j,k" corresponds to all the states "r,j,k,i", for 

i = 0,1, ... 00. 

A(r,j,k) is the associated probability. a ( k ( j and 

1 ( j ( n. 

The set of states "r,j" corresponds to all the sets of states "r,j,k", 

for k = a,l, ••• j. 

A(r,j) is the associated probability. 1 ( j ( n. 

The set of states "r" corresponds to all the sets of states "r, j", for 

j = l,2, ••• n. 

A(r) is the associated probability. 

The set of states "i" corresponds to all the sets of states "a,j,i", 

"r,j,i", for j = 1,2, ••• n, and the states "c,i". a ( i 

p(i) is the associated probability. 

Define the following quantities 
., 

B(c) !t I p(c,i) 
i=1 



B(a.j) 
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m 

~ I p(a.j.i). 1 ( j ( n • 
i=l 

m 

B(r.j.k) ~ I p(r.j.k.i). 0 ( k ( j and 1 ( j ( n • 
i=l 

It follows that 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

A(e) = p(e.O) + B(e) 

A(a.j) = p(a.j.O) + B(a.j). 1 ( j ( n • 

A(a) 
n 

= I A(a.j) • 
j=l 

A(r.j.k) = p(r.j.k.O) + B(r.j.k). 0 ( k ( j and 1 ( j ( n • 

j 
= I A(r.j.k) • l(j(n. A(r.j) 

k=O 

n 
A(r) = I A( r. j) . 

j=l 

Now. we proceed to relate the defined probabilities. 

The probabilities A(r.j.k). 0 ( k ( j. and thus A(r.j). can be expres

sed in terms of the probability A(a.j) as follows. 

Transtition balance at the set of states "r. j" yields 

(3.40) A(r.j.j) = ~ A(a.j) 
~ 

Transtition balance at the sets of states "r.j.k+l" k = j-l.j-2 ..... 1. 

yields the following recursive relations. 

(3.41) A(r.j.k) = 

(3.42) A(r.j.O) = 

('t'f-~) A(r.j.k+l) • 
~ 

k = j-l.j-2 ••••• 1 • 

It follows from the equations (3.40). (3.41) and (3.42) that 



(3.43 ) 

(3.44 ) 

A(r.j.k) 
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j-k 
= l(Y+~) A(a.j) 

~ ~ 

j 
A(r,j,O) = Y (~) A(a.j) 

~o ~ 

and from (3.38) we have 

(3.45) A(r.j) = 

with 

1 
(- - 1) P

j 
A(a.j) 

Note that Pk is the probability of no failure during the rollback 

operation and the reprocessing of the first k transactions in a recov

ery operation. 

Equations (3.42). (3.44) and (3.45) hold for all j. 1 ( j (n. 

The probabilities B(a. j). 2 ( j ( n. can be expressed in terms of the 

probability B(a.1) by taking transition balance at the sets of states 

"a.Y'. j = 2.3 ••••• n. This yields the following recursive relation 

(3.46) B(a.j) = B(a.j-1) j =- 2,3, ... ,n 

It follows that 

(3.47) B(a.j) = B(a.l) 

The probabilities B(a.j). 1 ( j ( n. can be determined by summing the 

transition balance equations between the sets of states "i" and "i+l". 

for i = O.l •••• ~. (this equation holds only for a system with an infi

nite waiting room). 

(3.48) 
n 

~ I B(a.j) 
j=l 

Using (3.47). we obtain 
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(3.49) B(a,j) = 1 , j , n. 

The probabilities A(a,j), 1 , j , n, can be written as follows 

(3.50) 
A 

A(a, j) = -- + p(a, j ,0) 
n~ 

And the system availability A(a) is expressed in terms of the boundary 

state probabilities p(a,j,O), 1 , j , n. 

(3.51) A(a) = A + 
U 

n 

L p(a,j.O) 
j=1 

Transition balance at the set of states "c". and using (3.49), yields 

the following for the probability A(c) 

(3.52) 
A 

A( c ) = """"ii1l 

The probability A(r) follows from (3.39), (3.45) and (3.50). 

(3.53 ) A(r) = 
A 
ny 

n 
y+~O y+u y+u A n 1 
(-)(-) [(-) -1]- - + L (- - 1)p(a,j,0) 

)10 U)1 U j=1 P j 

The normalizing equation A(c) + A(r) + A(a) = 1 yields the following 

relation 

n 
(3.54) L 

j=1 

p(a,j,O) 
Pj 

= 1 -
Y+Uo n 

( A + _A_ (_)( y+~ [( y+u) _ 1]) 
Ii1 ny Uo U U 

The condition for ergodicity follows from the fact that for a stable 

system p(a,j,O) > 0, for j = 1.2 •••• ,n, (a sufficient condition). This 

yields a necessary and sufficient condition (using (3.54)) given by 

A A y+)1o y+U 
(3.55) --+--

n6 ny 
(-)(-) 

Uo )1 

n 
Y+)1 

[(-) - 1] )1 < 1 

Now we proceed to derive an expression for the average number of trans

actions in the system. First we introduce the following definitions 



N{c) 
t, 
= 

N{a,j) 
t, 

t, 
N{a) = 

N{r,j,k) 
t, 
= 

N{r,j) 
t, 
= 

N{r) 
t, 
= 

~ 

I 
i=l 

~ 

I 
i=l 

n 
I 

j=l 

~ 

I 
i=l 

I 
k=O 

n 

I 
j=l 
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i p{c,i) 

i p{a,j ,i) , 1 ~ j ~ n 

N( a, j) 

i p{r,j,k,i) o ~ k ~ j and 1 ~ j ~ n 

N(r,j,k) 1 ~ j ~ n 

N{r,j) 

From the definition of the "i" set of states, p{i) is the probability 

that there are i transactions in the system. It follows that 

p{i) !; p{c,!) + 
n 

I 
j=l 

[p{a,j,i) + i 
k=O 

p{r,j,k,i) 1 

and the average number of transactions in the system N is given by 

"' 
N ~ I i p{i) 

i=l 

Using the above definitions we have for N, the following relation 

(3. S6) N = N{c) + N{a) + N{r) 

In the following, we relate the quantities defined above in order to 

obtain an expression for N. 

N{c) can be expressed in terms of N(a,l) as follows. 

Transition balance at the sets of states "a,l,i" and "r,l,i", 

1 ~ i ~ ~, yields the following equation 
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(3.57) 6 p(c,i) = ~ p(a,l,i) + A[p(a,l,i) + p(r,l,i) - p(a,l,i-l) 

- p(r,l,i-l)] 

Multiplying (3.57) by i and summing for i = 1,2, ••• ,~ yields 

(3.58) N(c) = ~ N(a 1) _ ~ (A(a,l» 
6 ' 8 PI 

in which we make use of (3.45). 

N(a,j), 2 ( j ( n, can be expressed in terms of N(a,l) as follows. 

Transition balance at the sets of states "a,j,i" and "r,j,i", 

1 ( i ( ~, for j = 2,3, ••• ,n, yields the following equations. 

(3.59) ~ p(a,j,i) = ~ p(a,j-l,i+l) - A[p(a,j,i) + p(r,j,i) 

- p(a,j,i-l) - p(r,j,i-l)], j D 2,3, ••• ,n 

Multiplying (3.59) by i and summing for i = 1,2, ••• ,~, yields the fol

lowing recursive relation 

(3.60) 
A 1 

N(a,j) = N(a,j-l) + Ii [A(a,j) + A(r,j) - ill , j = 2,3, ••• ,n. 

It follows (using (3.45» that 

(3.61) N(a,j) = N(a,l) + ~ 
~ 

i 
k-2 

[A(a,k) - 1] 
P n' 

k 

Thus we have for N(a), the following 

(3.62) N(a) = n N(a,l) 
n 

+ ~ I 
~ j=2 

A n 
= n N(a,l) + - I 

~ k=2 

- l] 
n 

(n-k+l) [A(a,k) - l] 
Pk n 

The quantities N(r,j,k), 0 ( k ( j-l, and N(r,j) can be expressed in 

terms of N(r,j,j) as follows. 
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Transition balance at the states "r.j.k+1.i". for k = j-1.j-2 ••••• 0. 

1 ~ j ( nand 1 ( i ( ~. yields the following recursive equations 

(3.63) 

and 

(3.64) 

~ p(r.j.k.i) = (A+Y+~) p(r.j.k+1.i) - A p(r.j.k+1.i-1) • 

for k = j-1. j-2 •••• 1. 1 ( j ( nand 1 ( i ( ~ • 

~o p(r.j.O.i) = (A+Y+~) p(r.j.1.i) - A p(r.j.1.i-1) • 

l~j(n and l(i(oo. 

Multiplying (3.63) and (3.64) by i and summing. for i = 1.2 •••• ~~. 

yields the following recursive relations 

(3.65) Y+ll A N(r.j.k) = (-) N(r.j.k+l) - - A(r.j.k+l) • 
11 11 

for k = j-l.j-2 ••••• 1 and 1 ~ j ~ n 

and 

(3.66) N(r.j.O) a (Y+ll) N(r.j.1) - ~ A(r.j.1) • 
~O 110 

1 ( j ( n. 

It foillows from (3.65) and (3.66) (using (3.43) and (3.44» that 

j-k 
(Y+ll) [N(r.j.j) - (j-kH,1 ) ~ A(a.j) J 

~ 1·11 11 
(3.67) N(r.j.k) = 

for k = 1.2 ••••• j and 1 ~ j ~ n. 

(3.68) 
110 
-11- N(r.j.O) = 

j 

(-r:~ [N(r.j.j) - j(Y;Il) ~ A(a.j) J • 

1 ( j ~ n 

With some manipulations (3.67) and (3.68) yield 

(3.69) N( r. j) 

with ____ . 

= .!: (1:.... - 1) N(r.j.j) 
Y P j 

* 

j 

110 
- --J . 1 ( j ( n • 

Y+ll 0 
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N(r.j.j) can be expressed in terms of N(a.j). by using the transition 

balance equations at the sets of states "r. j .i". 1 ~ j ~ nand 

1 , i ~ ~. 

(3.70) ~ p(r.j.j.i) = y p(a.j.i) - A[p(r.j.i) - p(r.j.i-1)] 

1 ~ j ~ nand 1 ~ i ~ ~. 

Multiplying (3.70) by i and summing. for i = 1.2 ••••• ~. yields 

(3.71) N(r.j.j) = ~ N(a.j) + ~A(r.j) 
~ ~ 

Substitution from (3.71) into (3.69) yields for N(r.j) the following 

(3.72) N(r.j) = 

N( r. j) can also be 

(3.73) N(r.j) = 

with 

t(r.j.O) 

t(r.j.k) 

(2:.... - 1) 
1-P 

N(a.j) + ~ A(a.j) [( __ j) 
- (j y~~ + J~~]. p. y P j P j 

J 

1 ~ j ~ n 

written in the form 

1) N(a.j) + A ! A(r.j.k). t(r.j.k) 

= _1_ (1 
YPj 

- P ) 
j 

k=O 

1 
= yP j (1 -

j-k+l 
(y!~) ) 

t(r.j.k) can be interprested as the expected time spent in the set of 

states ··r.j" with "r.j.k" as an initial state. 

From (3.72) we obtain for N(r). the following 

(3.74) 
n 

N(r) = I 
j=l 

1 
(- - 1) P

j 
N( a. j) 

n 
+ ~ I 

Y j=l 

* 
1-P 

[(-j) 
p. 

J 

y y ] 
- (j y+~ + y+~o) 

A(a.j) 
P

j 
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It follows directly from (3.74) that 

(3.75) 
n 

N(r) + N(a) = L 
j=l 

* 

N(a,j) 
P

j 

n 

+ ~ L 
Y j=l 

A(a,j) 
P

j 

Y Y] 
- (j Y+\l + Y+\l 0) 

Substitution from (3.61) in (3.75) yields 

(3.76) N(r) + N(a) = N(a,l) ( 1 ~) + ~ 1 ~ i (A(a,k) 1) 
j=l P j jl j=2 P j k~2 P k n 

n 
+ ~ I 

Y j=l 

1-P 
A(a,j) [(_j) _ (j .2... + _Y_)] 

P
j 

P j y+\l Y+\lO 

An expression for N (the average number of transactions in the system) 

in terms of N(a,l) follows from (3.76) and (3.58) 

(3.77) N = 
n 1 

(i+ Lp)N(a,l) 
j=l j 

_ ~ A(a,l) 
a PI 

n I-P 
+ ~ L A(a,j) [( j) - (j .2... + .....L-)] 

Y . 1 P j P. Y+jl y+\lo 
J= J 

Now we get an expression for N(a,l) in terms of N. 
Transition balance between the sets of states "i" and "i-I", 1 ( i ( "", 

yields the following equation 

(3.78) 
n 

A p(i-l) = \l L p (a,j,i) 
j=l 

1 , i , "". 

MUltiplying (3.78) by i and summing, for i = 1,2, ••• ,"", yields 

(3.79 ) 
A -N(a) = - (N+l) 
\l 
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From (3.79) and (3.62) we have for N(a,l) the following 

(3.80) 
n 

N(a,l) = ~ [(N+l) - I (n-k+l) (A(a,k) -.!.) J 
nil k~2 Pk n 

Substituting from (3.80) into (3.77) yields the following expression 

for N 

-(3.81) N = [1 -
n -1 

[( yTlI) - 1])J 
II 

A A yTlIO y+1I yT n 
* I(=->r + - (-)(-)[ (~ - 1]) np ny 110 II lJ 

n 

* (1 - I 
k=2 

_.! (A{a,l») 
a PI 

n I-P 
+ l ~ A(a, j) (-=-:.1) (j Y + -1-»)} 

v £ P P - -;:L,7 v+"o 'j=l j j ,. • ,. 

with A(a,j), 0 , j ( n, as given in (3.50). 

Equation (3.81) expresses N in terms of the boundary state probabili

ties p(a,j,O), 1 ( j ( n. 

Note that the denominator of the expression for N should be greater 

than zero for a stable system. This yields the same condition for 

ergodicity as that obtained in (3.55). 

Although an explicit form for N is quite difficult in the general case, 

it is possible in some special cases (or limiting situations) to obtain 

an explicit form for N. In the next chapter two such cases will be 

discussed. 
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4. Special cases 

A model of the non-saturated system, introduced in chapter 1, was 

analysed in chapter 3. In section 3.2, expressions for performance 

variables such as the system availability and the average number of 

transaction in the system were obtained in terms of the boundary state 

probabilities for a system with an infinite waiting room. In this 

chapter two special cases of this system are considered, namely, 

heavily- and lightly-loaded situations. In those cases, simplifying 

assumptions can be made which are approximately valid. These approxi

mations enable us to obtain explicit expressions for the performance 

variables. 

4.1 Heavily-loaded system: 

Consider the model of section 3.2. In heavy-load conditions the bound

ary state probabilities p(a,j,O), 1 ( j (n, approach zero. Referring 

to equation (3.50), we make the following approximate assumption 

(4.1) A( a, j) = A( a, 1 ) 

From equation (3.45), it follows that 

(4.2) A(a) + A(r) _ A(a,1) 

n 
y+~o y+~ y+~ 

= (-)(-) [(-) - 1) A(a,1) 
~O y ~ 

From (4.2) and (3.52) and the normalizing equation A(c) + A(r) + A(a) = 
1, we get for A(a,1), the following 

(4.3) A(a,1) = (1 -
-1 

1) 

An expression for the system availability is readily obtained 

• i 

I 
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A Y II 0 [Y+1l n 1)-1 
(4.4) A(a) = (n - "ji)(Y+Il)(Y+1l0) (-11-) -

A The system is stable if A(a) >-. This yields the condition 
11 

Y+1l0 n 
~+~( __ )(Y+~[(Y+Il) -1)< 1 
n8 ny 110 11 11 

which is identical to the condition in (3.55). 

In order to get an explicit expression for N. we make use of the 

assumption (4.1) in equation (3.81). In the following we evaluate some 

terms in (3.81). 

The term (t 1) 

The term (t 3) 

n 
[1 - L 

k=2 

n 
= [1 - l: 

j=2 

(n-k+l) (A(a.k) - 1)) 
Pk n 

f (A(a.k) - .!.)) 
k=2 Pk n 

Y+1l0 2 n-1 
_ n+1 _ ( __ )(y+!!.) (.l!)[(Y+Il)[(Y+Il) - 1)- (n-l»)A(a.1) 

2 110 11 Y Y 11 

Y+1l0 2 n-1 
(_)(y+!!.) [(Y+Il) (1 _ (n-l)Y) - 1) 

110 Y 11 11 

1) A(a.1) 



n 

[ - (y:) L 
j=l 

n 

The term (t 5) [ - L 
j=l 
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1) - n 

A(a,j) ] 
P

j 

n-1 
(.!)(y+~ ]A(a,l) 

)J )J 

= -
2 Y+)Jo y+- y+-)J n 

( )Jo)( Y~ [(-)J-) 1] A(a,l) 

Substituting from the terms evaluated above into (3.81) yields an ex

plicit expression for Nh, the heavy load approximation of the average 

number of transactions in the system. 

(4.5) [1 -

+ ~ (t2 -)1 

Y+)1o Y+)1 
(-)(-,.-) A(a,l)) 

)10 p 

with A(a,l) given in (4.3). 

4.2 Lightly-loaded system 

-1 
Ill] 

Consider the model of section 3.2. In very light load conditions the 

probability that there is more than one transaction in the system is 

negligible. It is then reasonable to make the following approximate 

assumption 

(4.6) II 
p(i) = 

n 
p(c,i) + L 

j=l 
[p(a,j,i) + p(r,j,i) 1 = 0, for i> I, 

with p(i), p(c,i), p(a,j,i) and p(r,j,i) as defined in chapter 3. 
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The Markov chain representing the system operation can be reduced to 

the one shown in fig. (4.1). 

The following are the probabilities corresponding to the different 

states 1n fig. (4.1). 

with 

E(c) = [A(c) - B(c)] = p(c,O) 

E(a,j) = [A(a,j) - B(a,j)] = p(a,j,O) l~j~n, 

E(r,j) = [A(r,j) - B(r,j)] = 

/; 
B(r,j) = 

j 
L B(r,j,k) 

k=O 

r p(r,j,k,O) 
k=O 

and A(c), B(c), A(a,j), B(a,j), A(r,j) and B(r,j,k) as defined in sec

tion 3.2. 

Fig. (4.1) 

a( r,1) 

b(r,1) 

An equivalent state transition diagram for a very 

lightly-loaded system (with n = 3 and~as introduced 

in figures (2.1) and (2.2». 
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Define. also. the following sets of states 

The set e"j" corresponding to the sets e"a.j" and e"r.j". with the 

associated probability E(j). 1 ( j ( n. 

The set b"j" corresponding to the sets b"a.r and b"r.r. 1 ( j ( n. 

Transition balance at the sets of states e"j" and boo j-1". for j = 

3,4, ••• n. yield the following recursive relation 

(4.7) E(j) = E(j-1) j = 3,4 ..... n 

Transition balance at the sets of states e"2" and b"l" and b"c" yields 

(4.8) E(l) + E(c) " E(2) 

'" E 

Transition balance at the sets of states e"c" and b"n" yields 

(4.9) 
A 

E(c) '" m E 

It follows from the transition balance at the state b"c" that 

(4.10) B(c) '" ~ (A~fl) E 

Thus. we have. for A(c). the following 

(4.11) A(c) = 1 E 

Transition balance at the sets of states b"c". b"l" and the sets of 

states b"j". for j 2.3 •••• ,n yield the following relation 

(4.12) B(a.j) 
A = - E 
~ 

From equations (3.11). (3.12) and (4.10) we have 



(4.13) 

and 

(4.14) 

with 

E(a, j) = 

E(a,1) = 

Q Ii 
j 

~o j 

(>.+y+~O) (>.+~+) 
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We rewrite equation (3.45) in section 3.2 as follows 

(4.15) 

with 

A(a,j) + A(r,j) = A( a, j) 
P

j 

From equations (4.12), (4.13) and (4.14) we get 

(4.16) 
A >.+YQj 

A(a, j) = (ii + M-Y) E 

and 

(4.17) 
a >.+yQ 1 

A(a,1) = (~+ (A+a)( Hy )) E 

In order to get an expression for E we substitute from (4.11), (4.15), 

(4.16) and (4.17) in the normalizing equation 

n 
A( c) + I 

j=1 

A(a,j) = 1 
P j 

After some manipulations we obtain for E, the following expression 

Y+~O n 
E = !i+ (~(Attr~)(IiOJ[Y~~)[(r:~) - 1] (4.18) 
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The light-load approximation of the average number of transactions in 

the system. Nt. is finally obtained 

(4.19) N = R. L i p( i) 
i=l 

- (1 - nE) 

with E given from (4.18). 

p(1) = 1 - p(O) 
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5. Conclusions 

A new Markovian model of a transactional computer system supported with 

checkpointing and rollback recovery strategies is presented. In this 

model checkpoints are performed after the completion of a number of 

transactions. Failures occur randomly at any mode of the system oper

ation (i.e. available, checkpointing and recovery). Although we have 

assumed identical failure rates at different modes of operation, the 

same model can be analysed for different failure rates at different 

modes of operation. 

Transactions arrive randomly at the system during different modes of 

the system operation. They are processed according to a FCFS disci

pline when the system is available. 

Two models were analysed. The first model is for a saturated system. 

This model is analytically tractable. Explicit forms for the system 

availability are obtained for fixed and random numbers of completed 

transactions between checkpoints. The optimum number which maximizes 

the system availability is determined. 

The second model is for a non-saturated system. For this model, expli

cit analytical forms for the performance variables in the general case 

are not possible; they are expressed in terms of the boundary state 

probabilities. A numerical algorithm is proposed to compute the limit

ing state probabilities and, thus, the performance variables. The 

algorithm is partly recursive and requires the solution of a system of 

linear equations in the unknown boundary state probabilities. 

It is important to notice that the same numerical procedure can be used 

for the computation of the state probabilities in the case of state

dependent model parameters. 

Considerable simplifications can be made in some special cases, due to 

approximate assumptions. These assumptions enable us to obtain expli

cit forms for the performance variables. Two such cases; namely, heav

ily and lightly loaded systems are treated. It is worthwhile analysing 

the model for some other interesting special cases, e.g. when the fail

ure rate is small during the available mode of operation or when the 

completion process of transactions is approximated by a Poisson pro-

cess. 
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The present model offers a more realistic and more accurate analysis 

for the system operation than previously published models. It gives 

the possibility of investigating the validity of other models with more 

restrictive (simplifying) assumptions. 

So far, in most of the existing models, a Poisson failure process is 

assumed. It is of much interest to introduce the time and load depen

dent behaviour of the failure process and consider techniques to deter

mine an optimum checkpointing strategy. This will be a considerable 

step towards more realistic modelling of existing systems. 
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