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0. INTRODUCTION

In this paper queues with the servers in series 
will be examined. Customers must pass through each 
server station but are served by only one. Examples of 
this would be gas stations with several pumps in a line 
and certain assembly or production lines.

Since each customer must pass through each server 
station either before or after being served, one has a 
possibility of blocking. (E.g. A server is empty but 
no customer can reach it since access is blocked by a 
prior busy server, or a customer may complete service 
but may be forced to remain in the server station, 
blocking access to it, since a server in front is still 
busy.) Customers are served on a first-come-first- 
served basis. In this paper arrivals are assumed to 
form a Poisson stream with mean arrival rate X . Each 
server is assumed to have a negative exponential service 
time distribution with the same service rate 
\x ~ 1/mean service time.

First the queue with 2 servers in series will be 
examined.

Arrivals o o departures ^
^ front' server 

rear server

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The values of p , the ratio of the input rate to the 
total output rate, p = \ / (2pt) , for which the system 
is positive recurrent, recurrent null, and transient 
are determined. A number of formulas and numerical 
examples of this system are then examined.

The queue with 2 servers in series is related to 
a queue with bulk service where 2 customers are served 
at once as long as there are 2 customers in the system 
[3, pp. 412-414]. However, in the bulk system a 
customer arriving to an empty system must wait until 
another arrives before beginning service. Whereas 
in the series system service begins immediately.

There are well-known results for queues where the 
servers are in parallel instead of in series. Such a 
system has no blocking. As soon as a customer completes 
service he leaves and another customer begins service.

arrivals ̂  o o . . .
queue

departures^

The efficiency of the 2-server parallel queue will be 
compared to the 2-server series queue. Because of the 
possibility of blocking, the series queue clearly is 
less efficient than the parallel queue. However
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placing the servers in a single line often offers con
struction advantages.

The 2-server series queueing problem can be 
generalized to a queueing system with 2 servers in 
series but with k waiting spaces between the servers.

arrivals   k waiting spaces   departures
-> O Q . . . O O □  » o .  . . 0 0  □

queue rear front
server server

This avoids some of the blocking since if a customer 
completes service in the rear server and the front 
server is busy, there may be a vacant storage space 
into which he can move temporarily thus avoiding the 
blocking of this server. The values of p which make 
the queue positive recurrent and transient are found.
As would be expected this is an improvement over the 
2-server series system but is still not as efficient 
as the 2-server parallel system.

Finally the queueing system with n servers in 
series will be examined.

arrivals departures
’ 1 I---! I -------------->- * 0 0 .  . . O O

queue n servers

The values of p which make this system positive re
current and transient are found. These can be compared
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to the values of p which make the n server parallel 
queueing system positive recurrent, recurrent null, 
and transient.

arrivals
-------- * o o . . . 0 0

queue

n servers

As in the two server case, the n server parallel queue 
is more efficient than the n server series queue.
The larger n becomes, the greater the difference in 
relative efficiency, since blocking becomes increasingly 
likely.

departures 
 >
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I. MARKOV CHAIN PRELIMINARIES

1.1 Markov Chains

The processes considered in this paper are all 
continuous-parameter . discrete-state. t foe-homogeneous 
Markov chains , 0 £ t < » , in which the state 
space S consists of a denumerable set of states,
S = {sQ , s^ , s2 , • Denote the transition function
of such a Markov chain by

p (t) = Pr[x^ = vlx„ = u] uv t+s 1 s

for u , v * S , which are independent of s by the 
time-homogeneity. These functions will satisfy the 
Chapman-Kolmogorov equations

pu w (t+s) = I  pu v (t)pv w (s) for 3 > 0 / t  > 0 * 
veS

For a detailed discussion of such processes the 
reader is refered to any standard reference, for example 
[2] or [6] .

1.2 The Rate Matrix

The Markov chains considered here are all standard 
in the sense of Chung [2, p. 128] and satisfy the 
following assumptions:

5
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(a) Each Puv.(t) is continuous at 0 .
(b) The derivatives X.. = p' _ (0) exist for

13 i j

each s^ , Sj € S , are finite, and satisfy

Xii S 0 ' Xij * 0 f°r 1 ̂  3 ' £  Xij = 0 •
j

(c) PQ „ (h) = 6 -• + X. .h + o(h) , where the
i j 30 13

functions o(h) satisfy -» 0 as
h -* 0+ , uniformly in i and j .

(d) The time T that the process remains in any
given state s^ , given that XQ = s^ , has
a negative exponential distribution with para-

Xiifcmeter X ^  , Pr[T £ t] = 1 - e

(e) The probability that the process will have 
two or more one-step transitions in time h 
is o(h).

The quantities X ^  # i j* j # are termed the tran
sition rates. X^j is proportional to the probability 
that a system in state s^ will be in state s^ h 
time units later, up to a term of order o(h).

The matrix A = (X^j) is termed the rate matrix 
of the system.
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Under the preceeding assumptions systems of 
differential equations, the Kolmogorov systems, [2, 
p. 245] can he constructed for the transition proba
bilities p (t) . For the processes considered in 

sisj
this paper, however, these systems are too complex to 
be easily analyzed.

1.3 Rate Diagram

The behavior of such a Markov chain and its rates 
can be described graphically by considering the weighted 
digraph with vertices at the various states s^ , s2 , ... , 
and with a directed edge indicated from state s^ to
state Sj weighted with the quantity X^j provided
i j and X ^  > 0 . (The quantities X ^  need not
be indicated since by section 1.3(b) ^  ^ij*^
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This weighted diagraph is termed the rate diagram of 
the system. The limiting, long-run, and connectivity 
properties of the Markov chain can be analyzed in terms 
of this rate diagram.

1.4 Structure and Classification of States

A state 3  ̂is said to be accessible from state
s. if p (t) > 0 for some t > 0 . It can bex s±s^

shown [ 9, p. 274] that s^ is accessible from state
s^ if and only if si = s.. or a directed path exists
in the diagraph from s^ to s^ . Two states s^ and 
sj are said to communicate if each is accessible from 
the other. Such communication forms an equivalence 
relation over the state space.

A collection R of states is termed closed if s^
is not accessible from s^ whenever s^ € R , s^ £ R .

A minimal closed set is a nonempty closed set of 
states which has no closed proper subset. Within such 
a set every state communicates with every other state.

A Markov chain is termed irreducible if its state
space consists of a single minimal closed set.

A state s^ is termed absorbing if

Pr[Xt = si |XQ = s j  = 1  for t > 0 ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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which is equivalent to X̂ .. = 0 for all j £  i. Once 
state i is reached, the process stays there with prob
ability 1.

A state s^ is termed recurrent if either it is 
absorbing or

Pr[at > Ii5 X t = | for some u > 0 and

X o = Si] = 1

i„e. if the process leaves state s^ , return is
certain.

For a recurrent nonabsorbing state s^ , let the 
random variable T represent the first return time, 
i.e. T = inf{t:Xt = si where XQ = si and Xy ^ si
for some 0 < u < t). The quantity E[T] is termed the
mean return time. A state is termed positive recurrent
if and only if it is absorbing or E[T] < ® .

The property of positive recurrence is extremely 
important. When a queueing system is positive recurrent
the queue does not grow infinitely long and return to
the empty queue is certain. Much of this paper will be 
devoted to obtaining conditions for positive recurrence 
in several important processes.

A recurrent nonabsorbing state is termed recurrent 
null if E[T] = 00 , i.e. recurrence is certain (with
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probability 1) but the mean recurrence time is infinite.
A nonrecurrent state is termed transient, i.e. 

the state is not absorbing and return is not certain, 
Pr[Xt = s^ for some t > o|XQ = 3 ^  < 1 . Thus every 
state is one of these three types.

An important theorem is that within a minimal 
closed set all states are of the same type: positive
recurrent, recurrent null, or transient. Thus one 
speaks of a positive recurrent, recurrent null or 
transient Markov chain.

The definitions given here are not in their most 
general form, but are equivalent to the general defini
tions for processes satisfying the assumptions of this 
chapter and of this paper.

1.5 Limiting Distributions

Since, as previously mentioned, study of the
transition probabilities po (t) for 0 s: t < ® 

si3j
is difficult, usually (and in this paper, always) one 
studies the behavior of these quantities for large 
values of t , i.e. one assumes the system has been 
operating for a long time.

A key theorem is the following (which is a special 
case of a more general result [2, pp. 183-186]):
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Theorem 1.1 For an irreducible Markov chain (satisfying 
the conditions of 1.1 and 1.2) the following limits 
exist for all states i and j

p(j) = lim p (t) 
t-»® i j

with values independent of the initial state . The 
quantities p (j) are termed the limiting probabilities.

(a) If the process is positive recurrent, then

P (j) > 0 for each j , and

£ p < j >  = i 
j

In this case the sequence fp(j)} is termed 
the limiting probability distribution of the 
process.

(b) .If the process is null recurrent or transient, 
then

p(j) = 0  for each j .

The determination of the limiting probability distri
butions for various positive recurrent processes is a 
major goal here.
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1.6 The Normal Equations

Assume that the Markov chain under consideration 
is irreducible.

A system of equations that must be satisfied by 
the limiting probabilities p(j) can be obtained 
formally from the Chapman-Kolmogorov equations (section 
1.1) by differentiating with respect to s » setting 
s = 0 , letting t « , and determining that

lia a* Ps .s.(t) = at ps.s. (t) ■ A  = 0 • <oft-*= x j t-KB x 3

course the proof involves a substantial argument, see 
[3, p. 55]). The resulting system of equations are
termed the normal equations of the process

(1.1) = 0 for each j .
i

In matrix form this system can be written as

(1.2) p A = 0

where p = (p (0) , p (1) , p (2) , ...) .

Theorem 1.2 For an irreducible Markov chain with the 
assumptions of section 1.2 the limiting probabilities 
satisfy the normal equations (1.1) or (1.2).

The normal equations can be displayed more
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intuitively in a form that facilitates setting them up 
hy writing (1.1) in the form

ii*j

or

(1.3) p(j) I ljk = I P(i)Xi3

Equation (1.3) can be interpreted as a balance
equation, which is easily set up using the rate diagram.
On the left one has the limiting probability of a fixed
state Sj multiplied by the total rate out from that
state s . to all other states s. . On the right one 3 K
has the total rate into the state s^ from all other 
states s^ , weighted in each case by the limiting 
probability of s^ . By setting up this balance 
equation at each vertex of the rate diagram the normal 
equations can be obtained readily.

1.7 Conditions for Positive Recurrence

Consider the normal equations (1.1) or (1.2) with 
a general unknown vector x replacing p .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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= 0 for each j
i

(1.4) or

x A = 0

The key theorem is the following, see [4] .

Theorem 1.3 An irreducible Markov chain (satisfying 
the assumptions of sections 1.1 and 1.2) is. positive 
recurrent if and only if the normal equations (1.4) 
have a nontrivial solution which forms an absolutely 
convergent series. s|x(i) | < <» . Jn this case there 
exists ja nonzero constant c such that

(1.5) p(j) = cx(j) for each j

i.e. the limiting probability distribution is propor
tional to any nontrivial absolutely convergent solution 
to (1.4). Such a Markov chain is positive recurrent 
only if any nonnegative solution of the inequalities

(1.6)
i

is convergent, ) x(i) < » 
i=o
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This theorem not only gives a method for determining 
when an irreducible process is positive recurrent, but 
also for determining the limiting probabilities p(j) . 
(Choose c so that c E x(j) = E p(j) = 1 .)

j j

1.8 Conditions for Transience or Null Recurrence

A necessary and sufficient condition for an 
irreducible Markov chain to be transient can be found 
by considering the following system of equations:

(1.7) Y- Xij x(j) = 0 for 1 = 1 ' 2 ' **•
j=o

or
‘ x (0) y
x(l) 0
x (2) = 0

* *
• •

* [" .

where y can be any number. Note that the equation for 
i = 0 , (state sQ) , is omitted from the system.
(Any other distinguished state could be omitted instead.)
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Theorem 1.4 (Foster [4] ) . An irreducible Markov chain 
(satisfying the assumptions of sections 1.1 and 1.2) .is 
transient if and only if the system (1.7) or (1.8) has_
a bounded nonconstant solution.

One also uses the following:

Theorem 1.5 (Foster [4] ) An irreducible Markov chain 
(satisfying the assumptions of sections 1.1 and 1.2) 
is recurrent if and only if the system of inequalities

has a solution satisfying x(j) -» 00 as j » .

(1.9) for i = 1 , 2 ,
j=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



II. THE STANDARD 2-SERVER SERIES SYSTEM

2.1 Definition of the Problem

Consider a queueing system with two servers in 
series. The customers will be served on a first-come- 
first-served basis. Each customer is served by one of 
the two servers, and the queue discipline requires that 
any customer entering the servers move to the furthest 
forward accessible server.

The various states of the system can conveniently 
be represented by symbols of the form (x y)n where n 
represents number of customers who have not yet 
completed service, the queue length, x and y are 
server sybmols representing the status of the two 
servers: y indicates the status of the front server
and x indicates the status of the rear server, y 
will have the symbolic values 'e1 or 's' depending on 
whether the front server is empty or busy, x will be 
'e','s' or 'b' depending on whether the rear server is 
empty, busy or blocked (i.e. contains a customer who has 
completed service but is blocked from exit by a busy 
front server).

17
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arrivals    departures
------- > o o . • . o  >

queue__________ ________________
rear front 

server server

Diagram of the System? Figure 2.1

The states of the system are (ee)Q , (es)^ , (bs)^, (se)^ , 
(ss) 2 , (bs) 2 , (se) 2 , ... , (ss)n , (bs)n , (se)n , ... .
Note that the queue length subscript n represents 
the number of unserved customers waiting in line plus 
the number of busy servers.

Assume that arrivals form a Poisson process with 
intensity \(\ = mean number of arrivals per unit time). 
Assume that each server has a mean service rate of \i , 
where service times are negative exponentially distri
buted with probability density function pe ^  . There
fore the mean service time is l/\s . Assume also that 
all interarrival and service times are mutually inde
pendent .

With these assumptions the process forms a contin
uous-time, discrete-state, time-homogeneous Markov 
chain of the type considered in Chapter 1. The state 
space is denumerable and the states are represented 
by the state symbols •
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2.2 Rate Diagram

The one-step transitions for this Markov chain are 
generated by the arrivals and the service completions. 
Each arrival has the effect of increasing the queue 
length by 1 (and changing a server symbol from an e 
to an s if a server is accessible). Each service 
completion has the effect of reducing the queue length 
by 1 (and changing one or both of the server symbols). 
Thus, for example, a completion in the front server 
would change state (bs)3 to (ss)2 • The Probability 
of an arrival in time h is Xh + o(h) , so (see 
section 1.2(d)) the transition rate X^j for a tran
sition generated by an arrival will be X . The proba
bility of a completion from one busy server in time h 

h
is f dt = jih + o (h) , so the transition rate

o
X^j for a transition generated by a service completion 
will be u . Thus the rate diagram can be constructed 
as follows.
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Queue Length
(ee)

(bs)(es)

(bs)(se) :(ss)

■(bs)(se) (ss) ''

'(bs),(ss)(se)

Rate Diagram: Figure 2.2
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2.3 Lumping

Note that arrivals are represented in the rate 
diagram (Fig. 2.2) by vertical arrows. Departures 
from either the right or the left state in the diagram 
with the same queue length lead to the same middle 
state at the same rate \x . This means that the left 
and right states at each queue length can be combined 
into a single state { (bs)^ , (se)^) and the Markov 
property retained. It is unnecessary to know which of 
these two states holds in order to predict the transition 
probability to the next state. We say that the states 
(bs)^ and (se)^ can be lumped into a single state, 
and that the process is lumpable, [7, p. 124] . When 
possible such lumping is highly desirable, since it 
simplifies the discussion by reducing the size of 
the state space. After finding the limiting proba
bilities for the state (ss)n and tlie lumped states 
( (bs)n , (se)n ) , the limiting probabilities for the 
states (ks)n and (se)n can determined. The 
limiting probabilities of the lumped states is equal 
to the sum of the limiting probabilities of the individual 
states. Service completions in the state (ss)n+l 
lead to (bs)n or (se)n at ec*ual rates« Arrivals to 
(bs)n_^ lead to (bs)n at tlle s ^ e  rate arrivals to
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(se)n - 1 lead to (se)n . Since these are the only 
transitions leading to (bs)n or (se)n and 
limiting probabilities are independent of the state the 
process starts in, the limiting probabilities of the 
states (bs)n and ŝe^n each be one-half of the
limiting probabilities of the lumped superstate

(tbs)n . (sa)n ) .
The rate diagram for the lumped process is as 

follows:
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(ee)

(es)

(ss)((bs)2\ (se) )

K\

(ss).ttb.)n'? ( « ) n J

0* ) n+y  (s®)n+l

((bs)n+2. <se)n+2

Rate Diagram for Lumped Process: Figure 2.3
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Denote the long-run probabilities (see section 1.5). 
of this irreducible Markov chain by

r(n) = p((ba)n , (se)n ) = lim PB/( (b3)n> (se)n ) (t) ' 

for n :> 1

p(n) = p((ss)n ) = lim Pft/((ss) ) (fc) » for n * 2
(2.1)

p(l) = P( (®s)1 ) 

p (0 ) = p( (ee)0 3

where a represents an arbitrary initial state.

2.4 Normal Equations

The normal equations can be derived from Figure 2.3
by balancing input and output at each vertex. For 

example, at vertex {(^s)n+i • ŝe^n+l^ °ne haS

pt(ts)n+i,(se)n+i)(^> = Pf<bs)n, <se>n>* + P((ss)n+2)2ii

or
(X + n)r(n +1) = Xr (n) + 2pp(n + 2) .

Balancing the input and output at vertex {(ss)n-iq.) one
has
p{ (ss)n+1) (X+2n) = p((ss)n )X +p{(bs)n + 2 , (se)n+2)u
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or

(X + 2n)p(n + 1) = Xp(n) + ^ r ( n  + 2) .

If this balancing is also done for the vertices 
{ (ee)Q ) , {(bs^ , (se)^ , and f(es)1 ) # one obtains 
the following system of normal equations:

- (X+u)r (n+1) + Xr(n) + 2|jp(n+2) = 0 ,  n ^ 1
jjr(n+2 ) “ (x+2^)p(n+l) + xp(n) = 0 , n s: 1

plus 3 special equations for the first 3 states:

- (X+n) r (1) + 2np(2) = 0

nr (2) - (X+u)p(l) + Xp (0) = 0

jjr(l) - Xp(0) + iip(l) = 0

This system can be simplified by introducing the
parameter

p =  •

This is the ratio of the arrival rate to the total service 
rate of the two servers, and represents the traffic 
intensity of the corresponding 2 -server parallel queueing 
system.

The final normal equations are
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*(2 .2 ) - (2 P+1 )r (n+1 ) + 2 pr (n) + 2p(n+2 ) = 0 , n is 1

(2 .3 ) r (n+2 ) - 2 (p+l)p(n+l) + 2 pp(n) = 0 , n * 1

(2.4) - (2p+l)r (1) + 2p(2) = 0

(2 .5 ) r (2 ) - (2 p+l)p(l) + 2 pp (0 ) = 0

(2 .6 ) -pp(0 ) = p(l) < - > -2 pp (0 ) + p(l)

The system is dependent, so that any solutions of 
all hut one of these equations will satisfy the remain
ing one. Thus one of the equations can he disregarded.
Let us disregard (2.5) and study the system (2.2)-(2.4) 
and (2 .6 ).

By Theorem 1.3 the Markov chain will he positive 
recurrent iff the system (2.2)-(2.4) and (2.6) with 
r (n) and p (n) , replaced hy the arbitrary variables 
x ^n) and x2 (x) respectively has a nontrivial absolutely 
convergent solution. If this is the case, any such 
solution to this homogeneous system can he normalized 
to form a probability distribution satisfying 

00 00

(2.7) £  r (n) + 7  p (n) = 1 .
n=*l n= 0

Note that p(0) now appears only in equation (2.6).
(2 .6 ) can be used to determine p(0 ) in terms of the 
other quantities,
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(2.8) p(0) = 27 [r (1) + P(1)1 *
Eliminating p(0) , (2.7) becomes

(2.9) 7Tjj-[r(l) + p(l)l + Y  [r(n) + p(n)] = 1  .
n=l

Thus the problem reduces to finding necessary and 
sufficient conditions that the system (2.2) - (2.4) 
has a nontrivial absolutely convergent solution.

2.5 Difference Equation Approach

The general system (2.2) and (2.3) (omitting the 
special equation (2.4)) constitutes a vector difference 
equation. Using the shift operator E , E[x(n)] = x(n+l), 
this system can be written in the form

(2.10)
where

(2.11)

F(E)x(n)

F(E) =
- (2p+l)E + 2 p

- 2 (p+l)E + 2p

(2.12) x (n) =
x, (n)
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The fundamental solutions of such a linear homogeneous 
difference equation are known [8 , p. 601] to have the 

form

-*n<=C
where £ is an appropriate, possibly complex nonzero 

C 1
scalar, and c = is an appropriate constant vector.

If this is substituted into (2.10) one obtains

0 = F (E) c£
= F (E) £ ^

F (£ ) c£

for n s 1

since E£n = £•£

Thus F(£)c = 0 , and one concludes c£ is a 
solution iff F(£) is a vector in its null space. Thus 
£ must be a zero of the fundamental polynomial

f (z) = det F (z)

- (2 P +1 )z + 2 p 2 z2

z2 -2 (p+1 ) z+2 p

and c must satisfy

(2.14) [-(2 p+l)C+2 p]c1+2 £Zc2 = 0
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or, equivalently

(2.15) C2cx + [-2 (p+1 ) C + 2 p]c2 = 0

(Certain modifications are necessary if f (z) has 
multiple zeros. This will be shown not to be the case.) 

The general solution to the system (2.10) has the
form

by / ... > Cm • Thus, by Theorem 1.3 the system will 
be positive recurrent iff constant vectors

, ... , c^ can be obtained, satisfying the above 
conditions, and such that the terms of (2.16) also 
satisfy the remaining equation (2.4).

(2.16)
j

where the Cj's are t*1® zeros of f (z) , and the 
constant vectors Cj satisfy (2.14) and (2.15) 

for C = Cj •
In order that the terms of (2.16) form an 

absolutely convergent series, only the zeros Cj 
with ICj| < 1  can be included. Denote these zeros

Denote the components of the vectors Cj by

One can set bj = c^j and by (2.14) and (2.15),
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(2.17) °2j = b j*j

(2p+l)C. - 2p d
where 5 . = ------ «-J-----  =  1---

3 2Cj 2(p+l)Cj - 2 p

Thus 1

Substituting (2.16) into (2.4) yields, using (2.7),

HI
(2.18) 2 P £  bj = 0 .

3 - 1

This system will be positive recurrent iff one can
obtain a nontrivial set of constants b, , ... , bl m
satisfying (2.18). Clearly this will be possible if and 
only if m £ 2 .

2.6 The Fundamental Polynomial

The preceeding discussion shows that it is necessary 
to locate the zeros of the fundamental polynomial
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- (2 p+l)z + 2 p
f(z) =

z‘,2 -2 (p+1 ) z + 2 p

(2.19)
= 2 {[(2 p+l)z - 2 p][(p+l)z - p] - z4 )

in relation to the unit circle.
The zeros of this polynomial can be located by 

elementary methods. The method used here, however, has 
the advantage of permitting generalization to more 
complicated systems.

Lemma 2.1: f(z) has one zero at z = 1 .

Proof: Direct substitution.

Theorem 2.1 (Rouche''s Theorem [1, p. 8 8]): If u and
v are analytic inside and on a closed contour C , and 
if | v | < |u| on C, then u and u + v  will have
the same number of zeros inside C .

Lemma 2.2: If P < 2/3 , f (z) has exactly two zeros
inside the open unit circle. If p ^ 2/3 , f (z) has
at least two zeros inside the closed unit circle 
J z| £ 1 and at most one zero inside the open unit circle
|z| < 1 .
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Proof: On the circle |z| = 1 + e ,e / 0 positive or
negative, one has

! [ (2 p+l)z-2 p] [ (p+l)z-p] J - |z4 |

= | (2p+l)z-2p| | (p+l)z-p| - Jz4 1

& [ (2 p+l) (l+e) - 2 p] [ (p+1 ) (1 +e) - p] - (1+e)4

= 1 + (3p+2) e + (2p+l) (p+l)e2 - (1+ 4 e+6e2 + 4 8 3 + e4 )

= (3 p - 2) e + 0(e)

> 0 for sufficiently small t provided p < 2/3
and e < 0 , or p > 2/3 and e > 0 .

Thus, if p < 2/3 we have |[ (2 p+l)z-2 p] [ (p+l)z-p] J
-|z4 | > 0 on every circle inside the unit circle and 
sufficiently close to it. By Rouche's Theorem (Theorem 2.1) 
f (z) will have the same number of zeros as 
[ (2 p+l)z-2 p3 [ (p+1 )z-p] , namely 2 , inside each such 
circle and hence inside the unit circle |z| < 1  .

In case p > 2/3 , e > 0 , the same argument shows 
that f (z) will have exactly two zeros inside the closed
unit circle Jzj s i  . One of these is at z = 1 so at
most one zero can be inside the open unit circle.

To consider the case p = 2/3 , note that the 
zeros are analytic and hence continuous functions of ' p . 
Choose p > 2/3 . A s  p -* 2/3+ , no zero can leave the
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closed region |z| i 1 . Thus when p = 2/3 f(z) will 
have at least three zeros in |z| £ 1 and hence at most 
one zero inside |z| < 1  .

Q . E . D .

Actually one can say much more.

Lemma 2.3: The four zeros ^  , C2 * C3 » and C4
f(z) are all real and satisfy:

c4 - 1

c3 <-1
0 < C2 < 7 + 1

< Cl < 1 if p < 2/3

C1 = 1 if p - 2/3

Cx > 1 if p > 2/3

Proof: By dire.ct calculation we see that

f (-00) = - eo , f (-1 ) > 0 , f (0 ) > 0

f < 7 + r >  « <  0 >  f ( 1 )  =  ° -

and f ’ (1) = 3p - 2 .

The results follow.
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2.7 Conditions for Positive Recurrence

By Theorem 1.3 the system will be positive recurrent 
if and only if the normal equations have a nontrivial 
absolutely convergent solution. The discussion in 
section 2.5 shows that this is true if and only if (2.18) 
has a nontrivial solution which is true if and only if 
the number of zeros of f (z) inside the open unit 
circle is at least 2. Combining this with Lemma 2.2 
one obtains.

Theorem 2.2. The 2-server series queueing system is 
positive recurrent if and only if p < 2/3.

2.8 Conditions for the System to be Transient

Foster's Theorem (Theorem 1.4) asserts that a 
necessary and sufficient condition for an irreducible 
Markov chain to be transient is the existence of a 
nonconstant bounded solution to a certain system of 
equations (1.7). This system can be written in the form

(2 .2 0) ( £  fcj.jyti) = X  j y(J> > for l = 
j/i

In terms of the rate diagram one assigns an 
arbitrary variable y(i) to each vertex (or state)i .
At each vertex i (except one, the 0-state), the left
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side of the equation is y(i) multiplied by the total 
rate out from that vertex. The right side represents 
the sum of the variables x(j) over all vertices that 
can be reached in one step from x(i) each multiplied 
by the transition rate for this one-step transition.

In the Markov chain of this chapter, assign the 
arbitrary variables to the states as follows:

To the lumped state {(bs)n ,(se)n ) assign the 
variable y^ (n) , n 1 . To the simple state 
(ss)n assign the variable y2 (n) , n ^ 2 .
Also assign y2 (1) to (es)^ and y2 (0) 
to (ee)Q .

Thus we have variables y^Cn) , n & 1 and y2 (n) , 
n a 0 , to appear in the Foster equations.

By refering to the rate diagram Figure 2.3 the 
equations (2 .2 0 ) can be set up using the previous . 
discussion. For example, at the state ((t>s)n+1, (se)n+1)

the equation becomes

(n+1 ) = Xyx (n+2 )+tay2 (n) .

If this is done at every state, except the 0-state 
(ee)c , and again setting p = , one obtains
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(2 .2 1 ) -(2p+l)y1 (n+l)+2py1 (n+2)4y2 (n) = 0

(2 .2 2 ) 2y 1 (n) - 2 (p+l)y2 (n+1 ) +2 py2 (n+2 ) = 0

for n :» 1 , plus the two special equations:

(2.23) -'(2p+l)y1 (l)+2py1 (2)4y2 (0) = 0

(2.24) -(2 p+l)y2 (l)+2 py2 (2 )+72 (0 ) = 0

Actually (2.23) coincides with (2.21) for n = 0, 
so that any solution of the system (2 .2 1 ) and (2 .2 2 ) 
for all n will satisfy (2.23).

The system (2.21) and (2.22) can be written in the
form

(2.25)

where

(2.26)

G(E)y(n) = 0 for n & 1

G(E) =
- (2p+l)E+2pE

-2 (p+1) E+2pE

(2.27) y (n) =
y, (n)

for n a 1

A similar argument to that in section 2.5 shows 
that the bounded solutions of the system (2.25) will
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have the form

m
(2.28) y(n) = ][ dj Cj

j=l

where • • • • • are tlie zeros of the polynomial

g(z) = det G(z)

(2.29)

■ (2 p+1 ) z+2 pz

-2 (p+l) z+2-pz

inside the open unit circle |z| < 1  . The constant

are in the null space of G(z).vectors d^ =
d. .

Taking d2j arbitrary one can solve for d ^  in terms 
of d2j as follows:

(2.30) 0 = [-(2p+l)Cj+2p C j H 1j+d2j=2dlj+2[" (p+1)(:j+pCi]d2j

dli = ^ . [ ( p + D C - P C j l  =
1 [ ( 2 p + l ) C j -2pCj]

Substitution into (2.24) yields

(2.31) j  d 2 j (2pC.-l)(Cj-1) -  0
j=l
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The polynomial g(z) is easily seen to be 

(2.32) g(z) = z4 f(l/z)

where f(z) is the polynomial (2.19) of section 2.6. 
Thus the number of zeros of g(z) inside the unit circle 
is the same as the number of zeros of f(z) outside the 
unit circle.

Theorem 2.3 The 2-server series queueing system is, 
transient if p > 2/3.

Proof: By Lemma 2.2, if p > 2/3 f(z) has two zeros
4inside the closed unit circle. Thus g (z) = z f(l/z) 

has two zeros inside the open unit circle. Thus m  a 2 
in (2.31) and (2.31) has a nontrivial solution for 
the d2j's | C j I < 1 • Note that the coefficient
(2 p£j-1 ) (£j-l) will not be zero for these terms since 
C = 1 is not inside the circle and £ = l/(2 p) is not 
a zero, as is easily seen by direct substitution. The 
theorem follows from Foster11 s Theorem, Theorem 1.4.

Q.E.D.

2.9 Conditions for the System to be 
Recurrent Null

Only the case p = 2/3 needs to be considered.
To do this we use Foster's Criteria, Theorem 1.5. The
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inequalities

Y  s 0 f o r  1 =  1 * 2 •
j=o

are identical to the system (2.21) - (2.24) with the 
= signs replaced by < .

Theorem 2.4 If p = 2/3 , the 2-server series queueing
system is recurrent null.

Proof: The inequalities for Foster's Criteria in the
case p = 2/3 become:

- 7/3 y 1 (n+1) +4/3 y 1 (n+2) +y2 (n) * 0 , n s 0

2 ya (n) - 10/3 y2 (n+1) + 4/3 y 2 (n+2) s 0 # n * 1
and

- 7/3 y 2 (l) + 4 / 3  y 2 (2)+y2 (0) s 0 .

By direct substitution one sees that

y x (n) = n - 1 , y2 (n) = n - 4/3

satisfy these inequalities, (actually this substitution 
makes all the left sides equal to zero) . As n -» <= , 
y^(n) -» « an^ y 2 (n ) -* 00 • Thus by Foster's Criteria 
the system is recurrent.

Since by Theorem 2.2 the system is known to not be 
positive recurrent in the case p = 2/3 , it follows that 
it must be recurrent null .

Q.E.D.
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2.10 Summary of Results

The preceeding results can be summarized by the 
following:

Theorem 2.5: The 2-server series queueing system is

(i) positive recurrent iff p < 2/3;
(ii) transient iff p > 2/3;

(iii) recurrent null iff p = 2/3 .

This can be compared to the well-known [10f p. 116] 
results for the 2-server parallel queueing system. This 
system is

(i) positive recurrent iff p < 1 ;
(ii) transient iff p > 1 ;

(iii) recurrent null iff p = 1 .

Thus confining the customers to a single path has resulted 
in a system 2/3 as efficient (in terms of the saturation 
point for recurrence) as a parallel system.
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III. FORMULAS AND NUMERICAL EXAMPLES
3.1 General Discussion

In this chapter attention is confined to the positive 
recurrent case in the two server series queueing system, 
p < 2/3 . In this case formulas for the limiting prob
abilities are obtained. Also formulas are obtained for 
certain other quantities of interest, such as the mean 
queue length, and the mean waiting time.

Recall (2.19) that the fundamental polynomial is

Let and £2 the two zeros of f(z) inside the
unit circle. By Lemma 2.4

0 < C2 < Cx < 1 •

Equation (2.18) is satisfied if b.̂  + b 2 = 0 , so take 
b^ = b and b 2 = -b . Hence for n ^ 1

f(z) = 2 {[ (2 p + 1 ) z - 2 p] [ (p + 1 ) z - p] - z4 )

(3.1) r(n) = b(C? - C^>

(3.2) p(n) = b(#1 e; -

where 8j
(2p +  1) C i - 2p
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r(n) represents the long run probability of a blocked 
state with queue length n , and p(n) represents the 
long run probability of an unblocked state with queue 
length n .

3.2 Explicit Formulas for Limiting Probabilities 

The limiting probabilities must satisfy (2.9)

2~[r (1) + p (1)] + £  [r (n) + p(n)] = 1 . Using (3.1)
n=l

and (3.2) implies

b { ^ [ C l (1 + 6X> - C2 (l + 62 ) ] + i  [(! + » ! > $ -  (1 + «2 ) C ? } - 1 . -
n=l

b f t f c a  ♦ #1> - c2 a  + S2,] - x .

(3.3) b = ■
{ < 1 + # i > e x l £  + I ^ ] -  <1 +  52 > r 2 [-i7 + r ^ ] }

Hence for n s 1 , r(n) and p(n) are given by (3.1) , 
(3.2) and (3.3). The limiting probability that the 
queue length is n , for n :> 1 , thus is

(3.4) r (n) + p(n) = b[ (1 + 6^  C* - (1 + 62)

From (2.8) one finds that the probability, that the
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system is idle, is

(3.5) p(o) = £ t U  + 5X) Cx - (1 + 62 >C21

3.3 Other Useful Measurements

3.3.1 Mean Queue Length 

The mean queue length is

m = £  n[r (n) + p(n)]

(3.6)
, (i + (l + s2)c2 \

' ^  (1 - C X) 2 (1- C 2 >2 **

where b is given by (3.3).

3.3.2 Mean Waiting Times

Let T1 be the random variable representing the 
waiting time until service begins, for an arrival at a 
random time in the stationary case. Define = EtT^
as the mean time until service begins. Let N be a 
random variable representing the queue length in the 
stationary case.

The time until service begins for an arrival at an 
instant when the system is in an unblocked state clearly is
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^  X^ where the X^'s are independent, identically 
i=l

distributed with X^ having the distribution of 
max(S1 , S2 ) , where and S2 are independent
negative exponential random variables with parameter p, 
X^ represents the time for a system with 2 busy 
servers to clear out and admit 2 new customers. X.
has distribution function (1 and E[Xi]

The time until service begins for an arrival when
[Sfi]

the system is in a blocked state is S + £  X^ , with
i=l

X^ the same as above, and S again having a negative 
exponential distribution with parameter n , since one 
server has to finish before the system goes into an 
unblocked state. Thus 

‘ m 1 = E[E[T1 |N]]

(3.7)

I P(n)  + (J

= ̂ I {3k[(1+61}(1+1/̂1)̂l2k"(1+62) 2̂

(36. -1 ) - C22k_1(362

= b.r +
2^  ( 1 -  Cx2 ) ( 1 -  c x )

2

2'°2

( 1 -  Co) ( 1 -  C9 )

-1)]} 

^ a ! l }
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where b is given by (3.3).
Another measure of waiting time is m 2 = E[T2] where

+ S where S has a negative exponential distribution 
with parameter p . Hence the mean waiting time until 
service is completed is

= 1/u + m 1

Still another measure of waiting time is m^ = E[T3] , 
where T 3 is the time until exit from the system. Thus

T3 = T2 + B

where B is a random variable representing the amount 
of time the customer remains in the system after having 
completed service (exit blocked). In the case of an 
arrival to an unblocked system

T2 is the time until service is completed. Thus T,

= E[T2]

(3.8) = EtT^ + E[S]

0 if N is even

if N is odd

and in the case of an arrival to a blocked system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

X - S2 if N is even

0 if N is odd

where as before X = max(S^ , S2) and and S2 are
independent, negative exponential random variables. 
represents service time in the front server, and S2 
represents service time in the rear server. The mean 
time until exit from the system is

(3.9)

where
E[B]

(3.1)

Thus m^

m3 = E[T3]

= E[T2] + E[B]

= E[E[B|N] ]

■ H  < ^ r - u ) p ( 2 k - 1) + (^ r " „ ) r ( 2 k ) }
k=l

I  {(i + V c ^ C !211 - d  + 62/c2)c22k}
k=l

.  b. r i i i l V f i  . (Ca * « a » C a i 
2u l - l\ l - C2

is given explicitly by (3.3), (3.9) and (3.10).
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3.3.3 Other Measurements

One measure of interest is the probability that 
one of the servers is blocked, p^ . This is of interest 
as a measure of the inefficiency of the system. When 
one of the servers is blocked the system cannot operate 
at full capacity.

A measure of customer frustration is the probability 
that the system is blocked given that a customer is 
waiting, pw . Customers become frustrated when they 
must wait even though a server is not busy.

Pb= I r (n)
1

1

I  r 'n >
_2

2 3

c c
— J^[l + 61c1]  [l + fi2C2J
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Another measure of interest is the ratio of proba
bility of the front server being busy to the probability 
of the rear server being busy, r . This measure would 
be important if each server had a total service capacity 
and one server could be given more of this capacity.

CO «
£  P(n) + £  p( (bs)n)

_ _ _ 1 ________ 1___________

■ £ P(n) + Y P( (se)n)

£p(n) + f £  r(n)
_J=_________________ 1
£p(n) + \ £  r(n)
2 1

1 + -  *-&   — ----

£  p(n) + ± Y ,  r(n)

2 1

61^1 ” 52^2
Cî iC-i + 1/2) C2 (52C2 + 1/2)

1 - CL ’ i - C2

3.4 . Numerical Results and Comparisions

In this section, for given values of p , certain 
probabilities and expected values are found. When both 
the series and parallel systems are positive recurrent,
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the two systems can be compared by observing the proba
bilities of certain queue lengths.

Table 3.1: Probabilities of Queue Length n for 2-Server
Systems.

p = 1 / 3

n Series System Parallel System
0 .4460 .5000
1 .2974 .3333
2 .1303 .1111
3 .0621 .0370
4 .0310 .0123
5 .0159 .0041
6 .0082 .0014
7 .0043 .0005
8 .0022 .0002
9 .0012 .0001

10 .0006 .0000

JL-r -1/2.
0 .2139 .3333
1 .2139 .3333
2 .1444 .1667
3 .1042 .0833
4 .0776 *.0417
5 .0586 .0208
6 .0445 .0104
7 .0339 .0052
8 .0258 .0026
9 .0197 .0013

10 .0150 .0006
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The probabilities for short queue lengths are higher 
in the parallel case. For longer queue lengths the 
probabilities are higher in the series case.

Table 3.2: Mean Queue Length

p Series System Parallel System
.05 .1015 .1003
.10 .2109 .2020
.15 .3348 .3069
.20 .4807 .4167
.25 .6587 .5333
.30 .8834 .6593
.35 1.1786 .7977
.40 1.5856 .9524
.45 2.1831 1.1285
.50 3.1444 1.3333
.55 4.9394 1.5771
.60 9.4474 1.8750
.65 41.0970 2.2511
2/3 ® 2.4000
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10

Series
System

Parallel,
System

Mean Queue Length; Figure 3.1

For small values of p the mean queue length of the 
series queue is about the same as the parallel queue.
As p approaches 2/3 the mean queue length of the series 
queue becomes much greater than that of the parallel 
queue.
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Table 3.3: Values of £]_ and £2

p Cl c2
.05. .0923 .0475

.10 .1751 .0903

.15 .2532 .1286

.20 .3286 .1632

.25 .4024 .1945

.30 .4754 .2230

.35 .5477 .2490

.40 .6196 .2729

.45 .6913 .2950

.50 .7627 .3154

inin .8340 .3345

.60 .9052 .3523

.65 .9763 .3690

2/3 1.0 0 0 0 .3744

As p approaches 2/3, approaches 1 and
£2 approaches 3 +3' ^ ~~ = *3744.

Theorem 3.1: As p -» 0 , is. asymptotic to 2 P
and C2 asymptotic to p , that is = 2 p + o(p)

and C2 = P + °(p) .M p -> 0 .
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Proof: The zeros and £2 » being analytic
functions of p , can be represented in the form

= aQ + alP + a2 p2 + o(p2) . ^  and £2 are the
zeros of f(z) inside the unit circle. f(z) = (z -
where g(z) = z3 + z2 - p(2p + 3)z +2p2 and so
£2 are zeros of g (z). Lemma 2.4 states that

2£2 are positive, hence substituting aQ + a ^ + a 2 p + 
for z in g (z) shows that aQ = 0 . Hence

(a^p + a2 p2 + o(p2 ) ) 3 + (a1p + a2 p2 + o(p2 ))2

-p {2 p + 3) (alP + a2 p2 + o(p2)) + 2p2 = 0

l«i

, 2 -  3 a ,  + 2 +

*12

£1 = 2p  + O (p)

C2 = P + °(p)

Q.E.D.

Dg(z)
and
and
o(p2)
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The conclusion of Theorem 3.1 is observed in Table 3.3 
for p = . 05 , i.e. .0923 « 2p , and
C2 = .0475 « p.

Table 3.4 presents tbe mean waiting times for the 
2-server parallel and series queueing systems. Columns 
four and five refer to the parallel system, in which 
w is the mean time until service begins and is the
mean time until service is finished and the customer 
leaves the system. The values in the table below are 
for n •= 1 . For other p. simply divide the values by 

U.

Table 3.4: Mean Waiting Times
(U = 1)

p m 2 *3 W 1 W 2
.05 .0150 1.0150 1.0571 .0025 1.0025
.10 .0544 1.0544 1.1285 .0101 1.0 1 0 1
.15 .1160 1.1160 1.2161 .0230 1.0230
.20 .2018 1.2018 1.3239 .0417 1.0417
.25 .3173 1.3173 1.4587 .0667 1.0667-
.30 .4723 1.4723 1.6308 .0989 1.0989
.35 .6838 1.6838 1.8579 .1396 1.1396
.40 .9820 1.9820 2.1703 .1905 1.1905
.45 1.4257 2.4257 2.6272 .2539 1.2539
.50 2.1444 3.1444 3.3583 .3333 1.3333
.55 3.4904 4.4904 4.7159 .4337 1.4337
.60 6.8728 7.8728 8.1092 .5625 • 1.5625
.65 30.6131 31.6131 31.8597 .7316 1.7316
2/3 a 00 00 .8000 1.8000
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Just as with mean queue lengths one sees that for 
small values of p the series and parallel queues have 
about the same waiting times, however.for large values 
of p • the mean waiting times for the series queue are 
much larger than those for the parallel queue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IV. THE 2-SERVER k WAITING SPACES SERIES SYSTEM

4.1 Definition of the Problem

One possible extension of the simple two-server 
series queueing problem is a system with two servers in 
series but with k waiting spaces between the two servers. 
Customers are served on a first-come-first-served basis. 
Each customer is served by one of the two servers. 
Customers entering the servers move to the furthest for
ward accessible server. A customer having completed 
service at the rear, server moves into the furthest forward 
available waiting space to wait until he can leave the 
system.

The states of the system can be represented by 
symbols of the form (xy)n ^ where n represents the 
number of customers who have not yet completed service 
(the queue length), x and y are server symbols 
representing the status of the rear and front servers 
respectively, and i indicates the number of occupied 
waiting spaces, y can be 's' or re ' depending on 
whether the front server is busy or empty. x can be 
's', 'e1, or 'b' depending on whether the rear server 
is busy, empty, or blocked. (Blocking of the rear server 
is possible only if all waiting spaces are full.)

56
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k waiting spaces

---------  ̂ o o . . . o o |  | o o . . . o o
arrivals queue O □ departures

rear server front server

Diagram of System: Figure 4.1

The states of the systen are

(ee'o,o

<es' 1,0 ' (es)l,l • ••• > (es) i,k ' <bs)l,k ' <s,e> l,o

(ss)2 ,o- <SS>2 ,1 ' , (ss)2 ,k- (ts)2 j k . (s,e)2 > 0

(ss)n,o- (ss'n,l....... <ss)n,k' (bs’n,k'

Assume that arrivals form a Poisson process with 
intensity X , and assume that each server has a mean 
service rate of p. , where service times are exponen
tially distributed with probability density function

. Assume also that all interarrival and service 
times are mutually independent.
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With these assumptions the process forms a continuous
time, discrete-state, time-homogeneous Markov chain of 
the type considered in Chapter 1.

4.2 Rate Diagram

The one-step transitions for this Markov chain are 
generated by arrivals and service completions. Each 
arrival increases the queue length by one (and changes a 
server symbol from e to s if a server is accessible). 
Each service completion reduces the queue length by one 
and may change the number in the waiting space as well 
as one or both server symbols. For example a completion 
of the rear server would change the state (ss)5 4 to 
(ss)4 5 provided k s 5 . The probability of an arrival 
in time h is lh + o(h) , so the transition rate for 
a transition generated by an arrival will be \ . The 
probability of a completion from one busy server in time 
h is uh + o(h) so the transition rate for a transition 
generated by a service completion will be u . Hence the 
rate diagram will have vertices and weighted edges made 
up by fitting together subgraphs of the following types.
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(ss) n, 1 (ss)

(bs)

n+l,o

(se)

n+2 #k n+2 ,o (se) n+2 ,o

(ss) n, i+1

(ss)

. 'n+1 ,x

(se)

o < i < k ,

n+2 ,i-l n+2 , i

(bs) n,k, (ss)

(ss)

n+l,k

n+2 ,k-l n+2 .k

(se)

n 2: 2
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(bs)_

(ss)

7  I n+l/lc

(ss)

n+2 ,k

Some Vertices of the Rate Diagram; Figure 4.2

In addition there will be special subgraphs around 

the vertices (ss) 2 » ês^l, i' ^ S^l,i f°r
as well as (se) Q , and (e e )0 > 0 •
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4.3 Lumping

Just as the states (se)n and (bs) n were lumped
in Chapter 2, the states (se)n and (ks)n can be
lumped here. Departures from either of these two states

lead to the same state (ss)n_i 0 at the same rate ^ *
Thus we can lump these two states into a single state
b = r(se) , (bs) . ) and the Markov property is. n n, o n,K
retained. Some of the vertices of the rate diagram, 
for the lumped process, are as follows:
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(ss)„

<ss>n+2,o(ss)n+2,l'"'
2siy

'(ss)n+2 ,k-l(ss)n+2 ,k bn+2

Some Vertices of the Rate Diagram for the 
Lumped Process: Figure 4.3

Again the vertices ± with n = 0 , 1 , 2
require special treatment.

Denote the long-run probabilities of this irreducible 
Markov chain by

pi (n) = P f(ss)n ,i^

= lim p , » (t) for n i 2 0 £ i k
t-*» a # ' 'n,i

Pk+i(n) = P{bn 3 = probability of queue length n
with one server blocked

= lim p , (t) for n s 1
t-*= a ' n
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Po (0) = Pt(ee)0#0}

Pi(l) = Pftes)̂} , 0 s i s k 
Pk+l'11 “ P'bl>

where a represents an arbitrary initial state.

4.4 Normal Equations

The normal equations are obtained from figure 4.3, 
balancing input and output rates at each state, as in 
Chapter 2. The result for general n , n + 1 2 2 is:

-(X + 2n) pi (n + 1) +Xpi (n) + uPi-]L(n + 2) = 0

1 s: i s k

k
“ (X + uJPj^^Cn+1) + Xpk+1 (n) + Y. UPi(n+2)

i=o

+ UPfct11 + 2 ) = 0

- (X +2n)po (n + 1) + XpQ (n) + u p ]c+1(n + 2) = 0  .

In addition, the normal equations for queue length 0 
and 1 are:
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-(x+u)pQ (i) + xpQ (o) + ^Pk+i^2  ̂ = 0

-(X +u)Pi(l) + UPi_1 (2) = 0  1 * i £ k

k +1
-XpQ (0) + £  uP i (l) = 0

i=o

This system can be rewritten, setting p = ,

(4 .1 ) -2 (p +l)pi (n + l) + 2 ppi (n) + pj_1 ( n + 2 ) = 0

1 £ i £ k , n i l

k
(4.2) -(2p +l)Pk+1(n + l) +2p Pk+1 (n) + £ p . ( n  + 2)

i=o

+ pk (n + 2) = 0 , n i l

(4 .3 ) -2 (p+l)p0 (n + l) + 2 p pQ (n) + pk + 1  (n + 2 ) = 0 , n s 1

Also the normal equations for queue length 0 and 1 
become:

(4.4) -(20 + l)Po (l) + 2p pQ (0) + Pk+1 (2) = 0

(4.5) -(2p + l)p.(l) + P i_1 (2) = 0 1 £ i £ k

k
(4 .6 ) -(2 p + l)pk+1 (l) + ^ p ± (2 ) + pk (2 ) = 0

i=o
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k+1
(4.7) -2d Pq (0) + £  P i (l) = 0 .

i=o

This system is dependent and thus one equation say
(4.4), can be disregarded. Note that PQ (°) appears 
only in (4.7). Thus (4.7) is automatically satisfied 
if it is used to determine PQ (°) terms of the other
quantities,

k +1

Po<°> I Pi(1>
i=o

By Theorem 1.3 the Markov chain will be positive 
recurrent if the normal equations, with the probabilities 
p^(n) replaced by arbitrary variables x^(n) , have a 
nontrivial absolutely convergent solution. If this is 
the case any such solution, normalized to form a proba
bility distribution, will give the limiting probabilities:

P i (n) = cx.(n) , and £  £  P± (n) + pQ (0) = 1 . 
n i

Substituting '2 ^ ̂  pi ̂  for po ̂  one obta^ns 

k +1 00 k +1

<4 -8> 2; I  p i (1> + I  I p i (n) = 1
i=o n=l i=o

as the normalizing equation. Hence the problem reduces

I
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to finding sufficient conditions for the system (4.1) -
(4.3) and (4i5) - (4.6) to have a nontrivial, absolutely 
convergent solution.

4.5 Difference Equations

The general system (4.1) - (4.3) (omitting the 
special equations (4.5) - (4.6)) consitutes a vector 
difference equation. Using the shift operator E this 
system can be written in the form

(4.9) Fk (E)x(n) = 0

n a 1 , where

Fk (E) =

”r e 0 0 . . . 0 0 E2

E2 *E 0 0 0 0

0 E2 *E 0 0 0

0 0 E2 0 0 0

0 0 0 E2 *E 0

r M
 to E2 E2 . . . E2 2E2 SE

(k+2 ) x (k+2 )
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where Rg = [-2 (p+1 )E + 2 p] and SE = [- 

and

xQ(n) 
x. (n)

x(n)

xk (n)
, (n)

The fundamental solutions of such
jjdifference equation have the form c £ 

appropriate nonzero scalar and

wk
Ck +1

(2 p+1) E + 2 p] .

a linear homogeneous 
where £ is an
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is an appropriate constant vector.
Substituting this into (4.9) one obtains

0 = Fk (E)c Cn

= Fk (E) Cn c

= Fk (C)Cn c

= Fk (G)cGn 

—2k —i -X nThus Ffc(C) c = 0 and one concludes that c £  

is a solution iff ^ ( 0  is a singular matrix and c
is a vector in its null space. Hence £ must be a zero
of the fundamental polynomial f^(2) = ^et ' anĉ
the corresponding c must satisfy

(4.10) Fk (£) £  = ~0 .

4.6 The Zeros of ^(z)

Further analysis depends on knowledge of the location 
of the zeros of fk (z). The following is an explicit 
representation of fk (z).
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Theorem 4.1 f.(z) = (-l)k+1( [-(2p+l) z+2pj [2 (p+l) z-2p]*

+ Y  z2 (l+1 )[2 (p+l)z-2 p]k+1~i+2 z2(k+2) ] 
i=l

Proof:

f>(z) =

(k+2 ) x (k+2 )

where R = [-2 (p+1 )z + 2 p] and S = [-(2 p+l)z + 2 p] .

From this one obtains

fk (z) = [-(2 p+l)z+2 p] [-2 (p+l)z+2 p]k+ 1 +(-l)k+1z2Hk + 1
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by expanding the last column, where

2 £ 4 £ k + 1 1 x 1

where Rz = [-2(p+l)z + 2p] . The quantity is seen
to satisfy the recursion relationship by expanding by 
the first column :

Hi = (-1)*"1 [-2(p+l)z + 2p] i_1 +

2where = 2 z 

Hence
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+ z2 { (-l)k"1z2 [-2(o+l)z+2p]k~1 

+ z2 f (-1)z2[-2 (p+l)z +2p] + 2z4 }---)) .

(—1 ) { [ -  (2 p+1) z + 2p] [ 2 (p + l)z - 2p]k+^

k
+ £  z2(i+1)[2(p + 1) z -2p]k+1"1 +2z2(k+2)

i=l

Q.E.D.

Certain modifications in the subsequent arguments 
are necessary if f^(z) ^ as multiple zeros inside the 
unit circle. For simplicity only the case where f^(z) 
has distinct zeros inside |z| < 1  will be considered 
in detail. Hence the null space of *^( 0  (see 
[2, p. 253] ), where £ is a zero of ^(z) * 
1-diraensional and the corresponding c is nontrivial 
and unique up to a multiplicative constant. The general 
solution to the system (4.1) - (4.7) has the form

(4.11)
j

where the £j's are the distinct zeros of f^(z) and 
the constant vectors c^ satisfy (4.10) for £ = Cj •
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In order that the terms of (4.11) form an absolutely 
convergent series, only the zeros Cj with | C^| < 1  

can be included. Denote these zeros by C]_ , ... , ^  • 
Thus by Theorem 1.3, the system will be positive re-

_A _Scurrent iff constant vectors c^ , ... , cm can be 
obtained, satisfying the above conditions and also the 
remaining equations (4.5) and (4.6).

In order for c to satisfy (4.10)

(4.12) [-2 (p + 1)C + 2 p]co + ck + 1  C2 = 0

(4.13) [-2 (p + 1)C + 2 p] c± + c ^  C2 = 0 1 s i *s k

(4.14) [“ (2p + 1)C + 2p]ck + 1 + £  c. C2 + ck C2

Using equation (4.13), for each j the components
c^j can be represented in terms of cQj

r  ̂ i r  c *  i1 ■"l_2(p+D Cj-2pJ °i-lj [ 2 (p+l)Cj-2 pj coj

for 0 s i s k
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From equation (4.12), cQj can be represented in terms of

_[2 (p+1) q-2pl_
a^ and thus

cij = 6j+1 for 0 £ i <; k

where 6 ■ =
3 2 (p+1 ) Cj"2 o

Equation (4.14) must also

be shown to hold for these c^j . Substituting

i+1
2 (p+1)Ci”2p

(4.14) results in

a. for c . . into the left side of 3

[-(2 0+l) Cj + 2 p]aj + £j 2 (p+1) Cj"2p

I c?
i=0

A
2 (p+1) Cj-2p

(i+1 )

To show this is zero, divide through by
[2(p+l) Cj“2p] k +1

yielding
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C - ( 2 p + l ) C j + 2 p ] [ 2 ( p + l ) C j- 2 p ] k + 1  +  C ? (k+2)

+ I S?(i+2 )[2 (p+l,Cj-2 pl'k+1)-'i+1> 
i=o

= [-(2 p+l)Ci+2 p][2 (p+l)C.-2 p]k + 1  + 2 C?(k+2)

k -1
+ Y Cj(i+2 )[2 (p+l)Cj-2 p] (k+1)- (i+1)

[-(2 p+l) Cj+2 P] [2 (p+l)Cj-2 p]k + 1  + 2 £?(k+2)

+ ^ C j (i+1) [2 (p+l)C.-2 p]k+1“i
i=l

= f (q) 

= 0

since q  is a zero of fk (z). Thus equation (4, 
holds with

|_2 (p+1) Cj“2p J

ck+lj “

aj = 6j D ° * j * k *

14)

and
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It was shown above that only zeros inside the unit 
circle can be used.

Theorem 4.2 A nontrivial solution to the system (4.1)-
(4 .7 ) exists if fk (z) has at least k + 2  zeros inside 
the unit circle.

Proof: There are k + 1 initial conditions on the a^'s
that must be satisfied. There are the same number of 
a.'s as zeros of f. (z) inside the open unit circle.
Let B be the coefficient matrix of this system. If 
there are m z k + 2 zeros then B is a (k + l)x(m) 
matrix and hence there is a nontrivial solution to the 
system BA = 0 where A*" = (a^ , , am ) .

4.7 The Fundamental Polynomial

From the preceeding one sees that it is necessary to 
obtain further information about the zeros of the 
fundamental polynomial.
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fv (z) =

2 z

(k+2 ) x (k+2 )

where Rz = [ — 2 (p + l)z + 2 p] and Sz = [-(2 p+l)z + 2 p] .

Lemma 4.1: f (̂z.) has at least one zero at z = 1 . 

Proof: Direct substitution.

Definition: Pk :

Lemma 4.2: JEf p < pk , fk(z) has exactly k + 2 zeros 
inside the open unit circle. If p s ^as
most k + 1 zeros inside the open unit circle.
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Proof: A recurrence relation for ^(z) can be obtained
by noting that f^(z) = (- D k+1h(Z) where

h (z) =

(k+2 )x (k+2 )

where Rz = [-2 (p + 1 ) z + 2 p] and Sz = [-(2 p + 1 ) z + 2 p] .

The zeros of ^(z) are the same as the zeros of h (z) . 
Now expanding by the last column results in

(4.15)

where

h (z) = 2 z2 (k+2)-[- 2 (p+l)z+2 p]w
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(k+l)x(k+l)

where R2 = [-2(p+l)z + 2p] and Sz = [-(2p+l)z + 2p] .

If one continues to expand by the last column, the 
following recurrence relation is obtained.

Wj = z2(<t+1) - [-2 (p+l)+2p]wi-]L for 1 s I s k

where w = -{2p+l)z+2p. o

On the circle | z | = l + e , e ^ O ,  the inequality 
|a - b | ^ |a | - |bj yields |w q | a (2p+l) (1+e) - 2p

= 1 + (2 p+1) e
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Similarly Jw^ | £ -(1+e)4 + [2 (p+1) (l+e)-2p] |wo ]

s 1 + 6pe + 0(e2)

By continuing this process one obtains a sequence 
dQ , , ... , d^ of constants such that

| W j | ^ 1 +  d^e + 0(e2)

for 1 z I s k on the circle |z| = 1 + e . From above 
one can take dQ = 2p + 1  and d^ = 6p . In general

K + J  * - d + e ) 2(i+2) +  C2 (P + 1 )  (l+e)-2p] |W j |

* -(l+e)2(/+2) + [2 (p+1) (1+e) - 2P] [l+d^e+0(e2) 

= 1 + e (2p+2d^-2i-2) + 0(e2)

|wi+1| = 1 + a i + i  + ° ( e 2) 

if d x+1 = 2p + 2d^ - it - 2 .

This difference equation for the ^as t îe solution

(4.16) d ̂ = (4p - 3)2^ - 2p + 4 + 21

which can be checked inductively.
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Thus, on  |z| =  1 +  e ,

|wk | a 1 +  { ( 4p-3)2k  + (-2p+4+2k) )e + 0 ( e 2 ) 

an d  so

| (-2(p+l)+2p)wk | * (2+2(p+l)e) (1+dj^e+O(e2 ) )
=  2 +  2 (p+1) e + 2 3 ^  +  0 ( e 2 )
=  2+2 (p+1) e+2k + 1  (4p-3) e - 4 pe + 8 e + 4 k e+0 (e2 ) 

=  2+ [ 2 k + 1 (4p-3)-2p+10+4k] c + 0 ( e 2 )'

Hence the magnitudes, of the two terms making up h(z) , 
see (4.15), can be compared on |z| = 1 + e .

(4.17) |{-2(p+l)z+2p)wk | - |2z2(k+2)|

s 2+2[ (4p-3)2k - p+5+2k] e-2 (1+ (2k+4) e) + 0(e2 )

= 2[ (4*2k-l) p-3*2k +l] e + 0(e2)

Case (i) p < pk

3•2k—1Whenever p < p. =  r:—  • an<̂  s < 0 and
k 4 * 2 - 1

sufficiently small, the right side of (4.17) is positive. 
By Rouch^'s Theorem h(z), given by (4.11), must have
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the same number of zeros inside the circle Jz| = 1 + e
as [-2 ( p + l ) z + 2 p ] . By letting e -» 0 one con
cludes that the same is true inside the open unit circle. 
Thus we need only determine the number of zeros of 
[-2(p+l)z+2p]w^ inside the open unit circle. Now

|(-2(p+l)z+2p)wk_ll| [ 2 (p+1) (1+e) -2p]

* [2+2(p+l)e] [l+dk _1e+0(e2)l

= [2+2 (p+1) e] {l+[ (4p-3)2k_1-2p+4 
+2(k-l)] e+0(e2 )}

= 2 + 0(e)

>  1 + 0(e)
= |z2 <*+1>| .

Hence | (-2 (p+l)z+2p)wk_1 1 - |z2(1?+1)| > 0 ,  and it

/ 2 (k+1)follows from Rouche's Theorem that w^ = -z
+ [-2 (p+1) z+2p]w^_.1 has the same number of zeros inside
the circle |z| = 1 + e as [-2 (p+1) z+2p] wk-1 has .
Since the first factor has one zero, 2p/(2p+2) inside
the unit circle, on letting e -» 0 one sees that w^
has one more zero inside the unit circle than
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|(-2(p+l)z+2p)wje_1 | s [2 (p+1) (l+e)-2p] |w^_1 !

5: [2+2 (p+l)e) [l+[ (4P-3)2'^""1-2p+4 
+2(4-1] e + 0(e2)]

= 2 + 0(e)
> 1 + 0(e)
= |z2 U + 1 ) | .

Therefore = [-2 (p+1) z+2P] w ^ - z 2 (*e+1> 1 * 4 = k
has the same number of zeros inside the circle
|z| = l + e / e  < 0 ,  as [-2(p+l)z+2p]wx_1 . Letting
e -* 0~ it can be seen that has one more zero inside
the unit circle than w. . for 1 ^ 4 £ k . Since 4-1
Wq = -(2p+l)z+2p has one zero inside the unit circle, one 
concludes that h(z) , and hence fk (z) • has exactly 
k + 2 zeros inside the unit circle.

Case (ii) D > pk
•a . 2^— 1If p > pv = v , e > 0 and sufficiently small,

K 4 * 2 - 1

then ![-2(p+l)z+2p]wk 1 - |2z2(k+2)| > 0  from (4.17).
By Rouch^'s Theorem h(z) has the same number of zeros 
inside the circle | z | = l + e » e  > 0 ,  as [-2 (p+1) z+2p] w^. 
By letting e -* 0+ one concludes that the same is true 
inside the closed unit circle. As above we see that 
has k + 1 zeros inside the closed unit circle and so
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h(z) has k + 2  zeros inside the closed unit circle.
Since one zero is z = 1 there are at most k + 1 zeros 
of h(z) and hence of fk (z) inside the open unit circle.

Case (iii) p = pk

Note that the zeros of h(z) are analytic and hence 
continuous functions of p . Choose p > pk '. As p -* pk 
no zero can leave the closed region (z ( ^ 1 . Note h(z) 
is of degree 2 (k+2) and h(z) has at least k + 3 zeros 
in \z'\ ^ 1 since there are at most k + 1 zeros in 
| z | < 1 . Thus when p = pk h(z) and hence fk (z) has 
at least k + 3 zeros in |z| ^ 1 and hence at most 
k + 1 zeros in |z( < 1 .

Q.E.D.

Lemma 4.3. There are no zeros of <2H the unit
circle except z = 1.

Proof: fk (z) = (-l)k+1f-[ (2p+l)z-2p] [2 (d+1)z-20]1C+1

+ 2 z 2 <k+2) + I  z2 <1+1>[2(P+l>«-2p]k+1-1) .
i=l

Suppose fk (z) = 0 , | z | = 1 , z ^ 1 then
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|2(p+l)z-2p| = 2 (p+1) \z -

>  2 (p+1) (1 - )

| (2p+l) z-2p | = (2p+l) | z - 2^ 1 1

>  <2P+ D  (1 ' i f f e  >

[ (2p+l) z-2 p] = 2z‘2 (k+2)
[ 2 (p+1) z-2 p]

1 < |[(2p+l)z-2p|

2 z2(^ +2)

[ 2 (p+1) z-2p]

kI
i=

2z~2 (k+2)
[2 (p+1) z-2p]

k 2 (i+1)Y ------ r
[2 (p+1) z-2p]

.=1

: z2 (i+1)
;x [2 (p+1) z-2p] 1

Y  »2(1-+1)
^  [2 (p+1) z-2p]1
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k
< - £ - ■  + y  -l~k+l Z  0i

2 i=l 2

= 1 .
This is a contradiction and hence the only zero on the 
unit circle is z = 1 .

Q.E.D.

Note that further calculation shows that the zero 
z = 1 is simple whenever p ^ pk and double when 
p = pk * Us -̂n9 this fact the last sentence in Lemma 4.2 
can be strengthened by replacing "at most" by "exactly".

4.8 Conditions for Positive Recurrence

By Theorem 1.3 the system will be positive recurrent 
if (4.1)-(4.3) and (4.5)-(4.6) have a nontrivial 
absolutely convergent solution. From Theorem 4.2 this 
is true if there are at least k + 2 zeros of 
inside the open unit circle. Combining this with 
Lemma 4.2 one obtains the following.
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Theorem 4.3: The 2-server. k storage space, series 
queueing system is positive recurrent if

P < Pk •

4.9 Conditions for the System to be Transient

Foster's Theorem (Theorem 1.4) asserts that a 
necessary and sufficient condition for an irreducible 
Markov chain to be transient is the existence of a non
constant bounded solution to a certain system of equations. 
As in section 2.8 one can set up the equations from the 
rate diagram. For this Markov chain assign the arbitrary 
variables to the states as follows:

To the simple state (ss)n i assign the variable 
y i (n) , n i 2 , 0 £ i £ k . To the lumped state
bn assign the variable Yk+^(n ) » n i l .
Also assign the variable y^(l) to the state 
(es)^ ^ and YQ (0) to the state (ee)Q 0 •

Foster1s equations then become the following with
p = 1/2p .

For n i l

(4.18) yo (n) - (2p+l)ylc+1(n+l) + 2 p y k+1(n+2) = 0

(4.19) yk +1(n) + Yi+1(«) “ 2 (p-KL^ (n+1) + 2pyi (n+2) = 0
0 s i <; k
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and

(4.20) yo (0) - (2p+l)yi (l) + 2py± (2) = 0 0 <; i s k + 1

Equation (4.20) with i = k + 1 is equation (4.18)
with n - 0 , so any solution of the system (4.18) -
(4.19) for all n will satisfy (4.20) for i = k + 1.
Thus we need only determine whether there is a nonconstant 
bounded solution of (4.18) - (4.19) which satisfies
(4.20) for 0 £ i £ k .

The general system (4.18) - (4.19) can be written 
in the form

(4.21)

where

Gk (E)y(n)

GV (E) =

(k+2 )x (k+2)
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where T = [-2 (p + 1)E + 2pE2] and U = [-(2p + 1)E + 2 pE2] .

y (n) =

yQ(n)
yx(n)

yk+i(n)

The fundamental solutions of such a linear homogeneous 
difference equation have the form d£n where £ is an 
appropriate nonzero scalar and

do
<J,

^ + 1

is an appropriate constant vector.
Substituting this into (4.21) one obtains
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 ̂r\0 = Gk (E)dCn 

= Gk (E)c"d

-6^(0 c”a 
= ek (C)acn •

_i. _±> -A nThis Gk (£)d = 0 and one concludes that d£ is a
solution if and only if G^(C) i-s a singular matrix 
and d is a vector in its null space. Hence £ must 
be a zero of the fundamental polynomial g(z) = det G(z), 
and the corresponding d must satisfy

(4.22) Gk U ) d  = 0 .

Bounded solutions of this system will have the form

y(n) = Y, ̂ j Gj11 where the ^  are the zeros of the
j

polynomial ^(z) = ^et inside the closed unit
circle |z | j£ 1 .

The following is an explicit representation of gk (z).

Theorem 4.4: ^(z) = z2 k̂+2^f^(1/z) =

= (-l)k+1([-(2p+l)z+2pz2] [2(0+l)z-2pz2]k+1 + 2 

k
+ Y  [2 (p+1) z-2 pz2]1 ) 

i=l
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9 k (z> =

T 

0 

0 

0

0 

0 

1

Where Tg = [-2(p+1)z+2pzz] and Uz = [- (2p+1) z+2pz2] .
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= (z)2(k+2)

T 1/z2 . . . . .  0 1/z2

0 T . . . .  0 1/z2

0 0 . . . .  0 1/z2

0 0 . . . .  0 1/z2

0 0 . . . .  1/z2 1/z2
0 0 . . . . T 2/z2
1 0 . . . .  0 U

(k+2) x (k+2)

where t = [-2 (p+l)/z+2 p] and U = [-(2p+l)/z+2 p] .

Since the determinant of the transpose of a matrix equals 
the determinant of the matrix

gk (z) = z2(k+2)fk (l/z)

= (-l)k+1( [ - (2p+l) z+2pz2] [ 2 (p+1) -2pz2] k+1 + 2  

k
+ ^  [2(p+1)z-2 pz2]^) .

i=1 Q.E.D.
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In order for d to satisfy (4.22)

(4.23) [-(2p+l)C+2pC2]dk+1 + dQ = 0

(4.24) dk+1 + [-2(p+l)p+2pC2]di + d i+1 = 0 0 £ i £ k .

Using equation (4.24) for each j the components
d . . can be represented in terms of d. ,.. = e.KTl] J

dtj = [2 (o+l) Cj^pCj2] - dk+ij
i-1

=  [ a f p + D C j - Z p C ? ] 1 d oj - £  [ 2 ( p + l ) S j - 2 p C ? ] ie j
£=o

for 1 s: i £ k

d oj = [ ( 2 p + l ) C j- 2 p C 2 ] e j 

d^j =  e j ( [ 2 ( p + l ) C j- 2 p C j ] i [(2p+l>C.j- 2 p C 2 ] 

i-1
- [2 (p+1) C j - ZpCj2 ! x 3

l=o

for 1 £ i £ k

Equation (4.24) for i = k must be shown to hold for 
these d ^  . Substituting
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i-1

e.jU 2 ( p + l ) C j -2pC?] i [ <2p+l)C..-2pCj] - £  [ 2 ( p + l ) C j- 2 p C j ] i ]
1=0

for d^j into the left side of (4.23) with i = k 
results in

2e j+ e  . [ -2  ( p+1) Gj+2p £?] { [2  (p+1) C j-2  p Cjl k [ (2 p+1) G j-2  P Cj]

k-1
- £  [ 2 ( p + l ) C j- 2 p C j ] i ) •

i=o

(-1)^+^To show this is zero, multiply by * e '  yielding

(-l)lt+1C 2 + [ 2 ( p + l ) C j- 2 p C ? ] k + 1 [ - ( 2 p + l ) C j +2pCj]
k - 1

+  1 [ 2 < p + l ) C j - 2 p  S ? ] i + 1 )
1=0

=  (-l)k + 1 f 2 + t 2 ( p + l ) C j - 2 p C j ] k + 1 [ - ( 2 p + l ) C j +2pCj]

k
+  £  [ 2 ( p + l ) C j- 2 p C j l 4 )

1=1

-

= o

since is a zero of 9k (z) •
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Solutions of (4.18) - (4.19) are of the form

y. (n) = / d. . £*? . If the C-'s are such that1 13 3 3
j

|gj| < 1 and d^j are not all zero then there is a 
bounded nonconstant solution to the general system.
There are k + 1 initial conditions. If there are 
k + 2  zeros of 9k (z) inside the open unit circle and 
hence k + 2  e^'s then there is a nontrivial solution 
for the e^ 's .

The polynomial. 9^(z) ^ as been shown to be 
g^(z) = z2 <k+2>fk (l/z) . Thus the number of zeros of 
gk (z) inside the open unit circle is the same as the 
number of zeros of f]^2) outside the unit circle, for 
a given p . By Lemma 4.2 if p < pk , ffĉ 2) ^as 
k + 2  zeros inside the closed unit circle and hence, 
having degree 2 (k+2) , k + 2  zeros outside the closed
unit circle. Thus there is a nontrivial solution for the 
e^'s and so from Foster's Theorem (Theorem 1.4) we 
obtain the following.

Theorem 4.5: The 2-server, k storage space series
queueing system is transient if p >  pk .

The only remaining case is p = pk . To consider 
this case we use Foster's Criteria, Theorem 1.5. The
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inequalities ^  ^ 0 for I - 1 , 2 ,  ... are
j=o

identical to the system (4.18)-(4.20) with the equal 
signs replaced by £ .

Lemma 4.4: If p = pk , the 2-server, k storage space
series queueing system is recurrent.

Proof: The inequalities for Foster's Criteria become:

(4.25) yQ (n) - (2pk+l)yk+1 (n+1) +2pkYk+1 (n+2) * 0

for n i 0

(4.26) Yk+i(n) + Yi+1(n) - 2 (pk +l)yi (n+1) +2pky i (n+2) s 0

for 0 £ i s k and n ^ 1

Also

(4.27) yQ (0) - (2pk+l)y i (l) + 2pky ± (2) <; 0

for 0 s i s: k

where p. = ■3'‘-̂ i-r-1- .  It can be seen by direct subsitution
X 4 - 2 - 1

that
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1 , n > 1

¥q{0) = 1 = 2pk * (l=pk )§”k

satisfy the inequalities (4 . 25) - (4 . 27) . As n ~ Y^Cn) -*■“ 
for 0 _< i k + 1 . Thus by Foster's Criteria the system 
is recurrent.

4.10 Summary of Results

The preceeding results can be summarized by the follow
ing;

Theorem 4.6: The 2-server, k storage series queueing
system is

i) positive recurrent if p < pk ,
ii) transient X f f ^  p < pk '

3•2k-l where p. = ----—  .

This can be compared to the well-known [10, p. 116] 
results for the 2-server parallel queueing system. This 
system is

i) positive recurrent iff p < 1 ;
ii) transient iff p > 1 ;
iii) recurrent null iff p = 1 .
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Note that 2/3 £ p < 3/4. pQ = 2/3 and pk -► 3/4 
as k -» ® , thus the saturation value of p cannot 
exceed 3/4 with intermediate storage, a comparatively . 
small increase over the value of 2/3 with no storage.
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V. THE n-SERVER SERIES QUEUEING PROBLEM

5.1 Definition of the Problem

A second possible extension of the simple 2-server 
series queueing problem is the simple n-server series 
queueing problem. The customers will be served on a 
first-come-first-served basis. Each customer is served 
by one of the n servers. There are no storage spaces 
between servers. The queue discipline requires that any 
customer entering the servers move as far forward as 
possible.

Tl?e various essential^ states of the system can be 
represented by symbols of the form where m
represents the number of customers, who have not yet 
completed service, (the queue length), i is the number 
of accessible servers, and b is the number of blocked 
servers.^ A server may be blocked by a customer, who has 
completed service but cannot leave the system because his
1. A state that communicates with every state that it 

leads to is termed essential, otherwise it is termed 
inessential.

2. Note that if i = 0 , state (0)m#b exists for
0 £ b £.n - 1  , m a 0; if i > 0 ,  state (i)m ^ 
exists only for 0 ^ b ^ n - i - l  and m = n - i - b.

99
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way is blocked. A server may also be blocked if he has 
no customer but customers cannot get to him because 
the way is blocked by customers at other servers. All 
empty servers are either to the right or left of the 
busy servers. We will see that any other arrangement 
is inessential.

arrivals departures
------- * o o . . . o ,  >

queue n servers

Diagram of the System: Figure 5.1
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The states of the system are 

<">0,0

<n-l>i(Q (n-2)1 ( 1....... ( 0 ) ^ ^

<n'2)2.o (n-3)2 1 . ... ' <°>2,n-l

<2>„-2.o' W n - J . ! '  ••• • <°>n-2.n-l

U ’n-l.o' (0>n-l.i * •* *

...
' (0)n+l,n-l

...

A state with empty servers between busy or blocked 
servers is inessential. This is seen by noting that 
whenever the system starts in such a state it will leave 
this class of states once each customer, who was 
originally in the servers has left the system. No such

101
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inessential state is accessible from an essential state 
of the form (i)m ^ . Hence, once the system has left 
the inessential states it never returns. Since the long- 
run probabilities are considered here it is not necessary 
to consider the inessential states.

Assume arrivals form a Poisson process with intensity 
X y each server has a mean service rate of n where 
service times are exponentially distributed with probability 
density function ne-lit ; all interarrival and service 
times are mutually independent.

With these assumptions the process forms a continuous
time, discrete-state, time-homogeneous Markov chain of the 
type considered in Chapter 1. The state space is denumerable 
and the states are represented by the state symbols b*

5.2 Rate'Diagram

The one-step transitions for this Markov chain are 
generated by arrivals and service completions. Each 
arrival increases the queue length by 1. Each service 
completion reduces the queue length by 1. For example 
if n = 7 a service completion from one server might 
change the state ( 0 ) 5 to (0) g g . The probability 
of an arrival in time h is Xh + o (h) so the transition 
rate for a transition generated by an arrival will be X.
The probability of a completion from one busy server in
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time h is nh + o (h) so the transition rate for a 
transition generated by a service completion will be p, . 
Thus the rate diagram will have vertices and weighted 
edges made up by fitting together subgraphs of the 
following types:
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m+1,0

m+2,n-l

m #l

m, n-1

'm+2,n-2 m+2,n-1

Some Vertices of the Rate Diagram; Figure 5.2
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In addition there will he special subgraphs around
the vertices (i) . where m < n . m, d

Denote the long-run probabilities of this irreducible
Markov chain by pi (m) = P[ (i) ,] = lim p ... (t)

^  m '° t-*» a ' (i;m,b
where a represents an arbitrary state, in is the queue
length, i is the number of accessible servers, and b
is the number of blocked states.

5.3 Normal Equations

The normal equations, with p = ~  , are the following:

(5.1) -[np+n-b-(n-m-b-l)+]pb (n"in“:b"1) (m+1)

+ n p P h ^ ^ O n )

+ [n-b+1- (n-m-b-1)+] p^n-m-b-D (m+2) = 0 

for m ^ o ,  1 <; b £ n - 1

(5.2) -[no+n-(n-m-l)+]po (n"ni"1) (m+1) +nppQ (n"m) (m)

+ P°_1 (m+2) = 0 for m ^ 0 

n-1
(5.3) _nPPo + I  Pb"-1'55!1' = 0

b=o
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where x+ = max(x , 0) and (0) = 0 except when i = n
and b = 0 . For m i n these equations become

(5.4) -[np+n-b]p^(m+l)+npp°(m)+[n-b+l]p°_1 (m+2) = 0

1 b s: n - 1

(5.5) -[no+n] pQ° (m+1) + nppo°(m) + p°_^(m+2) = 0

This system is dependent, so any solution of all but one 
of these equations is a solution of all. Hence one of the 
equations can be disregarded. (5.2) with m = 0 will 
be disregarded. Further (5.3) is automatically satisfied
if it is used to determined Pq (0) in terms of the other
quantities,

n-1
p >  = ^  ^  Pb""1"*3 Hence onlY the system (5.1)-

b=0

(5.2) need be studied.
By Theorem 1.3 the Markov chain is positive recurrent 

if the normal equations with the probabilities P^(m ) 
replaced by arbitrary variables x^ (m) , have a non
trivial absolutely convergent solution. If this is the 
case any such solution to this, homogeneous system can 
be normalized to form a probability distribution satisfying
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a, n-1
(5.6) p” (0) + £  £  p^(n-b-m) (m) = j_

m=l b=0

Thus the problem reduces to finding sufficient 
conditions that the system has a nontrivial absolutely 
convergent solution.

5.4 Difference Equation Approach

The general system consitutes a vector difference 
equation. Using the shift operator E this system can be 
written in the form

(5.7) F K > (E)p(m) = 0  m  s n

where
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F (n) (E) =

nE

0 (n-1) E

E

0

0

where TE (i) = [-(np+i)E+np] .

Po«“ )
P° (m)

p(m) =

Pi.l«“)
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The fundamental solutions of such a linear homogeneous
mdifference equation are known to have the form c£ where 

C is an appropriate nonzero scalar and

n-1

is an appropriate constant vector.
If this is substituted into (5.7) 

one obtains

(5.8) 0 = F (n) (C)c Cn *

Thus F ^  (£)c = 1) and one concludes 
solution if and only if F ̂  (£) is a 
and a is a vector in its null space, 
a zero of the fundamental polynomial

(5.9) f (n) (z) = det F (n) (z) 

and c must satisfy
(r>\(5.10) } (C)c = 0 .

as in Chapter 4

that cc"1 is a 
i singular matrix 

Thus £ must be
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5.5 The Zeros of f (n) (z)

Further analysis depends on knowledge of the location 
of the zeros of f ^  (z). The following is an explicit 
representation of f ^  (z) .

Theorem 5.1: f ^ ( z )  = (-l)n ^[n'.z2n-[ (np+1) z-np] [ (np+2) z-np] .

• • • [ (np+n) z-np] } .

Proof: 
-(n) (z) =

Tz (n)
2 Tz (n-1) 

'n-1) z2

T (2)
o-2

0
T„(l)

where T (i) = [ - (np+i) z+np] . z

From this one obtains
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f ̂  (z) = (—1)n 1niz2n+[-(np+1) z+np] [-(np+2) z+np] • r • 

[- (np+n)z+np]

by expanding by the last column.
Hence

f (n) (z) = (-l)n-1{nJz2n-[ (np+1) z-np] [ (np+2)z-np] •••

Certain modifications in the subsequent arguments

has distinct zeros inside |z| < 1  will be considered

dimensional and the corresponding c is nontrivial and 
unique up to a multiplicative constant. The general 
solution to the system (5.4) - (5.5) has the form

" *  [ (np+n) z-np] )

Q.E.D.

are necessary if f ^  (z) has multiple zeros inside the 
unit circle. For simplicity only the case where f ^  (z)

in detail. Hence the null space of F ^  (£) (see [2,
p. 253]), where £ is a zero of f ^  (z) , is 1-

j

where the £.'s are the distinct zeros of f ^  (z) , 
and the constant vectors Cj satisfy (5.10) for
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In order that the terms of (5.11) form an absolutely 
convergent series, only the zeros Gj with |Cj!< 1 can 
be included. Denote these zeros by ... , . Thus
by Theorem 1.3, the system will be positive recurrent

-A -Aif constant vectors c^ , ... , c^ can be obtained, 
satisfying the previous conditions and also the remaining 
equations.

-AIn order for c to satisfy (5.10)

(5.12) [-(np+n) C+np] cn + C2^  = 0

(5.13) [-(np+i) C+np] c± + (i+1) C2ci+1 = 0 1 s i s n - 1.

Using equation (5.13) for each j the components 
c. . can be represented in terms of c^. = a.
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(np+i-1) g-np

ui-l j

(np+i-1) C-}~np~ (np+i-2) C^-np

(i-l) d '

(np+1) C^-np

2Ci

for 2 ^ i <: n

.a.2} 3

where
(np+i-1) C^-np

for 2 i £ n .

Equation (5.12) must also be shown to hold for these ,

Substituting

(np+n-1) C^-np

nCj

r (np+1) C^~n P ~l

L ,r? J 3j

and a . for c . . 3 13

into the left side of (5.12) results in
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[-(np+n) Cj+npl
(np+n-1) Cj“n P

nC,

(np+1)

To show this is zero multiply through by

(-l)n"1n:c.2(n"1) which yields

,r2n[- (np+n) Gj+np] [ (np+n-1) Gj“n pl * * * t (np+1) Cj—tip] + ni Gj

= (-l)n-1[ni G^n “ [ (np+n) Cj-np] •••[ (np+1) Cj-npl )

=  f (n) (Gj)

Since Gj -̂s a zero of f ̂  (z) .

Thus equation (5.12) holds with 

(np+i-1) G.:”np

■ «  ■ [j (np+1) G_i“rip |

“ .»ij —  »2i ^ 2 £ i £ n
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Let , ... , Cg represent the zeros of (z)
inside the unit circle. On substitution of the above
representations for c^^ into the initial conditions
(5.2)-(5.3) yield a single homogeneous linear system 

tfor a = (a^ , , ag ) of the form

(5.14) Ba = "o ,

where B is k x q for some fixed k £ q .

5.6 The Fundamental Polynomial

Before proceeding to obtain conditions under which 
the system (5.2)-(5.3) has a nontrivial solution it is 
necessary to obtain further information about the zeros 
of the fundamental polynomial.

f (n)(z) =

T (n) 0 . . . 0 z2
2 Tz (n-1) . . .  0 0

(n-1) z2 . . .  0 0

0 0 . . .  Tz (2) 0 j

0 0 . . .  2z2 T (1)
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where Tz (i) = [-(np+i)z + np] .

Note that = f = f .o

Lemma 5.1: f ^  has at least one zero at z = 1.

Proof: Direct substitution

Definition: p ̂  —

li
i=l

Lemma 5.2 .If p < p , f ̂  (z) has exactly n zeros 
inside the open unit circle. If p > p ̂  , f ̂ ( z )  has 
at most n - 1  zeros inside the open unit circle.

Proof: Recall from Theorem 5.1.

f (z) = (-l)n_1fniz2n-[ (np+1) z-np] [ (np+2) z-np] •••

[ (np+n) z-np] } .

On the circle | z | = l + e , e ^ O  the inequality 
Ja - b| £ |a| - |b| yields
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(5.15)

Case (i)

| [ (np+1) z-np] •••[ (n0+n) z-np] | - |n.' z n |

= |(np+1)z-np|•••j (np+n)z-npJ - nl|z|2n 

^ [ (np+1) (1+e)-np] • • • [ (np+n) (l+e)-np]

- nl[l+2ne+0(e2)]

= [l+(no+l)e] • * • [n+(no+n) e]-n.'[l+2ne+0(e2)]

^  nl (np+i) e 2
= ni + 2,  i  _ nJ-2neni+0(e )

i=l

= eni np £  + n - 2n
i=l

(n)
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Whenever p> p ^  = 1/ ̂  "i ' e < 0 and sufficiently 
i=l

small, (5.15) is positive. By Rouche's Theorem f ^ ( z )  , 
given by (5.9), must have the same number of zeros inside 
the circle |z| = 1 + e as [ (np+l).z-np] •••[ (np+n) z-np] 
has. Letting e -* 0~ one concludes that the same is 
true inside the open unit circle. Therefore f ^  (z) has 
n zeros inside the open unit circle when p < p ̂

Case (ii) p >  p ^

If p > p (n) 1/ — ^—  , e > 0 and sufficiently small,

Ii
i=l

then (5.15) is positive. By Rouchd's Theorem f ̂  (z) 
has the same number of zeros inside the circle 
( z | = l + e , e > 0  as [ (np+1) z-np] •••[ (np+n)z-n0] has.
By letting e -* 0+ one concludes that the same is true
inside the closed unit circle. One of these is at z = 1
so at most n - 1 zeros can be inside the open unit
circle.

Case (iii) p =

Note that the zeros of f ^ ( z )  are analytic and 
hence continuous functions of p. Choose p > p ^  .
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As p - * p ^  no zero can leave the closed region
Jz | ss 1 . Note f ^ ( z )  is of degree 2n and f ^ ( z )
has at least n + 1 zeros in |z) £ 1 since there are at 
most n - 1 zeros in |z| < 1 . Thus when 
p = p ^  f(n)(z) has at least n + 1 zeros in |z| s i
and hence at most n - 1 zeros in |z| < 1.

Q.E.D.

Theorem 5.2: There are no zeros of (2) on the unit
circle except at z = 1 .

Proof: f (n)(z) = (-l)n-1{nJz2n-[ (np+l)z-np] •••[ (np+n)z-np] ).

Suppose f (z) = 0, ] z | = l ,  z ^ 1 . Then

| (np+i) z-np | = (np+i) ]z - |

>  (np+i) [ 1 - ]

= i

Since f (n)(z) = 0

|nlz2n | = | [ (np+1) z-np] •••[ (np+n) z-np] |

Now
nJ < | [ (np+1) z-np] •••[ (np+n) z-np] |
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This is a contradiction and hence the only zero on the 
unit circle is at z = 1 .

Q.E.D.

Further calculation shows that the zero z = 1 is 
simple whenever p ^ p ^  and double when p = p ^ .
Using this fact the last sentence in the statement of 
Lemma 5.2 can be strengthened by replacing "at most" by 
"exactly".

5.7 Conditions for Positive Recurrence

Theorem 5.3: A nontrivial solution to the system (5.2)-
(5.3) exists if f ^  (z) has at least n zeros inside 
the unit circle. Thus the system is positive recurrent if 

p < P (n> -

Proof: It was shown previously that only zeros inside the
unit circle can be used. There are the same number of
a^'s as zeros of (z) inside the open unit circle.
Let B be the coefficient matrix of the system of initial

tconditions and a = (a^ , , ... , a^) where q is the
number of zeros inside the unit circle. This system has

_ithe form Ba = 0
Consider the case p < p ^  . It was proved in

_J» -i-
Lemma 5.2 that in this case q = n . Ba = 0 has a 
nontrivial solution if and only if the rank of B is 
less than n . This is true if and only if det B' = 0
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for every n x n submatrix B' of B . Choose one of
these submatrices B'. Let cp(p)  = det B' . The system
is positive recurrent for sufficiently small p since 
the system clearly is more efficient than the system with 
one server and a service rate of p, . Hence for all 
sufficiently small p , < p ( p )  =  0 .  <p(p)  is an analytic
function of p , thus cp(p)  = 0  for all p <  p ^  .
This is true for each B' . Therefore the rank of B
is less than n for all p <  p ^  , and the system 
has a nontrivial solution if p <  p ^  . Thus the system 
is positive recurrent if p <  p ^  .

5.8 Conditions for the System to be Transient

Foster's Theorem (Theorem 1.4) asserts that a 
necessary and sufficient condition for an irreducible 
Markov chain to be transient is the existence of a 
nonconstant bounded solution to a certain system of 
equations. As in section 2.8 one can set up the 
equations from the rate diagram. For this Markov 
chain assign the variable y^(m) to the state 
where m is the queue length, b the number of blocked 
servers and i the number of accessible servers. Note 
that if i > 0 then m = n - i - b .
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Foster's equations then "become the following with

(5.16) -[np+n-bMn-m-b-l)+]y^n“m~n~1) (m+1)

+ npyb (n-m-b-2)+(m+2)

+ [n-b-(n-m-b-1)+] yb^“m“b“'L  ̂ (m) = 0

for m £ 0 0 <: b £ n - 2

(5.17) -[np+l]y°_1 (m+l)+npy°_1 (m+2)+y^n"m> (m) = 0

for m s 0 

For m ^ n these equations become

(5.18) -[np+n-b] yb (m+1) + npy£(m+2) + (n-b)yb+1 (m) = 0

for 0 s b s n - 2 and

(5.19) -[np+1]y^j^ (m+1)+npy°-x (m+2) +y°(m) = 0  . 

This system can be written in the form

(5.20) G (n)(E)y(n) = 0

where
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G (n) (E) =

UE (n)
0
0

' 0 
; i

Ue (2)
0

2

Upd)

where UE (i) = [-(np+i)E + n PE^] 
and

y > )

Ay (xn) =

(m)

&.!<■> .

A argument similar to that in section 4.9 shows the 
fundamental solutions of this system have the form
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(5.21) {(m) =

and the general bounded solution will be a linear 
combination of such terms,

(5.22) ?(m) = I a.
j=l

where , ... , are the zeros of the polynomial 
g ̂  (z) = det g ̂  (z) inside the closed unit circle. 
The constant vectors

n-1 j

are in the null space of (Cj) •

The following is an explicit representation of

g (n> <=>.

Theorem 5.4: g ' ^  (z) = z2nf ̂  (1/z)

= (-1) n""1(n!-[ (np+1) z-npz2] [ (np+n)z-noz ])
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Proof:
g <n ) u> -

Uz (n) n . . .  0 0
0 U (n-1) . . .  0 0z
0 0 . . .  0 0

0 0 . . . Uz (2) 2
1 0 . . .  0 U (1)

n x n
2where U (i) = [- (np+i) z+npz ].

U(n) n/z2 . . .  0 0
0 U (n-1) . . .  0 0
0 0 . . .  0 0

0 0 . . .  U(2) 2/z
1/z2 0 . . .  0 U(l)

n x n

Where U(i) = [-(np+i)/z + n p]
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Since the determinant of the transpose of a matrix equals 
the determinant of that matrix, one sees by comparision 
with Theorem 5.1

g (n)(z) = z2nf (n)(l/z)

= (-l)n-1{n;-t (np+1)z-npz2] •••[ (np+n) z-npz2] )

Q.E.D

In order for y(n) to satisfy (5.20)

(5.23) [- (np+l) £ + npG2] ^  = dn = 0

(5.24) [- (np+b) Q + npC2] ^  + = 0 2 s b s n

For the general solution (5.22) one must use
equation (5.24) for each j . The components d-j of

dj = (dflj , ... , can be represented in terms of

dnj = ej 2
[ (np+b+1) Cj-np Cj] d^+x, j

b + 1
[ (np+b+1) Cj-npCj] ***[ (n0-m) Cj-npCjl ej

(b+1) • • *n 

for 1 <: b s n - 1 

Equation (5.23) can be shown to hold for these
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Substitute
[ (np+2) Cj-np Cj] ‘ * C (np+n) Cj-np Cj] e.. 

n!

for d, . into the left side of (5.23). This results b]
in

-[ (np+1) Cj-npCjl " * [  (np+n) Cj-npCjle^ + e^ 

n J

(—1) "̂n1To show this is zero, multiply by f   yielding
j

(-l)n ( n M  (np+1 ) Cj-npe?) •••[ (np+nlCj-npC^l )

- « <B> CCjJ

= 0

since £j is a zero of g ^  (z) .

The polynomial g ̂  (z) has been shown to be 
(z) = z2nf ^  (1/z) • Thus, for a given p , the 

number of zeros of g^n  ̂(z) inside the open unit circle 
is the same as the number of zeros of f ̂  (z) outside 
the unit circle. By Lemma 5.2 if p > p ̂  f ^ ( z )  has 
n zeros inside the closed unit circle and hence, having 
degree 2n , n zeros outside the closed unit circle.
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Theorem 5.5: The n-server series queueing system is
transient if p > p ̂  .

Proof: If p >  p ^  , then there are n zeros of
g ^  (z) inside the unit circle and thus ne_.'s. The
system of initial equations for the e . has the form
 s ~  3B e = 0 where B is the coefficient matrix of the
kxn
system and e = (e^ , , en) . The system is
transient if this system of equations has a nontrivial 
solution. B e = 0 has a nontrivial solution if and 
only if the rank of B is less than n . This is true 
if and only if det B' = 0 for every n x n submatrix 
B' of B . If p is sufficiently large the system 
is known to be transient. Therefore cp(p) = det B* = 0 
for all n x n submatrices B' of B , for sufficiently 
large p .
Hence cp(p) s 0 for all p >  p ̂  since cp (p) is an 
analytic function of p . Thus the system B e = 0 
has a nontrivial solution for p > p ̂  and so 
p > p ^  implies the system is transient.

The only remaining case is p = p ̂  . This case 
can be shown to be recurrent as in to section 4.9.

5.9 Summary of Results

The preceeding results can be summarized by the 
following with p = :
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Theorem 5.6: The n-server series queueing system is
"i) positive recurrent if p > p ̂  ,
ii) transient iff p > p ̂  ,

iii) recurrent if. p = p ^  ,

(n) 1where p = — ---

I i
i=l

This can he compared to the well-known [10, p. 116] 
results for tne n-server parallel queueing system. This 
system is

i) positive recurrent iff P < 1 7
ii) transient iff P > 1 7

iii) recurrent null iff P = 1 .

Note that for n = 1 the system is the same as the
parallel system with n = 1 and = 1 .  As n -»
p (n) -> 0 .

The n-server series queueing system is positive 
n

recurrent if p < p ̂  = 1/ Y  ~ ---------r *
i=! log n + i

Thus the system is positive recurrent if “ T < P ̂  ~  “log n+

and hence if
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(5.25) “  < n p (n)
log n + ̂

A regular s server parallel system is positive recurrent 

JLif —  < 1 and hence if sii

(5.26)

Comparing (5.25) and (5.26) we see that for large n, 
the series system has approximately the same saturation 
point as the regular s-server parallel system with
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6.1 The 2-Server Series Queueing System

In this paper it has been determined (Theorem 2.5) 
that the 2-server series queueing system is

positive recurrent iff p < 2/3 y
recurrent null iff p = 2/3 j
transient iff p >  2/3 ,

where p = V(2n) ,  ̂= mean input rate, p. = mean service
rate of each server.

If the servers are located in parallel instead of in 
series the system is

positive recurrent iff p < 1 ;
recurrent null iff p =  1 ;
transient iff p > 1 .

Thus blocking causes a drop of 1/3 in the efficiency
of the system. For small values of p the two systems 
are similar. However, as p -* 2/3 the series case 
becomes much less efficient.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



132

6.2 The 2-Server, 3c Storage Space Series Queueing System

In an attempt to relieve some of the blocking of the
rear server, k waiting spaces are placed between the 
servers. This system was determined to be (Theorem 4.6)

positive recurrent if p < pk '
transient iff p >  pk '

. 3*2k -lwhere pv =  tz—  .
K 4 * 2 - 1

-» 3/4 as k -* « , hence this system is still
less than 3/4 as efficient as the parallel system.

6.3 The n Server Series Queueing System

Another generalization of the 2-server series queueing 
system is the n server series queueing system. It was
determined (Theorem 5.6) that this system is

positive recurrent if p < p ̂  ;
(n)transient iff p >  p *

where p ̂  = — -----  , and p = \ / ( n u ) .

I 1
i=l
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These results can be compared to the results for the 
n server parallel queueing system. This system is

positive recurrent 
recurrent null 
transient

The n server series queueing system is comparable in
n

efficiency with a parallel system having [ ]  

servers, in a precisely defined sense (see section 5.9).

6.4 Future Research

Many other questions can be asked about series queueing 
systems. It would be of interest to know whether the 
system is positive recurrent or recurrent null, in the 
case p = in the 2-server, k waiting spaces series 
queueing problem and in the case p = p ̂  in the n 
server series queueing problem. A system with more than 
two servers and intermediate storage could be investigated. 
The queueing systems examined in this paper could be 
generalized to Possion arrivals and general service times, 
or a general distribution for interarrival times and 
negative exponential service times, etc. The output 
process of these systems could be investigated. Also it 
would be interesting to know how a finite waiting room 
effects the system.
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