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Markovian Reconstruction Using a GNC Approach
Mila Nikolova

Abstract— This paper is concerned with the reconstruction
of images (or signals) from incomplete, noisy data, obtained at
the output of an observation system. The solution is defined in
maximum a posteriori (MAP) sense and it appears as the global
minimum of an energy function joining a convex data-fidelity
term and a Markovian prior energy. The sought images are
composed of nearly homogeneous zones separated by edges and
the prior term accounts for this knowledge. This term combines
general nonconvex potential functions (PF’s) which are applied
to the differences between neighboring pixels.

The resultant MAP energy generally exhibits numerous local
minima. Calculating its local minimum, placed in the vicinity
of the maximum likelihood estimate, is inexpensive but the
resultant estimate is usually disappointing. Optimization using
simulated annealing is practical only in restricted situations.
Several deterministic suboptimal techniques approach the global
minimum of special MAP energies, employed in the field of image
denoising, at a reasonable numerical cost. The latter techniques
are not directly applicable to general observation systems, nor to
general Markovian prior energies.

This work is devoted to the generalization of one of them, the
graduated nonconvexity (GNC) algorithm, in order to calculate
nearly-optimal MAP solutions in a wide range of situations. In
fact, GNC provides a solution by tracking a set of minima along a
sequence of approximate energies, starting from a convex energy
and progressing toward the original energy. In this paper, we
develop a common method to derive efficient GNC-algorithms
for the minimization of MAP energies which arise in the context
of any observation system giving rise to a convex data-fidelity
term and of Markov random field (MRF) energies involving any
nonconvex and/or nonsmooth PF’s. As a side-result, we propose
how to construct pertinent initializations which allow us to obtain
meaningful solutions using local minimization of these MAP
energies.

Two numerical experiments—an image deblurring and an
emission tomography reconstruction—illustrate the performance
of the proposed technique.

Index Terms— Continuation methods, image reconstruction,
inverse problems, MAP estimation, nonconvex optimization, reg-
ularization.

I. INTRODUCTION

W
HENEVER the objects we need to visual-

ize—anomalies inside a medium, anatomical images,

astronomical images, petroleum deposits, etc.—cannot be

observed directly, the effects of some physical phenomena

which characterize them are measured. The observation

relation models the link between the unknown
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object (a signal, an image, a three-dimensional object) and

the measurements which are corrupted by a noise process

intervening by an operation denoted This relation is

assumed discrete, while the notations used in this paper are

mainly for images.

Recovering image from data amounts to invert the

observation relation. The log-likelihood

measures the fidelity of an image to data Function

is supposed convex—a numerical requirement met by many

observation models [12], [27], [23]. In the popular linear-

Gaussian (LG) model is a Gaussian noise

field while observation operator can represent a point spread

function (PSF) accounting for optical blurring, a distortion

wavelet in seismic imaging and nondestructive evaluation, a

Radon transform in X-ray tomography, a Fourier transform

in diffraction tomography, or it can be the identity operator

if the observation is direct. Up to a constant factor,

(1)

In both emission and transmission computed tomography

(ECT and TCT, respectively), the observed photon counts

have a Poissonian distribution [9], [18], [39]. Their mean is

determined using projection operators

and constant In both cases, is convex (see Section VII-B)

and it reads

(2)

Quite often, is underdetermined in and the inverse

problem is ill-posed [43], [12]. The recovery of the unknown

image must rely on both, data and prior knowledge about it.

Maximum a posteriori (MAP) estimation, or regularization, is

a flexible means allowing the recovery of objects which

exhibit a priori expected features [17], [2], [12]. Estimate is

the minimizer of an energy which balances, using parameter

closeness to data and confidence in prior guesses embodied

in prior energy

where (3)

Following [2], [8], [18], [20], and [31], is the energy of a

Markov random field (MRF) of the form

Potential function (PF) controls the interaction between

the pixels involved in any clique as a function of their

difference An important class of images are composed of

homogeneous zones, separated by edges. Edges contain crucial

visual information, so PF should favor their recovery.
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(a) (b)

Fig. 1. Difference operators. (a) A pattern clique C
q
0

; various difference patterns can be associated to it. (b) Difference patterns dddq—their indices are
elements of the relevant pattern cliques C

q
0
:

Convex PF’s are often used, mainly because energy is then

convex and its optimization is always tractable. Among them,

generalized Gaussian, Huber and log-cosh [8], [24] PF’s per-

mit to partially preserve edges. Other such PF’s are derived in

[30]. Still, MAP energies defined using nonconvex PF’s permit

to recover truly homogeneous zones separated by sharp edges

[18], [20], [31], [34], [45], [41]. The resultant generally

has numerous local minima and its global optimization is a

difficult task. Several techniques were conceived to deal with

particular observation systems and often with particular prior

energies (Section III). Simulated annealing (SA) needs either

an observation operator with an extremely restricted support1

[19], [26], [45] or an LG model with shift-invariant [21].

The iterated conditional modes (ICM) algorithm [1] finds a

local minimum of in the vicinity of the maxumum likelihood

(ML) estimate, but the latter is not a pertinent initialization

unless the inverse problem is well-posed and the noise is weak.

Another suboptimal deterministic approximation of SA was

proposed in [10]. Several deterministic techniques, proposed

for the denoising and the segmentation of images, address the

LG model with in (1) and a truncated quadratic or a “0-

1” PF’s (cf., Appendix A): the mean field annealing [3], [4],

[14], the multigrid minimization [7], and the graduated non

convexity (GNC) algorithm [5], [6], [29]. All these techniques

are suboptimal in practice, while their extension to general

settings is not straightforward. Reciprocally, practical use of

nonconvex PF’s is subject to the feasibility of the optimization

stage.

The objective of this work is to enable practical use of

various PF’s in a broad range of situations. To this end, we

focus on the GNC algorithm. Basically, GNC can be seen as

a continuation technique [44] which substitutes a sequence of

local minimizations along a sequence of approximate (relaxed)

energies where is an increasing positive relax-

ation sequence, for the global minimization of The first

relaxed energy is convex and the last one fits The main

contribution of our paper consists in the generalization of the

1 The support of an observation operator is the set of the pixels of xxx which
contribute to the obtention of any datum yj :

original GNC algorithm in order to compute MAP estimates

corresponding to

(g1) MRF energies defined using any nonconvex, and

possibly nonsmooth, PF (Section II);

(g2) any observation model giving rise to a convex data-

fidelity term (Section V).

The success of a GNC optimization is closely dependent on

the pertinence of the approximation involved in the relaxed

energies: this important problem is addressed in Section IV.

Conditions for finding a convex initial relaxed energy are

established for both the well-posed and the ill-posed cases

(Section V). Considerations about the relaxation sequence and

the running of GNC are exposed in Section VI.

A side result of this work is to propose a systematic way

to calculate initializations for which a local minimization of

provides a meaningful solution. Such a strategy yields an

improved ICM (Section VI-D) which can be applied in general

situations, including the cases of ill-posed inverse problems.

Although mathematically suboptimal, generalized GNC per-

forms efficiently in a broad range of situations and leads

to nearly optimal solutions. Two numerical experiments—the

deconvolution of an image and the inversion of ECT syn-

thetic data—illustrate its performance, which is compared with

the main alternative approaches (Section VII). Concluding

remarks are given in Section VIII.

II. PRIOR MODEL

A. Markovian Models on Differences

Let be an image whose sites are

arranged in lattice Identifying and we write

henceforth similarly, We define over

several families of linked cliques: any -clique

is indexed by the pixel to which it corresponds.

The -cliques result from the translation of a pattern clique

over so that for where

is the interior of with respect

to (w.r.t.) Pattern is an ordered

set of positive and negative indices and includes 0 and is

its cardinality [Fig. 1(a)].
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Fig. 2. PF’s: originals (left column) and relaxed versions (right column). The
PF’s are plotted for two values of �: The relevant relaxed PF’s are plotted
for three values of r: (a)–(b) Truncated quadratic PF. (c)–(d) Lorentzian PF.
(e)–(f) Gaussian PF. (g)–(h) Concave PF. (i)–(j) Kronecker PF.

We consider the popular class of MRF’s which are defined

over differences between neighbors [2], [8], [20]. A difference

pattern if otherwise,

is associated to each family The -differences are obtained

by translating over The -difference relevant to

is

(4)

The resultant set can in particular correspond to a

finite differences operator [Fig. 1(b)].

The contribution of each -clique to the prior energy is

weighted by a PF and a coefficient

where

(5)

Often, the same PF is applied to all cliques, for any

When unambiguous, we write for

B. Potential Functions Recovering Edges

Various types of edges, and of homogeneous regions, are

observed in real-world images. They can be modeled using

appropriate difference patterns so that the edges are the

locations of the largest differences while the homoge-

neous zones correspond to differences which are close to zero.

Thus, if is first-order (e.g., the edges

are jumps and the homogeneous zones are nearly constant; if

is second-order (cf., Fig. 1), the edges are creases while the

homogeneous zones are nearly planar, etc. The edges contain

essential visual information. Justly, the use of nonconvex PF’s

in (5) allows to obtain MAP estimates exhibiting homogeneous

regions separated by sharp transitions [18], [20], [31], [34],

[41], [45]. We focus on strictly nonconvex PF’s satisfying

several general conditions:

(f1) is symmetric, and we set

(f2) is almost everywhere (a.e.) twice differentiable (i.e.,

-continuous);

(f3) is monotone increasing on —its first deriva-

tive defined a.e., is for

(f4) there exists such that decreases toward zero

for and in other words,

has strictly concave parts while its concavity vanishes

asymptoptically.

Thanks to (f4), the large differences in the original image are

allowed to remain large in the estimate as well. PF reaches

its maximum concavity at (which is

and

(6)

If is twice differentiable at then

An estimation using (3) and (f1–f4) involves an implicit line

process [20], [45], [34]. Energy is generally multimodal and

its local minima correspond to alternative configurations of

the edges in the solution. More precisely, it can be remarked

that these minima are separated by strictly nonconvex zones

(and possibly by maxima) which contain differences of the

form (see Fig. 4). In consequence, differences

which are appear quite rarely, or never, in an

estimate. Pixels involved in a difference belong

to the same -region, while a -edge sets their adherence to

different regions if In practice, differences of

are either or and can be viewed

as a threshold for the recovering of large -differences, i.e.,

of -edges.

Several among the most widely used nonconvex PF’s are

given in Appendix A. These are usually bounded and we set

for any The methodology presented in this paper is

easy to extend to general nonconvex and/or nonsmooth PF’s.

III. OPTIMIZATION OF MULTIMODAL CRITERIA AND GNC

Calculating an estimate of the form (3), (f1–f4) needs

a M-dimensional global optimization of However, the

latter cannot be performed exactly except in several very

special cases [5], [22]. Grossly speaking, two strategies can

be followed for the minimization of which are either to

find a pertinent initialization and compute the nearest local

minimum of or to undertake a global minimization.
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A. Direct Local Minimization

When a plausible initial guess about the sought image is

easy to obtain, a local minimum of in its vicinity can be

substituted for the global minimum of Such a strategy is

simple to implement and can give rise to fast algorithms, but

it is highly sensitive to the pertinence of the initialization.

The original ICM algorithm [1] takes the ML estimate as

initialization, so it can be used only in the situations where

the inverse problem is well-posed (i.e., is well determined

in and if the noise is weak. Indeed, the ML solution of

an ill-posed inverse problem is unstable in the sense that it

exhibits an arbitrarily large amplification of the observation

noise [12]. As an alternative, a convolution back-projection

of TCT data is used as starting point in [39]. We propose an

improvement of ICM in Section VI-D.

B. Global Minimization Using Simulated Annealing

Optimization using simulated annealing (SA) is based on

the fact that the distribution

where means temperature, decreases toward zero as

for objects different from the global minima Family

is processed in order to construct a Markov chain

which converges to the set of the global minima of as long

as decreases slowly from an initial high value toward zero.

Such algorithms were proposed initially for quantified objects

and later for real-valued images and signals. The Markov

chain can be constructed in different ways. Some methods use

stochastic gradient maximization of [11], [15], [13].

In others, is sampled using Metropolis dynamics [16],

[26], [32] or using Gibbs dynamics [17], [19], [45]. The latter

of them generates realizations of so it is

well suited if is a MRF with local interactions: but these

become global if the support of the observation system is large,

which makes this SA [17], [19], [26] impractical [21], [45],

[35]. A recent form of SA [21] eludes this constraint for a LG

model (1) where is shift-invariant.

Asymptotical convergence toward the global minima of

can be ensured if 1) when and is

smooth (for real-valued), and 2) if temperature decreases

according to a theoretical schedule. But as given in (3) and

(5), (f1–f4), usually does not satisfy 1) while schedule 2) is

too slow to be followed in practice. Any numerical solution

thus found is almost surely suboptimal [20], [22].

C. Global Minimization Using Deterministic Relaxation

An appealing approach for the global minimization of is

the following: a family of approximate (relaxed) energies is

constructed by reducing the nonconvexity of So is reached a

relaxed energy having only a few local minima, one of which

is then calculated. Starting from it, each relaxed energy is

minimized locally, by descent in the current attraction valley,

while the energies are progressing toward the original Such

techniques have been proposed for the optimization of several

particular MAP energies.

In [7], involves truncated quadratic PF’s and a LG

model (1) with and its nonconvexity is reduced by

coarsening the grid of The calculation cost at early stages

is thus drastically reduced; however, it is difficult to check

whether the initial energy has a unique minimum. In mean

field annealing (MFA) [3], [4], [14], [41], an edge-process

is replaced by its mean effect at varying temperatures. MFA

depends on the initialization while its extention beyond the LG

case with seems difficult. Another way to approximate

is to slightly deform the nonconvex zones of the PF—which

underlies the GNC algorithm.

D. GNC Relaxation

The original GNC algorithm was proposed in [5] for the

denoising and the segmentation of images and signals from

data in the LG model, whereas involves truncated

quadratic PF’s. A similar algorithm was used in [40]. This

approach was applied to “0-1” PF’s in [29] and later in [38].

The general GNC approach is sketched below. Consider

a family of relaxed energies dependent on a parameter

and such that

(e1) relaxed energies are -continuous w.r.t. and

continuous w.r.t.

(e2) the concavity of is relaxed (i.e., reduced), and it

vanishes monotonously when decreases;

(e3) moreover, there exists such that is convex

for any while

So, has a unique minimum for When increases,

minima progressively appear in

Consider an increasing relaxation sequence and the

relevant relaxed energies indexed by

If is -continuous, we take and Otherwise,

the family cannot involve any element equal to

then we take such that

The GNC minimization starts from calculating the unique

minimum of Afterwards, for each a minimum

of —an intermediate solution —is calculated by local

descent in the vicinity of the previously obtained

minimum

(7)

The ultimate solution its closeness to the global

minimum are determined by the sequence of relaxed

energies. It is reasonable to require that for any relaxed

energy closely approximates the original energy

IV. RELAXATION OF THE PRIOR ENERGY

The nonconvexity of is due to the strict nonconvexity of

Hence, relaxing amounts to relax Approximations

are obtained by relaxing the strictly nonconvex regions of

(8)
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Moreover, we require that approximations remain as close

as possible to the original The relaxed PF’s should

satisfy the following conditions (we drop the superscript

(r1) are -continuous w.r.t. while for any fixed

are continuous w.r.t.

(r2) should stray the least from for each and

(and if is

(r3) the maximum concavity of

occuring at i.e., is

required to increase continuously and strictly monoto-

nously toward 0 as

A. Relaxed Potential Functions

There are numerous ways to get a relaxed PF corre-

sponding to a given original PF

1) Dilation: When is -continuous, its second derivative

exists a.e. and it is finite, so the minimal value of the latter may

be controlled using a dilation of the original PF:

for any Thus are relaxed the Lorentzian and the

Gaussian PF’s (cf., Appendix A).

2) Regularization: An elegant manner to obtain is to

regularize by a family of -continuous functions con-

verging to the Dirac distribution which reads:

and Kronecker PF is relaxed thus (cf.,

Appendix A). In general, it is difficult to find regularization

functions leading to an explicit and easy convolution

product

3) Splines: Another way to construct is to fit splines

in the vicinity of the points where is not differentiable

and nonconvex; this is always feasible. This is the technique

proposed in [5] for the relaxation of the truncated quadratic

PF; we relax the concave PF in this way (cf. Appendix A).

Given a PF, various relaxed PF’s can be envisaged, but these

may induce the GNC optimization to converge toward slightly

different solutions. It is hence important to use approximations

which ensure a better convergence of the GNC.

Given a PF suppose that we have two relaxed PF’s,

and which reach the same maximum concavity for

and respectively. Among and the

approximation which is “closer” to is clearly the better. The

sense of this closeness needs a further precision.

Recall that the local minima of correspond to different

configurations of the edges in the solution. Thus, a GNC

optimization is aimed at finding the edge configuration corre-

sponding to the global minimum of Observe that a relaxed

PF is at the same time a nonconvex PF which permits to

recover edges with respect to threshold (cf., Section II-B).

Hence, the choice of a particular relaxed PF should be based

on its behavior w.r.t. the recovery of edges. On the one hand,

thresholds should decrease monotonously when increases

toward one. This naturally corresponds to an edge recovering

which starts with the large edges and progresses toward the

small edges. On the other hand, the closeness of to the

original should be surveyed. Thus, the better amongst the

PF’s and is the one whose initial threshold is closer to

the original we check whether the threshold relevant to

or the threshold relevant to is closer to These ideas are

further developed in the context of an example in Appendix B.

B. Maximum Concavity of the Relaxed Prior Energy

Now we focus on the maximum nonconvexity2 reached by

a relaxed prior energy.

Definition 1: The maximum concavity reached by

a strictly nonconvex function is

(9)

where stands for second order differential operator. Hes-

sian is given in Appendix C.

Below, we establish an inferior bound of which is often

reached in practice.

Proposition 1: Let and be defined as it follows:

and

Let

The maximum concavity of the relaxed prior energy

satisfies

From the definition of we can write that

The latter term can also be put into the form

—cf., Appendix A.

Let now and for any —which corresponds

to the usual situation when for any Suppose

moreover that admits images satisfying

for any and for any For instance, if is a

first-order difference operator (Fig. 1), this hold for the image

with elements while if the difference operator

is of second order, we can take In such

a case, and hence the

bound given in Proposition 1 is reached,

Magnitudes and can be closely approximated by

substituting a circulant convolution for the usual convolution

in (4). The circulant operator approximating reads

if and

if and

otherwise

and for any Then,

Let be given

by similarly,

Eigenvalues and are the

coefficients of the discrete Fourier transform of and

respectively [25].

2 A strictly nonconvex C1-continuous function necessarily involves zones
where it is strictly concave.
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(a)

(b)

(c)

Fig. 3. Comparison of relaxations. Each row presents the reconstruction of the original signal xxxo (——) from data yyy = aaa � xxxo (-�-), plotted in the middle.
The gates in (a)–(c) have a width of 12, 9, and 8 samples, respectively, while the length of xxxo is 64. Energy E involves Kronecker PF’s, defined over
the first-order differences, while � = 1:5: This PF is relaxed using Gaussians (left column) and using Lorentzians (right column). Original energy E has
two minima: the original gate xxxo and a constant signal ~xxx = c1: The figures depict er(t) = Er[t~xxx + (1 � t)xxxo] for several values of r: The sequence of
minima yielded by a slowly evolving GNC is marked with ‘�:’ Explications are given in Section IX-B.

V. INITIAL CONVEXITY

GNC minimization starts from a relaxed energy which

has a unique minimum. A strictly nonconvex function can

clearly be unimodal; but small changes in can make it

multimodal (see Fig. 4). Being unable to provide general

necessary conditions for the unimodality of we ensure

instead its convexity for any Following the example of

[5], the initial convex approximation is found by checking

whether its Hessian is nonnegative definite for any

find such that

for any and (10)

It is difficult to find the largest satisfying (10) for general

and But it is sufficient to take such that for the

minimum convexity of the convex terms of is larger than

the maximum nonconvexity of the nonconvex terms of
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Definition 2: The minimum convexity reached by a

convex function is

(11)

The Hessian corresponding to the LG model (1) is

so where is the smallest eigenvalue

of In ECT and TCT, is convex with (cf.,

Section VII-B).

The conjunction of (9), (10), Proposition 1 and Definition

2 yields

for any (12)

If is strictly nonconvex, the right-hand side (r.h.s.) of

(12) is negative for close to one; moreover, there exists

for which the left hand side (l.h.s.) of (12) is negative as well.

Thanks to (r3), the sum in the r.h.s. of (12) increases from a

negative value to zero as long as is decreased to zero.

A. Strictly Convex Data-Fidelity Term

Consider first the resolution of a well-posed inverse prob-

lem, which means that In this case, there exists for

which the r.h.s. of (12) becomes positive.

Proposition 2: Let and strictly nonconvex; consider

the family of relaxed energies The equation in

(13)

is satisfied for a unique Any relaxed energy corre-

sponding to is strictly convex.

Conditions for initial convexity, established in [5], appear

as a particular case of this proposition. The above condition

is sufficient; it is also necessary when the both equalities in

(12) can be met, i.e., when there exists a pair such that

and i.e.,

when the both bounds in Definitions 1 and 2 are reached for

the same and This occurs for any in the case when

in the LG model (1) and the prior energy is such that

(cf., Section IV-B).

Equation (13) may be solved numerically, if analytic resolu-

tion is difficult. For numerical reasons, the case presents

a practical interest only when is not too close to zero,

since leads to The latter case then should

be assimilated to the case

B. Nonstrictly Convex Data-Fidelity Term

The situation corresponds to ill-posed inverse

problems [12], [43]. Such are the ECT and TCT models,

and the frequent cases when in (1) is singular or ill-

conditioned. Data-fidelity is only nonstrictly convex and

the r.h.s. of (12) is negative for any This fact

does not necessarily imply that is strictly nonconvex for

any although this is produced if a pair exists such

that and So, a relaxed

energy corresponding to a singular LG model (1) and a

regularization applied to the usual finite differences, is never

convex, for any since the previous conditions are met for

any and for such that for

any Note that this fact has not been accounted for by

several authors who applied GNC to LG ill-posed problems

[29], [38]: the initial relaxed energy they used was nonconvex

and certainly multimodal.

A possible issue is then to render convex the initial relaxed

prior energy Let us fix close to zero, and con-

sider In the beginning of the GNC minimization—i.e.,

when —the relaxed prior energy is kept constant

while an auxiliary convex term is appended to it:

with

for (14)

where

(15)

In order to render convex for each

has to compensate for the nonconvexity of the relevant At

the same time, should deform the least. The auxiliary

PF’s satisfy:

(a1) are -continuous;

(a2) are symmetric, and

(a3)

if i.e., if

if i.e., if

(where we drop superscript

Observe that a relaxed PF satisfying (r1–r3), is strictly

convex over an interval, where We set

for and for

Smoothness at requires that and

where means These conditions lead to

and so finally

if

if

The obtained (14)–(15) is convex for any such that

It is nonconvex for while the auxiliary

term vanishes at For relaxed prior energy

finds the original form (8).

If ever calculating is problematic, the “nonstrict convex-

ity” strategy can be applied: if is smaller than the solution

of (13), the both strategies (Sections V-A and V-B) yield the

same solution.



NIKOLOVA: MARKOVIAN RECONSTRUCTION 1211

VI. MINIMA TRACKING ALONG THE RELAXED ENERGIES

Minimization by GNC needs to calculate a sequence of

intermediate solutions which are local minima of the

relaxed energies Its computational cost is hence

determined by the efficiency of the local minimization al-

gorithm which is used. The latter can be performed using

either coordinate-wise descent (ICD, ICM) or directional de-

scent—gradient descent, conjugate gradients, etc. [1], [37],

[39].

A. Convergence Considerations

Convergence of a continuously evolving GNC toward the

global minimum in several very simple cases (step- and gate-

shaped signals, noise-free data truncated quadratic

PF) has been demonstrated in [5]. These results can hardly

be extended to other observation models, to other PF’s and

to general images. Instead, we have conducted extensive

experiments in order to evaluate the performance of the

proposed GNC minimization and to explain its functioning.

Relaxed energy is obtained by subtracting to a varying

bias Bias is small for im-

ages containing a large number of nearly null differences,

and it vanishes for large differences. However,

increases along with the number of differences of which

are Let a deep minimum of

say contain numerous differences which are close to

zero; in such a is surrounded by a “corona” where

many differences are —i.e., where is

large. Suppose that the global minimum of is deep and

consider a deep local minimum such that

We examine the two coronae where is large, generated

by and by respectively. Let be such that is

unimodal over a region containing and as well as the

past intermediate solution If moreover and are

close to each other, i.e., is small, involves

an important bias coming from and reciprocally,

involves an important bias due to (i.e., and

are large). It may then happen that and

that the actual intermediate solution is closer to

rather than to The sequence of minima may then be

entailed to evolve in the attraction valley of and finally,

to provide as the ultimate solution. Normally, such a

“confusion” of minima does not seriously deform the solution

since it concerns only several details—because close minima

differ only at several small edges. On the other hand, such a

confusion does not occur if minima and are distanced

from each other and/or their energies are quite different. This

reasoning is corroborated by the experiments in Section VII-

A: the images shown in Figs. 7(c), 9(b)–(c), correspond to

close local minima and indeed, these solutions are quite

similar.

An illustration of these considerations can be found in Fig. 3

and Appendix B.

The adequacy of an ultimate solution obtained us-

ing GNC—its closeness to the global minimum —greatly

depends on both, the level of the convex initialization (cf.,

Section VI-B) and the discrete relaxation sequence

Fig. 4. Edge detection. Scalar energy E corresponds to TCT (2) reg-
ularized with a Lorentzian PF [Fig. 2(b)]: E(x) = � exp (�hx)+
yhx + ��x2=(1 + �x2): If y1<y; the global minimum is close to zero,
while for y2>y it is far from zero. The global minimum of E cannot lie in
the zone marked with (——) which contains the point x = T:

(cf., Section VI-C). To simplify the presentation, it is assumed

that for any

B. Initialization of GNC

Convexity conditions established in Sections V-A and V-B

provide a bound ensuring that is convex for It

is hence sufficient to start GNC with since then

has a unique minimum.

When is strictly convex, is uniquely determined by

Proposition 2. If is only nonstrictly convex, the choice of

in (14) is guided by the following argument. Unlike the

principal relaxation of (8), the weight of the auxiliary terms

in increases rapidly with which

penalizes the recovery of large differences during the early

stages of a GNC minimization. The intermediate solutions can

thus be attracted to evolve toward a smooth local minimum.

For this reason, we choose quite small—or equivalently,

quite large. The many experiments that we performed showed

systematically that choosing larger leads to deeper minima

of However, numerical instabilities may arise when is

too close to zero, because may then exhibit almost flat

regions where local descent becomes problematical. In our

experiments (Section VII) we used along with

a concave PF.

C. Relaxation Sequence

If has two close local minima, varies sharply and has

a maximum along the line linking these minima. Conversely,

sharp variations in the shape of are related to the presence

of close minima; following Section VI-A, closeness of minima

suggests the recovery of fine features in the estimate. During

the early stages of a GNC optimization, parameter is close

to zero and the concavities of the relaxed PF’s are weak.

The relevant relaxed energies have only a small number

of local minima which are distanced from each other, while

vary weakly between them. Mainly the rough features of

the solution are recovered during these early stages. As long
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as increases, evolves toward the original while

exhibits more and more close local minima. Thus, fine features

are recovered along with the advancement of the GNC-

optimization. It results that edges are detected throughout the

whole GNC-minimization, which corresponds to a progressive

segmentation, “from coarse to fine,” of the reconstructed

image, under the control of This is the reason why we

focus on the evolution of toward and then calculate

the relevant sequence using the expressions for in

Appendix A.

The auxiliary relaxation (when it is applied) introduces a

preliminary stage in the GNC-optimization.

• During the auxiliary relaxation (14)–(15), the relaxed

threshold remains constant, for It

can be observed that GNC is not particularly sensitive to

the form of this early relaxation. We decrease linearly

from to in several steps (3–5 in

practice).

If auxiliary relaxation is unnecessary, this stage is

automatically omitted by setting

• The main relaxation, is adapted to the evolution

of the thresholds Different schedules for this evo-

lution can be envisaged. A slow initial decrease of

followed by an acceleration is justified by the fact that

the main features of the solution are recovered during

the early stages of the GNC minimization. In particular,

the exponential decrease,

where controls the speed

of this decrease, is revealed to give rise to important

practical minimizations.

Alternative schemes for the decrease of are linear

or logarithmical

We found that the

logarithmical scheme leads to more shallow minima then

the linear scheme. These two schemes perform less well

than the exponential scheme. In our experiments, we did

not find exceptions.

We found also that a GNC relaxation in –40 steps

permits a convenient evolution for

D. Pertinent Initialization for Direct Local Optimization

By construction, is the convex energy “closest” to the

original Following Section VI-A, we can remark that

reflects the main features expressed in but in an “attentuated

form”—because of the relaxation. We can say that is

the unique minimum of the “best” convex approximation of

the original and that it partially incorporates some features

expressed in That is why we advocate that an initial GNC

solution can be used as starting point for ICM-like

direct local minimization (Section III-A). In particular, this

minimizer is closer to than a ML estimate. Moreover,

it is always available, even when the ML estimate is unstable.

For a well-posed problem, the initial convex energy is

uniquely determined using Proposition 2. If the problem is ill-

posed, parameter in (14)–(15) has to be chosen. Note that

a GNC-suited initial solution—corresponding to Section VI-

B—involves important noise effects [see Fig. 7(a)] and it

is not adapted for a direct local minimization. In the latter

case, the value of should be larger. On the other hand,

an initial solution where the noise effects are well smoothed

is very likely to correspond to a smooth local minimum

of Experience confirms that should yield an initial

solution which is only slightly under-regularized [see

Fig. 9(a)–(c)]. The precise value of is set experimentally

(Section VII).

VII. NUMERICAL RESULTS

Reconstructions, presented in this Section, are defined using

different MRF prior energies. The use of nonconvex PF’s

and GNC minimization is compared to the main alternative

approaches.

A. Deconvolution of an Image

The original 72 72 image in Fig. 5(a) is locally

constant and is observed through a 9 9 PSF:

Data

given in Fig. 5(b), are corrupted by white Gaussian noise

with 10 dB SNR. The inverse problem is ill-posed and the ML

estimate, Fig. 5(c), is unstable. The MRF prior energies used

below involve the following elements:

for for

for (16)

The estimates presented below are defined using either convex

or nonconvex PF’s. Among the former PF’s, we applied a

Huber PF and a generalized Gaussian (GG) PF [8], [24]:

(17)

(18)

where if is true and otherwise. Parameters

are set experimentally in such a way as to reach the

best reconstruction allowed by each PF.

The image in Fig. 6(a) is restored using a quadratic PF

(a Gaussian MRF) and in (18), and it

does not exhibit large differences. The next Fig. 6(b) shows a

restoration obtained using a GG PF with In

Fig. 6(c), a Huber PF with is used. In the

reconstructed images, large differences may be distinguished

but they are not neat.

The remaining reconstructions are defined using the con-

cave PF with and they are calculated

using different techniques. The images in Fig. 7 illustrate the

proposed GNC minimization with auxiliary relaxation. The

initial solution shown in Fig. 7(a), is underregularized

and so is the intermediate solution in Fig. 7(b). Both,

the contours and the locally constant regions are correctly
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(a)

(b)

(c)

Fig. 5. Deconvolution example. (a) Original image. (b) Data—a blurred and
noisy (10 dB SNR) version of the original image. (c) ML estimate.

(a)

(b)

(c)

Fig. 6. Convex MRF energies: 
 = [1, 1, 1, 1, 0.045, 0.045, 0.045].
(a) Gaussian MRF ('(t) = t2); (� = 2; � = 5): (b) GG MRF,
(� = 1:1; � = 6): (c) Huber PF, (� = 0:2; � = 5):
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retrieved in the ultimate GNC solution—Fig. 7(c). The latter is

obtained using an exponential decrease of where

and followed by an ultimate

stage with —in order to closely fit

Ultimate energy is the lowest energy that we

could reach by any minimization technique. The role of the

initial threshold is illustrated in Fig. 8(a): a larger

leads to a more shallow minimum— —which

is slightly different visually. GNC optimization with

decreasing linearly and logarithmically starting from

leads to local minima with a higher energy,

and respectively—Fig. 8(b) and (c).

The ML solution—Fig. 5(c)—does not provide a useful

initialization for direct local minimization. Instead, the GNC

initial solution corresponding to —Fig. 9(a)—is

underregularized and it leads to a very acceptable solution,

given in Fig. 9(b), where Initialization,

corresponding to a smaller threshold provides a

slightly different solution, shown in Fig. 9(c), and having a

slightly higher energy We calculated the

same estimate using also a half-quadratic SA [21], but we

obtained a shallow local minimum where

B. Emission Tomography

The concentration of an isotope in a part of the body

provides an image characterizing the metabolic functions and

local blood flow [9], [23], [27]. In ECT, a radioactive drug

is introduced in a region of the body and the emitted photons

are recorded around it. Data are formed by the number of

photons reaching each detector,

Data-fidelity given in (2), is nonstrictly convex since

is nonnegative definite but

ill-conditioned; so

We treat the reconstruction of the 64 64 phantom in

Fig. 10(a)–(b) with amplitudes in ]0, 3.8], from the simulated

ECT raw data in Fig. 10(c). Data correspond to

in (2) and are collected on 64 arrays surrounding the

object at equally spaced angles, each containing 64 detectors.

The MRF prior energies used in these reconstructions in-

volve first and second order differences, where for

and for in (16). In addition,

a “soft” positivity constraint is imposed on the solution by

appending to a convex term with

(19)

Weighting with serves to improve conditioning for local

optimization.

A reconstruction defined using a Huber PF (17) and pa-

rameters is given in Fig. 11. Note that

a reconstruction using a GG PF (18) with provided

a closely similar solution. The reconstructed images allow a

further interpretation by the user, but they are slightly smooth.

The last reconstruction is obtained using a concave PF

with The minimization is performed

(a)

(b)

(c)

Fig. 7. MRF energy using a concave PF and GNC-minimization:
(� = 12; � = 16) and 
 = [1, 1, 1, 1, 0.045, 0.045, 0.045], exponential

decrease of Tr with T� = 80; Tr = 0:01; K = 30; � = 1; followed

by Tr = 0:003: (a) The initial solution xxx(r ): (b) Intermediate

solution xxx(�): (c) The ultimate GNC solution x̂xx = xxx(r ); its energy is
E(x̂xx) = 2:53 104:
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(a)

(b)

(c)

Fig. 8. Other relaxations (the same estimate as in [Fig. 7]). (a) GNC
minimization starting from T� = 20; with Tr = 0:001; K = 30;
then E(x̂xx) = 2:73 104: For (b) and (c), T� = 80; Tr = 0:001;
K = 30: (a) GNC minimization using a linear decrease of Tr ; then
E(x̂xx) = 2:64 104: (b) GNC minimization using a log-decrease of Tr ; in
which case E(x̂xx) = 2:27 104:

(a)

(b)

(c)

Fig. 9. Direct local minimization (the same estimate as in [Fig. 7]). (a)
Initialization corresponding to T� = 20: (b) Solution found by local
minimization in its vicinity has energy E(x̂xx) = 2:76 104: (c) Solution found
using initalization with T� = 10; then E(x̂xx) = 2:79 104:
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(a)

(b)

(c)

Fig. 10. Emission tomography (a)–(b) Original 72 � 72 phantom. (c) ECT
simulated raw data with � = 0:8 and � = 8):

using GNC with auxiliary relaxation, where decreases

exponentially from to in steps.

Fig. 12(a) presents the initial GNC solution The ultimate

GNC solution—Fig. 12(b)–(c)—has a nice resolution and the

contours are neat.

Fig. 11. Reconstruction using a second-order MRF energy with a Huber PF:

 = [1, 1, 1, 1, 0.01, 0.01, 0.01], (� = 0:2; � = 0:5) and a soft positivity
constraint, ! = 60 [cf. (17), (19)].

VIII. CONCLUDING REMARKS

In this paper, we proposed a family of efficient GNC-

algorithms for Markovian MAP reconstruction of images

and signals. Data are obtained at the output of a system

giving rise to a convex data-fidelity term. Prior scene features

are introduced in the reconstruction by the means of MRF

energies, defined as the application of general nonconvex PF’s

to the differences between neighboring pixels. This allows to

recover images (or signals) composed of homogeneous zones

separated by neat edges.

The relevant MAP energies are nonconvex and generally

multimodal, and their optimization is a difficult task. Previ-

ously, the use of nonconvex PF’s was limited to observation

operators having either an extremely restricted support, or

which are linear shift-invariant, and often to particular prior

energies. In order to deal with the global optimization prob-

lem, we focused on the GNC algorithm which was initially

proposed for the minimization of a MAP energy conceived for

the denoising of images using truncated quadratic PF’s. Based

on a proper theoretical analysis, we developed an extension

of GNC permitting to compute MAP estimates involving

any convex data-fidelity term and any nonconvex and/or

nonsmooth PF. Both theoretical and practical recommenda-
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(a)

(b)

(c)

Fig. 12. Reconstruction using a second-order MRF energy with a concave
PF: 
 = [1, 1, 1, 1, 0.01, 0.01, 0.01], (� = 4; � = 1:5) and ! = 60: (a) The
initial GNC solution corresponding to T� = 40: (b)–(c) The ultimate solution
Tr = 0:01 obtained after 30 GNC-steps using an exponential decrease for
Tr :

tions for the construction of GNC algorithms were provided.

The resultant algorithms are mathematically suboptimal, but

definitely efficient. On the other hand, the GNC approach

suggests how to define pertinent initializations for direct local

minimization. The resultant method overcomes the limitations

of classical ICM when faced with ill-posed problems.

Experimental results bear on the deconvolution of a blurred

and noisy image and on the reconstruction of a phantom from

simulated ECT raw data. The quality of the reconstructions

obtained with MRF priors involving nonconvex PF’s is due to

the pertinence of the prior constraints.

APPENDIX A

FUNCTIONS AND APPROXIMATIONS

We present several PF’s dependent on a parameter

These PF’s are illustrated in Fig. 2.

Truncated Quadratic PF: Such PF’s are often used for the

processing of images, where in the LG model (1)

[5], [26], [31], [33], [42]. Extension to ill-posed linear inverse

problems is proposed in [35].

if

if

if

if

if

if

if

if

Lorentzian PF: It has been used in [18] for SPECT image

reconstruction, calculations being performed using ICM. Such

PF’s are also used for the denoising and the edge-enhancement

of images in [36].

if

if

Gaussian PF: Such PF’s has been used for the denoising

and the segmentation of images, along with a MFA optimiza-
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tion [41] and anisotropic diffusion [36].

if

if

Concave PF: It has been applied for the restoration of

blurred images, as well as for the reconstruction of SPECT

images, where the solution is obtained using different forms

of SA [20], [21], [45].

if

if

if

if

Kronecker PF: It has been introduced for the segmentation

and coding of images in [29], along with a GNC alogrithm

involving a relaxation with Gaussians,

This approach is applied later in [38]. Relaxation

using Lorentzian functions improves the convergence (cf.

Appendix B):

if

if

APPENDIX B

COMPARISON OF RELAXED POTENTIALS

Kronecker PF can be relaxed using a regularization with

Lorentzian or with Gaussian functions. The threshold of

the Kronecker PF, equal to is less deformed by

Lorentzians than by Gaussians:

Lorentzian

Gaussian

since for any fixed. Experiments show that

a relaxation using Lorentzians permits to obtain a better

minimization of than a relaxation using Gaussians.

The example in Fig. 3 presents the restoration of a gate-

shaped 1-D signal from blurred noise-free data

where is a PSF. Energy involves a Kronecker PF and it

has two minima: a constant signal and the original

gate here, is composed of 1’s and has the size of

and is a scalar, The figures

depict the section of the relaxed energies along the line

linking these minima, The three sets

of images correspond to three gates with decreasing widths.

In Fig. 3(a), the global minimum is the original and it is

correctly retrieved using the two relaxations. The second gate,

Fig. 3(b), is slightly narrower and it is still the global minimum

of In this case, a relaxation using Lorentzians lead to the

global minimum while a relaxation using Gaussians leads

to the local minimum The gate in Fig. 3(c) is still narrower

and the global minimum of corrsponds to Although

and are close to each other, the two relaxations find the

global minimum

APPENDIX C

DIFFERENTIAL AND HESSIAN OF THE PRIOR ENERGY

In order to simplify notations, we write for The

elements of the differential of are

Hessian reads The elements

of the Hessian of are shown at the bottom of the page. It is

practical to consider the sums above as infinite but having

only a finite number of nonzero terms. Furthermore, recalling

for

if

if



NIKOLOVA: MARKOVIAN RECONSTRUCTION 1219

that for any we can write

(20)

APPENDIX D

PROOF OF PROPOSITION 1

We now develop the numerator of (9),

where

Thanks to (20), it is obtained

Let us set and Then leads

to so

Since for any (cf., Section II-A),

Then

Then we have

Using that two inequalities can be

extracted from the previous relation:

according to the definition of and Hence, the proposition.

APPENDIX E

PROOF OF PROPOSITION 2

Let us consider the functions and

Since is strictly nonconvex,

for On the other hand, (r3) ensures that both terms,

and increase toward zero strictly

monotonously along with So, both functions and

increase strictly monotonously when then is

monotone incresing with as well. As is strictly

positive, and reach a positive value for close to zero;

the same is true for as well. In conclusion, there exists a

unique which satisfies

Furthermore, the Hessian given in (12), is positive

definite, since for
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[10] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,” IEEE

Trans. Image Processing, vol. 5, Dec. 1996.
[11] T. S. Chiang, C. R. Hwang, and S. J. Sheu, “Diffusion for Global

Optimization in n
;” SIAM J. Contr. Optim., vol. 25, p. 737, May 1987.

[12] G. Demoment, “Image reconstruction and restoration: Overview of
common estimation structure and problems,” IEEE Trans. Acoust.,

Speech, Signal Processing, vol. 37, pp. 2024–2036, Dec. 1989.
[13] M. Duflo, Algorithmes Stochastiques, Collection Mathématiques et Ap-
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