
Markovian Workload Characterization for QoS Prediction in the Cloud

Sergio Pacheco-Sanchez∗,‡, Giuliano Casale†, Bryan Scotney‡, Sally McClean‡, Gerard Parr‡ and Stephen Dawson∗
∗ SAP Research Center Belfast, Belfast BT3 9DT, UK, {sergio.pacheco-sanchez, stephen.dawson}@sap.com

† Imperial College London, Dept. of Computing, London SW7 2AZ, UK, g.casale@imperial.ac.uk
‡ Univ. of Ulster, School of Comp. and Inf. Eng., Coleraine BT52 1SA, UK, {bw.scotney, si.mcclean, gp.parr}@ulster.ac.uk

Abstract—Resource allocation in the cloud is usually driven
by performance predictions, such as estimates of the future
incoming load to the servers or of the quality-of-service
(QoS) offered by applications to end users. In this context,
characterizing web workload fluctuations in an accurate way
is fundamental to understand how to provision cloud resources
under time-varying traffic intensities. In this paper, we in-
vestigate the Markovian Arrival Processes (MAP) and the
related MAP/MAP/1 queueing model as a tool for performance
prediction of servers deployed in the cloud.
MAPs are a special class of Markov models used as a
compact description of the time-varying characteristics of
workloads. In addition, MAPs can fit heavy-tail distributions,
that are common in HTTP traffic, and can be easily integrated
within analytical queueing models to efficiently predict system
performance without simulating. By comparison with trace-
driven simulation, we observe that existing techniques for MAP
parameterization from HTTP log files often lead to inaccurate
performance predictions. We then define a maximum likelihood
method for fitting MAP parameters based on data commonly
available in Apache log files, and a new technique to cope
with batch arrivals, which are notoriously difficult to model
accurately. Numerical experiments demonstrate the accuracy
of our approach for performance prediction of web systems.

Keywords-Workload prediction; Quality-of-Service; Perfor-
mance prediction; Markov models

I. INTRODUCTION

Web workload modeling and prediction are fundamental
to support service management tasks such as deployment and
provisioning, to design cloud computing solutions, to select
load balancing and scheduling policies, and for capacity
planning exercises. As data centers become larger and their
workloads more complex, performing such activities through
trial and error becomes clearly intractable. At the large scale
these systems operate on, there is an increasing need for
effective models to provide insights on expected perfor-
mance and future resource usage levels. Not surprisingly,
the lack of performance predictability is listed as one of the
critical obstacles to the growth of cloud computing [2].

In this work we focus on web workloads, which are
usually modeled as a stochastic process in order to capture

The work of Sergio Pacheco-Sanchez has been co-funded by the Northern
Ireland government within the InvestNI/SAP MORE and VIRTEX projects.
The work of Giuliano Casale has been supported by the Imperial College
Junior Research Fellowship. We thank Giuseppe Serazzi, Politecnico di
Milano, for providing the logfile traces used in the paper.

the uncertainty in their future evolution. An important class
of processes used for web traffic modeling is the Markov
Modulated Poisson Process (MMPP) [14], which is a class
of continuous-time hidden Markov models that can be easily
integrated into a queueing model for performance prediction.
In a MMPP, the active state of a hidden Markov chain
determines the current rate of arrival of requests to a system,
e.g., a web server. In state 𝑘 of the hidden Markov chain,
arrivals follow a Poisson process with rate 𝜆𝑘. However,
since the active state changes over time, the modulation
of Poisson streams with different rates 𝜆𝑘 allows MMPPs
to describe complex time-varying workloads that are not
exponentially distributed. If the MMPP parameters are fitted
appropriately, the arrival events generated by the model can
match in statistical terms (e.g., same probability distribu-
tion and correlations) those observed in a measured trace.
Markovian Arrival Processes (MAP) are a compact, tractable
and expressive class of stochastic models that generalizes
the MMPP framework. Similarly to MMPPs, MAPs capture
not only the moments of a probability distribution, but
also the autocorrelation and, more generally, the temporal
dependence of a time series. However, MAPs are a superset
of the MMPP model since they can fit a larger variety
of time-varying patterns, e.g., negative autocorrelations that
cannot be fitted by MMPPs. Good fitting methods for MAPs
have only been developed in recent years [4], yet little
work has been done towards applying these methods to
HTTP traffic. A clear advantage of MMPPs/MAPs with
respect to other workload models is that, being Markovian,
they can be readily integrated within analytical models of
queueing systems. Such queueing models can then be used to
inexpensively compute performance metrics, such as server
utilization, queue length of requests waiting to be served
and expected response times at server side. Queueing-based
performance models that require minutes to be simulated
accurately require just a few seconds or milliseconds to be
solved exactly with the Markov models we use. In this paper
we investigate further the effectiveness of these models and
show how to apply MAPs for web workload characterization
and fitting. This provides a quantitative methodology for
QoS prediction and performance evaluation of servers in the
cloud.

The main contributions of this paper are two-fold:

1) A maximum likelihood method for fitting a MAP to
the web traffic measurements collected in commonly-
available HTTP web server traces.

2) A methodology to parameterize the MAP/MAP/1
queueing model for web server performance predic-
tion. The methodology supports the handling of short
traces during the modeling and simulation activities,
the different requests types in HTTP workloads, and
can account for batches of requests that arrive simul-
taneously to the system.

The remainder of the paper is organized as follows. Section
II gives an overview of related work, and highlights the
relevance of our work for cloud computing. Section III gives
an overview of MAPs. Section IV presents the reference
system for our study together with a description of the data
analyzed and the underlying analytical model. The proposed
methodology is presented in Section V. In Section VI we
show experimental results. Section VII offers conclusions.

II. RELATED WORK

Markovian workload characterization is motivated by the
fact that an effective analysis technique, the matrix geome-
tric method, is available for the evaluation of the related
queueing models [15]. In that respect, a study similar to
ours proposes a methodology to construct a MAP/PH/1
queueing model fitted to web server data coming from
stationary intervals of HTTP traffic that consider only static
requests [17]. In [1] it is proposed to model the arrival stream
of requests by means of MMPPs parameterized with just two
states. Markov models with a small number of states are
usually insufficient to capture the complex characteristics
of traces collected in web access logs, as we show in
Section VI.

The proposed MAP-based quantitative models may be
utilized as a tool for resource allocation in the cloud.
Research done in QoS management is vast and frequently
accounts for various aspects, namely charges for service,
commitment to provide a specified level of service, and
penalties [8], [21]. In a real deployment, both server capacity
and admission thresholds should change dynamically in
response to system workload variations. In this respect, [22]
proposes a hybrid cloud computing model which routes
the incoming requests to shared infrastructures in cases
where the base system is under a certain load. Its prediction
capability relies on the estimation of the request rates to the
corresponding objects. Approaches exist in the literature to
provision resources accounting for workload variations [1],
[18], however models are not learned from real traffic which
restricts predictive capabilities.

Summarizing, a key research challenge of the QoS mana-
gement area lies in developing workload models that may
help in taking decisions based on accurate predictions. This
leads us to use the MAP/MAP/1 model as a simple analytical
technique for modeling complex time-varying workloads.

1 - q

λ1,11,1

q

Hidden Transition

Observable Transition
p

1 - p

State 1

State 2

State 4

State 3

λ2,22,2 λ3,33,3

λ4,44,4

Figure 1. Example of Markovian Arrival Process (MAP)

III. OVERVIEW OF MARKOVIAN ARRIVAL PROCESSES

We now give definitions required to understand the
Markovian arrival process (MAP). This is used in the rest of
the paper to describe in a compact mathematical model the
characteristics of a time series of values, for instance the
inter-arrival times (IATs) of HTTP requests. An example
MAP is given in Figure 1. In this specific case, the model
is composed by 𝐽 = 4 states. The active state at time
𝑡 is 𝑋(𝑡) ∈ {1, 2, . . . , 𝐽}. Assume that the model is in
state 𝑘, then it spends 𝑡𝑘 time before moving into state
𝑗 ∕= 𝑘; we assume that 𝑡𝑘 follows an exponential distribution
Pr(𝑡𝑘 = 𝑡) = 𝜆𝑘,𝑘𝑒

−𝜆𝑘,𝑘𝑡, thus 𝑋(𝑡) is a continuous-time
Markov chain (CTMC). The destination state 𝑗 after a jump
is selected according to probabilities 𝑝𝑘,𝑗 ,

∑𝐽
𝑗=1 𝑝𝑘,𝑗 = 1.

A MAP extends a CTMC by introducing the semantics
for defining IATs. Upon jumping from state 𝑘 to 𝑗 a MAP
defines probabilities 𝑝ℎ𝑘,𝑗 and 𝑝𝑜𝑘,𝑗 , 𝑝ℎ𝑘,𝑗+𝑝

𝑜
𝑘,𝑗 = 𝑝𝑘,𝑗 , that the

state transition will be hidden or observable, respectively. A
hidden transition has the only effect of changing the active
state 𝑋(𝑡). An observable transition additionally leads to
the emission of a sample. In other words, an IAT sample
of a measured trace is modeled in a MAP as the time
elapsed between successive activation of any two observable
transitions. For example, in Figure 1, if the MAP is first
initialized in state 1 where it spends 𝑡1 time, jumps to state
2 waiting 𝑡2 units of time and then takes the transition to
state 4, then the sample value generated is 𝑠0 = 𝑡1+ 𝑡2. The
next sample 𝑠1 is similarly generated starting from state 4;
thus, the time spent in state 4 is included in 𝑠1. Successive
visits to the same state are all cumulatively accounted for in
the sample value generated. Note also that since sample 𝑠𝑖
is generated according to the target state of the observable
transition that defines 𝑠𝑖−1, a careful definition of observable
state transitions can create statistical correlations between
consecutive samples generated by a MAP.

Following these definitions, a MAP is able to generate as
the time passes an increasing number of samples 𝑠𝑖, 𝑖 ≥ 0.
If the MAP parameters are appropriately chosen, one can
impose the statistical properties of these samples in order
to fit the characteristics of a measured trace. Once this is
achieved, the MAP provides a mathematical model for the

trace. For example, if 𝑠𝑖 is interpreted as the IAT between
successive HTTP requests arriving to a server, then the MAP
is a model for the incoming web traffic. Alternatively, a MAP
can model the service times (SVCTs) of requests, in this case
the samples 𝑠𝑖 are seen as service times. After fitting MAP
models for HTTP requests IATs and SVCTs, one can study
by efficient means the MAP/MAP/1 queueing system1 that
models the expected performance of the web server. This can
be done much faster than with simulation and thus helps in
optimization-based QoS management to explore a wider set
of decision alternatives.

A. Mathematical Description of MAPs

The following compact notation is often used to summa-
rize the relevant parameters of a MAP. A MAP is represented
by a matrix pair (𝑫0,𝑫1), where both matrices have order
𝐽 equal to the number of states. For the example in Figure 1

D0 =

⎡
⎢⎢⎣

−𝜆1,1 𝑝ℎ1,2𝜆1,1 0 0
0 −𝜆2,2 𝑝ℎ2,3𝜆2,2 0
0 0 −𝜆3,3 0

𝑝ℎ4,1𝜆4,4 0 0 −𝜆4,4

⎤
⎥⎥⎦

D1 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 𝑝𝑜2,4𝜆2,2

0 𝑝𝑜3,2𝜆3,3 0 𝑝𝑜3,4𝜆3,3

0 0 0 0

⎤
⎥⎥⎦

where 𝑝ℎ1,2 = 𝑝ℎ4,1 = 1, 𝑝ℎ2,3 = 1−𝑝, 𝑝𝑜2,4 = 𝑝, 𝑝𝑜3,2 = 1− 𝑞,
𝑝𝑜3,4 = 𝑞. Thus D0 provides the rates of hidden transitions,
while D1 gives those for observable transitions.

The (𝑫0,𝑫1) notation enables the compact description
of the statistical properties of the samples generated by the
MAP. Here, we always refer to the statistical properties
defined on a stationary time series of MAP samples. It is
known that this series can be obtained by initializing the
MAP in state 𝑗 according to probability 𝜋𝑗 ∈ �⃗�, where the
row vector �⃗� is the left eigenvector of 𝑷 = (−𝑫0)

−1𝑫1

such that �⃗�𝑷 = �⃗�, �⃗�1⃗ = 1, where 1⃗ = (1, 1, . . . , 1)𝑇 is
a vector of ones of length 𝐽 . The statistics of a sample 𝑠
generated by a (stationary) MAP are:

∙ Cumulative distribution function

𝐹 (𝑋) = Pr[𝑠 ≤ 𝑋] = 1− �⃗� 𝑒𝑫0𝑋 1⃗, (1)

∙ Moments of the sample distribution

𝐸[𝑋𝑘] = 𝑘! �⃗� (−𝑫0)
−𝑘 1⃗, 𝑘 ≥ 1, (2)

(In particular the mean arrival rate is 𝜆 = 1/𝐸[𝑋].)

∙ Joint moments of the sample distribution

𝐸[𝑋0𝑋𝑘] = �⃗� (−𝑫0)
−1𝑷 𝑘(−𝑫0)

−1 1⃗, (3)

1Kendall’s notation 𝐴/𝐵/𝑐 stands for a queue where arrivals follow
process 𝐴, service times follows process 𝐵 and there are 𝑐 servers (e.g.,
CPUs) processing requests. For instance, M/M/1 stands for a single-server
model where arrival and service processes are both Poisson.

where 𝑋0 and 𝑋𝑘 are samples that are 𝑘 ≥ 1 lags apart.

∙ Autocorrelation function coefficient at lag 𝑘 (ACF-𝑘)

𝜌𝑘 =
𝐸[𝑋0𝑋𝑘]− 𝐸[𝑋]2

𝐸[𝑋2]− 𝐸[𝑋]2
(4)

If 𝜌𝑘 = 0, for all 𝑘, there are no correlations between the
samples. In this special case, the MAP reduces to a phase-
type (PH) distribution. A PH distribution can model the
moments or cumulative distribution function of a time series,
but not time-varying patterns. Thus, a trace 𝑇 and a trace
𝑇 ′ obtained by the random shuffling of 𝑇 would have the
same PH distribution model, but different MAP models.

IV. SYSTEM CHARACTERISTICS

A. Web Server Environment

The Apache logfile trace captures the incoming HTTP
traffic to a departmental web server of the Politecnico di
Milano university. The trace covers a period of a week
from the 3𝑟𝑑 September 04:27am to the 10𝑡ℎ September
03:53am, 2006. The web server access log has information
that includes the timestamp 𝑇𝑛 of the 𝑛-th request with a
default resolution value of one second, and the size of the
object returned to the client in bytes. In addition, we are
able to determine whether the content served to clients is
static or dynamic. We assume the server handles requests for
static content from main memory, while dynamic requests
are forwarded first to the back-end before replying to the
client. We assume the time to transmit an object to the
client is accurately estimated by its size [23], and in our
case it fully represents the resource consumption of static
requests. On the other hand, the resource consumption of
dynamic requests has been approximated by aggregating
the time to generate the content, including database and
application server activity, and the time to transfer it through
the network. The time to generate dynamic content is drawn
from a Lognormal distribution with mean 𝜇 = 3.275 ms, and
squared coefficient of variation (i.e., square of the ratio of
the standard deviation to the mean) 𝑐2 = 11.56, parameters
obtained from [23] for a TPC-W workload.

B. Web Server Data

The average incoming traffic to a web server changes
considerably with the time of the day, an effect that does
not comply to stationarity assumptions used in statistical
modeling. A common approach that is followed in these
cases is to break down traces into smaller datasets which
are representative of a period where the average behavior
of a server may be assumed stationary. We have decided
to adopt a strategy in our analysis for splitting the web
trace into blocks of one hour of traffic. Thus, we define
the 𝑖-th 60-minute traffic block 𝐵(𝑖) as an ordered sequence
of 𝑙𝑒𝑛(𝐵(𝑖)) HTTP requests sent to the web server. The
download of a web page is broken down into individual

Table I
SUMMARY OF TRACE CHARACTERISTICS.

𝐵(𝑖) Size Stationary ACF-1 𝑐2

dataset IAT SVCT IAT SVCT IAT SVCT
1 437 Yes No 0.28 0.89 24 0.88
2 1972 No No 0.42 0.81 17 2.29
3 4313 No No 0.14 0.70 30 2.57
4 1228 No No 0.16 0.77 14 2.27
5 1229 Yes No 0.11 0.68 28 2.48
6 2077 No No 0.13 0.78 20 2.87
7 510 Yes No 0.08 0.80 39 1.11

HTTP requests to the objects that compose the page. Each
60-minute block of traffic is represented by the time of
arrival of the first request, indicated with 𝑡𝑖𝑚𝑒(𝐵(𝑖)), and
by the set of inter-request times 𝑉 (𝑖)

1 , 𝑉
(𝑖)
2 , . . . , 𝑉

(𝑖)

𝑙𝑒𝑛(𝐵(𝑖))−1
occurring between the following requests. Computing inter-
request times between adjacent requests whose timestamps
are logged at a coarse one-second resolution frequently
results in the generation of sequences of zeros. This is
expected for web sites that receive at least tens or even
hundreds of requests within a second. To reduce the noise
introduced by such a coarse resolution, we randomize the
inter-arrival time between the last request falling in a period
of one-second and the first request in the next one by a
uniform random number in [0, 1] seconds. This results in
smoother probability distributions which are easier to fit
using mathematical models.

To illustrate our methodology, we have focused on a
heterogeneous set of seven blocks representing the traffic
for each day of the week observed approximately between
7:37am to 8:37am, in total consisting of 11,766 requests. In
Figure 2(a) we plot the CCDF of the size of objects, which
appears to follow a heavy-tailed distribution. Heavy-tails in
object sizes are then inherited by request SVCT distributions
thus complicating the modeling.

Figure 2(b) depicts the variation in the type of incoming
requests to the system. On average, the traffic is heavily
dominated by static content which accounts for the 65%
vs. 35% of dynamic requests. A summary of the statistical
characteristics of the blocks analyzed, that include the se-
quences of zeros within the IAT dataset, is shown in Table I.
Stationarity is assessed by the KPSS test [13]; the squared
coefficient of variation 𝑐2 > 1 indicates more variability
than in a Poisson process. To cope with the residual non-
stationarity in the blocks, we assume in the rest of the paper
that simulation-based predictions are obtained by a cyclic
concatenation of the trace in order to run one long simulation
experiment for observing the convergence of performance
metric estimates. This is more acceptable than operating the
same type of repetition on the original 24-hour trace, since
1 hour is a more representative time scale for cloud resource
allocation decisions.

10
0

10
2

10
4

10
6

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Object Size in Bytes

C
C

D
F

(a) CCDF of file sizes

Sun M T W Th F Sat

10
3

10
4

Days of the Week: 03−09 September 2006

N
um

be
r

of
 R

eq
ue

st
s

Static
Dynamic
Total

(b) Workload mix

Figure 2. (a)Heavy-tailed distribution; (b) Load of request types per block.

C. Web Server Performance Model

The performance of the web server system under study
is modeled by the MAP/MAP/1 queue. The MAP model
fitted to an IAT block is represented by (𝑫0,𝑫1), whereas
we denote by (𝑫′

0,𝑫
′
1) the MAP model fitted to the

corresponding SVCT block. According to this notation, the
MAP/MAP/1 queue is a continuous-time Markov chain with
infinitesimal generator

Q =

⎡
⎢⎢⎢⎣

𝑨0 𝑨1

𝑨−1 𝑨0 𝑨1

𝑨−1 𝑨0 𝑨1

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ (5)

where 𝑨1 = 𝑫1 ⊗ 𝑰 , 𝑨0 = 𝑫0 ⊗ 𝑫′
0,𝑨−1 = 𝑰 ⊗ 𝑫′

1,
𝑨0 = 𝑫0 ⊗ 𝑰 , being 𝑰 the identity matrix and ⊗ the
Kronecker product. The above matrix is called a quasi-birth-
death (QBD) process since it generalizes by block transitions
the classic birth-death processes of the M/M/1 queue which
has scalar transition rates. This enables the integration of
complex workload descriptions obtained for IAT and SVCT
from the Apache logfile traces into the queueing analysis
of the web server. The probability for states that pertain to
the block row 𝑘 = 0, 1, . . . is described by a vector �⃗�𝑘 such
that �⃗�𝑘1⃗ = 𝑣𝑘 is the probability of observing 𝑘 requests
in queue. In particular, 𝑣0 describes the probability for the
queue being empty, thus 𝑣0 = 1−𝜌 where 𝜌 is the utilization
of the server. The matrix geometric method proves under
mild assumptions that there exist a matrix 𝑹 such that [15]

�⃗�𝑘 = �⃗�0R
𝑘, 𝑘 > 0. (6)

It is found that R is the minimal non-negative solution of
equation2 𝑨1 +R𝑨0 +R2𝑨−1 = 0 and �⃗�0 is the solution
to equations

�⃗�0(𝑨0 +R𝑨−1) = 0, �⃗�0(𝑰 −R)−11⃗ = 1. (7)

Thus, (6) provides a simple way to study the queue-length
probability distribution in a model for a web server with

2We have used the free SMCSolver for MATLAB to compute R and
the vectors 𝑣𝑘 , 𝑘 ≥ 0 [5]. Alternatively, they can be computed with the
MAMSolver tool available in C++ [16]. Simple algorithms for computing
R are described in [6, pp. 133].

Fit non-zero IATs

Rescale MAP to mean of B(i)(i)

Aggregate SVCTs

Fit MAP to SVCT dataset

Compute performance metrics from
MAP/MAP/1 queue

MAP

K=1 K=2

PHa PHb

MAP

superpose

Figure 3. Model parameterization methodology

IATs (𝑫0,𝑫1) and SVCTs (𝑫′
0,𝑫

′
1) fitted from a real log-

file trace. Furthermore, we can compute various performance
measures with ease. The tail distribution of the number of
web server requests in the system which is given by

𝑷 [𝑄 > 𝑥] =

∞∑
𝑘=𝑥+1

�⃗�𝑘 1⃗, 𝑥 ≥ 0, (8)

The mean queue length is computed as

𝑬[𝑄] =
∞∑
𝑘=0

𝑘 �⃗�0R
𝑘 1⃗ = �⃗�0R(𝑰 −R)−2 1⃗, (9)

The mean response time of system requests is obtained by
Little’s law [6] and (9) as

𝑬[𝑅] = 𝜆−1(�⃗�0R(𝑰 −R)−2 1⃗), (10)

which is a fundamental metric used in QoS prediction.

V. MODEL PARAMETERIZATION METHODOLOGY

Figure 3 illustrates the methodology we propose for
fitting logfiles into MAPs that can be used to analyze the
MAP/MAP/1 queue. Two separate fitting methods are used
for IATs of HTTP requests and their SVCTs. Here, we
develop multiclass models (𝐾 = 2), which distinguish
between static and dynamic requests, and single class models
(𝐾 = 1). Details on the individual steps of the methodology
are given in the next subsections.

A. Maximum Likelihood Estimation

Maximum likelihood (ML) estimation is a classical ap-
proach for fitting workload models [6]. This technique is
particularly useful for estimating models from short datasets,
such as the ones considered in this study where a single
block 𝐵(𝑖) provides only few hundreds or thousands sam-
ples. Before outlining how we apply MAPs to the problem
under study, we overview the ML fitting method and focus
the discussion on IATs between incoming requests.

Let us first focus on the single class case 𝐾 = 1. Using
the MAP notation, a PH distribution is a special case of

MAP where it can be shown that 𝑫1 = −𝑫01⃗�⃗�, thus a
pair (�⃗�,𝑫0) is sufficient to specify a PH distribution. As
observed earlier, this mathematical definition implies that
the samples generated by the model are independent and
identically distributed (i.i.d.), thus 𝜌𝑘 = 0, 𝑘 ≥ 1. Stemming
from the above properties, the maximum likelihood method
seeks for a pair (�⃗�,𝑫0) which maximizes the probability of
observing the dataset obtained, that is, for block 𝑖

max
(�⃗�,𝑫0)

ℙ[𝑉
(𝑖)
1 , . . . , 𝑉

(𝑖)
2 , . . . , 𝑉

(𝑖)

𝑙𝑒𝑛(𝐵(𝑖))−1
∣�⃗�,𝑫0], (11)

subject to �⃗�1⃗ = 1 and the sign constraints for the entries in
𝑫0. Approximating the inter-arrival times as independent
random variables and taking the logarithm of the resulting
expression we get

max
(�⃗�,𝑫0)

𝑙𝑒𝑛(𝐵𝑖)−1∑
𝑗=1

logℙ[𝑉
(𝑖)
𝑗 ∣�⃗�,𝑫0], (12)

where the argument is called the likelihood function for the
IATs in block 𝑖. In particular, for a PH distribution it is

ℙ[𝑉
(𝑖)
𝑗 ∣�⃗�,𝑫0] = �⃗�𝑒𝑫0𝑉

(𝑖)
𝑗 (−𝑫0)⃗1, (13)

Summarizing, the maximum likelihood method obtains a
PH distribution describing the IATs by maximizing (12)
using expression (13) and standard nonlinear solvers3. The
corresponding MAP used in the MAP/MAP/1 queue has the
same 𝑫0 matrix and 𝑫1 = −𝑫01⃗�⃗� and is re-scaled to the
mean of each trace 𝐵𝑖. This is obtained easily by multiplying
all rates in 𝑫0 and 𝑫1 by 𝑐 = 𝐸[𝑋𝑜𝑙𝑑]/𝐸[𝑋𝑛𝑒𝑤], being
𝐸[𝑋𝑜𝑙𝑑] the current mean of the MAP and 𝐸[𝑋𝑛𝑒𝑤] the
desired value. This provides a single class approach for
fitting a concatenated interval of traffic containing the sets
of IATs 𝑉

(𝑖)
1 , 𝑉

(𝑖)
2 , . . . , 𝑉

(𝑖)

𝑙𝑒𝑛(𝐵(𝑖))−1
, for all 1 ≤ 𝑖 ≤ 𝐼 ,

where 𝐼 is the total number of blocks of traffic analyzed.
We have chosen 𝐼 = 7, each 𝐵(𝑖) representing a block of
the same hour of traffic for every day of the week. The
rationale is that those blocks represent short traces, therefore
the need to concatenate them. A larger interval of traffic may
represent the IATs of one day. Note that the single class
case ignores the correlation between requests in the arrivals.
It is here preferred to a fitting of a general MAP process
since we found the latter to underestimate performance
systematically. We conjecture this to be the case due to the
fact that autocorrelation estimates are quite unreliable for
short traces such as the ones we considered in this study;
thus, it is hard to fit appropriate values for the autocorrelation
coefficients. We describe below a more accurate approach
that uses MAPs to fit the time-varying patterns arising
from interleaving static and dynamic requests. The resulting
MAPs can be autocorrelated and thus are inherently more

3In this paper, we have maximized (12) using the fmincon function
integrated in MATLAB’s optimization toolbox.

expressive than the single class modeling approach we have
described so far.

Multiclass. In contrast to the single class, for 𝐾 = 2
we distinguish two classes of requests, namely static and
dynamic. We follow the same fitting process as above, except
that we fit a model 𝑷𝑯𝑎 = {𝑫𝑎

0 ,𝑫
𝑎
1} for the static

IAT dataset and another model 𝑷𝑯𝑏 = {𝑫𝑏
0,𝑫

𝑏
1} for its

dynamic counterpart. In both cases, the inter-arrival times
𝑉

(𝑖)
𝑗 refer to the time between two static requests in the static

model and between two dynamic requests in the dynamic
model.

Intuitively, we have now to describe the aggregate flow of
static and dynamic request types to the servers. In general,
two options are available to this aim. In the first approach,
one may consider multiclass QBD processes which have
been studied only in recent years and are still poorly
understood, thus requiring simulation for their evaluation [7].
In the second approach, one defines a new MAP which
represents the superposition of the two flows treated as
independent of each other. Classic theory shows that the
superposition of two PH distributions is the MAP

𝑴𝑨𝑷 = 𝑷𝑯𝑎 ⊕ 𝑷𝑯𝑏 = {𝑫𝑎
0 ⊕𝑫𝑏

0,𝑫
𝑎
1 ⊕𝑫𝑏

1}, (14)

where ⊕ denotes the Kronecker sum operator. This ope-
ration describes the inter-arrival times between activation
of observable transitions either in 𝑷𝑯𝑎 or in 𝑷𝑯𝑏. In
other words, superposing the flows from the two types of
workloads represents IAT of requests originating from two
independent sources, namely 𝑷𝑯𝑎 and 𝑷𝑯𝑏 [9], and the
result is not a PH model, but in general a MAP. This is
because the superposition of i.i.d. arrival processes is not
in general an independent flow of requests, but may show
autocorrelation and burstiness that can only be captured by
a MAP and cannot be represented with PH distributions. To
the best of our knowledge, this superposition approach has
never been applied to web server analysis. Thus, it provides
an innovative way to parameterize performance models of
web servers from real logfile traces.

B. Trace transformation

Computing inter-request times between adjacent requests
whose timestamps are logged at one-second resolution,
frequently results in the generation of sequences of zeros in
the IATs. This is a very problematic effect to model in real
traces because we have found that these sequences are highly
autocorrelated, but we are not aware of Markov-modulated
processes that can describe inter-batch autocorrelations. The
Batch Markovian Arrival Processes (BMAPs), which are
a generalization of MAPs, can describe batches of ar-
rivals [14], however batch sizes are i.i.d. variables. Results of
experiments presented in section VI-A demonstrate BMAPs
do not give satisfactory results for modeling our web trace.

To cope with the difficulty, we have applied the method-
ology described in Section V-A to blocks 𝐵(𝑖) after having

removed temporarily the sequences of zero IAT values. The
idea we have followed to account for the zeros in the
performance model is to merge requests falling into the
same second as a single logical request. The SVCTs for
these requests are correspondingly merged. Thus, in this
transformed model the arrival trace is exactly the trace
without zeros that we have fitted in Section V-A and the
effect of the zeros is seen only in the SVCT traces. The
resulting SVCT trace is a transformed trace, which we name
’aggregated trace’ in the remainder of this paper. To account
for this transformation, it is sufficient to scale the mean
queue length and throughput of the queueing results obtained
using the aggregated trace (or its fitted MAP model). The
scaling factor for 𝐵(𝑖) is the ratio

𝑅𝑓 =
𝑙𝑒𝑛(𝐵(𝑖))

𝑙𝑒𝑛(𝐵(𝑖))− 𝑧𝑒𝑟𝑜𝑠(𝐵(𝑖))
, (15)

where 𝑧𝑒𝑟𝑜𝑠(𝐵(𝑖)) is the number of zero inter-arrival times
in block 𝐵(𝑖) before the filtering. We verified that the
difference of mean queue length results between the original
and aggregated trace re-scaled by (15) varies at most by
9%. This makes our transformation a good approximation
to avoid the difficulty of modeling autocorrelated batches.

C. Service Process

We describe the procedure for deriving the service process
from the aggregated trace, whose SVCTs exhibit ACF-1
values varying in the range [.20, .41]. To model the temporal
dependence in the time series, we use a MAP model with
2 states. The script used is integrated in the KPC-Toolbox,
a collection of MATLAB scripts to automatically fit traces
using MAPs [9]. It takes as input our SVCT and derives
a two-state MAP capturing the first three moments of the
distribution and ACF-1.

Frequently, difficulties arise in the fitting process because
two-state MAPs impose constraints on the moments and
autocorrelation values that can be fitted by the model. In
such cases, we split the distribution in equal parts and fit
independently the corresponding datasets, and compose the
individual models into a final MAP again via the superpo-
sition technique. In simple words, this means that we fit
separate MAPs for small and large SVCTs and we then
roughly approximate the model for the original trace by the
superposition technique, yielding 4-state MAPs. According
to the patterns observed, we have found that two-equally
sized datasets, e.g. separated by the median, yield good
results. This stems from the fact that the matching of the
moments tends to fit better the tail than the body, resulting
in an overestimation of the queue-length. Moreover, the
situation is aggravated when fitting such short traces, often
containing < 500 data points. In the absence of longer
traces, splitting the trace has proven to be a good strategy.

VI. EXPERIMENTAL RESULTS

We represent the system under study as a queue pro-
cessing an open workload, i.e., a workload coming from
an external source independent of the state of the system.
We consider only one service station that corresponds to
one web server for system utilization 𝑈 = .90, which
represents a heavily loaded system. Heavy load prediction
is more important than light-load prediction with the aim of
sizing in the cloud. Moreover, it can be harder to estimate
performance accurately in heavy-load. The methodology
simulates the MAP/TRACE/1 queue and makes use of
intermediate results to determine the final configuration of
the model. At the end, we utilize a MAP/MAP/1 queue to
model web server performance. On the grounds that the
traces have been transformed, the number of observations
in each of the blocks analyzed is often < 500. It is not only
challenging to model such short traces, but also to obtain
stable simulation results. We have succeed in tackling this
problem by concatenating the same block of traffic to sum up
to ten million elements. For each run, we log response time,
and queue length. Thus, we evaluate estimation accuracy by
the relative error

Δ𝜔 =

∣∣∣∣∣
𝑄𝑚𝑜𝑑𝑒𝑙

𝑙𝑒𝑛 −𝑄
𝑡𝑟𝑎𝑐𝑒/𝑡𝑟𝑎𝑐𝑒/1
𝑙𝑒𝑛

𝑄
𝑡𝑟𝑎𝑐𝑒/𝑡𝑟𝑎𝑐𝑒/1
𝑙𝑒𝑛

∣∣∣∣∣ , (16)

which is the relative error of the predicted mean queue length
with respect to the trace mean queue length estimated by the
TRACE/TRACE/1 simulation.

A. MAP/TRACE/1 results

We evaluate the accuracy of diverse state-of-the art ap-
proaches in constructing models for the IAT process. We
consider a class of methods that fit model parameters to
our web server data via the maximum likelihood estima-
tion approach (EMpht, G-fit), and a formalism that derives
the parameters analytically without numerical optimization.
The methods in the first class both use the Expectation-
Maximization (EM) algorithm for PH distributions. The al-
gorithm iteratively estimates model parameters to measured
data that maximizes the likelihood that the data has been
sampled from the model [10]. We set the order of the MAP
models to 𝐽 = 8 states for 𝐾 = 1 and for each class
when 𝐾 = 2, as we found it provides a good balance
between tractability and accuracy. That is, for the multiclass
case we obtain a model with 𝐽 = 8 ∗ 8 = 64 states. On
the one hand, EMpht is an early development for which
we have fitted a hyper-exponential distribution to values of
web traces [3]. The rationale is that we note a variability
of 𝑐2 > 13 in the IAT datasets analyzed, whereas for the
theoretical hyper-exponential is 𝑐2 > 1. On the other hand,
G-fit has been developed more recently and its algorithm is
customized to fit the parameters of hyper-Erlang structures,
which are mixtures of Erlang distributions [19]. In addition,

ML unified MMPP EMpht G−fit BMAP
0

0.2

0.4

0.6

0.8

1

Fitting Methods

R
el

at
iv

e
E

rr
or

K=1
K=2

(a) MAP/TRACE/1 models

Sun M T W Th F Sat
0

0.2

0.4

0.6

0.8

1

Days of the Week: 03−09 September 2006

R
el

at
iv

e
E

rr
or

K=1
K=2

(b) MAP/MAP/1 models

Figure 4. (a) Intermediate results; (b) Final results.

we use a MMPP model with 𝐽 = 2 states, since it can be
fit analytically from traces using simple methods [11]. The
MMPP model is parameterized for the first three moments
of the distribution and ACF-1. The methods used have been
implemented in tools freely available. We compare these
techniques against our method, called ML unified, that fits
PH distributions with 𝐽 = 8 states and possibly compose
them in the multiclass case into a MAP. We compare the
accuracy of the aforementioned approaches by fitting the
inter-request times of web trace 𝐵(4). We integrate the
derived processes into a MAP/TRACE/1 queue that is solved
by simulation, under server utilization 𝑈 = .90. We compute
accuracy by (16), and show the relative error for all ap-
proaches in Figure 4(a). We clearly observe that ML unified
delivers the best fit across all approaches with low prediction
errors of 3% and 6% for the single class and the two class
cases, respectively. The other approaches deliver the best
prediction effort > 20% relative error. The 2-state MMPP
model returns an error of approximately 21% for both
classes. G-fit underestimates the trace, and attains a 47%
of error for both classes. As apposed to G-fit, EMpht does
slightly better by positioning between 31% and 35% error.
Based on these intermediate results, we investigate a method
capable of generating the sequences of zeros temporarily
neglected that need to be reintroduced in the trace. Thus,
we evaluate the accuracy of the Batch Markovian Arrival
Processes (BMAPs), which are a generalization of MAPs
that allow for batch arrivals [14]. That is, a MAP is a BMAP
with all arrivals that consist of a batch of size 1. We then
transform our ML unified models in order to account for
batch arrivals of zeros, for which we use the probabilities of
observing 𝑁 number of consecutive zeros after a non zero
IAT value. Finally, we simulate the BMAP/TRACE/1 queue
and quantify accuracy by (16). Evidently, the BMAP largely
overestimates the trace queue length [20], as its relative error
emerges above the one of G-fit.

B. MAP/MAP/1 results

We show in Figure 5(a) the queue length tail distribution
of model MAP/MAP/1 for block 𝐵(3), 𝐾 = 1, and in
Figure 5(b) the corresponding for block 𝐵(4), 𝐾 = 2. Our
predictions are a close match with the corresponding tail

50 100 150 200 250 300 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Queue Length

P
[Q

 >
 i

]

Trace
ML(8) K=1

(a) Web trace 𝐵(3)

10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Queue Length

P
[Q

 >
 i

]

Trace
ML(8) K=2

(b) Web trace 𝐵(4)

Figure 5. Queue length tail distribution of the MAP/MAP/1 queue.

distributions obtained from simulation. We describe in detail
the application of the methodology to 𝐵(3) as it has been
challenging to model. We fit ML unified models of order
𝐽 = 8, by inversely characterizing the IAT. The resulting
model is re-scaled, if needed, to the mean of block 𝐵(3);
smaller or larger mean values can be used to evaluate the
system’s response under increased or decreased utilizations,
respectively. The SVCT of the aggregated trace is fitted by
utilizing the KPC-Toolbox [9]. The resulting model, of order
𝐽 = 2, captures closely not only the first three moments
of the distribution, but also the autocorrelation with ACF-
1= .32, whereas the real value is ACF-1= .38. In the end,
we integrate both models and simulate the MAP/MAP/1
queue, whose resulting mean queue length is re-scaled to the
original trace by (15). In the aggregated trace representation
of 𝐵(3) a job queuing is equivalent to observe 4.76 jobs in
the queue of the baseline experiment. We quantify accuracy
by (16), and realize the difference between the simulation,
and analytical mean queue length prediction is minimal
at 0.95%. This discrepancy is explained due to simulation
inaccuracies. A simulation run, including sampling ten mi-
llion elements for each of the processes, takes on average
five minutes. In contrast, analytical results are obtained
immediately, often in a fraction of a second, given the MAP
models and the exact system utilization parameter as input.
The results for traces 𝐵(3) and 𝐵(4) are presented in the third
and fourth groups of columns in Figure 4(b), respectively.
For 𝐵(3) we observe a competitive estimation at 19% of
error for K= 1, whereas in 𝐵(4) it attains 15% error for
𝐾 = 2.

We notice that high variability present in the short traces
poses a challenge for the single class case. However, es-
timation accuracy improves when moving to a multiclass
workload. For 𝐾 = 2, we note than on average prediction
accuracy stays < 18% error, and in many cases even < 16%
error. Actually, the striking prediction for trace 𝐵(1), 𝐾 = 2
is at 4.6% error. Thus, it seems more practical to decompose
the workload in an increased number of classes.

VII. CONCLUSIONS

We have provided an example that shows state-of-the-
art fitting methods are often inaccurate in approximating

queueing behavior of a trace. On the contrary, our ML
unified method has demonstrated potential to achieve higher
accuracy in predictive models for web workloads. We be-
lieve this study demonstrates the MAP/MAP/1 queue is a
useful and versatile tool for performance prediction of web
servers deployed in the cloud, which is significantly faster to
solve analytically than by simulation. In the future, we intend
to investigate the use of the proposed models for resource
allocation and online web performance prediction.

REFERENCES
[1] M. Andersson, J. Cao, M. Kihl, and C. Nyberg. Performance

modeling of an apache web server with bursty arrival traffic.
In Proc. of ICOMP, 2003.

[2] M. Armbrust, et al. A view of cloud computing. Communi-
cations of the ACM, 53(4):50–58, 2010.

[3] S. Asmussen and O. Nerman. Fitting phase-type distributions
via the EM algorithm. Scand. J. Stat., 23(4):419–441, 1996.

[4] F. Bause, P. Buchholz, and J. Kriege. A comparison of Marko-
vian Arrival and ARMA/ARTA processes for the modeling of
correlated input processes. In Proc. of WSC, 634–645, 2009.

[5] D. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured
Markov chains solver: software tools. In Proc. of SMCTOOLS
Workshop. ACM, 2006, http://win.ua.ac.be/∼vanhoudt/.

[6] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing
Networks and Markov Chains. John Wiley and Sons, 2006.

[7] P. Buchholz, P. Kemper, and J. Kriege. Multi-class Markovian
arrival processes and their parameter fitting. PEVA, 67:1092–
1106, 2010.

[8] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola,
and G. Tamburrelli. Dynamic QoS management and optimi-
sation in service-based systems. IEEE TSE, (99):1, 2010.

[9] G. Casale, E. Zhang, and E. Smirni. Kpc-Toolbox: Simple
yet effective trace fitting using markovian arrival processes.
In Proc. of QEST, pp. 83–92. IEEE, 2008.

[10] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. J. Royal Stat.
Soc., 39(1):1–38, 1977.

[11] A. Heindl, K. Mitchell, and A. van de Liefvoort. Correlation
bounds for second-order MAPs with application to queueing
network decomposition. PEVA, 63(6):553–577, 2006.

[12] R. Horn and C. Johnson. Topics in matrix analysis. Cam-
bridge University Press, 1994.

[13] D. Kwiatkowski, P. Phillips, and P. Schmidt. Testing the null
hypothesis of stationarity against the alternative of a unit root.
J. of Econometrics, 54(1-3):159–178, 1992.

[14] G. Latouche and V. Ramaswami. Introduction to matrix
analytic methods in stochastic modeling. ASA-SIAM, 1999.

[15] M. Neuts. Structured stochastic matrices of M/G/1 type and
their applications. Marcel Dekker, 1989.

[16] A. Riska and E. Smirni. MAMsolver: A matrix analytic
methods tool. In Proc. of TOOLS, pp. 205–211. Springer-
Verlag, 2002, http://www.cs.wm.edu/MAMSolver/.

[17] A. Riska, M. Squillante, S. Yu, Z. Liu, and L. Zhang. Matrix-
analytic analysis of a MAP/PH/1 queue fitted to web server
data. In MAM4, pp. 335–356, 2002.

[18] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic
mix-aware provisioning for non-stationary data center work-
loads. In Proc. of ICAC, pp. 21–30. ACM, 2010.

[19] A. Thummler, P. Buchholz, and M. Telek. A novel approach
for fitting probability distributions to real trace data with the
EM algorithm. In Proc. of DSN, pp. 712–721. IEEE, 2005.

[20] C. H. Xia, Z. Liu, M. S. Squillante, L. Zhang, and N. Mal-
ouch. Traffic modeling and performance analysis of commer-
cial web sites. SIGMETRICS PER, 30:32–34, 2002.

[21] C. Xu, B. Liu, and J. Wei. Model predictive feedback control
for QoS assurance in webservers. IEEE Computer, 41(3):66–
72, 2008.

[22] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena.
Intelligent workload factoring for a hybrid cloud computing
model. In Proc. SERVICES, pp. 701–708. IEEE, 2009.

[23] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo.
Workload-aware load balancing for clustered web servers.
IEEE TPDS, 16(3):219–233, 2005.

