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Markowitz Revisited:

Mean-Variance Models

in Financial Portfolio Analysis∗
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Abstract. Mean-variance portfolio analysis provided the first quantitative treatment of the tradeoff
between profit and risk. We describe in detail the interplay between objective and con-
straints in a number of single-period variants, including semivariance models. Particular
emphasis is laid on avoiding the penalization of overperformance. The results are then
used as building blocks in the development and theoretical analysis of multiperiod models
based on scenario trees. A key property is the possibility of removing surplus money in
future decisions, yielding approximate downside risk minimization.
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0. Introduction. The classical mean-variance approach for which Harry Marko-
witz received the 1990 Nobel Prize in Economics offered the first systematic treatment
of a dilemma that each investor faces: the conflicting objectives of high profit versus
low risk. In dealing with this fundamental issue Markowitz came up with a para-
metric optimization model that was both sufficiently general for a significant range of
practical situations and simple enough for theoretical analysis and numerical solution.
As the Swedish Academy of Sciences put it [154], “his primary contribution consisted
of developing a rigorously formulated, operational theory for portfolio selection under
uncertainty.”

Indeed, the subject is so complex that Markowitz’s seminal work of the 1950s
[134, 135, 137] probably raised more questions than it answered, thus initiating a
tremendous amount of related research. Before placing the present paper into per-
spective, the following paragraphs give a coarse overview of these issues. A substantial
number of references are included, but we have not attempted to compile a complete
list. (The 1982 research bibliography [10] contains 400 references on just one of the
topics.) However, we have tried to cite (mostly in chronological order) at least sev-
eral major papers on each subject to provide some starting points for the interested
reader.

An important aspect of pareto-optimal (efficient) portfolios is that each deter-
mines a von Neumann–Morgenstern utility function [202] for which it maximizes the
expected utility of the return on investment. This allowed Markowitz to interpret his
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approach by the theory of rational behavior under uncertainty [135], [137, Part IV].
Further, certain measures of risk averseness evolved as a basic concept in economic
theory. These are derived from utility functions and justified by their relationship to
the corresponding risk premiums. Work in this area includes Tobin [198], Pratt [160],
Lintner [129], Arrow [2], Rubinstein [170], Kihlstrom and Mirman [100, 101], Fish-
burn and Porter [59], Duncan [46], Kira and Ziemba [107], Ross [169], Chamber-
lain [28], Hubermann and Ross [87], Epstein [55], Pratt and Zeckhauser [161], and Li
and Ziemba [126, 127]. Applications of utility theory and risk averseness measures
to portfolio selection were reported, e.g., by Tobin [199], Mossin [150], Hanoch and
Levy [75], Levy and Markowitz [123], Kallberg and Ziemba [96], Kroll, Levy, and
Markowitz [119], Jewitt [91, 92], King and Jensen [106], Kijima and Ohnishi [103],
and Kroll et al. [118].

A fundamental (and still debated) question is how risk should be measured.
Markowitz discussed the pros and cons of replacing the variance by alternative risk
measures in a more general mean-risk approach [137, Chap. XIII]. These consider-
ations and the theory of stochastic dominance (see Bawa [8, 9, 10], Fishburn [58],
Levy [121], Kijima and Ohnishi [104], and Levy and Wiener [125]) stimulated the re-
search in asymmetric risk measures like expectation of loss and semivariance; cf. Bawa
and Lindenberg [11], Harlow and Rao [76], Konno [108], Konno and Yamazaki [115],
King [105], Markowitz et al. [139], Zenios and Kang [206], Embrechts, Klüppelberg,
and Mikosh [51], Gaese [66], Ogryczak and Ruszczyński [155], Rockafellar and Urya-
sev [166], and Uryasev [200]. The properties of real return distributions also led to
risk models involving higher moments; see Ziemba [207], Kraus and Litzenberger [117],
Konno, Shirakawa, and Yamazaki [112], and Konno and Suzuki [113]. More recently
the theoretical concept of coherent risk measures was introduced and further de-
veloped by Artzner et al. [3, 4] and Embrechts, Resnick, and Samorodnitsky [52],
while portfolio tracking (or replication) approaches became popular in practice; see
Dembo [39], Guerard, Takano, and Yamane [69], King [105], Konno and Watan-
abe [114], Buckley and Korn [26], and Dembo and Rosen [40].

It is quite interesting that the mean-variance approach has received compara-
tively little attention in the context of long-term investment planning. Although
Markowitz did consider true multiperiod models (where the portfolio may be read-
justed several times during the planning horizon) [137, Chap. XIII], these consider-
ations used a utility function based on the consumption of wealth over time rather
than mean and variance of the final wealth. Other long-term and simplified multi-
period approaches were discussed, e.g., by Phelps [158], Tobin [199], Mossin [150],
Samuelson [172], Fama [57], Hakansson [70, 71, 72, 73, 74], Stevens [197], Roll [168],
Merton and Samuelson [145], Machina [132], Konno, Pliska, and Suzuki [110], Lu-
enberger [131], and Elliott and van der Hoek [49]. Combined consumption-portfolio
strategies have been investigated in many of the works just cited (using discounted
utility of consumption and/or utility of final wealth as optimization criteria), and
the relation to myopic (short-term) mean-risk efficiency with long-term optimality
and long-term capital growth has been studied. Research in the closely related field
of continuous-time portfolio management models has often been based on similar ap-
proaches; see Merton [141, 142], Sengupta [183], Heath et al. [83], Karatzas, Lehoczky,
and Shreve [98], Cox and Huang [32], Karatzas [97], Richardson [163], Dohi and Os-
aki [43], and Bajeux-Besnainou and Portait [6].

Over roughly the past decade, large-scale real-life models, in particular detailed
multiperiod models, have become tractable due to progress in computing technology
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(both algorithms and hardware); see, e.g., Perold [156], Mulvey [151], Dempster [42],
Glover and Jones [67], Mulvey and Vladimirou [152], Dantzig and Infanger [37], Cariño
et al. [27], Consigli and Dempster [31], Beltratti, Consiglio, and Zenios [13], and
Gondzio and Kouwenberg [68]. With the exception of the references just given, much
of the work cited above neglected details like asset liquidity or transaction costs.
At least the second idealization (no transaction costs) causes serious errors when
many transactions are performed, as in continuous-time models. Imperfect markets
were briefly discussed by Markowitz [137, p. 297ff.] and later (in both discrete and
continuous time) by Pogue [159], Chen, Jen, and Zionts [29], Perold [156], He and
Pearson [81, 82], Karatzas et al. [99], Cvitanić and Karatzas [35, 36], Jacka [90],
Shirakawa and Kassai [189], Shirakawa [188], Morton and Pliska [148], Atkinson,
Pliska, and Wilmott [5], and Buckley and Korn [26].

A final issue in the context of portfolio selection concerns the assumptions of
the investor about the future, which are represented by probability distributions of
the asset returns. Being based on assessments of financial analysts or estimated
from historical data (or both), these distributions are never exact. (Markowitz called
them probability beliefs.) The question of the sensitivity of optimization results with
respect to errors in the distribution was discussed, e.g., by Best and Grauer [16],
Jobson [93], Broadie [25], Chopra and Ziemba [30], Best and Ding [15], and MacLean
and Weldon [133].

Another central topic in modern finance is the theory (and prediction) of the
behavior of asset prices in capital markets. The original capital asset pricing model
(CAPM) is based directly on Markowitz’s static mean-variance analysis and on the
assumption of market equilibrium; cf. Sharpe [184] (who shared the 1990 Nobel Prize
jointly with Markowitz and Miller), Lintner [128], and Mossin [149]. The model was
later extended to a dynamic setting by Merton [143]; further work on the behavior of
asset prices and interest rates includes Vasicek [201], Cox, Ingersoll, and Ross [33, 34],
Ho and Lee [85], Bollerslev, Engle, and Wooldridge [23], Hull and White [88], Levy
and Samuelson [124], Konno and Shirakawa [111], Konno [109], and Levy [122]. The
observation that volatilities of asset returns and other factors change over time has
led to the development of the generalized autoregressive conditional heteroskedasticity
(GARCH) models; see Engle [53], Bollerslev [20], Bollerslev, Chou, and Kroner [21],
Bollerslev, Engle, and Nelson [22], and Engle and Kroner [54]. An alternative ap-
proach for the multivariate case was given by Harvey, Ruiz, and Shephard [80].

A final major field concerns the hedging of options or, more generally, contingent
claims. The typical objective in hedging an option is to eliminate (or reduce) the risk
of a future commitment to some asset. This involves an optimal dynamic trading
strategy that also determines the fair price of the option. For their pioneering work
in that area, Black and Scholes [19] and Merton [144] received the Nobel Prize in
1997. Thereafter, Harrison and Kreps [77] and Harrison and Pliska [78, 79] introduced
martingales and semimartingales in the theoretical treatment; these concepts also
replaced the earlier stochastic dynamic programming perspective in continuous-time
consumption-investment models. A quadratic risk measure for hedging strategies was
proposed by Föllmer and Sondermann [62] for the case in which the asset price process
is a martingale; Schweizer [175] extended this to the semimartingale case. Further
research in the general area of hedging is largely concerned with the investigation and
extension of similar concepts, particularly in incomplete markets; cf. Bouleau and
Lamberton [24], Föllmer and Schweizer [61], Rabinovich [162], Long [130], Duffie and
Richardson [45], Duffie [44], Hofmann, Platen, and Schweizer [86], Schweizer [176,
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177, 178, 179, 180, 181, 182], Edirisinghe, Naik, and Uppal [47], Schäl [174], Delbaen
and Schachermayer [38], El Karoui and Quenez [48], Monat and Stricker [147], Soner,
Shreve, and Cvitanić [190], Kramkov [116], Lamberton, Pham, and Schweizer [120],
Pham, Rheinländer, and Schweizer [157], Föllmer and Leukert [60], and Heath and
Schweizer [84].

We conclude the general discussion by pointing out that dynamic programming
(Bellman [12]) and its extension to stochastic differential equations play a central role
in much of the early work involving multiperiod and continuous-time models; this per-
tains to theoretical considerations as well as actual solution procedures. Prominent
examples, to name just a few, include Markowitz [137, Chap. XIII], Mossin [150],
Samuelson [172], Fama [57] in discrete time, and Merton [142] in continuous time.
Since straightforward dynamic programming becomes computationally expensive in
complex problems (particularly in the presence of inequality constraints), its practi-
cal applicability is basically limited to structurally simple models. In such idealized
cases, however, closed-form expressions are often obtained for the optimal strategies.
Closed-form solutions in continuous time, with asset prices being described by Brow-
nian motions, were also given by Richardson [163] (for mean-variance optimization of
a portfolio consisting of a riskless bond and a single stock) and by Duffie and Richard-
son [45] (for futures hedging policies under mean-variance and quadratic objectives).

Additional material and references can be found in a more recent book by Mar-
kowitz [138] or in any standard text on mathematical finance, like Sharpe [185, 186],
Elton and Gruber [50], Ingersoll [89], Alexander and Sharpe [1], Merton and Samuel-
son [146], Zenios [205], and Ziemba and Mulvey [208].

The present paper develops a fairly complete theoretical understanding of the
multiperiod mean-variance approach based on scenario trees. This is achieved by
analyzing various portfolio optimization problems with gradually increasing complex-
ity. Primal and dual solutions of these problems are derived, and dual variables are
given an interpretation where possible. The most important aspect in our discus-
sion is the precise interaction of objective (or risk measure) and constraints (or set
of feasible wealth distributions), a subject that has not much been studied in the
previous literature. It should be obvious that arguing the properties of risk measures
may be meaningless in an optimization context unless it is clear which distributions
are possible. A specific goal in our analysis is to avoid penalization due to overper-
formance. In this context we discuss the role of cash and, in some detail, variance
versus semivariance. A key ingredient of our most complex multiperiod model is an
artificial arbitrage-like mechanism involving riskless though inefficient portfolios and
representing a choice between immediate consumption and future profit.

Each of the problems considered tries to isolate a certain aspect, usually under
the most general conditions even if practical situations typically exhibit more specific
characteristics. However, we give higher priority to a clear presentation, and inessen-
tial generality will sometimes be sacrificed for technical simplicity. In particular, no
inequality constraints are included except where necessary. (A separate section is
devoted to the influence of such restrictions.) Neither do we attempt to model liquid-
ity constraints or short-selling correctly, nor to include transaction costs; we consider
only idealized situations without further justification. The present work grew out of
a close cooperation with the Institute of Operations Research at the University of
St. Gallen. It is based on a multiperiod mean-variance model that was first proposed
by Frauendorfer [63], then refined by Frauendorfer and Siede [65], and later extended
to a complete application model including transaction costs and market restrictions.
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That model raised some of the theoretical questions treated here; it will be presented
later in a joint paper.

Due to future uncertainty the portfolio optimization problems in this paper are
all stochastic. More precisely, they are deterministic equivalents of convex stochas-
tic programs; cf. Wets [203]. Except for the semivariance problems, they are also
quadratic programs involving a second-order approximation of the return distribution
in some sense; cf. Samuelson [173]. Based on earlier work in nonlinear optimal control
[191, 192, 196], we previously developed structure-exploiting numerical algorithms for
multistage convex stochastic programs like the ones discussed here [193, 194, 195].
Closely related but more general problem classes and duality are studied by Rock-
afellar and Wets [167] and Rockafellar [165]. For background material on stochastic
programming we refer the reader to Kall [94], Dempster [41], Ermoliev and Wets [56],
Kall and Wallace [95], Birge [17], Birge and Louveaux [18], and Ruszczyński [171];
for discrete-time stochastic control, see Bertsekas and Shreve [14]. A comprehensive
treatment of probability theory was given by Bauer [7], and advanced convex analysis
was treated by Rockafellar [164].

The paper is organized as follows. Our analysis begins with single-period mod-
els in section 1. Although many of the results are already known, the systematic
discussion of subtle details adds insight that is essential in the multiperiod case. To
some extent this section has a tutorial character; the problems may serve as examples
in an introductory course on optimization. Next, multiperiod mean-variance models
are analyzed in section 2, where the final goal consists of constructing an approxi-
mate downside risk minimization through appropriate constraints. To the best of our
knowledge, this material is new; the research was motivated by practical experience
with the application model mentioned above. Some concluding remarks are given in
section 3.

1. Single-Period Mean-Variance Analysis. Consider an investment in n assets
over a certain period of time. Denote by xν the capital invested in asset ν, by x ∈ R

n

the portfolio vector, and by r ∈ R
n the random vector of asset returns, yielding asset

capitals rνxν at the end of the investment period. Suppose that r is given by a joint
probability distribution with expectation r̄ := E(r) and covariance matrix

Σ := E[(r − r̄)(r − r̄)∗] = E[rr∗]− r̄r̄∗.

(The existence of these two moments is assumed throughout the paper.) The choice of
a specific portfolio determines a certain distribution of the associated total return (or
final wealth) w ≡ r∗x. Mean-variance analysis aims at forming the most desirable re-
turn distribution through a suitable portfolio, where the investor’s idea of desirability
depends solely on the first two moments.

Definition 1.1 (reward). The reward of a portfolio is the mean of its return,

ρ(x) := E(r∗x) = r̄∗x.

Definition 1.2 (risk). The risk of a portfolio is the variance of the return,

R(x) := σ2(r∗x) = E[(r∗x− E(r∗x))2] = E[x∗(r − r̄)(r − r̄)∗x] = x∗Σx.

Various formulations of the mean-variance problem exist. Although Markowitz
was well aware that “the Rational Man, like the unicorn, does not exist” [137, p. 206],
he related his approach to the utility theory of von Neumann and Morgenstern [202]
from the very beginning. This provides an important theoretical justification on the
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grounds that “the ‘fun of the game’ can be ignored in deciding on a rationale for the
selection of a portfolio, especially when this involves the allocation of large amounts of
other people’s money” [137, p. 226]. As we shall see later, maximizing the expectation
of a concave quadratic utility function leads to a formulation like

max
x

µρ(x)− 1

2
R(x)

subject to (s.t.) e∗x = 1,
(1.1)

where e ∈ R
n denotes the vector of all 1s. The objective models the actual goal of

the investor, a tradeoff between risk and reward,1 while the budget equation e∗x = 1
simply specifies the initial wealth w0 (normalized without loss of generality to w0 = 1).
Our preferred formulation comes closer to the original one; it minimizes risk subject
to the budget equation and subject to the condition that a certain target reward ρ be
obtained,

min
x

1

2
R(x)

s.t. e∗x = 1,

ρ(x) = ρ.

(1.2)

Here the investor’s goal is split between objective and reward condition.
In this section we study the precise relation of problems (1.1) and (1.2) and a

number of increasingly general single-period variants. We will include a cash account,
then consider certain inequality constraints, utility functions, and finally downside
risk. Many of the results are already known, but usually in a different form. Here
we choose a presentation that facilitates the study of nuances in the optimization
problems and that integrates seamlessly with the more general case of multiperiod
problems in section 2.

1.1. Risky Assets Only. The simplest situation is given by portfolios consist-
ing exclusively of risky assets. In this case we impose two conditions on the return
distribution.

BASIC ASSUMPTIONS.
(A1) The covariance matrix is positive definite, Σ > 0.
(A2) The expectation r̄ is not a multiple of e.
Remarks. The first assumption means that all n assets (and any convex combina-

tion) are indeed risky; riskless assets like cash will be treated separately if present. The
second assumption implies n ≥ 2 and guarantees a nondegenerate situation, other-
wise problem (1.1) would always have the same optimal portfolio x = Σ−1e/(e∗Σ−1e)
regardless of the tradeoff parameter, and problem (1.2) would have inconsistent con-
straints except for one specific value of the target reward: ρ = r̄∗e/n. Notice that no
formal restrictions are imposed on the value of r̄, although r̄ > 0 (and even r̄ > e)
will usually hold in practice.

Due to assumption (A1) we can define the following constants that will be used
throughout this section:

α := e∗Σ−1e, β := e∗Σ−1r̄, γ := r̄∗Σ−1r̄, δ := αγ − β2.

1Many authors attach a tradeoff parameter θ to the risk term and maximize ρ(x) − θR(x)/2,
which is equivalent to (1.1) if µ ≡ θ−1 > 0. However, this problem becomes unbounded for θ ≤ 0,
whereas (1.1) remains solvable for µ ≤ 0. This is important in our analysis.
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Lemma 1.3. The constants α, γ, and δ are positive. More precisely,

α ∈
[

n

λmax(Σ)
,

n

λmin(Σ)

]

, γ ∈
[ ‖r̄‖2

2

λmax(Σ)
,

‖r̄‖2
2

λmin(Σ)

]

, |β| <
√
n ‖r̄‖2

λmin(Σ)
,

where λmin, λmax denote the minimal and maximal eigenvalue of Σ, respectively.
Proof. Since Σ > 0 (by (A1)), we have

α = e∗Σ−1e ∈
[

‖e‖2
2 λmin(Σ

−1), ‖e‖2
2 λmax(Σ

−1)
]

=

[

n

λmax(Σ)
,

n

λmin(Σ)

]

.

The inclusion for γ is analogous. Since r̄ and e are linearly independent and Σ > 0
(by (A2) and (A1)), the 2× 2 matrix

(

e∗

r̄∗

)

Σ−1
(

e r̄
)

=

(

α β
β γ

)

> 0

has positive determinant δ. Thus |β| < √
αγ ≤ √

n ‖r̄‖2/λmin(Σ).
Remark. The inclusions for α and γ are sharp but not the bound on |β|, and

neither α < γ nor β > 0 hold in general. In any case, we need only α, γ, δ > 0.
Problem 1. Let us first consider the standard tradeoff formulation. To simplify

the comparison with our preferred formulation, we minimize negative utility

min
x

1

2
x∗Σx− µr̄∗x

s.t. e∗x = 1.

The Lagrangian is

L(x, λ;µ) =
1

2
x∗Σx− µr̄∗x− λ(e∗x− 1).

Theorem 1.4. Problem 1 has the unique primal-dual solution

x = Σ−1(λe+ µr̄), λ = (1− µβ)/α

and associated reward

ρ = λβ + µγ = (β + µδ)/α.

Proof. From the Lagrangian one obtains the system of first-order necessary con-
ditions

(

Σ e
e∗

) (

x
−λ

)

=

(

µr̄
1

)

.

Its first row (dual feasibility) yields the optimal portfolio x. The optimal multiplier λ
and reward ρ are obtained by substituting x into the second row (primal feasibility)
and the definition of ρ, respectively. Uniqueness of the solution follows from strong
convexity of the objective and full rank of the constraint.

Remark. Although the qualitative interpretation of the tradeoff function is clear,
the precise value of the tradeoff parameter µ should also have an interpretation. In
particular, the resulting reward is of interest. This is one reason why we prefer a differ-
ent formulation of the mean-variance problem. (Other important reasons are greater
modeling flexibility and sparsity in the multiperiod formulation; see section 2.)
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Problem 2. The mean-variance problem with prescribed reward reads

min
x

1

2
x∗Σx

s.t. e∗x = 1,

r̄∗x = ρ.

Its Lagrangian is

L(x, λ, µ; ρ) =
1

2
x∗Σx− λ(e∗x− 1)− µ(r̄∗x− ρ).

We refer to the dual variables λ, µ as the budget multiplier and the reward multiplier,
respectively. It will soon be shown that the optimal reward multiplier µ is precisely
the tradeoff parameter of Problem 1.

Theorem 1.5. Problem 2 has the unique primal-dual solution

x = Σ−1(λe+ µr̄), λ = (γ − βρ)/δ, µ = (αρ− β)/δ.

Proof. The system of first-order optimality conditions reads




Σ e r̄
e∗

r̄∗









x
−λ
−µ



 =





0
1
ρ



 .

As in Theorem 1.4, the optimal portfolio x is obtained from the first row. Substitution
of x into rows two and three yields the optimal multipliers

(

λ
µ

)

=

[(

e∗

r̄∗

)

Σ−1
(

e r̄
)

]−1 (

1
ρ

)

=

(

α β
β γ

)−1 (

1
ρ

)

=
1

δ

(

γ − βρ
αρ− β

)

.

Uniqueness of the solution follows as in Theorem 1.4.
Theorem 1.6. Problem 1 with parameter µ and Problem 2 with parameter ρ

are equivalent if and only if µ equals the optimal reward multiplier of Problem 2 or,
equivalently, ρ equals the optimal reward of Problem 1.

Proof. The required conditions, µ = (αρ− β)/δ and ρ = (β + µδ)/α, are clearly
equivalent. It follows that the optimal budget multipliers of both problems are iden-
tical,

1− µβ

α
=
δ − αβρ+ β2

αδ
=
αγ − αβρ

αδ
=
γ − βρ

δ
.

Hence optimal portfolios also agree. The “only if” direction is trivial.
Remarks. Apparently, the optimality conditions of Problem 2 include the opti-

mality conditions of Problem 1, and additionally the reward condition. These n + 2
equations define a one-dimensional affine subspace for the n + 3 variables x, λ, µ, ρ,
which is parameterized by µ in Problem 1 and by ρ in Problem 2. As an immediate
consequence, the optimal risk is a quadratic function of ρ, denoted by σ2(ρ). Its graph
is called the efficient frontier.2

2More generally, the efficient frontier refers to the set of all pareto-optimal solutions in any multi-
objective optimization problem. The solutions (portfolios) are also called efficient. Strictly speaking,
this applies only to the upper branch here, that is, ρ ≥ ρ̂, or, equivalently, µ ≥ 0 (see the following
discussion).
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Theorem 1.7. In Problems 1 and 2, the optimal risk is

σ2(ρ) = (αρ2 − 2βρ+ γ)/δ = (µ2δ + 1)/α.

Its global minimum over all rewards is attained at ρ̂ = β/α and has the positive value
σ2(ρ̂) = 1/α. The associated solution is x̂ = Σ−1e/α, λ̂ = 1/α, µ̂ = 0.

Proof. By Definition 1.2 and Theorem 1.5,

σ2(ρ) = x∗Σx = (λe+ µr̄)∗Σ−1(λe+ µr̄)

= λ2α+ 2λµβ + µ2γ = λ(λα+ µβ) + µ(λβ + µγ).

Using λ, ρ from Theorem 1.4 and λ, µ from Theorem 1.5 gives

σ2(ρ) = λ+ µρ = (αρ2 − 2βρ+ γ)/δ = (µ2δ + 1)/α.

The remaining statements follow trivially.
Discussion. The optimal portfolio is clearly a reward-dependent linear combina-

tion of the reward-independent portfolios Σ−1e and Σ−1r̄. Moreover, it is an affine
function of ρ. The efficient frontier and optimal investments into two risky assets are
depicted in Figure 1.1. Here, since n = 2, the optimal portfolio is completely deter-
mined by the budget condition and the reward condition; it does not depend on Σ
and is thus correlation-independent. Not so the risk: for negatively correlated assets,
it has a pronounced minimum at a fairly large reward ρ̂. As the correlation increases,
the lowest possible risk is attained at a smaller reward and has a larger value. (These
statements do not generalize simply to the case n > 2.)

A serious drawback of the model (in this form) is the fact that positive deviations
from the prescribed reward are penalized, and hence the “risk” increases when ρ is re-
duced below ρ̂. Indeed, the penalization cannot be avoided, indicating that the model
is somehow incomplete. We will see, however, that unnecessary positive deviations
from ρ do not occur if the model is extended appropriately. For the moment let us
accept that only the upper branch is relevant in practice.

1.2. Risky Assets and Riskless Cash. Now consider n risky assets and an addi-
tional cash account xc with deterministic return rc ≡ r̄c. The portfolio is (x, xc), and
x, r, r̄,Σ refer only to its risky part.

BASIC ASSUMPTIONS. Assumption (A2) is replaced by a similar condition on the
extended portfolio, which may now consist of just one risky asset and cash.
(A1) Σ > 0.
(A3) r̄ 
= rce.
Remarks. Again, the second assumption excludes degenerate situations, and no

restrictions are imposed to ensure realistic returns. In practice one can typically
assume r̄ > rce > 0 (or even rce ≥ e), which satisfies (A3). The constants α, β, γ are
defined as before; they are related to the risky part of the portfolio only. (Condition
(A3) makes δ = 0 possible, but δ plays no role here.)

Problem 3. Any covariance associated with cash vanishes, so that the risk
and reward are R(x, xc) = x∗Σx and ρ(x, xc) = r̄∗x + rcxc, respectively, and the
optimization problem reads

min
x,xc

1

2

(

x
xc

)∗ (

Σ 0
0 0

) (

x
xc

)

=
1

2
x∗Σx

s.t. e∗x+ xc = 1,

r̄∗x+ rcxc = ρ.
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Fig. 1.1 Portfolio with two risky assets having expected returns r̄1 = 1.15 and r̄2 = 1.08. Top:
Efficient frontier for negatively correlated, uncorrelated, and positively correlated assets.
Bottom: Optimal portfolio versus reward.

Theorem 1.8. Problem 3 has the unique primal-dual solution

x = Σ−1(λe+ µr̄) = µΣ−1(r̄ − rce), λ = −rcµ,

xc = 1− µ(β − rcα), µ = (ρ− rc)/δc,

where δc := (rc)2α− 2rcβ + γ > 0. The resulting optimal risk is

σ2(ρ) = (ρ− rc)2/δc.

Its global minimum over all rewards is attained at ρ̂ = rc and has value zero. The
associated solution has 100% cash: (x̂, x̂c) = (0, 1), λ̂ = µ̂ = 0.

Proof. The system of optimality conditions is








Σ 0 e r̄
0 0 1 rc

e∗ 1
r̄∗ rc

















x
xc

−λ
−µ









=









0
0
1
ρ









.

The optimal budget multiplier λ is obtained from row 2. Substitution into row 1
yields the expression for x, and substituting x into row 3 yields xc. Substitution of x
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and xc into row 4 gives

ρ = r̄∗x+ rcxc = µ(γ − rcβ) + rc − µ(rcβ − (rc)2α) = rc + µδc,

yielding µ. The positivity of δc follows (with (A3)) from

δc = (r̄ − rce)∗Σ−1(r̄ − rce).

Finally, the second formula for x yields

σ2(ρ) = µ2(r̄ − rce)∗Σ−1(r̄ − rce) = µ2δc = (ρ− rc)2/δc.

The remaining statements (ρ̂ = rc, etc.) follow trivially.
Problem 4. Problem 3 also has a tradeoff version:

min
x,xc

1

2
x∗Σx− µ(r̄∗x+ rcxc)

s.t. e∗x+ xc = 1.

Theorem 1.9. Problem 3 with parameter ρ and Problem 4 with parameter µ are
equivalent if and only if ρ = rc + µδc.

Proof. The proof is analogous to the proof of Theorem 1.6 and is therefore omit-
ted.

Discussion. Basically the situation is quite similar to Problem 2, the only qual-
itative difference being the existence of one zero-risk portfolio: for ρ = rc, the
capital is completely invested in cash and the risk vanishes. Otherwise a fraction
of e∗x = µ(β − rcα) is invested in risky assets and the risk is positive; see Fig-
ure 1.2. The optimal portfolio is now a mix of the (reward-independent) risky port-
folio (Σ−1(r̄ − rce), 0) and cash (0,1). The following comparison shows precisely how
the cash account reduces risk when added to a set of (two or more) risky assets.

Theorem 1.10. The risk in Problem 3 is almost always lower than it is in
Problem 2: If β 
= rcα, then the efficient frontiers touch in the single point

ρ = rc +
δc

β − rcα
=
γ − rcβ

β − rcα
, σ2(ρ) =

δc

(β − rcα)2

(see Figure 1.2), where the solutions of both problems are “identical”: x or (x, 0). If
β = rcα, then xc ≡ 1 and e∗x ≡ 0, and the risks differ by the constant 1/α:

(ρ− rc)2

δc
+

1

α
=
αρ2 − 2βρ+ γ

δ
.

Proof. If β 
= rcα, then Problem 3 has a unique zero-cash solution, xc = 0, with

µ =
1

β − rcα
, λ = − rc

β − rcα
.

This gives the stated values of ρ and σ2(ρ) by Theorem 1.8. Substituting ρ into the
formulae for λ, µ in Theorem 1.5 yields identical values in both problems. Hence the
portfolios agree, too. The curvatures of the efficient frontiers, d2σ2(ρ)/dρ2, are 2α/δ
and 2/δc, respectively. Now,

αδc − δ = (rc)2α2 − 2rcαβ + αγ − αγ + β2 = (rcα− β)2 > 0.
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Fig. 1.2 Portfolio with two risky assets and cash, having expected returns r̄1 = 1.15 and r̄2 = 1.08
(as before), and rc = 1.05. Top: Efficient frontiers with and without cash. Bottom:
Optimal portfolio versus reward.

Thus 2α/δ > 2/δc > 0, implying that Problem 3 has lower risk if xc 
= 0. The case
β = rcα is trivial: both efficient frontiers have ρ̂ = rc and identical curvatures.

To conclude this section, we show that it does not make sense to consider portfolios
with more than one riskless asset (and no further restrictions).

Lemma 1.11 (arbitrage). Any portfolio having at least two riskless assets xc, xd

with different returns rc, rd can realize any desired reward at zero risk.3

Proof. Choose xc = (ρ − rd)/(rc − rd), xd = 1 − xc, and invest nothing in other
assets.

1.3. Risky Assets, Cash, and Guaranteed Total Loss. Let us now consider a
portfolio with n ≥ 1 risky assets, a riskless cash account as in Problem 3, and in
addition an “asset” xl with guaranteed total loss, i.e., rl ≡ r̄l = 0. (Notice that xl is
not “risky” in the sense of an uncertain future.) At first glance this situation seems
strange, but it will turn out to be useful.4

3Here and in what follows, we use an abstract notion of arbitrage, meaning any opportunity to
generate riskless profit. This differs from more specific standard definitions in finance.

4The suggestive notion of an “asset with guaranteed total loss” is perhaps the most obvious but
least reasonable interpretation of xl; this is precisely what we wish to stress by using it.
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BASIC ASSUMPTIONS. In addition to the conditions of the previous section we
now require positive cash return (rc ≤ rl does not make sense).
(A1) Σ > 0.
(A3) r̄ 
= rce.
(A4) rc > 0.
Problem 5. All covariances associated with xc or xl vanish, so that the risk and

reward are R(x, xc, xl) = x∗Σx and ρ(x, xc, xl) = r̄∗x + rcxc, respectively, and the
optimization problem reads

min
x,xc,xl

1

2





x
xc

xl





∗ 



Σ 0 0
0 0 0
0 0 0









x
xc

xl



 =
1

2
x∗Σx

s.t. e∗x+ xc + xl = 1, xl ≥ 0,

r̄∗x+ rcxc = ρ.

Note that the no-arbitrage condition xl ≥ 0 must be imposed; otherwise one could
borrow arbitrary amounts of money without having to repay. However, Lemma 1.11
still works for sufficiently small ρ. This is precisely our intention.

Theorem 1.12. Problem 5 has unique primal and dual solutions x, xc, xl, λ, µ, η,
where η is the multiplier of the nonnegativity constraint xl ≥ 0. For ρ > rc, the
optimal solution has xl = 0 and η = −λ > 0 and is otherwise identical to the solution
of Problem 3. Any reward ρ ≤ rc is obtained at zero risk by investing in a linear
combination of the two riskless assets, with primal-dual solution

x = 0, xc =
ρ

rc
, xl = 1− ρ

rc
, λ = µ = η = 0.

Proof. The system of necessary conditions can be written













Σ 0 0 e r̄
0 0 0 1 rc

0 0 0 1 0
e∗ 1 1
r̄∗ rc 0

























x
xc

xl

−λ
−µ













=













0
0
η
1
ρ













, xl ≥ 0, η ≥ 0, xlη = 0.

As in Theorem 1.8, the first two rows yield λ = −rcµ and x = µΣ−1(r̄ − rce). The
third row yields η = −λ = rcµ. Hence, by complementarity of xl and η, rows 4 and 5
yield either xc and µ as in Problem 3 (if xl = 0 and η ≥ 0; case 1), or xc +xl = 1 and
rcxc = ρ (if xl ≥ 0 and η = 0; case 2). Due to the nonnegativity of xl and η, case 1
can hold only for ρ ≥ rc, and case 2 only for ρ ≤ rc. (Indeed, for ρ = rc both cases
coincide so that all variables are continuous with respect to the parameter ρ.)

Problem 6. The tradeoff version of Problem 5 reads

min
x,xc,xl

1

2
x∗Σx− µ(r̄∗x+ rcxc)

s.t. e∗x+ xc + xl = 1, xl ≥ 0.

Theorem 1.13. Problem 6 with µ > 0 is equivalent to Problem 5 (with ρ > rc)
iff ρ = rc + µδc. Every solution of Problem 5 with ρ ≤ rc is optimal for Problem 6
with µ = 0. Problem 6 is unbounded for µ < 0: no solution exists.
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Fig. 1.3 Portfolio with two risky assets, cash, and an asset with guaranteed loss. Expected returns
are r̄1 = 1.15, r̄2 = 1.08, and rc = 1.05 (as before). Top: Efficient frontier. Bottom:
Optimal portfolio versus reward.

Proof. The necessary conditions for both problems are identical, except that in
the tradeoff problem µ is given and the reward condition is missing. The condition
η = rcµ together with nonnegativity and complementarity of xl, η leads immediately
to the three given cases.

Discussion. Apparently, at the price of slightly increased complexity, Problem 5
correctly captures the case of an overly pessimistic investor. It minimizes something
that qualitatively resembles a quadratic downside risk (or shortfall risk): the risk of
obtaining less than the desired amount; see Figure 1.3. In that sense the model is
now more realistic. (In contrast, its tradeoff version becomes degenerate for µ = 0
and does not extend to µ < 0.) But what does it mean to “invest” knowingly in an
asset with guaranteed total loss? Does it not imply that one might as well burn the
money?

Let us first give the provocative answer, “Yes, why not?” From the point of view
of the model, the investor’s goal is minimizing the “risk” of earning less or more than
the specified reward. Therefore, it makes sense to get rid of money whenever this
reduces the variance, which it indeed does for ρ < ρ̂. The model cannot know and
consequently does not care how the investor will interpret that, and it will use any
possible means to take out capital if appropriate.
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Of course, we can also offer a better interpretation. The fraction invested in xl

is simply surplus capital: the target reward ρ is achieved at zero risk without that
amount, so it need not be invested in the first place—at least not into the portfolio
under consideration. The investor may enjoy a free lunch instead or support her
favorite artist, if she prefers that to burning the money. Or she may reconsider and
decide to pursue a more ambitious goal; the model does not suggest how to spend
the surplus money. This interpretation of the new riskless (but inefficient) solutions
becomes obvious after the following observation.

Lemma 1.14. Problem 5 is equivalent to the modification of Problem 3, where
the budget equation e∗x+ xc = 1 is replaced by the inequality e∗x+ xc ≤ 1, i.e., less
than 100% investment is allowed.

Proof. With a slack variable s ≥ 0, the modified condition is clearly equivalent to
e∗x + xc + s = 1, and the modified Problem 3 becomes identical to Problem 5: the
ominous loss asset is simply a slack variable, xl ≡ s.

1.4. Utility Functions. Let us start a brief excursion into utility-based portfolio
optimization by considering Problem 1, the tradeoff formulation of the mean-variance
model for n risky assets. In utility theory, the portfolio is chosen so that some func-
tion U(w), the investor’s (subjective) utility of final wealth w = r∗x, has maximal
expectation for the given return distribution. The connection is apparent: minimizing
the tradeoff function with parameter µρ is equivalent to maximizing the expectation
E[Uρ(r

∗x)] if we define the family of concave quadratic utility functions

Uρ(w) := µρw − 1

2
(w − ρ)2, µρ ≡ αρ− β

δ
.

(µρ is the optimal budget multiplier of the target reward ρ.) If ρ+ µρ > 0, then this
equivalence remains valid for the normalized utility functions

Ūρ(w) :=
1

(ρ+ µρ)2

[

Uρ(w) +
1

2
ρ2

]

=
w

ρ+ µρ

− w2

2(ρ+ µρ)2
,

satisfying Ūρ(0) = 0 and maxw∈R Ūρ(w) = Ūρ(ρ + µρ) =
1
2 . For a portfolio with two

positively correlated risky assets, Figure 1.4 shows the normalized utility functions
associated with several target rewards, and the resulting optimal wealth distribution
functions given normally distributed returns, r ∼ N (r̄,Σ). The optimal cumulative
wealth distributions have the explicit form

Φρ(w) :=
1√
2π σρ

∫ w

−∞

exp

(

− (t− ρ)2

2σ2
ρ

)

dt = Φ

(

w − ρ√
2σρ

)

,

where σ2
ρ := σ2(ρ) = (µ2

ρδ + 1)/α, and Φ is the standard error integral,

Φ(w) :=
1√
π

∫ w

−∞

exp(−t2) dt.

When cash is included in the portfolio (Problem 4), then utility functions Uρ, Ūρ

and distribution functions Φρ have precisely the same form, except that the final
wealth becomes w = r∗x + rcxc and that µρ := (ρ − rc)/δc and σ2

ρ := µ2
ρδ

c. The
properties of Φρ give another indication of the risk reduction mechanism described in
Theorem 1.10: Figure 1.5 shows that the slope of Φρ is rather steep and becomes a
jump in the zero-risk case, ρ = rc.
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Fig. 1.4 Utility-based portfolio optimization for two positively correlated assets. Top: Normalized
utility functions Ūρ and optimal cumulative wealth distribution functions Φρ for the values
ρ ∈ {0.9rc, rc, r̄1, r̄2}. Center of symmetry of Φρ curves at (ρ, 1

2
) marked by ‘o’; maximum

of Ūρ parabolas at (ρ+µρ, 1

2
) marked by ‘|’. Bottom: Family of optimal wealth distribution

functions Φρ over the range of target rewards ρ ∈ [1.0, 1.2].

When a loss asset is also added to the portfolio in Problem 6, the utility func-
tions Uρ, Ūρ are exactly identical to the previous case, and even their optimal wealth
distributions for ρ ≥ rc coincide; see Figure 1.6. For ρ ≤ rc, however, the wealth dis-
tributions Φρ := χ[ρ,∞) become indicator functions rather than normal distributions:
they all have µρ = σρ = 0 and a jump discontinuity at ρ, producing zero risk. (In
Problem 4 this happens only for ρ = rc.)

In this paper we do not wish to pursue the subject further. The interested reader
should refer to the original considerations of Markowitz [137, Part IV], the litera-
ture cited in the introduction (especially [92, 103, 105, 106, 119, 123, 150]), and the
references therein.

1.5. Influence of Inequalities. Except for the no-arbitrage condition xl ≥ 0, all
the problems considered so far have been purely equality constrained. Now we study
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Fig. 1.5 The same situation as in Figure 1.4 with cash included in the portfolio.

problems with inequalities. Let us first view ρ as a lower bound (not an exact value)
for the desired reward.

Theorem 1.15. Consider the following modifications of Problems 2, 3, and 5:
the reward equation is replaced by the inequality r̄∗x ≥ ρ in Problem 2 and similarly
by r̄∗x+ rcxc ≥ ρ in Problems 3 and 5. Then the following hold:

(1) The solution of each original problem for ρ ≥ ρ̂ is also the unique solution of
the corresponding modified problem (upper branch).

(2) The solution of Problem 2 or 3 with reward ρ̂ is also the unique solution of
the corresponding modified problem for any ρ ≤ ρ̂ (lower branch).

(3) Any solution of Problem 5 with ρ(x, xc, xl) ∈ [ρ, rc] is a riskless solution of the
modified problem with ρ < rc. That is, any portfolio (0, xc, 1− xc) with xc ∈ [ρ/rc, 1]
is optimal.

Proof. The proof is obvious.
Discussion. Specifying the desired reward as a lower bound rather than an ex-

act value leads to reasonable behavior on the lower branch of the efficient frontier.
The minimal-risk solution is simply extended to all sufficiently small rewards, yield-
ing again a quadratic downside-like risk in each case. In Problem 3 this provides
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Fig. 1.6 The same situation as in Figure 1.4 with cash and loss included in the portfolio.

an alternative to introducing a loss asset. (By statement (3) of Theorem 1.15, the
combination yields nonunique solutions but no further advantages.) The lower bound
formulation, as originally introduced by Markowitz, might appear more natural than
the loss asset, but mathematically both are equivalent: optimal investments in risky
assets and the resulting risk are identical, but in the latter case the surplus money
is put in xl (removed immediately) and in the former case it is invested in cash xc—
to be removed afterwards. This difference could be interpreted as reflecting certain
attitudes of the investor toward surplus money: e∗x + xc ≤ 1 and ρ(x) ≥ ρ would
model respective preferences for immediate consumption or future profit, whereas the
combination would express indecision. Instead, we simply interpret the loss model
as giving the investor a choice between consumption and profit in some situations.
Leaving the choice open seems preferable in view of the multiperiod case.

In practice, nonnegativity constraints x ≥ 0, xc ≥ 0 will usually be included to
prohibit short-selling assets or borrowing cash.5 The budget equation then implies
that only convex combinations of the assets are permitted. (That is, strictly speaking,

5Even if borrowing is allowed, it should also be modeled as a (separate) nonnegative asset in
practice since the interest rate differs from the one for investing.
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convex combinations of single-asset portfolios.) Of course, the unconstrained solution
remains valid if and only if it is nonnegative anyway. Otherwise some constraints
become tight, excluding the corresponding assets from the portfolio and increasing
risk. More precisely, the following simple facts hold.

Theorem 1.16. Include nonnegativity constraints x ≥ 0, xc ≥ 0 in Problems
2, 3, and 5 and assume for simplicity that r̄ > rce > 0. Denote by r̄min, r̄max the
minimal and maximal expected return in the portfolio, and choose corresponding assets
xmin, xmax. Then the following hold:

(1) Problems 3 and 5 have xmin = xc and xmin = xl, respectively.
(2) In each problem, an optimal solution exists iff ρ ∈ [r̄min, r̄max].
(3) The efficient frontier is convex and piecewise quadratic (or linear).
Proof. Statement (1) is trivial. Since each problem is convex, an optimal solution

exists if and only if the feasible set is nonempty. For ρ ∈ [r̄min, r̄max], the feasible
set clearly contains a (unique) convex combination of xmin and xmax. Conversely,
every convex combination of assets yields as reward the same convex combination of
individual expected returns, which lies in the range [r̄min, r̄max]. This proves state-
ment (2). To prove statement (3) consider Problem 2 first. Let ρ0, ρ1 ∈ [r̄min, r̄max]
with respective solutions x0, x1. Then xt := (1 − t)x0 + tx1 is feasible for ρt :=
(1− t)ρ0 + tρ1, t ∈ [0, 1], and convexity of the efficient frontier follows from convexity
of R,

σ2(ρt) ≤ R(xt) ≤ (1− t)R(x0) + tR(x1) = (1− t)σ2(ρ0) + tσ2(ρ1).

At r̄min and r̄max all the money is invested in one single asset: xmin or xmax. Each
ρ ∈ (r̄min, r̄max) determines a subset of two or more nonnegative assets whose effi-
cient frontier gives the optimal risk in that point. Since strict positivity is a generic
property, each of these subportfolios is optimal either in a single point or on an en-
tire nondegenerate interval. Thus, the efficient frontier (in Problem 2) is composed
of finitely many quadratic pieces. Precisely the same arguments hold for Problem 3
since R(x, xc) ≡ R(x). In Problem 5, the efficient frontier consists of the segment
σ2(ρ) ≡ 0 on [0, rc] and the segments of Problem 3 on [rc, r̄max].

Discussion. The theorem gives a simple characterization of the influence of stan-
dard nonnegativity constraints. In a portfolio with three risky assets, the respective
efficient frontiers of subportfolios that contribute to the optimal solution in Problems
2, 3, and 5 might look as in Figure 1.7. Other inequalities, like upper bounds on
the assets or limits on arbitrary asset combinations, will further restrict the range
of feasible rewards and increase the risk in a similar manner. This situation was
already considered by Markowitz: he handles general linear inequalities by dummy
assets (slacks) and constraints Ax = b, x ≥ 0; the case A = e∗ (with x ≥ 0 and
ρ(x) ≥ ρ) is called the standard case [137, p. 171]. Moreover, Markowitz devised an
algorithm to trace the critical lines, that is, the segments of the efficient frontier [136],
[137, Chap. VIII]. Criteria for including or excluding assets in an optimal portfolio
were developed by McEntire [140] and Kijima [102], and the number of assets in an
optimal portfolio was investigated, e.g., by Nakasato and Furukawa [153].

1.6. Downside Risk. In the discussion of section 1.3 we made the remark that
Problem 5 resembles a downside risk. This will now be investigated in detail. We
have to work with the distribution of returns, but the entire analysis can be given in
geometric terms using its support and elementary facts of convex analysis. Consider a
probability space (Rn,B, P ) and let Ξ ∈ B denote the support of P , i.e., the smallest
closed Borel set with measure 1,
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Fig. 1.7 Efficient frontiers for Problems 2, 3, and 5 with nonnegativity constraints for all assets. Ef-
ficient frontier for Problem 2 covers range [1.08, 1.15] with three quadratic segments (purple,
blue, purple). Efficient frontier for Problem 3 covers range [1.05, 1.15] with three quadratic
segments (red, blue, purple). Efficient frontier for Problem 5 covers range [0.00, 1.15] with
one linear segment and three quadratic segments (green, red, blue, purple).

Ξ = supp(P ) :=
⋂

S∈B : P (S)=1

S.

(Of course, if P has a density φ, then Ξ = supp(φ) = {x ∈ R
n : φ(x) > 0}.) In the

following we will actually use the convex hull of the support most of the time, denoted
by C := conv(Ξ).

Definition 1.17 (downside risk). For a function w of the random vector r with
distribution P , the downside risk of order q > 0 with target τ ∈ R is

Rq
τ (w) := E

[

|min(w(r)− τ, 0)|q
]

=

∫

R
n

|min(w(r)− τ, 0)|q dP.

Remarks. Without the risk context such expectations are neutrally called lower
partial moments, with downside expected value or semideviation (order 1) and down-
side variance or semivariance (order 2) as special cases. In [137, Chap. XIII], Marko-
witz gives a qualitative discussion of the linear case (expected value of loss, q = 1), the
quadratic case (semivariance, q = 2), and some other measures of risk, by examining
the associated utility functions. Expectation of loss has recently gained interest as
a coherent replacement for the popular Value-at-Risk (VaR), often under alternative
names like mean shortfall, tail VaR, or conditional VaR; cf. [3, 51, 66, 166, 200].

In the following we are only interested in quadratic downside risk of portfolio
returns like wx,xc(r, rc) = r∗x + rcxc. Moreover, we always use the target reward as
a natural choice for the shortfall target, τ = ρ, and write simply Rρ(x, x

c) instead
of R2

ρ(wx,xc). The problems considered in this section are downside risk versions of
Problems 3 and 5 and of the modification of Problem 3 with ρ(x, xc) ≥ ρ. In each
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case only the objective is changed: standard risk R is replaced by downside risk Rρ.
Before considering these problems we need some technical preparations.

For x 
= 0 and c ∈ R let us introduce open and closed half-spaces

H(x, c) := {r ∈ R
n : r∗x < c}, H̄(x, c) := {r ∈ R

n : r∗x ≤ c}
and portfolio-dependent semivariance matrices

Σ(x) :=

∫

r̄+H(x,0)

(r − r̄)(r − r̄)∗ dP, x 
= 0.

For x = 0, let Σ(0) := 1
2Σ, where Σ is the usual covariance matrix,

Σ :=

∫

R
n

(r − r̄)(r − r̄)∗ dP.

Lemma 1.18. Denote by ⊎ a disjoint union. Then, for x 
= 0 and a > 0,
(1) H(ax, c) = H(x, a−1c), H(x, ac) = H(a−1x, c), H(ax, ac) = H(x, c);
(2) H(−x,−c) = R

n \ H̄(x, c);
(3) H̄(x, c) = H(x, c) ⊎ ∂H(x, c), H̄(x, 0) = H(x, 0) ⊎ {x}⊥.

Statements (1) and (2) remain valid when H and H̄ are exchanged everywhere.
Proof. The proof is immediate from the definitions.
Lemma 1.19. For x ∈ R

n and a > 0,
(1) Σ(ax) = Σ(x);
(2) 0 ≤ Σ(x) ≤ Σ (in particular, each Σ(x) is positive semidefinite);
(3) x∗Σ(x)x = E[min((r − r̄)∗x, 0)2];
(4) x∗[Σ(x) + Σ(−x)]x = x∗Σx.
Proof. Statements (1), (2), (3) are obvious from the definitions and the first

identity in Lemma 1.18. The expressions in statement (4) are identical for x = 0;
otherwise they differ by the integral of ((r − r̄)∗x)2 over r̄ + {x}⊥, which is clearly
zero.

Lemma 1.20. For any random vector r the following holds.
(1) The expectation lies in the convex hull of the support: r̄ ∈ C.
(2) The covariance matrix and all semivariance matrices are positive definite iff

Ξ has full dimension in the sense that its convex hull has nonempty interior:

int(C) 
= ∅ ⇐⇒ Σ > 0 ⇐⇒ Σ(x) > 0 ∀x ∈ R
n.

(3) If r is discrete with Σ > 0, then it has at least n+ 1 realizations.
Proof. Assume r̄ /∈ C. Then r̄ has positive distance to C, and a vector x 
= 0

exists so that (r− r̄)∗x > 0 ∀ r ∈ C. Since expectation is the integral over Ξ ⊆ C, this
yields the contradiction 0 < E[(r − r̄)∗x] = 0, proving statement (1). Now assume
int(C) = ∅. Then C is contained in some hyperplane r̄ + {x}⊥ with x 
= 0, implying

x∗Σx = E[((r − r̄)∗x)2] = 0.

Hence Σ is only positive semidefinite. Conversely, assume int(C) 
= ∅ and x 
= 0.
Then (r− r̄)∗x < 0 ∀ r ∈ r̄+H(x, 0). By Lemma 1.21 below, r̄+H(x, 0) has positive
measure. Therefore

x∗Σ(x)x =

∫

r̄+H(x,0)

((r − r̄)∗x)2 dP > 0,

showing that Σ(x) > 0. The proof of statement (2) is complete since Σ ≥ Σ(x) ∀ x.
Now statement (3) is an immediate consequence.
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Lemma 1.21. Let int(C) 
= ∅ and x 
= 0. Then r̄+H(x, 0) has positive measure.
Proof. The inner product s(x) := (r − r̄)∗x is negative, zero, and positive on the

respective sets r̄ +H(x, 0), r̄ + {x}⊥, and r̄ +H(−x, 0). Furthermore,
∫

r̄+H(x,0)

s(x) dP +

∫

r̄+{x}⊥

s(x) dP +

∫

r̄+H(−x,0)

s(x) dP = E[s(x)] = 0.

Therefore, r̄ + H(x, 0) and r̄ + H(−x, 0) have either both positive measure or both
measure zero. The second case implies Ξ ⊆ r̄+{x}⊥, which leads to the contradiction
int(C) = ∅.

Let us now study the downside risk versions of Problems 3 and 5 under the same
assumptions as before ((A1) and (A3), respectively, (A1), (A3), and (A4)). It will be
seen that in these cases the qualitative behavior does not change significantly. This
is mainly because the constraints are linear and Σ(x) depends only on the direction
and not on the magnitude of x (cf. Lemma 1.19).

Problem 7. We minimize downside risk Rρ(x, x
c) for risky assets and cash, with

fixed target reward ρ(x, xc) = ρ,

min
x,xc

1

2

∫

R
n

min(r∗x+ rcxc − ρ, 0)2 dP

s.t. e∗x+ xc = 1,

r̄∗x+ rcxc = ρ.

Problem 8. Now minimize downside risk Rρ(x, x
c, xl) for risky assets, cash, and

loss, with fixed target reward ρ(x, xc, xl) = ρ,

min
x,xc,xl

1

2

∫

R
n

min(r∗x+ rcxc − ρ, 0)2 dP

s.t. e∗x+ xc + xl = 1, xl ≥ 0,

r̄∗x+ rcxc = ρ.

Lemma 1.22. With xc ≡ 1− e∗x− xl and θ ≡ rcxl, Problem 8 is equivalent to

min
x,θ

1

2
x∗Σ(x)x

s.t. (r̄ − rce)∗x = ρ+ θ − rc, θ ≥ 0.

When fixing θ = 0, the resulting problem is equivalent to Problem 7.
Proof. The modified reward condition is immediately obtained by the identity

xc = 1− e∗x− xl. Using r∗x+ rcxc − ρ = (r − r̄)∗x gives the downside risk

∫

R
n

min((r − r̄)∗x, 0)2 dP =

∫

r̄+H(x,0)

((r − r̄)∗x)2 dP = x∗Σ(x)x.

(The special case x = 0 is easily verified.) Clearly, θ = 0 means xl = 0, yielding
Problem 7.

We are now ready to analyze Problems 7 and 8. In general, closed-form solutions
cannot be found due to the nonlinearity of downside risk with respect to the risky
assets. However, we can derive some important properties of the solutions and give a
qualitative comparison to Problems 3 and 5.
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Lemma 1.23. Optimal solutions always exist in Problems 7 and 8. The result-
ing downside risk is nonnegative and not greater than the optimal risk in Problem 3
or 5, respectively. Moreover, the riskless solutions of Problems 7 and 3 (8 and 5) are
identical. (In general the solutions are not unique.)

Proof. Convexity of min(w, 0)2 implies convexity of downside risk x∗Σ(x)x and
thus of Problems 7 and 8. The existence of solutions and the stated inclusion follow
since 0 ≤ Σ(x) ≤ Σ by Lemma 1.18. By assumption (A1) and Lemma 1.20, zero risk
requires x = 0, which holds under the same conditions as in the standard risk case:
ρ = rc in Problem 7 and ρ ≤ rc in Problem 8.

Theorem 1.24. In Problem 7, choose respective optimal portfolios (x±, x
c
±) for

ρ± := rc ±1. Then, for a ≥ 0, (ax±, ax
c
± −a+1) is optimal for ρ = rc ±a. Moreover,

x± 
= 0 and x+ 
= x−.
Proof. If ax+ is optimal, the transformation of xc

+ follows from e∗x + xc = 1.
Suppose that ax+ is not optimal for ρ = rc+a > rc. Then, by Lemma 1.22, x 
= ax+

exists so that (r̄ − rce)∗x = ρ− rc and

x∗Σ(x)x < ax∗
+Σ(ax+)ax+ = a2x∗

+Σ(x+)x+,

where the last equality holds by Lemma 1.19. Hence, letting y = a−1x,

(r̄ − rce)∗y = a−1(ρ− rc) = 1 = ρ+ − rc

and

y∗Σ(y)y = a−2x∗Σ(x)x < x∗
+Σ(x+)x+.

Thus x+ cannot be optimal for ρ+, which is a contradiction. The case ρ < rc

is analogous, and ρ = rc is trivial. Finally, (r̄ − rce)∗x− < 0 < (r̄ − rce)∗x+ im-
plies x± 
= 0 and x+ 
= x−.

Theorem 1.25. Constants c± ∈ (0, 1) exist so that the optimal risk in Problem
7 is c+ (c−) times the optimal risk of Problem 3 on the upper (lower) branch.

Proof. The existence of c± ∈ (0, 1] with the stated properties follows from
Lemma 1.23 and Theorem 1.24. Statement (4) of Lemma 1.19 implies c± < 1.

Theorem 1.26. The same statements as in Theorems 1.24 and 1.25 hold on the
upper branch in Problem 8. On the lower branch one has the (unique) riskless solution
(x, xc, xl) = (0, ρ/rc, 1− ρ/rc).

Proof. This is a simple case distinction.
Remarks. When assumption (A1) (Σ > 0) is dropped, the following can be shown

using Lemmas 1.18–1.22. A feasible portfolio with x 
= 0 has zero risk in Problem 7
or 8 iff Ξ is contained in the hyperplane r̄+{x}⊥. In Problem 7 such a portfolio exists
for ρ = rc iff Ξ lies in a hyperplane containing both r̄ and rce (see x in Figure 1.8),
and for ρ 
= rc iff Ξ lies in a hyperplane containing r̄ but not rce (see y in Figure 1.8).
Likewise, in Problem 8 such a portfolio exists for ρ ≤ rc iff Ξ lies in any hyperplane
containing r̄ (see x, y in Figure 1.8), and for ρ > rc iff Ξ lies in a hyperplane containing
r̄ but not rce (see y in Figure 1.8). In both cases, an arbitrage is thus possible if Ξ lies
in a hyperplane containing r̄ but not rce.

Discussion. Up to now, downside risk has behaved qualitatively similarly to stan-
dard risk: the efficient frontier is still piecewise quadratic, and optimal portfolios are
always combinations of reward-independent portfolios. Only uniqueness is not guar-
anteed any more, and the curvatures of the upper and lower branches of the efficient
frontier may differ. (Optimal portfolios will usually also differ from their standard risk
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Fig. 1.8 Left: Zero-risk hyperplanes for singular Σ in Problems 7 and 8 (n = 2). Downside risk
vanishes if, depending on ρ, the blue or purple line contains the convex hull C. Right: Zero-
risk half-spaces for Problem 9. Downside risk vanishes for ρ < rc with convex hull C ⊇ Ξ
and for any ρ ∈ R with convex hull C′ ⊇ Ξ not containing rce.

counterparts, of course.) The similarity is caused by fixing the reward: this places the
mean r̄ on the boundary of semivariance half-spaces so that the properties of Σ(x)
come into play. The two risk measures become identical if the return distribution
is symmetric with respect to rotations about r̄. In that case Σ(x) = 1

2Σ ∀ x, and
c+ = c− = 1

2 .
The last problem considered in this section is the downside risk version of the

modification of Problem 3. Again the riskless solutions are of interest.
Problem 9. We minimize downside risk Rρ(x, x

c) for risky assets and cash, with
desired minimal reward ρ(x, xc) ≥ ρ,

min
x,xc,θ

1

2

∫

R
n

min(r∗x+ rcxc − ρ, 0)2 dP

s.t. e∗x+ xc = 1,

r̄∗x+ rcxc = ρ+ θ, θ ≥ 0.

Remark. Note that downside risk is still calculated with respect to the desired
reward ρ, whereas the actual reward is now ρ + θ. Otherwise the problem would be
equivalent to Problem 8.

Lemma 1.27. The pure cash portfolio (x, xc) = (0, 1) is feasible for Problem 9 iff
ρ ≤ rc. Otherwise, with xc ≡ 1− e∗x, Problem 9 is equivalent to

min
x,θ

1

2

∫

r̄+H(x,−θ)

(θ + (r − r̄)∗x)2 dP

s.t. (r̄ − rce)∗x = ρ+ θ − rc, θ ≥ 0.

Proof. The first part is trivial. The second part is proved similar to Lemma 1.22,
the sole difference being that the reward condition now yields r∗x + rcxc − ρ =
(r − r̄)∗x+ θ instead of (r − r̄)∗x.

Theorem 1.28. If rce ∈ int(C), then the following holds in Problem 9.
(1) For every ρ ≤ rc, (x, xc) = (0, 1) is a riskless solution.
(2) A portfolio with x 
= 0 has zero risk iff Ξ ⊆ rce+ H̄(−x, rc − ρ).
(3) For ρ < rc such a portfolio exists iff Ξ is contained in any closed half-space.
(4) For ρ ≥ rc such a portfolio does not exist.
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Proof. Statement (1) is trivial. If x 
= 0, then downside risk clearly vanishes iff Ξ
does not intersect r̄ +H(x,−θ), that is, iff (r − r̄)∗x+ θ ≥ 0 for r ∈ Ξ. Substituting
θ = (r̄ − rce)∗x − ρ + rc from the reward equation yields the equivalent condition
(r − rce)∗x ≥ ρ − rc for r ∈ Ξ, which proves statement (2). (This condition implies
feasibility of x since r̄ ∈ C.) Now, if Ξ is contained in some closed half-space, then
y 
= 0 exists so that (r − rce)∗y ≥ −1 for r ∈ Ξ; see Figure 1.8. For ρ < rc let x :=
(rc − ρ)y to satisfy the zero-risk condition. The “only if” direction of statement (3)
is trivial. Finally observe that C contains an open ball centered at rce ∈ int(C). On
such a ball the inner product (r − rce)∗x takes positive and negative values for any
x 
= 0, showing that for ρ ≥ rc the zero-risk condition (r− rce)∗x ≥ ρ− rc ≥ 0 cannot
be satisfied.

Remarks. Similar arguments show that for ρ > rc (ρ = rc) a zero-risk portfolio
with x 
= 0 exists iff Ξ lies in a closed half-space not containing rce (not containing rce
in its interior); see C ′ in Figure 1.8. This is why we need an additional no-arbitrage
condition. Although rce ∈ C would suffice, we choose the stronger condition rce ∈
int(C) to ensure a unique riskless solution (100% cash) for ρ = rc. Thus x 
= 0 will
produce positive risk for any ρ ≥ rc.

Discussion. Risk vanishes on the lower branch in Problem 9, but for the upper
branch we know only that it is convex; even the optimal portfolios for different ρ >
rc may be unrelated. This is because the actual reward may exceed the shortfall
target, resulting in semivariance half-spaces far from r̄ and producing asymmetric
(or decentral) risk integrals instead of Σ(x). One might expect such truly nonlinear
behavior from any downside risk measure, but it occurs only if the actual reward
may differ from the shortfall target. One might also associate zero risk on the lower
branch with downside risk, but this property occurs for standard risk as well and has
nothing to do with the objective; it is caused by either of the inequalities ρ(x) ≥ ρ or
e∗x+ xc ≤ 1.

1.7. Summary. We have discussed various formulations of the classical mean-
variance approach to obtain single-period models that give a qualitatively correct
description of risk, particularly for unreasonably small target rewards. Positivity con-
straints and other inequalities have been studied, and downside risk models have been
analyzed in detail. Thus we have clarified the effects and interaction of all compo-
nents in the portfolio optimization problems. In what follows we use the results of
this section in developing multiperiod models. The goal is to achieve an approximate
minimization of downside risk, which turns out to be essential in the generalized situ-
ation: if the investor’s wealth happens to increase rapidly, surplus money in the sense
of section 1.3 will appear in intermediate periods. This will increase the variance even
if the entire capital is invested in cash from then on.

As in the previous section, elementary convex analysis plays a central role in the
investigation. Tradeoff formulations or utility functions will not be considered any
more since extra constraints provide higher modeling flexibility and facilitate a better
understanding of subtle details.

2. Multiperiod Mean-Variance Analysis. For multiperiod mean-variance
models we consider a planning horizon of T + 1 periods (not necessarily of equal
length) in discrete time t = 0, . . . , T + 1. The portfolio is allocated at t = 0 and
thereafter restructured at t = 1, . . . , T , before the investor obtains the reward after
the final period, at time T + 1. The portfolios and return vectors are xt, rt+1 ∈ R

n,
t = 0, . . . , T , yielding asset capitals rν

t x
ν
t−1 just before the decision at time t. Cash,

its return, and loss assets (if present) are denoted by xc
t , r

c
t , and xl

t; the wealth is
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wt = rtxt−1 (or rtxt−1 + rc
tx

c
t−1). Cash returns rc

t are assumed to be known a pri-
ori, whereas the evolvement of asset returns is of course random. The decision at
time t is made after observing the realizations of r1, . . . , rt but prior to observations
of rt+1, . . . , rT+1, leading to a nonanticipative policy x = (x0, . . . , xT ).

Suppose that the distribution of returns until T is given by a scenario tree: each rt

has finitely many realizations rj with probabilities pj > 0, j ∈ Lt, so that Lt forms

a level set in the tree. The set of all nodes is V :=
⋃T

t=0 Lt, and the set of leaves,
each representing a scenario, is L := LT . We denote by 0 ∈ L0 the root, by j ∈ Lt

the current node (a partial scenario), by i ≡ π(j) ∈ Lt−1 its parent node, and by
S(j) ⊆ Lt+1 the set of child nodes (successors). The return in the final period may
be given by continuous distributions in each leaf. Thus rt, xt are random vectors on a
discrete-continuous probability space that possesses a filtration generated by the tree.
The conditional expectation r̄T := E(rT+1|LT ) and its covariance matrix

ΣT := E[(rT+1 − r̄T )(rT+1 − r̄T )
∗|LT ] = E(rT+1r

∗
T+1|LT )− r̄T r̄

∗
T

define random variables on the same space, with realizations r̄j ,Σj on LT .
The discrete decision vector is denoted x = (xj)j∈V . As before, reward and risk

are defined as mean and variance of the final wealth, wT+1. In the absence of cash
these definitions read

ρ(x) = E(r∗
T+1xT ) = E(r̄∗

TxT ) =
∑

j∈L

pj r̄
∗
jxj

and

R(x) = σ2(r∗
T+1xT ) = E[(r∗

T+1xT − ρ(x))2].

Lemma 2.1 (Frauendorfer and Siede [65]). The risk is given by

R(x) = E[x∗
T (ΣT + r̄T r̄

∗
T )xT ]− ρ(x)2 =

∑

j∈L

pjx
∗
j (Σj + r̄j r̄

∗
j )xj − ρ(x)2.

Proof. By definition,

R(x) = E[(r∗
T+1xT − ρ(x))2] = E(x∗

T rT+1r
∗
T+1xT )− ρ(x)2

= E[E(x∗
T rT+1r

∗
T+1xT |LT )]− ρ(x)2

= E[x∗
T E(rT+1r

∗
T+1|LT )xT ]− ρ(x)2 = E[x∗

T (ΣT + r̄T r̄
∗
T )xT ]− ρ(x)2.

The discrete representation follows immediately.
Remarks. Notice that this representation yields a block-diagonal risk matrix be-

cause of the separate term ρ(x)2. If the Hessian of the latter were included in the risk
matrix, it would add a completely dense rank-1 term: the dyadic product containing
all the covariances −pjpkr̄j r̄

∗
k between different leaves j, k ∈ L. Since ρ(x) = ρ is

fixed in the optimization problems below, we can neglect the term ρ2 except when
considering the reward-dependence of the optimal risk.

Corollary 2.2. Denote by ρT (xT ) := r̄∗
TxT and RT (xT ) := x∗

TΣTxT the condi-
tional reward and risk of the final period, respectively, with realizations ρj(xj) = r̄∗

jxj

and Rj(xj) = x∗
jΣjxj on LT . Then R(x) = Rc(x) +Rd(x) with

Rc(x) := E[RT (xT )] =
∑

j∈L

pjx
∗
jΣjxj
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Fig. 2.1 Scenario tree for the two-period mean-variance model.

and

Rd(x) := E[ρT (xT )
2]− ρ(x)2 =

∑

j∈L

pjρj(xj)
2 − ρ(x)2.

Proof. The proof is obvious from Lemma 2.1.
Remark. We call Rc the continuous part and Rd the discrete part of the risk.

This distinction will be useful in the subsequent analysis: Rc is the expectation of
the conditional variance (of wT+1), measuring the average final-period risk, whereas
Rd is the variance of the conditional expectation, measuring how well the individual
scenario returns are balanced.

Apparently, period T + 1 with its continuous distribution (of which only the
conditional mean and variance enter the problem) corresponds to the single period
in the classical model. Indeed, for T = 0 the multiperiod model reduces precisely to
the one-period case, where the “scenario tree” consists of the root only, and x ≡ xT ,
r ≡ rT+1, r̄ ≡ r̄T , Σ ≡ ΣT , w ≡ wT+1. Assuming idealized (frictionless) transactions
with no loss of capital in the entire multiperiod situation, the single budget equation
e∗x = 1 is supplemented by the set {e∗xt = r∗

t xt−1}T
t=1 with discrete representation

{e∗xj = r∗
jxπ(j)}j∈V ∗ , where V ∗ := V \ {0}.

The following analysis requires some lengthy technical proofs; these are moved
into the appendix. Moreover, for technical simplicity, increasing amounts of the pre-
sentation will be specialized for the two-period problem, T = 1. In that case it is con-
venient to number the leaves as j = 1, . . . , N , so that V ∗ = S(0) = L = {1, . . . , N};
see Figure 2.1. We would like to point out, however, that the two-period models
exhibit almost all the properties of the general multiperiod case. Comments will be
given at the end of each section.

2.1. Risky Assets Only. Let us begin the investigation of multiperiod problems
with the case of purely risky assets. The model discussed here was originally proposed
by Frauendorfer [63] (with slightly different objective) and later refined by Frauen-
dorfer and Siede [65].

In this section we impose regularity conditions similar to (A1) and (A2) in all
nodes and in at least one node, respectively. The conditions for Lt−1 require certain
definitions on Lt which in turn depend on the conditions for Lt. To avoid a nested
presentation, the conditions will be stated after the definitions.

Let r̃j := pj r̄j and Σ̃j := pj(Σj + r̄j r̄
∗
j ) in the leaves j ∈ L. By assumption (A5)

below, Σ̃j > 0; therefore we can define

α̃j := e∗Σ̃−1
j e, β̃j := e∗Σ̃−1

j r̃j , γ̃j := r̃∗
j Σ̃

−1
j r̃j , δ̃j := α̃j γ̃j − β̃2

j .
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Recursively for t = T, . . . , 1 and i ∈ Lt−1 let

r̃i :=
∑

j∈S(i)

β̃j

α̃j

rj , Σ̃i :=
∑

j∈S(i)

1

α̃j

rjr
∗
j

and employ (A5) again to define α̃i, . . . , δ̃i in analogy to α̃j , . . . , δ̃j . In the subsequent
analysis (and in the solution algorithm) these quantities will play a similar role to their
counterparts in the leaves, but they do not have the same meaning. In particular,
r̄i := r̃i/pi and Σi := Σ̃i/pi − r̄ir̄

∗
i are usually not the expectation and covariance

matrices of the discrete distribution {rj}j∈S(i).
BASIC ASSUMPTIONS.

(A5) ∀j ∈ V : Σ̃j > 0.
(A6) ∃j ∈ V : r̃j is not a multiple of e.
Remarks. The role of these conditions is analogous to the single-period case: they

ensure strict convexity and avoid degenerate constraints. Assumption (A5) also im-
plies N ≥ n as a technical requirement on the return discretization in each period.
In practice one will usually have N > n, otherwise the covariance matrices are only
positive semidefinite by Lemma 1.20. Suitable multiperiod discretizations can be
generated, e.g., by barycentric approximations [64] or by GARCH models [53, 20].

Lemma 2.3. Under assumptions (A5) and (A6), the constants α̃j , γ̃j are all

positive, the δ̃j are all nonnegative, and at least one δ̃j is positive.

Proof. Positivity and nonnegativity are proved as in Lemma 1.3, where δ̃j = 0 iff
r̃j , e are linearly dependent.

Problem 10. The multiperiod mean-variance problem (using i ≡ π(j)) reads

min
x

∑

j∈L

1

2
x∗

j Σ̃jxj − 1

2
ρ2

s.t. e∗x0 = 1,

e∗xj = r∗
jxi ∀j ∈ V ∗,

∑

j∈L

r̃∗
jxj = ρ.

Its Lagrangian is

L(x, λ, µ; ρ) =
∑

j∈L

1

2
x∗

j Σ̃jxj − 1

2
ρ2

− λ0(e
∗x0 − 1)−

∑

j∈V ∗

λj(e
∗xj − r∗

jxi)− µ

(

∑

j∈L

r̃∗
jxj − ρ

)

.

Theorem 2.4. Problem 10 has the unique primal-dual solution

xj = Σ̃−1
j (λje+ µr̃j), λj =

wj − µβ̃j

α̃j

, µ =

(

ρ− β̃0

α̃0

)/

∑

j∈V

δ̃j
α̃j

,

where w0 = 1 and wj = r∗
jxi for j ∈ V ∗. The associated optimal risk is

R(x) ≡ σ2(ρ) =
1

α̃0
+

(

ρ− β̃0

α̃0

)2 /

∑

j∈V

δ̃j
α̃j

− ρ2.
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Its global minimizer ρ̂ and minimal risk are, respectively,

ρ̂ =
β̃0

α̃0

/ (

1−
∑

j∈V

δ̃j
α̃j

)

, σ2(ρ̂) =
1

α̃0
−

(

β̃0

α̃0

)2 / (

1−
∑

j∈V

δ̃j
α̃j

)

.

Proof. See the appendix (for T = 1).
Discussion. The proof of Theorem 2.4 is given for the two-period case only, where

expressions for the solution variables are derived first in the leaves and then in the
root. In the multiperiod case this generalizes readily to a recursive procedure which is
actually a highly efficient algorithm for practical computations. We call that recursion
the tree-sparse Schur complement method [193, 194].

The specialization to a single period gives similar results as in Theorems 1.4, 1.5,
and 1.7, but under slightly weaker conditions: only Σ + r̄r̄∗ > 0 rather than Σ > 0 is
now required, so that riskless portfolios may exist. (We use the weaker condition since
Σ̃ = Σ + r̄r̄∗ appears naturally in the problem.) The two following lemmas establish
the precise relationship.

Lemma 2.5. If Σ̃ > 0 but not Σ > 0, then the null-space is N(Σ) = span(Σ̃−1r̄).
Proof. If Σx = 0, then Σ̃x = r̄r̄∗x and x = (r̄∗x)Σ̃−1r̄ ∈ span(Σ̃−1r̄).
Lemma 2.6. Consider the single-period case of Problem 10 under assumptions

(A1) and (A2), i.e., Σ ≡ Σ0 > 0. Then

α̃0 =
α+ δ

1 + γ
, β̃0 =

β

1 + γ
, γ̃0 =

γ

1 + γ
, δ̃0 =

δ

1 + γ
,

and

x̃ = x, λ̃ = λ, µ̃ = µ+ ρ,

where quantities with and without tildes refer to Problems 10 and 2, respectively.
Proof. The Sherman–Morrison–Woodbury formula [187, 204] applied to Σ̃ =

Σ + r̄r̄∗ yields

Σ̃−1 = Σ−1 − Σ−1r̄r̄∗Σ−1

1 + r̄∗Σ−1r̄
= Σ−1 − Σ−1r̄r̄∗Σ−1

1 + γ
.

Using this in the definitions of α̃0, β̃0, γ̃0, δ̃0 gives the first set of identities after a few
elementary calculations. The relation between the solutions is similarly obtained by
simple but more lengthy calculations (first µ̃, then λ̃, then x̃).

2.2. Risky Assets and Cash. Here we define local constants for the two-period
case only but state the general optimization problem. Denote by rc

1, r
c
2 the determin-

istic (and thus scenario-independent) cash returns in periods 1 and 2, respectively,
and by rc := rc

2r
c
1 their combined return. As before, let r̃j = pj r̄j , Σ̃j = pj(Σj + r̄j r̄

∗
j )

for j ∈ L, and define in addition r̃c
j := pjr

c
2. With assumption (A7) below let

αj := e∗Σ−1
j e, βj := e∗Σ−1

j r̄j , γj := r̄∗
jΣ

−1
j r̄j ,

and

δc
j := (rc

2)
2αj − 2rc

2βj + γj = (r̄j − rc
2e)

∗Σ−1
j (r̄j − rc

2e).

In the root define

p̃0 :=
∑

j∈S(0)

pj

δc
j + 1

, r̃0 :=
∑

j∈S(0)

pj

δc
j + 1

rj , Σ̃0 :=
∑

j∈S(0)

pj

δc
j + 1

rjr
∗
j ,
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and furthermore r̄0 = r̃0/p̃0, Σ0 = Σ̃0/p̃0 − r̄0r̄
∗
0 , and r̃c

1 := p̃0r
c (not p̃0r

c
1). Using

(A7) again, α0, β0, γ0 are then defined in analogy to αj , βj , γj . Finally, let

δc
0 := (rc

1)
2α0 − 2rc

1β0 + γ0

and recall that t is the current time in j ∈ V .
BASIC ASSUMPTIONS. For the general multiperiod case we make the following

assumptions.
(A7) ∀j ∈ V : Σj > 0.
(A8) ∃j ∈ V : r̄j 
= rc

t+1e.
(A9) rc 
= 0.
Remark. The conditions here are similar to (A5) and (A6) (or (A1) and (A3)),

but in addition we require nonzero cash returns rc
t+1, t = 0, . . . , T . The opposite case

would unnecessarily complicate the analysis and is not considered.
Lemma 2.7. Under assumptions (A7)–(A9), the constants αj , γj are all positive,

the δc
j are nonnegative, and at least one δ

c
j is positive. Moreover, p̃0 ∈ (0, 1].

Proof. Positivity and nonnegativity are obvious, where δc
j = 0 iff r̄j = rc

t+1e. Now
δc
j ≥ 0 implies pj/(δ

c
j + 1) ∈ (0, pj ] and hence p̃0 ∈ (0, 1].

In the following we use two different formulations for both the reward and the
risk, involving again the conditional final-period risk and return. The latter is now
ρT (xT , x

c
T ) := r̄∗

TxT + rc
T+1x

c
T with realizations ρj(xj , x

c
j) := r̄∗

jxj + rc
T+1x

c
j , and the

discrete decision vector is x = (xj , x
c
j)j∈V .

Lemma 2.8. The reward in the presence of cash can be written

ρ(x) =
∑

j∈L

r̃∗
jxj + r̃c

jx
c
j =

∑

j∈L

pjρj(xj , x
c
j).

The risk has the two representations

R(x) =
∑

j∈L

(

xj

xc
j

)∗ (

Σ̃j rc
T+1r̃j

rc
T+1r̃

∗
j rc

T+1r̃
c
j

) (

xj

xc
j

)

− ρ(x)2

=
∑

j∈L

pjx
∗
jΣjxj +

∑

j∈L

pjρj(xj , x
c
j)

2 − ρ(x)2 =: Rc(x) +Rd(x).

Proof. By definition, the continuous representation of the reward reads

ρ(x) = E[r∗
T+1xT + rc

T+1x
c
T ] = E[r̄∗

TxT + rc
T+1x

c
T ] = E[ρT (xt, x

c
T )].

Likewise, using Lemma 2.1,

R(x) = E

{(

xT

xc
T

)∗ [(

ΣT 0
0 0

)

+

(

rT+1

rc
T+1

) (

rT+1

rc
T+1

)∗ ] (

xT

xc
T

)}

− ρ(x)2

= E(x∗
TΣTxT ) +E[(r̄∗

TxT + rc
T+1x

c
T )

2]− ρ(x)2.

In both cases, the stated discrete formulae are readily obtained.
Problem 11. Using the first formulation for reward and risk in Lemma 2.8, the

multiperiod mean-variance problem with cash reads



MEAN-VARIANCE MODELS IN PORTFOLIO ANALYSIS 61

min
x

∑

j∈L

1

2

(

xj

xc
j

)∗ (

Σ̃j rc
T+1r̃j

rc
T+1r̃

∗
j rc

T+1r̃
c
j

)

(

xj

xc
j

)

− 1

2
ρ2

s.t. e∗x0 + xc
0 = 1,

e∗xj + xc
j = r∗

jxi + rc
tx

c
i ∀j ∈ V ∗,

∑

j∈L

r̃∗
jxj + r̃c

jx
c
j = ρ.

Its Lagrangian is

L(x, λ, µ; ρ) =
∑

j∈L

1

2

(

xj

xc
j

)∗
(

Σ̃j rc
T+1r̃j

rc
T+1r̃

∗
j rc

T+1r̃
c
j

)

(

xj

xc
j

)

− 1

2
ρ2

− λ0(e
∗x0 + xc

0 − 1)−
∑

j∈V ∗

λj(e
∗xj + xc

j − r∗
jxi − rc

tx
c
i )

− µ

(

∑

j∈L

r̃∗
jxj + r̃c

jx
c
j − ρ

)

.

Theorem 2.9. Problem 11 with T = 1 has the unique primal-dual solution

xj = −λj

r̃c
j

Σ−1
j (r̄j − rc

2e), j ∈ V ∗, x0 = − λ0

rc
2r̃

c
1

Σ−1
0 (r̄0 − rc

1e),

xc
j =

1

rc
2

[

λj

r̃c
j

(γj − rc
2βj + 1) + µ

]

, xc
0 =

1

rc

[

λ0

r̃c
1

(γ0 − rc
1β0 + 1) + µ

]

,

λj =
r̃c
j

δc
j + 1

[rc
2(r

∗
jx0 + rc

1x
c
0)− µ], λ0 =

r̃c
1

δc
0 + 1

(rc − µ) ≡ ρ̃(rc − µ),

µ = rc ρ− ρ̃

rc − ρ̃
, ρ̃ :=

r̃c
1

δc
0 + 1

∈ (0, rc).

The associated risk is

R(x) ≡ σ2(ρ) = ρ̃
(rc − ρ)2

rc − ρ̃
.

Its global minimum is attained at ρ̂ = rc and has value zero. The associated solution
has 100% cash: (x̂0, x̂

c
0) = (0, 1), (x̂j , x̂

c
j) = (0, rc

1), λ̂ = 0, µ̂ = rc.
Proof. See the appendix.
Remark. Problem 11 also has a unique solution if rc

2 
= 0 and rc
1 = 0, and it has

multiple solutions for rc
2 = 0 (regardless of rc

1). These situations are qualitatively
different and quite unrealistic, however, and therefore not of interest here.

Discussion. Zero risk is now possible (with (xj , x
c
j) = (0, rc

1) for j ∈ L) since
balanced scenario returns do not require investments in risky assets. In fact, they
require 100% cash in both periods so that the riskless solution is unique.

It can be seen that the whole situation is actually covered by the results of the
previous section if in each node one replaces xj by (xj , x

c
j), and so on. This way the

analysis extends again to the general multiperiod case. The details are obtained pre-
cisely as in the previous section when proper replacements are carried out everywhere.
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However, the splitting into cash and risky assets makes the definitions of intermediate
quantities and the specialization to the single-period case somewhat more involved.

To conclude this section we show that specifying ρ as a desired minimal reward
has precisely the same effect as in the single-period case.

Problem 12. We modify Problem 11 by requiring ρ to be a lower bound on the
reward (with associated slack θ ≥ 0 and dual slack η ≥ 0),

min
x,θ

∑

j∈L

1

2

(

xj

xc
j

)∗ (

Σ̃j rc
T+1r̃j

rc
T+1r̃

∗
j rc

T+1r̃
c
j

) (

xj

xc
j

)

− 1

2
(ρ+ θ)2

s.t. e∗x0 + xc
0 = 1,

e∗xj + xc
j = r∗

jxi + rc
tx

c
i ∀j ∈ V ∗,

∑

j∈L

r̃∗
jxj + r̃c

jx
c
j = ρ+ θ, θ ≥ 0.

The Lagrangian is now

L(x, θ, λ, µ, η; ρ) =
∑

j∈L

1

2

(

xj

xc
j

)∗ (

Σ̃j rc
T+1r̃j

rc
T+1r̃

∗
j rc

T+1r̃
c
j

) (

xj

xc
j

)

− 1

2
(ρ+ θ)2

− λ0(e
∗x0 + xc

0 − 1)−
∑

j∈V ∗

λj(e
∗xj + xc

j − r∗
jxi − rc

tx
c
i )

− µ

(

∑

j∈L

r̃∗
jxj + r̃c

jx
c
j − ρ− θ

)

− ηθ.

Theorem 2.10. Problem 12 has a unique primal-dual solution. For ρ ≥ rc one
obtains θ = 0, η = µ − ρ ≥ 0, and otherwise the same solution as in Problem 11.
For ρ ≤ rc one obtains η = 0 and θ = ρ − rc ≥ 0, giving reward ρ + θ = rc and the
associated riskless solution of Problem 11. (At ρ = rc both cases coincide.)

Proof. See the appendix.

2.3. Risky Assets, Cash, and Loss. We are now entering the main section.
Although it will still be a simplification, Problem 13 below covers all the essential
aspects of the multiperiod application model mentioned in the introduction. The no-
tation and constants of the previous section remain valid, and the discrete decision
vector is x = (xj , x

c
j , x

l
j)j∈V . We keep the general multiperiod notation only in the

problem statement and Lagrangian; the remaining analysis now concentrates on the
two-period case.

BASIC ASSUMPTIONS. In addition to the assumptions of the previous section we
require positive cash returns and (as in Theorem 1.28) a no-arbitrage condition on
the discrete part of the return distribution, involving C0 := conv({rj}j∈L).
(A7) ∀j ∈ V : Σj > 0.
(A8) ∃j ∈ V : r̄j 
= rc

t+1e.
(A10) rc

1 > 0, rc
2 > 0.

(A11) rc
1e ∈ int(C0).



MEAN-VARIANCE MODELS IN PORTFOLIO ANALYSIS 63

Problem 13. The multiperiod mean-variance problem with cash and loss reads

min
x

∑

j∈L

1

2

(

xj

xc
j

)∗ (

Σ̃j rc
T+1r̃j

rc
T+1r̃

∗
j rc

T+1r̃
c
j

) (

xj

xc
j

)

− 1

2
ρ2

s.t. e∗x0 + xc
0 + xl

0 = 1, xl
0 ≥ 0,

e∗xj + xc
j + xl

j = r∗
jxi + rc

tx
c
i , xl

j ≥ 0 ∀j ∈ V ∗,

∑

j∈L

r̃∗
jxj + r̃c

jx
c
j = ρ.

Its Lagrangian is

L(x, λ, η, µ; ρ) =
∑

j∈L

1

2

(

xj

xc
j

)∗ (

Σ̃j rc
T+1r̃j

rc
T+1r̃

∗
j rc

T+1r̃
c
j

) (

xj

xc
j

)

− 1

2
ρ2

− λ0(e
∗x0 + xc

0 + xl
0 − 1)−

∑

j∈V ∗

λj(e
∗xj + xc

j + xl
j − r∗

jxi − rc
tx

c
i )

−
∑

j∈V

ηjx
l
j − µ

(

∑

j∈L

r̃∗
jxj + r̃c

jx
c
j − ρ

)

.

Theorem A.1 in the appendix characterizes optimal solutions in a way similar to
the previous theorems. However, the loss variables xl

j still appear in the formulae,
and the case distinctions are more involved than in the single-period case (cf. Theo-
rem 1.12) or in Problem 12. Later we will discuss this in part; for the time being, the
following results provide more insight.

Lemma 2.11 (arbitrage in Problem 13). If assumption (A11) is strictly violated,
rc
1e /∈ C0, then Problem 13 has a riskless solution for arbitrary ρ.
Proof. Since C0 is convex, y ∈ R

n exists so that (r − rc
1e)

∗y ≥ 1 ∀ r ∈ C0. Given
ρ ∈ R, let x0 := (ρ/rc

2 − rc
1)y, x

c
0 := 1− e∗x0, and x

l
0 := 0 to obtain

wj = (rj − rc
1e)

∗x0 + rc
1 ≥ ρ/rc

2

∀ j ∈ L. Now let xj := 0, xc
j := ρ/rc

2, and x
l
j := wj − ρ/rc

2 ≥ 0.
For the analysis of actual riskless solutions consider in R

n the family of closed
convex polyhedra

Z0(ρ) :=

{

x :

(

rj

rc
1

− e

)∗

x ≥ ρ

rc
− 1 ∀j ∈ L

}

=
⋂

j∈L

H̄

(

e− rj

rc
1

, 1− ρ

rc

)

.

Lemma 2.12. Z0(ρ) is nonempty (containing the origin) iff ρ ≤ rc. For ρ < rc,
0 ∈ int(Z0(ρ)) and

Z0(ρ) =
(

1− ρ

rc

)

Z0(0).

Each Z0(ρ) is bounded and hence compact. In particular, Z0(r
c) = {0}.

Remark. More generally one can show that the following four conditions are equiv-
alent under the weaker no-arbitrage condition rc

1e ∈ C0.
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Fig. 2.2 First-period returns rj , rc
1
e ∈ R

2 (green) and associated zero-risk polyhedra Z0(ρ) with
enclosed balls for three decreasing values of ρ (red = rc, purple, blue). Left: Compact case,
rc
1
e ∈ int(C0). Right: Unbounded case, rc

1
e ∈ ∂C0.

(1) rc
1e ∈ int(C0).

(2) Z0(r
c) = {0}.

(3) ∃ρ ∈ (−∞, rc]: Z0(ρ) is bounded.
(4) ∀ρ ∈ (−∞, rc]: Z0(ρ) is bounded.

As in Theorem 1.28 we choose the stronger condition rc
1e ∈ int(C0) to avoid unneces-

sary technical complications and ambiguities.
Proof. By (A11) there exists a convex combination

∑

j∈L ξj(rj − rc
1e) = 0. Every

x ∈ Z0(ρ) then satisfies

0 =
∑

j∈L

ξj

(

rj

rc
1

− e

)∗

x ≥ ρ

rc
− 1.

Hence Z0(ρ) = ∅ if ρ > rc and 0 ∈ Z0(ρ) if ρ ≤ rc. Now let ρ < rc. For any c > 0,

(

rj

rc
1

− e

)∗

x ≥ −1 ⇐⇒
(

rj

rc
1

− e

)∗

cx ≥ −c,

showing that x ∈ Z0(0) iff (1− ρ/rc)x ∈ Z0(ρ). To verify 0 ∈ int(Z0(ρ)), observe that
Z0(ρ) contains the ball around the origin with radius

(

1− ρ

rc

)

/

max
j∈L

∥

∥

∥

∥

rj

rc
1

− e

∥

∥

∥

∥

2

> 0;

cf. Figure 2.2. Condition (1) in the remark holds by (A11). We prove (2), (3),
and (4) in natural order. Assume first that (2) does not hold and let y ∈ Z0(r

c)\{0}.
Then (rj/r

c
1 − e)∗y ≥ 0 ∀ j ∈ L and hence (r/rc

1 − e)∗y ≥ 0 for r ∈ C0, i.e.,
C0 ⊆ rc

1e + H̄(−y, 0). This yields the contradiction rc
1e /∈ int(C0) and proves (2),

which obviously implies (3). Assume now that (4) does not hold, that is, that Z0(ρ)
is unbounded for some ρ ≤ rc. Then, since Z0(ρ) is convex and 0 ∈ Z0(ρ), y 
= 0
exists so that cy ∈ Z0(ρ) ∀ c > 0; that is, (rj/r

c
1 − e)∗cy ≥ ρ/rc − 1 ∀ j ∈ L. This
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implies (rj/r
c
1 − e)∗cy ≥ 0 and hence (rj/r

c
1 − e)∗cy ≥ ρ/rc − 1 ∀ c > 0, j ∈ L, and

ρ ≤ rc. Thus (3) implies (4): either none of the polyhedra is bounded or all of them
are.

Theorem 2.13. Consider the feasible solutions of Problem 13. Then the follow-
ing hold:

(1) Risk vanishes iff xj = 0 and xc
j = ρ/rc

2 in all scenarios; it is positive other-
wise.

(2) Leaf variables of riskless solutions depend uniquely on the root variables.
(3) For ρ < rc, risk vanishes on an (n+ 1)-dimensional cone over Z0(ρ).
(4) For ρ = rc, the unique zero-risk portfolio has 100% cash.
(5) For ρ > rc, risk is strictly positive.
Remarks. Strictly speaking, the riskless solutions for ρ < rc form an (n + 1)-

dimensional cone whose projection on the (x0, x
l
0)-space has Z0(ρ) as base; see Fig-

ure 2.3. Likewise, the projection for ρ = rc is Z0(r
c) × {0}, and in both cases the

remaining variables are uniquely determined by feasibility. (If one allows rc
1e ∈ ∂C0,

then the variables x0 ∈ Z0(r
c), xc

0, and x
l
j , j ∈ L, are not unique in the case ρ = rc.)

Proof. The condition in (1) is obviously sufficient for zero risk (cf. Lemma 2.11).
Let p := (pj)j∈L and q := (ρj(xj , x

c
j))j∈L. Then

Rd(x) =
∑

j∈L

pjq
2
j −

(

∑

j∈L

pjqj

)2

= q∗[Diag(p)− pp∗]q.

By Lemma 2.14, this quadratic form vanishes if q = ρe and is positive otherwise.
Moreover, Rc(x) ≥ 0 ∀ x, and Rc(x) = 0 iff xj = 0 ∀ j ∈ L. This proves statement (1).
The zero-risk condition requires wj ≡ r∗

jx0 + rc
1x

c
0 ≥ ρ/rc

2 in all scenarios. If this
implied restriction on the root variables holds, then the leaf variables are uniquely
determined by statement (1) and xl

j = wj − xc
j ≥ 0, proving statement (2). Since

xc
0 = 1 − e∗x0 − xl

0, the inequality wj ≥ ρ/rc
2 is equivalent to x0 ∈ Z0(ρ + rcxl

0).
By Lemma 2.12 we conclude that x is optimal for ρ < rc iff xl

0 ∈ [0, 1 − ρ/rc] and
x0 ∈ Z0(ρ+ rcxl

0); see Figure 2.3. This proves statement (3). Statements (4) and (5)
follow similarly: for ρ = rc the zero-risk cone degenerates (only its vertex remains),
and for ρ > rc it becomes empty.

Lemma 2.14. Let p ∈ R
N , p > 0, e∗p = 1, and f(q) := 1

2q
∗[Diag(p) − pp∗]q.

Then

min
q
f(q) s.t. p∗q = ρ

has the unique minimizer q = ρe, with optimal value f(ρe) = 0.
Proof. The Lagrangian of the minimization problem is

L(q, η) =
1

2
q∗[Diag(p)− pp∗]q − η(p∗q − ρ),

yielding the optimality condition

0 =
∂L

∂q
= Diag(p)q − pp∗q − ηp = Diag(q)p− ρp− ηp.

Since p > 0, this gives qj − ρ− η = 0 for j = 1, . . . , N , and hence q = (ρ+ η)e. Now
p∗q = ρ implies η = 0, as required. Clearly, f(ρe) = 0.

Statement (3) of Theorem 2.13 says that xl
0 > 0 (or xl

j > 0) is possible when the
total cash return rc = rc

2r
c
1w0 (or the second-period cash return rc

2wj) exceeds the
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Fig. 2.3 Zero-risk cones over Z0(ρ) for three decreasing ρ values (red = rc, purple, blue); compact
case. (Here we have n = 1, and Z0(ρ) is just a point or segment on the x0 axis.)

desired reward. The following result shows that surplus money is actually necessary
for positive loss variables: if there is no surplus money, then positive amounts xl

j are
better invested in cash to reduce risk.

Lemma 2.15. Let x be an optimal solution of Problem 13 for ρ > rc.
(1) If xj 
= 0 in a scenario j ∈ L, then xl

j = 0.

(2) xl
0 = 0.

Remark. Statement (1) of the lemma is also obtained from Theorem A.1, as well
as the plausible fact that xl

j = 0 in scenario j if ρj < ρ. However, the proof of that
theorem is not constructive.

Proof. Assume xl
j > 0. We modify the local variables in scenario j to construct

a better feasible solution. Let a := (r̄j − rc
2e)

∗xj , define ǫ ∈ (0, 1] as

ǫ :=

{

min(1, rc
2x

l
j/a) if a > 0,

1 else,

and replace (xj , x
c
j , x

l
j) by

(x̂j , x̂
c
j , x̂

l
j) := (xj , x

c
j , x

l
j)− ǫ(xj ,−r̄∗

jxj/r
c
2, a/r

c
2).

Then x̂l
j ≥ 0, ŵj = wj , ρ̂j = ρj , and the risk is reduced by the positive amount

[1− (1− ǫ)2]x∗
jΣjxj . This proves statement (1). For x

l
0 > 0 we modify xc

0 and all xl
j .

Let (x̂0, x̂
c
0, x̂

l
0) := (x0, x

c
0 + xl

0, 0) and (x̂j , x̂
c
j , x̂

l
j) := (xj , x

c
j , x

l
j + rc

1x
l
0) for j ∈ L.

Clearly, x̂ is feasible, R(x̂) = R(x), and x̂l
j ≥ rc

1x
l
0 > 0 in all scenarios. Thus, by

statement (1), x̂ and consequently x are not optimal.
Discussion. As in the one-period case, the 100% cash solution plays a key role:

it has the largest reward among all riskless solutions. But now the solutions become
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degenerate for small rewards ρ < rc, even if loss is allowed only in the second period,
i.e., if xl

0 = 0 is fixed. This does not happen in Problem 12 (the modification of Prob-
lem 11 with minimal reward ρ(x) ≥ ρ), which behaves precisely as the corresponding
single-period problem. Of course, the degeneracy occurs only for practically irrelevant
rewards, and even then it can easily be avoided. (One may choose the vertex of the
zero-risk cone, i.e., xl

0 = 1− ρ/rc. This removes any surplus money immediately and
gives a unique solution.)

The only case of practical interest is ρ > rc, when the solution of Problem 11
remains optimal in Problem 12. Why do we prefer the loss formulation, Problem 13?
Obviously the risk cannot be higher than in Problem 11 since every optimal solution
of the latter remains feasible in the former problem. Actually it turns out that the
loss formulation gives strictly lower risk in most cases; i.e., it allows better solutions
than Problem 12. To develop a geometric understanding for this observation, we
compare Problems 11 and 13 in a simplified situation. A reformulation eliminates all
the budget equations and most of the portfolio variables in favor of the individual
scenario returns. The two risk terms Rc, Rd are then used to explain in which cases
(and how) an optimal solution of Problem 11 can be modified to give a better feasible
solution of Problem 13.

Problem 14. Consider as an example a portfolio consisting of just one risky asset
and cash, using the second formulation of reward and risk in Lemma 2.8. Include loss
assets in the leaves but not in the root, and write the problem with scenario returns
ρj as additional variables,

min
x,{ρj}

∑

j∈L

1

2
pj [Σjx

2
j + ρ2

j ]−
1

2
ρ2

s.t. ρj = r̄jxj + rc
2x

c
j ∀j ∈ L,

x0 + xc
0 = 1,

xj + xc
j + xl

j = rjx0 + rc
1x

c
0, xl

j ≥ 0 ∀j ∈ L,

∑

j∈L

pjρj = ρ.

This specialization of Problem 13 is only considered for ρ ≥ rc, but for arbitrary
ρ ∈ R as a specialization of Problem 11, i.e., when all the loss variables xl

j = 0 are
fixed. (In these cases the solution is unique by Theorems 2.9 and A.1.)

Lemma 2.16. For simplicity assume r̄j 
= rc
2 ∀ j ∈ L. (Assumption (A8) guar-

antees this for just one j ∈ L.) Let φj := Σj/(r̄j − rc
2)

2 > 0, ψj := rc
2(rj − rc

1), and
θj ≡ rc

2x
l
j. Then Problem 14 is equivalent to

min
x0,{ρj ,θj}

∑

j∈L

1

2
pj [φj(ρj − rc − ψjx0 + θj)

2 + ρ2
j ]−

1

2
ρ2

s.t.
∑

j∈L

pjρj = ρ, θj ≥ 0 ∀j ∈ L.

(2.1)

The optimal scenario returns are

ρj =
φj(r

c + ψjx0 − θj) + µ

φj + 1
, j ∈ L.(2.2)
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Moreover, the optimal reward multiplier µ has the same value in these equivalent
problems.

Proof. Eliminate

xc
0 = 1− x0, xc

j = (rj − rc
1)x0 + rc

1 − xj − xl
j .

Then substitute xc
j into the ρj equation and use ψj and θj to obtain

ρj = (r̄j − rc
2)xj + rc + ψjx0 − θj .

Solving for xj , inserting it into the objective, and using φj yields problem (2.1). Dif-
ferentiating the Lagrangian with respect to the returns ρj gives optimality conditions

φj(ρj − rc − ψjx0 + θj) + ρj = µ,

from which one obtains the expression (2.2). This derivation holds for the case with-
out loss, too: one just has to set xl

j = θj = 0 everywhere. Finally, when the problem
transformations above are applied to the full primal-dual system of optimality condi-
tions, it is observed that µ has the same value in both problems.

Discussion. Consider the case θj = 0 first (Problem 11). We have to choose
optimal values for x0 and for the scenario returns ρj so that their mean equals ρ.
Defining dj := rc + ψjx0 gives the continuous risk part

Rc =
∑

j∈L

pjφj(ρj − dj)
2 ≥ 0.

This is a weighted average of scenario risks φj(ρj − dj)
2, each of which defines a

parabola characterized by its offset dj and curvature φj . Both magnitude and distance
of the offsets are influenced by the common “spread factor” x0: they all coincide
with rc if x0 = 0 (100% cash), whereas x0 = 1 (no cash) yields the discrete distribution
dj = rc

2rj with mean d := rc
2E({rj}). Clearly, the continuous risk Rc is small when

all the scenario returns are close to their respective offsets, while the discrete risk Rd

is small when they are close to each other. Thus, loosely speaking, x0 has the job of
balancing the scenarios by adjusting d (close to ρ) without spreading the offsets too
much.

Only one detail changes when θj > 0 is allowed (Problem 13): each offset dj is
replaced by dj −θj ; that is, the parabolas may be shifted to the left separately in each
scenario.

We can now explain the risk reduction mechanism. Consider an optimal solution
of Problem 14 without loss. Typically there will be “good” scenarios (fortunate for
the investor, with large offsets dj > ρ) and “bad” scenarios (unfortunate for the
investor, with small offsets dj < ρ). Moreover, one expects that some of the scenario
returns will lie on their local upper branch (ρj > dj) and some on their local lower
branch (ρj < dj). If in a good scenario the optimal return lies on the lower branch,
ρ < ρj < dj , then its contribution to the risk is canceled by shifting the parabola to the
left, θj := dj − ρj > 0. Clearly, nothing else changes, so that this gives a suboptimal
feasible solution of Problem 13 which is better than the optimal solution of Problem 11.
The mechanism here is precisely the same as in a single period (Problem 5) except
that it now occurs locally in individual scenarios.

Of course, the optimal solution of Problem 13 will readjust all the variables glob-
ally. Now x0 still has the job of balancing scenarios by adjusting d close to ρ, but only
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without spreading the small offsets dj < ρ too much. The large offsets dj > ρ produce
surplus money in all sufficiently good scenarios. These scenarios do not contribute
to Rc, and all their returns are equal (and slightly larger than ρ to balance the bad
ones). This is proved in Theorem A.1: surplus money xl

j > 0 implies rc
2wj > µ and

ρj = µ ≥ ρ. It means that a jump discontinuity is produced in the distribution of final
wealth, to which each of the riskless scenarios contributes a fraction. It also means
that the bad scenarios dominate the resulting risk; again we have an approximate
minimization of downside risk.

When looking for an instance of Problem 11 with ρ < ρj < dj one might try
Problem 2.1 with only two scenarios. However, the following results show that the
effect cannot occur if n = 1 and N = 2: in that case (with ρ > rc) the single degree
of freedom in x0 is sufficient to balance the scenarios well. After proving this we give
an example of the risk reduction with n = 1 and N = 3. A slight modification finally
shows that risk reduction can occur even in bad scenarios; that is, optimal solutions
of Problem 11 may have ρj < dj < ρ.

For the comparison of signs we define the equivalence relation

a ∼ b :⇐⇒ sign(a) = sign(b) ∈ {−1, 0, 1}

and use the fact that {−1, 0, 1} is a multiplicative subgroup in R.
Lemma 2.17. In Problem 14 without loss assets, ρj − dj ∼ sj(ρ− rc), where

sj :=
∑

k∈L\{j}

pk

δc
k + 1

(rk − rj)(rk − rc
1).

Proof. See the appendix.
Remark. Notice that sj depends only on the stochastic data (the return distribu-

tion) and in particular that it does not depend on ρ.
Corollary 2.18. In Problem 14 with two scenarios and without loss assets, both

ρ1 and ρ2 lie on their respective upper branches if ρ > rc.
Proof. Assumption (A11) yields r1 < rc

1 < r2, and the sums sj consist of one
single term each since N = 2. This implies that s1, s2 are both positive.

Remark. A weak version of this result holds for rc
1 ∈ C0. Then r1 ≤ rc

1 ≤ r2, and
s1, s2 are both nonnegative. Even that weaker version would prevent any beneficial
shift θj > 0.

The example with N = 3 is simple: let (p1, p2, p3) = (0.2, 0.6, 0.2), (r1, r2, r3) =
(1.0, 1.1, 1.2), rc

1 = 1.05, Σ1 = Σ2 > 0, and j = 3. Then δc
1 = 0.052/Σ1 = δc

2, and
hence

s3 =

2
∑

k=1

pk

δc
k + 1

(rk − r3)(rk − rc
1) =

0.2(−0.2)(−0.05) + 0.6(−0.1)(0.05)
δc
1 + 1

< 0.

The corollary proves that ρ3 lies on the lower branch even though rc
1 ∈ int(C0);

thus introducing the loss asset xl
3 reduces the optimal risk. (The values of Σ3, r

c
2, and

r̄1, r̄2, r̄3 do not matter here as long as (A7), (A8), (A10), and (A11) are satisfied. The
reader may check that this holds for Σj = 1, rc

2 = 1.05, and r̄j = 1.1, j ∈ {1, 2, 3}.)
Setting instead rc

1 := 1.15 and Σ2 = Σ3 > 0 yields s1 < 0. This shows that risk
reduction can also occur in bad scenarios—at least for unreasonably large rc

t . Results
for this small example problem (with loss assets included) are displayed in Figures 2.4
and 2.5.
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Fig. 2.4 Example problem with three scenarios; unconstrained asset values. Top: Optimal scenario
returns ρi and reward multiplier µ. Bottom: Optimal scenario investments in period 2.
For ρ ≤ rc = 1.1025, the optimal portfolios consist of 100% cash, yielding zero risk.

2.4. The General Multiperiod Case. The general situation with loss assets is a
straightforward extension of the two-period case. The following results can be proved
by suitable modifications in the first part of section 2.3 (up to Theorem 2.13).

Surplus money can now appear in any node j ∈ Lt, t ∈ {0, . . . , T}, if the (partial)
scenario is sufficiently good up to that point, that is, if

wj > wmin
t :=

µ

rc
T+1 · · · rc

t+1

.

(As before, the root can be excluded by considering only “large” target rewards ρ > rc,
with rc := rc

T+1 · · · rc
1.) When there is surplus money, the whole scenario subtree

rooted in j does not contribute to the continuous risk provided that sufficient node
capitals wk are maintained. Implicitly, this condition defines a zero-risk polyhedron
whose geometry is determined by the subtree’s discrete return distribution. Of course,
if j ∈ LT−1, then one gets a cone similar to the one considered before, but depending
on wj . These observations imply that the generic optimal solution is highly degener-
ate: any reasonable return discretization will include good and bad partial scenarios
on each level, and surplus money will almost always appear somewhere in the tree.
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Fig. 2.5 Example problem with three scenarios; nonnegative asset values (r̄max = 1.21). Top: Op-
timal scenario returns ρi and reward multiplier µ. Bottom: Optimal scenario investments.
For ρ ≤ rc = 1.1025, the optimal portfolios consist of 100% cash, yielding zero risk.

However, even in the zero-risk subtrees, all leaf variables are again uniquely deter-
mined by the lower level variables.

Obviously wmin
t+s is sufficient capital for a node k ∈ Lt+s in the zero-risk subtree,

and the easiest way to maintain that amount is to invest precisely wmin
t in cash and

remove the rest (“invest” in xl
j). Thus all surplus money is taken out immediately in

the root of the subtree, and each remaining node has 100% cash.

3. Conclusions. We have seen that multiperiod mean-variance problems behave
much like their single-period counterparts in many respects. Specifically, it is possible
to avoid overperformance by allowing the removal of capital. Small target rewards
ρ ≤ rc are met exactly at zero risk. In that case all the capital is either invested in
cash or removed; thus, minimizing the variance is trivially equivalent to minimizing
the semivariance (or any other downside risk measure) without removing capital,
but allowing it to exceed the target reward. That is, with x = (xj , x

c
j)j∈V and in

abbreviated notation, the problem

min
x

R(x) s.t. ρ(x) = ρ, e∗xj + xc
j ≤ wj ∀j ∈ V
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is equivalent to the downside risk problem

min
x

R2
ρ(x) s.t. ρ(x) ≥ ρ, e∗xj + xc

j = wj ∀j ∈ V.

(Of course, the solutions of the second problem differ insofar as surplus money is
invested in cash instead of being removed.) For moderate values ρ > rc one cannot
avoid overperformance completely, but in effect the first problem still tends to mini-
mize the semivariance. More precisely, the discrete part Rd approximates its downside
version due to the existence of zero-risk subtrees. The quality of that approximation
decreases as ρ increases so that for large values the risk measure becomes a blend-
ing of variance and semivariance. Note that there is no such gradual process in the
single-period case, but there is a close similarity between single-period downside risk
(Theorem 1.28) and multiperiod zero-risk polyhedra (Lemma 2.12). We may con-
clude that Problem 13 is a reasonable multiperiod model for an investor who wishes
to minimize the semivariance rather than the variance of final wealth.

The previous comparison also gives some hints on how an optimal policy obtained
from Problem 13 should be interpreted. Again, positive values of xl

j do not suggest
the burning of that amount. They indicate the presence of surplus money which the
investor may spend immediately without risking missing her goal, or which she may
invest in cash to obtain a riskless extra profit. Of course, she may also consume part of
the surplus and invest the rest. Thus, if the investor implements any optimal policy
over the full planning horizon, she will approximately minimize the risk of ending
up with less than the desired amount, regardless of her choice. Interestingly, the
second alternative (investing) amounts to a single-period strategy with predetermined
intermediate decisions, which may be useful when the investor cannot react to the
market until the end of her planning horizon or for some reason does not wish to do so.

However, it should be noted that the problem under consideration is not time-
invariant in the sense that optimal decisions in later periods still reflect the investor’s
initial objective when time has passed. This is due to the reward condition, which
involves an expectation over all scenarios, that is, over the potential futures at t = 0.
But at t = 1 most of these potential futures become impossible, regardless of which sce-
nario is realized. The terminal condition ρ(x) = ρ or ρ(x) ≥ ρ usually cannot be satis-
fied when the restricted expectation over the subtree is taken—unless it happens to be
a zero-risk subtree. Therefore only the immediate decision will be of interest for the
typical investor. Rather than following the original future policy, she will adjust the
reward and solve the problem anew for each decision. Of course, the investor may also
build an extended model after each period in pursuing a moving horizon technique.

In any case it seems appropriate to consider all riskless strategies (in addition to
the efficient ones) as reasonable choices in multiperiod decision models. This does no
harm since it includes all the standard alternatives, but it opens up new possibilities
such as the trick described above.

We conclude the discussion by pointing out two issues that might be interesting
subjects of future research. First, the model presented here does not include any
preferences of consumption, although one can easily specify hard constraints (exact,
minimal, or maximal consumption) through a cash flow. However, it is not clear how
one should incorporate (soft) preferences and how the result would be related to long-
term models based on utility of consumption. Second, the multiperiod setting enables
the investor to control higher moments of her distribution of final wealth—at least
to some extent. How would risk measures involving skewness, for example, behave in
the context of our model?
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On the practical side, stochastic programming models are in the process of becom-
ing standard decision support tools in the financial industry. Optimization problems
with tens of thousands of scenarios and a million decision variables are nowadays
solved within minutes on a standard workstation. Indeed, it is more difficult to gener-
ate the stochastic data that are required in setting up the model. Typical applications
of stochastic programming include portfolio selection and asset liability management
problems. For instance, the real-life version of the model considered here is being
employed by a Swiss insurance company in the allocation of pension funds. A second
major application field for related technology, such as stochastic differential equa-
tions and martingale theory, concerns the valuation and hedging of options and other
derivatives and the design of new financial instruments.

Appendix. The appendix contains some proofs and a theorem that would have
disrupted the line of thought in the main body of the multiperiod section.

Proof of Theorem 2.4. The system of optimality conditions (for two periods) can
be written
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For j ∈ L, xj = Σ̃−1
j (λje+ µr̃j) is immediately obtained from the jth dual feasibility

condition. Substitution into the budget equation for xj and into dual feasibility

condition 0, respectively, yields λj = (r∗
jx0 − µβ̃j)/α̃j and

0 = −λ0e+
∑

j∈L

λjrj = −λ0e+
∑

j∈L

r∗
jx0 − µβ̃j

α̃j

rj = −λ0e+ Σ̃0x0 − µr̃0,

giving x0 = Σ̃−1
0 (λ0e+ µr̃0). The budget equation for x0 now reads

1 = e∗x0 = e∗Σ̃−1
0 (λ0e+ µr̃0) = λ0α̃0 + µβ̃0,

yielding λ0 = (1− µβ̃0)/α̃0. From the reward equation one finally obtains

ρ =
∑

j∈L

r̃∗
jxj =

∑

j∈L

(λj β̃j + µγ̃j) =
∑

j∈L

(

β̃j

α̃j

r∗
jx0 − µ

β̃2
j

α̃j

+ µγ̃j

)

= r̃∗
0x0 + µ

∑

j∈L

δ̃j
α̃j

= λ0β̃0 + µγ̃0 + µ
∑

j∈L

δ̃j
α̃j

=
β̃0

α̃0
− µ

β̃2
0

α̃0
+ µγ̃0 + µ

∑

j∈L

δ̃j
α̃j

=
β̃0

α̃0
+ µ

∑

j∈V

δ̃j
α̃j

.
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This gives the reward multiplier using Lemma 2.3,

µ =

(

ρ− β̃0

α̃0

)/

∑

j∈V

δ̃j
α̃j

.

(Here we need assumption (A6): the denominator vanishes if δ̃j = 0 ∀ j ∈ V .) As for
the global minimum, we have

x∗
j Σ̃jxj = λj(λjα̃j + µβ̃j) + µ(λj β̃j + µγ̃j)

= λjr
∗
jx0 + µ

β̃jr
∗
jx0 + µδ̃j

α̃j

=
(r∗

jx0)
2

α̃j

+ µ2 δ̃j
α̃j

and similarly

x∗
0Σ̃0x0 = λ0 + µ

β̃0 + µδ̃0
α̃0

=
1

α̃0
+ µ2 δ̃0

α̃0
.

Therefore,

∑

j∈L

x∗
j Σ̃jxj =

∑

j∈L

(

(r∗
jx0)

2

α̃j

+ µ2 δ̃j
α̃j

)

= x∗
0Σ̃0x0 + µ2

∑

j∈L

δ̃j
α̃j

=
1

α̃0
+ µ2

∑

j∈V

δ̃j
α̃j

=
1

α̃0
+

(

ρ− β̃0

α̃0

)2 /

∑

j∈V

δ̃j
α̃j

.

Subtracting ρ2 yields a risk expression of the form σ2(ρ) = s+(ρ−c)2/d−ρ2. Since the
optimal portfolio x is an affine function of ρ, and R is convex quadratic, the efficient
frontier either is strictly convex (iff d < 1) or σ2(ρ) ≡ 0 (iff d = 1 and c = s = 0). But
s = α̃−1

0 > 0 by Lemma 2.3; therefore σ2(ρ) has the global minimum s + c2/(1 − d)
at ρ̂ = c/(1− d), as stated.

Proof of Theorem 2.9. The system of optimality conditions can be written

∂L/∂x0 = 0: −λ0e+
∑

j∈L
λjrj = 0,

∂L/∂xc
0 = 0: −λ0 +

∑

j∈L
λjr

c
1 = 0,

∂L/∂xj = 0: Σ̃jxj + rc
2r̃jx

c
j − λje− µr̃j = 0 ∀j ∈ L,

∂L/∂xc
j = 0: rc

2r̃
∗
jxj + rc

2r̃
c
jx

c
j − λj − µr̃c

j = 0 ∀j ∈ L,

∂L/∂λ0 = 0: e∗x0 + xc
0 = 1,

∂L/∂λj = 0: e∗xj + xc
j − r∗

jx0 − rc
1x

c
0 = 0 ∀j ∈ L,

∂L/∂µ = 0:
∑

j∈L
r̃∗
jxj + r̃c

jx
c
j = ρ.

The dual feasibility condition ∂L/∂xc
j = 0 gives

xc
j =

1

rc
2

[

−r̄∗
jxj +

λj

r̃c
j

+ µ

]

.(A.1)
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Substitution into ∂L/∂xj = 0 yields

0 = Σ̃jxj + r̃j

[

−r̄∗
jxj +

λj

r̃c
j

+ µ

]

− λje− µr̃j = pjΣjxj +
λj

rc
2

(r̄j − rc
2e),

which gives xj and, upon substitution into (A.1), xc
j :

xj = −λj

r̃c
j

Σ−1
j (r̄j − rc

2e), xc
j =

1

rc
2

[

λj

r̃c
j

(γj − rc
2βj + 1) + µ

]

.

Therefore the budget equation ∂L/∂λj = 0 reads

wj = e∗xj + xc
j = −λj

r̃c
j

(βj − rc
2αj) +

λj

rc
2r̃

c
j

(γj − rc
2βj + 1) +

µ

rc
2

=
λj

rc
2

δc
j + 1

r̃c
j

+
µ

rc
2

,

from which one obtains

λj =
r̃c
j

δc
j + 1

[rc
2(r

∗
jx0 + rc

1x
c
0)− µ].

Now we can proceed with the root variables. The condition ∂L/∂xc
0 = 0 reads

0 = −λ0 +
∑

j∈L

rc
1

r̃c
j

δc
j + 1

[rc
2(r

∗
jx0 + rc

1x
c
0)− µ] = −λ0 + rcrc

2r̃
∗
0x0 + rcr̃c

1x
c
0 − µr̃c

1,

giving

xc
0 =

1

rc

[

−rc
2r̄

∗
0x0 +

λ0

r̃c
1

+ µ

]

.(A.2)

Likewise, after inserting λj and then xc
0, the condition ∂L/∂x0 = 0 reads

0 = −λ0e+
∑

j∈L

rj

r̃c
j

δc
j + 1

[rc
2(r

∗
jx0 + rc

1x
c
0)− µ]

= −λ0e+ (rc
2)

2Σ̃0x0 + rcrc
2r̃0x

c
0 − µrc

2r̃0 = (rc
2)

2p̃0Σ0x0 +
λ0

rc
1

(r̄0 − rc
1e).

This yields x0 and, by substitution into (A.2), xc
0:

x0 = − λ0

rc
2r̃

c
1

Σ−1
0 (r̄0 − rc

1e), xc
0 =

λ0

rcr̃c
1

(γ0 − rc
1β0 + 1) +

µ

rc
.

Thus the root budget equation is

1 = e∗x0 + xc
0 = − λ0

rc
2r̃

c
1

(β0 − rc
1α0)− λ0

rcr̃c
1

(γ0 − rc
1β0 + 1) +

µ

rc
=
λ0

rc

δc
0 + 1

r̃c
1

+
µ

rc
,

which gives

λ0 =
r̃c
1

δc
0 + 1

(rc − µ) = ρ̃(rc − µ).
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By Lemma 2.7 we have p̃0 ∈ (0, 1] and δc
0 ≥ 0. Moreover, if p̃0 = 1 then δc

j = 0
for j ∈ L and thus δc

0 > 0. This proves the inclusion ρ̃ ≡ rcp̃0/(δ
c
0 + 1) ∈ (0, rc).

Altogether, the previous results give

r̃∗
jxj + r̃c

jx
c
j = −λj

rc
2

(γj − rc
2βj) +

λj

rc
2

(γj − rc
2βj + 1) + pjµ =

λj

rc
2

+ pjµ(A.3)

and similarly

rc
2r̃

∗
0x0 + r̃c

1x
c
0 = −λ0

rc
(γ0 − rc

1β0) +
λ0

rc
(γ0 − rc

1β0 + 1) + p̃0µ =
λ0

rc
+ p̃0µ.(A.4)

Upon insertion of λj and then λ0 the reward condition reads

ρ =
∑

j∈L

r̃∗
jxj + r̃c

jx
c
j =

∑

j∈L

pj

δc
j + 1

[rc
2(r

∗
jx0 + rc

1x
c
0)− µ] + µ

= rc
2r̃

∗
0x0 + r̃c

1x
c
0 − p̃0µ+ µ =

λ0

rc
+ µ =

ρ̃

rc
(rc − µ) + µ.

This gives ρ = ρ̃ + µ(rc − ρ̃)/rc and thus µ = rc(ρ − ρ̃)/(rc − ρ̃). To calculate the
risk, let R̄j(xj , x

c
j) := x∗

jΣjxj + ρj(xj , x
c
j)

2 and use the last expression from equation
(A.3) for pjρj(xj , x

c
j). Then

R̄j(xj , x
c
j) =

(

λj

r̃c
j

)2

δc
j +

(

λj

r̃c
j

+ µ

)2

=

(

λj

r̃c
j

)2

(δc
j + 1) + 2

λj

r̃c
j

µ+ µ2

=
[rc

2(r
∗
jx0 + rc

1x
c
0)− µ]2

δc
j + 1

+ 2
[rc

2(r
∗
jx0 + rc

1x
c
0)− µ]

δc
j + 1

µ+ µ2

=
[rc

2(r
∗
jx0 + rc

1x
c
0)]

2

δc
j + 1

+ µ2
δc
j

δc
j + 1

.

Since R(x) =
∑

j∈L pjR̄j(xj , x
c
j)− ρ2, we get

R(x) + ρ2 = (rc
2)

2
∑

j∈L

pj

δc
j + 1

[

(r∗
jx0)

2 + 2rc
1x

c
0r

∗
jx0 + (rc

1x
c
0)

2
]

+ µ2
∑

j∈L

pjδ
c
j

δc
j + 1

= (rc
2)

2
[

x∗
0Σ̃0x0 + 2rc

1x
c
0r̃

∗
0x0 + p̃0(r

c
1x

c
0)

2
]

+ µ2(1− p̃0).

Using equation (A.4), the first term equals

rc
2r̃

c
j

[

x∗
0Σ0x0 + (r̄∗

0x0 + rc
1x

c
0)

2
]

= rc
2r̃

c
j

[(

λ0

rc
2r̃

c
1

)2

δc
0 +

(

λ0

rc
2r̃

c
1

+
µ

rc
2

)2]

,

which is further simplified to

p̃0

[(

λ0

r̃c
1

)2

(δc
0 + 1) + 2

λ0

r̃c
1

µ+ µ2

]

= p̃0

[

(rc − µ)2

δc
0 + 1

+ 2
rc − µ

δc
0 + 1

µ+ µ2

]

.

Therefore we have

R(x) + ρ2 = p̃0
(rc)2 + δc

0µ
2

δc
0 + 1

+ µ2(1− p̃0) = rcρ̃+ µ2

(

1− p̃0

δc
0 + 1

)

= rcρ̃+ µ2

(

1− ρ̃

rc

)

= rcρ̃+ rc (ρ− ρ̃)2

rc − ρ̃
.
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Subtracting ρ2 gives the stated risk formula whose minimum over all ρ is easily de-
termined. The remaining statements follow trivially.

Proof of Theorem 2.10. The optimality conditions include those of Problem 11
except that ρ must be replaced by ρ + θ (in ∂L/∂µ = 0). Additional conditions are
µ − (ρ + θ) = η (from ∂L/∂θ = 0), θ ≥ 0, η ≥ 0, and complementarity θη = 0. The
proof now proceeds precisely as in the proof of Theorem 2.9, with ρ replaced by ρ+ θ
in all instances. Finally, nonnegativity and complementarity of θ and η lead to the
case distinction: either θ = 0 and µ ≥ ρ, or θ > 0 and µ = ρ + θ. The identity
µ = rc(ρ+ θ − ρ̃)/(rc − ρ̃) gives ρ ≥ rc in the first case and ρ+ θ = rc in the second
case.

Theorem A.1. In Problem 13 let θj ≡ rc
2x

l
j for j ∈ L, θ0 ≡ rcxl

0, and

θ̄0 :=
1

p̃0

∑

j∈L

pj

δc
j + 1

θj , s0 :=
1

p̃0

∑

j∈L

pj

δc
j + 1

θjrj .

Then every primal-dual solution satisfies

xj = −λj

r̃c
j

Σ−1
j (r̄j − rc

2e), xc
j =

1

rc
2

[

λj

r̃c
j

(γj − rc
2βj + 1) + µ

]

,

x0 = − λ0

rc
2r̃

c
1

Σ−1
0 (r̄0 − rc

1e)− 1

rc
2

Σ−1
0 (θ̄0r̄0 − s0),

xc
0 =

1

rc

[

λ0

r̃c
1

(γ0 − rc
1β0 + 1) + µ+ (γ0 + 1)θ̄0 − r̄∗

0Σ
−1
0 s0

]

,

λj =
r̃c
j

δc
j + 1

[rc
2(r

∗
jx0 + rc

1x
c
0)− µ− θj ] = −ηj ≤ 0,

λ0 =
r̃c
1

δc
0 + 1

[rc − µ− θ0 − (γ0 − rc
1β0 + 1)θ̄0 + (r̄0 − rc

1e)
∗Σ−1

0 s0] = −η0 ≤ 0,

µ = rc ρ− ρ̃

rc − ρ̃
+

ρ̃

rc − ρ̃
[(γ0 − rc

1β0 + 1)θ̄0 + θ0 − (r̄0 − rc
1e)

∗Σ−1
0 s0].

In particular, the following case distinction can be made in each scenario. If ηj > 0,
then xl

j = 0, ρj(xj , x
c
j) < µ, and rc

2wj < µ. Conversely, if ηj = 0, then xl
j ≥ 0,

ρj(xj , x
c
j) = µ ≥ ρ, and rc

2wj ≥ µ. In this case the leaf variables are

xj = 0, xc
j = µ/rc

2, xl
j = wj − µ/rc

2,

giving xl
j = 0 (100% cash) if rc

2wj = µ and xl
j > 0 else.

The following case distinction holds in the root. If η0 > 0, then xl
0 = 0 and ρ < µ.

Otherwise, if η0 = 0, then xl
0 ≥ 0 and ρ = µ.

Proof. The optimality conditions of Theorem 2.9 remain valid except that xl
j

now appears in all the budget conditions ∂L/∂λj = 0, j ∈ V . Additional optimality
conditions in each node are λj = −ηj (from ∂L/∂xl

j = 0), xl
j ≥ 0, ηj ≥ 0, and

complementarity xl
jηj = 0. The expressions above are obtained precisely as in the

proof of Theorem 2.9 when slack variables xl
j and derived quantities θj , θ̄0, s0 are

included. This derivation also yields intermediate results

ρj(xj , x
c
j) = µ+

λj

r̃c
j

≤ µ, j ∈ L, ρ = µ+
λ0

rc
≤ µ;



78 MARC C. STEINBACH

cf. equation (A.3) and the reward condition after (A.4). The additional optimality
conditions above, together with these identities, lead to the stated case distinctions if
it is observed that λj has the same sign as rc

2wj − µ− θj for j ∈ L.
Remark. Note that all the multipliers now have a natural interpretation. The

reward multiplier µ is the maximal scenario return and a threshold value for surplus
money : there is surplus money in scenario j iff ρj = µ and rc

2wj > µ. The budget
multipliers λj (up to a scaling factor) measure the difference between the desired
return or the scenario returns and the threshold.

Proof of Lemma 2.17. Formula (2.2) for ρj (with θj = 0) gives

(φj + 1)(ρj − dj) = φjdj + µ− (φj + 1)dj = µ− dj

and hence ρj − dj ∼ µ− dj ≡ µ− rc − ψjx0. By Theorem 2.9,

x0 = − λ0

rc
2r̃

c
1

r̄0 − rc
1

Σ0
= −ρ̃ r

c − µ

rc
2r̃

c
1

r̄0 − rc
1

Σ0
.

Therefore we have

ρj − dj ∼ µ− rc + rc
2(rj − rc

1)ρ̃
rc − µ

rc
2r̃

c
1

r̄0 − rc
1

Σ0

= (µ− rc)

(

1− rj − rc
1

δc
0 + 1

r̄0 − rc
1

Σ0

)

.

By Theorem 2.9, µ− rc = rc(ρ− rc)/(rc − ρ̃) ∼ ρ− rc. The second factor equals

1− (rj − rc
1)(r̄0 − rc

1)

[(r̄0 − rc
1)Σ

−1
0 (r̄0 − rc

1) + 1]Σ0

∼ (r̄0 − rc
1)

2 +Σ0 − (rj − rc
1)(r̄0 − rc

1)

= Σ0 + r̄20 − (rj + rc
1)r̄0 + rjr

c
1

∼ Σ̃0 − (rj + rc
1)r̃0 + p̃0rjr

c
1

=
∑

k∈L

pk

δc
k + 1

[r2k − (rj + rc
1)rk + rc

1rj ]

=
∑

k �=j

pk

δc
k + 1

(rk − rj)(rk − rc
1) = sj .

This completes the proof.
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