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Abstract—

MapReduce has gradually become the framework of choice for
”big data”. The MapReduce model allows for efficient and swift
processing of large scale data with a cluster of compute nodes.
However, the efficiency here comes at a price. The performance of
widely used MapReduce implementations such as Hadoop suffers
in heterogeneous and load-imbalanced clusters. We show the
disparity in performance between homogeneous and heteroge-
neous clusters in this paper to be high. Subsequently, we present
MARLA, a MapReduce framework capable of performing well
not only in homogeneous settings, but also when the cluster
exhibits heterogeneous properties. We address the problems
associated with existing MapReduce implementations affecting
cluster heterogeneity, and subsequently present through MARLA
the components and trade-offs necessary for better MapReduce
performance in heterogeneous cluster and cloud environments.
We quantify the performance gains exhibited by our approach
against Apache Hadoop and MARIANE in data intensive and
compute intensive applications.

I. INTRODUCTION

Introduced in 2004 [1], MapReduce has slowly gained

popularity with its swift and efficient data-intensive processing

abilities. However, the performance of widely used MapRe-

duce implementations, such as Hadoop, suffers in heteroge-

neous environments. This deficiency stems from the uniform

application of a map and reduce function to nearly equally

split data amongst participating nodes. Such data is made local

to the nodes, as it is less expensive to bring the computation to

the data, rather than bringing the data to the computation [2].

However, uniform map and reduce methods, being applied

by all nodes holding similarly sized data, lends to performance

problems when such nodes have different performance abili-

ties. Should some nodes be faster than others, such nodes will

perform and finish quicker, while the cluster waits for the slow

nodes to complete their tasks before presenting the output to

the user. While Hadoop [3] tries to tackle this problem with

its straggler mitigating mechanism, [4] and [5] have shown

such a mechanism to be inefficient. Similarly, in [6] we have

shown Hadoop’s straggler mitigation scheme to be inefficient

in heterogeneous environments, in addition to having a limited

impact in homogeneous settings turned heterogeneous with

the addition of third party loads to parts of a shared cluster

or cloud. This can happen with new users logging in and

deploying their own applications. Other MapReduce imple-

mentations such as Twister [7] and LEMO-MR [8] altogether

lack a mechanism to tackle this issue. Furthermore, solutions

presented to address this problem, such as LATE [4] and [5]

confront the issue with a static load-balancing approach. In

[5] for instance, the cluster is assessed and its faster nodes

are identified prior to application runtime. Input partition is

then skewed to favor those fast nodes. Faster nodes get more

data to process because they are rightly expected to perform

better. Even though LATE has been shown to perform to

expectations in static conditions, an obvious problem to note

is the following: should previously determined fast nodes

come under intense load during runtime, due perhaps to new

users logging in and starting heavy jobs, the input partition

cannot be adjusted, neither can the load be transferred due

to very large data sizes. To address this shortcoming, we

propose MARLA: (MApReduce with adaptive Load balancing

for heterogeneous and Load imbalAnced clusters). In this

paper, we present and discuss its architecture and design, then

subsequently show that not only does MARLA outperform

Hadoop in heterogeneous clusters, as it is designed to, it also

outperforms Hadoop in homogeneous settings. We present our

findings as we test MARLA both at the National Energy

Research Computing Center (NERSC) and the Binghamton

University Grid and Cloud Computing Laboratory across a

wide range of experimental scenarios, against Hadoop, and

MARIANE MapReduce [9], from CPU-intensive applications

to data-intensive applications, to fault-prone scenarios.

The contributions of this paper are as follows:

• We present a dynamic load-balancing MapReduce im-

plementation, suited not only for homogeneous clusters,

but also for heterogeneous, and load-imbalanced environ-

ments.

• We show how the integrity and advantages of the MapRe-

duce model can be maintained while providing good

performance in heterogeneous and load-imbalanced en-

vironments.

• We present a performance comparison of our approach

with existing MapReduce implementations and present

the performance narrative emerging from our experi-

ments.



II. THE ARCHITECTURE OF A DYNAMICALLY ADAPTIVE

MAPREDUCE PLATFORM

A. MapReduce for Shared-Disk file systems

MARLA is an implementation of the MapReduce model

that uses the underlying shared-file systems, such as GPFS

[10] and NFS [11], as its I/O management mechanism.

Hadoop makes use of the Hadoop Distributed File System

[12] as the need for data replication is essential for fault-

tolerance. With Apache Hadoop, each input file chunk is

replicated to the user’s liking, allowing the datanodes to

hold redundant copies of each others’ input. Should a node fail,

another node holding the same input chunk is called into action

to preserve the integrity of the running job. The use of the

HDFS also allows Hadoop to execute speculative tasks when

faced with heterogeneous clusters. Chunks belonging to slow

nodes are also owned by other nodes, perhaps faster nodes.

Once a node is determined to be slow by Hadoop, duplicate

tasks are scheduled on nodes holding the same input chunk.

This, as shown in [8] [13] can be highly overhead-prone. This

is so because the Master node needs to account for integrity

tallies belonging to each block, for possibly several of them,

along with their replicas, their location and the health of the

nodes holding them. Nodes need to report their block condition

and their own condition to the Master. Such operations

as we discussed in [6] rob CPU cycles from the nodes,

which could be directed towards processing. Furthermore,

network channels used for output transfer can be obstructed by

extensive communication in the case of large clusters. Under

failures, blocks of input belonging to failed nodes also need

to be replicated. When unavailable due to substantial node

failures they need to be copied between nodes, potentially

overwhelming the network when it comes to failing data-

intensive applications. This analysis led us in MARLA’s case,

and MARIANE MapReduce [9] before MARLA, to make use

of shared-file systems instead of the HDFS. The use of shared-

file systems allows us to make use of more input space as

replicas do not exist at the user level, in the user’s directory

space. For more robust fault-tolerance, more space is required.

Hadoop needs dedicated node space to operate and thus can

be unfriendly to already existing Grid and Cloud computing

facilities not willing to rearrange their networks and disks for

Hadoop’s purpose. MARLA has been tested at NERSC, which

supports GPFS, and also on the Grid and Cloud Computing

Laboratory cluster at Binghamton University, which supports

NFS.

B. The NERSC case

Aside from logistical advantages as discussed in the previ-

ous section, the use of shared-file systems such as NFS, and

GPFS also absolves the MapReduce cluster from managing

the file system, thus potentially increasing its effectiveness,

as all of the framework’s resources are solely geared towards

mapping and reducing. As previously mentioned, the use of

a shared-file system with MapReduce also makes the model

compatible with many Grid/Cloud computing centers, as most

of them already make use of one or more distributed file

system technologies espousing a node-shared disk layout. The

HDFS is not a POSIX compliant file system and as such, it

is not suitable for scientific and legacy applications that rely

on POSIX compliant file systems in the Grid/Cloud setting.

The use of HDFS is much more limited, and in a facility

such as NERSC, requires resource isolation and cluster re-

arrangement [9]. NERSC [14] hosts over 7 central clusters, as

well as a myriad of specialized sub-clusters hosting various

energy research projects. NERSC totals approximately 17,000

available nodes setup for MPI use, used for research purposes,

and within which sit over 200,000 processing cores. NERSC

also offers over 2000 petabytes of storage space for compute

and data intensive applications. Apache Hadoop is installed

on its Magellan cloud and on the Carver cluster and benefits

from a subset of NERSC’s computing power. This stems

from Hadoop’s requirement to operate under HDFS. MARLA,

however, in such settings can inherently make use of all

available resources with no need for revamping as its mode

of operation is directly compatible with such environments.

It is thus logistically more convenient and more efficient

for MARLA’s purposes to operate on shared-file systems.

This is so, as given the same machines, both NFS in our

Laboratory and GPFS at NERSC, offered better file system

Read/Write performance than HDFS did in either setting. Even

as we acknowledge in [9] that file system speed does not

guarantee ultimate application performance when it comes to

MapReduce, it can certainly help as large number of items

are fetched from the disk during a data intensive application’s

runtime.

C. Designing MARLA

The design of MARLA rests upon a dynamic task schedul-

ing mechanism allowing each node to request tasks at its

own pace. Contrary to the traditional MapReduce approach

with Hadoop and most MapReduce implementations, where

tasks are equally divided and predefined for each node before

starting a given application, MARLA allows for participating

nodes to request work as they complete previous tasks. As

data items are derived through splitting of the input given

by the user, such items become tasks. The Master node

then registers the total number of tasks available to the nodes.

Nodes are afforded a processing identification tag, and use it to

request tasks. Tasks are requested for as many cores as a node

possesses (an option the user can control in the application

settings). As those tasks are collected by the processing nodes,

they become immediately unavailable to other processing

nodes, which have to move on to further tasks. Subsequently,

a node does not request a task before it has successfully

completed the tasks it previously requested for its cores. This

scheduling scheme ensures that slow and fast nodes alike will

process their fair-share. In testing, as we show in Section III,

an even load distribution between homogeneous nodes, and an

uneven one when slow and fast nodes, were mixed. Naturally,

fast nodes did more work than slow nodes in heterogeneous

cluster cases. Similarly in stressed homogeneous clusters, fast



Fig. 1. Architecture used for MARLA

nodes originally start with much work, but end up requesting

less work as their performance decreases due to third-party

user impact. The same performance observation however, as

we will show, did not occur quite efficiently for Hadoop and

MARIANE. Finally, the granularity pertaining to the number

of tasks per node to process for MARLA can be adjusted and

depends on the user. Finer granularity means lots of smaller

tasks. This is beneficial for highly heterogeneous environments

and bigger input data. Coarse-grain tasks suit homogeneous

settings, and small files.

D. Architecture of MARLA

As illustrated in Figure 1, MARLA uses three principal

modules, each one representing one of the tenets pertaining to

the MapReduce model; those are:

The Splitter for Input/Output management, the

TaskController for concurrency management, and the

FaultTracker for fault-tolerance.

Figure 1 shows the design used for MARLA

E. Input Management

1) Input Splitting: While Hadoop and most MapReduce

applications partition the input equally amongst nodes, then

transfer each chunk to their destinations, MARLA relies on the

inherent shared-file system it sits atop for this feat. MARLA,

unlike Hadoop, does not produce a given number of chunks,

usually similar for each node. Instead, the framework considers

input chunk as tasks, and several of them, depending on the

user, are created. The framework leverages the data visibility

offered by the shared-disk file system to provide its input data

to the cluster nodes. Input management and split distribution

are thus not performed on top of an existing file system (FS),

but rather left to the underlying shared file system’s default

mechanisms. This absolves the MapReduce implementation

from the responsibility of low-level file management and from

the overhead of efficiently communicating with the FS through

additional system layers. Furthermore, MARLA benefits not

only from file system and data transfer optimizations provided

by evolving shared-disk file system technology, but can solely

focus on mapping and reducing, rather than data management

at a lower level.

2) Input Distribution: Input distribution is directly operated

through the shared-file system (SFS). As the input is deposited

by the user, the SFS is optimized to perform caching and

pre-fetching to make the data visible to all nodes on-demand.

This frees the MapReduce framework from accounting, and

transferring input to the diverse nodes. Another benefit of

shared-disk file systems with MapReduce, one which became

apparent as the application was implemented is the follow-

ing: current MapReduce implementations, because of their

tightly coupled input storage model to their framework, require

cluster re-configuration upon node change. As with Hadoop,

nodes own their input chunks and as such fail with them.

Replacing a node means replacing its input. With MARLA,

nodes are simply workers, not data guardians. Should a node

failure occur, a rescuing node can be brought in and will

start requesting available tasks immediately. Similarly, more

nodes can be instantaneously added in between runs with no

need for time consuming data rearrangements if the departing

nodes held large input chunks. MARLA allows for storage

to be independent from the worker nodes. Separating the I/O

structure from the nodes allows for a swift reconfiguration

and a faster application turnaround time, when dealing with

iterative MapReduce applications. In Hadoop’s case, removing

a node holding a crucial input chunk means finding a node

holding a duplicate of the chunk held by the exiting node and

copying it to the arriving node, or just re-balancing the cluster,

as to redistribute the data evenly across all nodes.

F. Task tracker and task control

The task tracker, also known as Master, in addition to

making tasks available from data chunks provided by the

Splitter, makes the map and reduce code written by the

user available to all participating nodes through the shared-

file system. This results on the application level to a one time

instruction dispatch, rather than map and reduce instructions

streaming to as many participating nodes as there are in

the cluster. Upon launch, the nodes designated as mappers,

subsequently use the map function, while those designated as

reducers, use the reduce function. The task tracker monitors

task progress from the cluster nodes, and resubmits failed ones

into the task bag through the FaulTracker to be re-tried

by other available workers. In the interim, the worker carrying

the failed task is excused from processing for a short period

of time. This time-out counts as a strike if any other nodes

were able to successfully complete the task. Upon three strikes,

the worker is ”out”, and no longer allowed to participate.

Completed tasks are moved to the completed task bag

and sent to the reducer which operates in a similar fashion.

G. FaultTracker and Fault-tolerance

While Hadoop uses task and input chunk replication for

the purpose of fault-tolerance, MARLA practices task specific

fault-tolerance. Failed tasks are simply resubmitted into the



task bag, the offending nodes are put on short temporary

leave while the task is re-tried. If the task succeeds with

another worker, the offending node is given a strike. Three

strikes and the node is considered faulty and no longer

allowed to participate in the ongoing processing. This fault-

tolerance scheme avoids expensive data relocation, and proves

beneficial performance-wise in fault-prone scenarios. One case

that became apparent to us in testing with Hadoop is the

need to increase Hadoop’s replication count as more nodes

are expected to fail. Failing to do so would result in total

application failure should a significant part of the cluster die.

In our case, we recorded total failures with a 32 node cluster

(128 cores total), and 5 replicas per input chunk, if such a

cluster lost more than 50% of its nodes. Understandably the

threshold for total failure can be raised with a higher replica

count. However, a higher replica count means that much more

space. MARLA’s scheme does not necessitate replications and

as such does not require the same space demands. Furthermore

the task model we espouse in this paper means that even as

we lose a significant part of our cluster, as long as one node

is still alive, tasks will get requested by that node until the

job is complete. Simply put, MARLA’s design offers a higher

total failure-threshold than Hadoop does if one cannot afford

extensive file chunk replication space. A drawback however

of our approach is that file-level fault-tolerance is completely

dependent on the underlying shared filesystem.

III. DISTRIBUTED LARGE-SCALE DATA PROCESSING

In this section, we test MARLA’s performance in both

heterogeneous and homogeneous cluster settings. We do this to

show that heterogeneous cluster performance was not acquired

at the expense of homogeneous cluster performance. Similarly,

we test MARLA and Hadoop under failing node conditions

to showcase MARLA’s fault-tolerance performance against

that of our past research endeavors, namely MARIANE’s [9].

Given that MARLA is partly based on MARIANE, we have

included it here as a comparison between not only MARLA

and Hadoop, but also between MARLA and MARIANE.

As heterogeneity is most common in high performance

computing due to various loads on various machines, rather

than wide physical differences between nodes, we simulate

cluster heterogeneity by running various third party CPU-

intensive and memory intensive loads on various nodes of

our testbed, using MPRIME [15], a well known benchmark

and machine stress-testing tool. We subsequently test all three

frameworks in a physically heterogeneous cluster and show

the load management capabilities exhibited by each tested

framework.

Our experiments were conducted on the National Energy

Research Scientific Computing Center’s cluster (NERSC), and

in the Binghamton University Grid and Cloud Computing

Research Lab. On NERSC, we performed our tests on the

Magellan cluster where MARLA was installed on top of

GPFS, and tested alongside the local Apache Hadoop v.20

installation running on the same test bed. The Binghamton

University Grid and Cloud Computing Research Lab has the

same Hadoop version, and hosts MARLA using NFS. We

elected to consistently afflict 75% of our cluster with load,

while 25% of it remained idle. Furthermore, in both facilities,

exclusive access to the clusters was guaranteed to ensure the

integrity of the results portrayed below. All stressed nodes

received 50% CPU-utilization loads on all of their cores, while

every other node saw 50% of their memory consumed by

MPRIME.

In all the experiments discussed in this paper, we ran

MARLA, MARIANE and Hadoop using identical nodes, iden-

tical node counts, identical input data and similar user source

code.

IV. PERFORMANCE RESULTS

We run our tests on a selection of two clusters:

NERSC Magellan cluster

• 8 core – Intel Nehalem machines, with 2.66Ghz and 24

GB of ECC RAM. The file system in use here is GPFS.

Results on this class of machines are taken by averaging

the timings produced on these nodes.

Grid and Cloud Computing Research Lab Cluster at Bingham-

ton University

• Dual core – One desktop-class machine, which has a

single 2.66Ghz Intel Core 6600 with 8GB of ECC RAM,

and quad cores running Linux. The file system in use

here is NFS v.4.

• Quad core – 1U nodes in a cluster, each of which has

two 2.66Ghz Intel Xeon CPUs, 8GB of RAM, 4 cores,

and run a 64-bit version of Linux. The file system in use

in the test directory is NFS v.4

• 2 × quad core – 1U nodes in a cluster, each of which

has two 2.6Ghz Intel Xeon CPUs, 8GB of RAM, 8 cores,

and run a 64-bit version of Linux. The file system in use

in the test directory is NFS v.4

Experiments 2, 3, 4, 5, 6 were run on NERSC, under GPFS

with MARLA, whereas experiments 1 and 7 were run at

Binghamton University under NFS.

Figure 2: In this heterogeneous cluster, prior to application

runtime, Hadoop first partitions the same amount of work

for each participating node. As the application starts running,

Hadoop struggles to determine a speed standard, as nodes do

not follow the same performance standard. Thrashing over

load shift with speculative execution occurs, causing one of

the 2 core machines involved to do more work than all of

the machines on the cluster. As a consequence, the 4 core

node and the other 2 core node process approximately the

same load, leaving the 8 core computer, the fastest on this

cluster, to process the least amount of matrices. MARLA in

contrast apportions work according to the node’s performance

profile. The framework divides fine input chunks into tasks,

and lets the participating nodes request tasks as they complete

previous tasks. This results in each node processing its fair

share, leading to the best performance. MARIANE as stated
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Fig. 2. 4 node heterogeneous Hadoop, MARLA and MARIANE clusters,
each processing over 6 Million 33 x 33 matrices. Node1 and node2 are 2
core 2.66Ghz machines. Node3 has 4 cores at 2.66Ghz, and node4 has 8
cores at the same clock speed. All nodes feature 8GB of RAM. The load
here is shown per machine. While Hadoop struggles to determine a speed
standard, its slower nodes end up processing similar loads, and in the case of
node1, more matrices, than its mid-range machine, the 4 core machine and
its fastest machine the 8 core machine. In this case, with Hadoop, the fastest
node on the cluster processes the least amount of data. MARIANE, devoid of
any mechanism for heterogeneity or load balancing ends up scheduling the
same amount of work regardless of node performance. MARLA on the other
hand, is seen here with the two slowest nodes doing approximately the same
amount of work, while the 8 core machine does most of the work, leaving
the 4 core machine to sit in between the 2 core nodes and the 8 core node.
The load balance here shown by MARLA is more in line with the machine’s
performance profile, and as such MARLA performs fastest here.

in [9] does not feature a load-balancing mechanism and thus,

as Hadoop, and traditional MapReduce implementation would

have it, before application runtime partitions the data equally

between all participating nodes. As MARIANE lacks a load

balancer, given that node3 and node4 are fastest, they have to

wait for node1 and node2 to complete their tasks. MARIANE

here performs worst.

Figure 3: In this homogeneous cluster, prior to application

runtime, during input placement, Hadoop and MARIANE

partition the same amount of work for each participating node.

In this particular case, such a scheme is not a bad performance

bearer as the cluster is homogeneous. Homogeneous nodes

subjected to the same user application source code and with

the same input split data sizes can be expected to process such

data at a uniform speed. Although MARLA does not practice

even splitting of data between nodes its fair share algorithm

allows just about the same outcome. As homogeneous nodes

progressively request tasks at their own pace, they end up

processing the same amount of data.

Figure 4 shows a 75 node (600 cores) cluster with 75%

of its nodes under various CPU and memory loads, while the

remaining 25% are idle prior to runtime. This experiment is

meant to simulate a cloud environment where virtual machines

are deployed on shared nodes, and even though homogeneous

in nature, they are likely to be subjected to different loads,

making them capable of widely different performance. We use
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N
u

m
b

e
r 

o
f 

m
a

tr
ic

e
s 

p
ro

ce
ss

e
d

 (
M

ill
io

n
)

0
.0

0
.5

1
.0

1
.5

2
.0

node1: 4 cores
node2: 4 cores
node3: 4 cores
node4: 4 cores

Fig. 3. 4 node homogeneous Hadoop, MARLA and MARIANE clusters,
each processing over 6 Million 33 x 33 matrices. Node1, node2, node3 and
node4 all 4 core machines running at the same speed - 2.66Ghz with the same
memory at 8GB of RAM. The load here is shown per machine. Hadoop,
MARIANE and MARLA all process about the same load per machine.
Hadoop, due to a slight uneven data partition at input placement, processes
slightly more data on 2 of the 4 core machines. Overall, all machines do about
the same amount of work. It is worth mentioning that speculative execution
occurs no matter what the condition of a job is, be it slow or fast. So this
slight disparity in load processed per node could also have been speculative
execution at work.
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Fig. 4. 10 to 300 Million 33 x 33 matrices being gradually processed
by MARIANE, Hadoop and MARLA with each 75 nodes (600 cores). This
test occurs while 75% of the cluster is under different types of third-party
CPU and memory loads, while the remaining 25% of the machines are idle
prior to runtime. This simulate a laboratory environment where although
machines can be homogeneous, due to user utilization, are most likely
under different loads, and thus provide different performance. Hadoop starts
upstaged by an inherently faster MARIANE, but even despite its struggles in
heterogeneous environments, Hadoop catches up to MARIANE which devoid
of any mechanism to balance load here, struggles even more with 320 Million
matrices. While Hadoop and MARIANE take approximately 32 minutes of
processing, MARLA performs best here with close to 22 minutes on the same
task, with the same nodes, the same input data, and the same level of stress
on 75% of its nodes.
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Fig. 5. 10 to 300 Million 33 x 33 matrices being gradually processed by
MARIANE, Hadoop and MARLA with each 75 nodes (600 cores). This test
in contrast to Figure 4 occurs with the same 75 nodes (600 cores) under
no-stress whatsoever. All machines here are idle before runtime and return
to idling after runtime. As we previously showed in [9] here MARIANE’s
lightweight design gets the better of Hadoop. MARLA performs slightly below
MARIANE as its task scheduler requires task management, in the form of
responding to task requests, and recording successful tasks. MARIANE on
the other hand, simply equally divides work and starts the workers. No task
management takes place during runtime. MARIANE here performs best by
less than a 1% margin on MARLA, while Hadoop performs about 25% worse
than both MARLA and MARIANE.

MPRIME [15] here to induce different CPU and memory loads

on different machines. MARIANE even though faster than

Hadoop at first due to its low overhead nature [9], performs

worst in the end as Hadoop catches up to it. MARIANE is de-

void of any load balancing capability and as such suffers in this

scenario. Hadoop, although featuring a somewhat inefficient

load-balancing model, copes better than MARIANE. Hadoop’s

load shifting strategy is however upstaged here by MARLA

which performs best. While Hadoop’s speculative execution

shifts load back and forth between stressed and stress-free

machines, MARLA does not operate any load shift, but lets

each machine request jobs as they complete their prior tasks.

This, results in the lowest runtime and thus best performance

of all three frameworks.

Figure 5 shows a homogeneous cluster of 75 nodes (600

cores), all of which are stress-free. Devoid of the need to load-

balance, and due to its lightweight nature, MARIANE does

best. The margin between it and MARLA here is however

slightly below 1% with 300 Million matrices to process. Given

that MARLA was inspired from MARIANE, this latency is

the result of task scheduling. In this case, we minimized the

granularity of MARLA’s tasks as the environment at hand

is homogeneous. In a homogeneous environment, less tasks

means less scheduling. While this is ideal in a homoge-

neous environment, it is not in a heterogeneous cluster. The

cost of managing those tasks however causes a performance

footprint exhibited by MARLA against MARIANE shown

here, even under MARLA’s best setup for a homogeneous

environment. Hadoop performs worst here; however, rather
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Fig. 6. Speedup between stress-free and stressed cluster runs for MARLA
over Hadoop. This shows how much faster MARLA is over Hadoop in stress-
free clusters vs stressed ones.

than load-balancing, as the performance narrative has been so

far, instead, the lightweight nature of MARLA and MARIANE

combined with the use of GPFS give both MARLA and

MARIANE the upper hand. The same conclusions were found

between Hadoop and MARIANE in [6].

Figure 6 shows how much faster MARLA proves to be

over Hadoop in two types of scenarios: Stress-free clusters and

stressed clusters. In the stressed case, the stress is induced on

75% of the participating nodes. Although faster than Hadoop

by up to 38% in the homogeneous cluster, MARLA shows

here to be faster in the heterogeneous case with a little over

78% better performance over Hadoop. As mentioned in the

introduction to our performance section, the stressed induced

here occupies all cores of the stressed node at 50% utilization,

while every other node is subjected to 25% memory utilization.

It is worth noting in Figure 7 that as more data is present

on the cluster, MARLA’s file granularity is reduced. With

bigger input data, previously finer input files become bigger

and with bigger tasks, slow nodes do more task work, thus

slowing down the job overall. We elected not to increase the

file granularity setting in between data increases in this graph

for consistency, as granularity increases would yield constantly

finer files, which benefits MARLA in this instance. This fact

is illustrated in Figure 8, where as tasks get finer, MARLA

performs better in the stressed cluster environment it operates

in. Also, as the data grows from 10 to 40 millions matrices,

for the same granularity settings, the runtime disparity between

adjacent granularity settings is greater for bigger input, for 2

and 4 input pieces per node. The runtime difference shows a

greater disparity with 40 million matrices, than for the same

granularity settings for 10 million matrices. This shows that

as data grows, MARLA’s granularity setting is best raised in

value depending on the size of the data.

Figure 9 shows MARLA’s fault-tolerance abilities. As we
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changed our traditional input specific fault-mechanism, as seen

in MARIANE [9], to a task oriented fault-tolerance mechanism

to accommodate MARLA’s fair-share scheme, it was impera-

tive to test this fault-tolerance scheme against Hadoop’s and

MARIANE’s. As expected, MARIANE and MARLA perform

closely, as Hadoop falls behind under failing node conditions.

V. RELATED WORK

While a fair body of work exists with regard to Task

Scheduling in MapReduce [16] [17] [18] [19], often con-

sidering heterogeneity of clusters, these works seek to re-

define task scheduling in order to improve performance when

scheduling multiple jobs at once, rather than scheduling within
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Fig. 9. Parsing of 0.6TB file full of words, in a word frequency count,
under failing conditions. MARIANE Hadoop and MARLA all start with 32
nodes each, then progressively lose 6, 8, 10, 12, 14, and 16 nodes.

each individual job. Zaharia et al. [4] and Chen et al. [20]

in a different approach, focus on improving speculative task

execution in order for it to efficiently determine which tasks

should be picked for duplicate execution. While there can be

improvements to Hadoop’s speculative execution model, in

highly active clusters with a large number of users, nodes may

idle and resume work in a constant fashion. In such settings,

speculative execution would cause constant duplicate tasks to

be scheduled every time nodes are detected to be burdened,

even if such a condition is temporary, as the case may be.

While [5] espouses a static load-balancing model by assessing

the cluster and accordingly splitting the data, such an approach

is inefficient should ”surprise” third-party loads arise in the

middle of a MapReduce job.

In the domain of MapReduce, Twister [7] is an iterative

MapReduce application devoid of load-balancing as the frame-

work focuses on catering to iterative applications. LEMO-MR

[8] is a lightweight, low-overhead MapReduce framework.

LEMO-MR however, much like DELMA [21], is also devoid

of load-balancing. Amazon has produced EMR [22], a cloud

computing framework allowing for MapReduce applications to

be implemented. In a similar fashion, Microsoft has produced

Azure [23]. EMR and Azure are proprietary applications, and

hence an insightful analysis on their design decisions is not

possible. However EMR hosts Hadoop, and as such the same

approach to load-balancing as in Hadoop might be at play.

VI. CONCLUSIONS

Used by Yahoo!, Facebook and Google, to name a few, the

MapReduce model has become a widely acclaimed processing

model for big data. As the MapReduce paradigm promotes

the applications of uniform map and reduce functions to

traditionally similar (size-wise) split input data chunks, it is

trivial to see the source of its deficiencies in heterogeneous

environments. Fortunately, the lack of performance displayed

in such settings is rooted in its implementations, rather than

in the model itself. In the traditional case, such as with

Hadoop, Twister and MARIANE, nodes showing different

performance profiles are given similar loads to process through

equal data partition. Attempts at a solution to this problem



range from re-inventing Hadoop’s speculative model, to static

load-balancing schemes. All of these, however, mitigate the

problem rather than solve it, and none directly address the

performance ability of the individual worker node, which is the

source of cluster heterogeneity. Faced with this condition, we

presented MARLA, a load-adaptive MapReduce framework

espousing a task-oriented approach to MapReduce application

processing. Rather than equally splitting the input for its nodes,

as in traditional MapReduce frameworks, MARLA creates a

multitude of tasks born from input splits, many times greater

in number than the sum of its nodes. This approach allows the

participating nodes to request tasks at their own pace.
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