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This paper describes a system for model- 

ing, animating, previewing and rendering 
articulated objects. The system has 

a modeler of objects that consists of joints 
and segments. The animator interactively 
positions the articulated object in its stick, 

control vertex, or rectangular prism rep- 

resentation and previews the motion in 
real time. Then the data representing the 

motion and the models is sent to a multi- 

computer [iPSC/2 Hypercube (Intel)]. 

The frames are rendered in parallel, ex- 

ploiting the coherence between successive 
frames, thus cutting down the rendering 
time significantly. Our main aim is to 

make a detailed study on rendering of 
a sequence of 3D scenes. The results show 

that due to an inherent correlation be- 

tween the 3D scenes, an efficient rendering 
can be achieved. 
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1 Introduction 

The modeling, animation, and rendering system 

(MARS) is an ongoing study to provide a frame- 

work or environment for developing high-quality 
and cost-effective computer-generated anima- 
tions. The animator is presented with an interac- 

tive, flexible, powerful, and fast system. There 
have been several goals in designing MARS. 

First, the system is not intended for a specific 

application. It is a multipurpose animation gener- 

ator. Second, MARS tools were designed so that 

any of them can easily be replaced. New tools 

can be added to the system without disturbing 
the integrity of the environment. Third, MARS 

was designed so that it makes the most of the 

current resources in the development environ- 
ment (Fig. 1). 

The process of generating a computer animation 

by MARS can be broken down into three phases 
(Fig. 2): modeling, animation, and rendering. In 

the modeling phase, the modeler creates a 3D 

model of the scene and its components. In the 

animation phase, the animator describes how the 
model will change its place and orientation over 

time, generates the key-frames, and subsequently, 

using a simplified model of the object, views the 
motion described in real time. The most impor- 

tant tool of the system is the renderer. In the 
rendering phase, the renderer running on the 

iPSC/2 multicomputer currently with 32 proces- 
sors, takes the model and animation data and, for 

each frame in the sequence, generates a 2D image 

with the specified shading algorithm and camera 
position. 

2 Overview 

In MARS, an animator can use graphical primi- 

tives or B-spline surfaces. The models can have 

any number of joints, thus any general object can 

be modeled. By transforming various segments of 

a model, many different versions can be created. 
The animator can switch among the many avail- 

able models by clicking them, and orient the cur- 
rent model by selecting an axis, an angle, 

and a joint from a menu (Heller 1990; Ozgii 9 

1988). The rendering process, which is the most 
expensive phase of the three, is done by a multi- 
computer. The patches are rendered on 32 
processors simultaneously. One of the most 
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Fig. 1. A general view of the MARS system 

Fig. 2. The process of generating a computer animation 

important  concepts in rendering is the distribu- 

tion of the load among the processors, i.e., load- 

balance. This is achieved by a hybrid subdivision 

scheme that uses both object-space and image- 

space concepts. Moreover, the rendering is done 

even more efficiently by exploiting the temporal 

coherence that exists between the frames of the 

animation. Thus, the rendering time is shorter 

than that of the traditional straight-ahead ren- 

derers that work on uniprocessor machines and 

do not use the principle of coherence. 

3 MARS modeler 

The problem of presenting a 3D definition to the 

computer has been well researched in the past. 

There have been many approaches and studies on 

modeling in three dimensions (Cachola and 

Schrack 1986; Ferin 1990; Grosso et al. 1989; 

Mahmud and Ozgii~, 1990, 1991; Ostby et al. 

1990). The MARS modeler treats a model as 

a composition of a library of predefined or ready- 

to-use graphical primitives. The model consists of 

joints and their base segments, and the modeler 

connects these base segments with one another as 

specified in the joint definitions. 

3.1 Joints 

The joints form an n-ary tree structure (Fig. 3), i.e., 

the number of child joints of a given joint is not 

limited. Each joint has a parent joint and n chil- 

dren. Two vectors are used to define the X and 

Y axes of the joint. The Z-axis is the vector prod- 

uct of X and Y axes of that joint. A joint can be 

rotated about each of the X, Y, and Z axes, thus it 

has up to three degrees of freedom. With this 

method, simple joints, such as fingers (hinge 

joints) and complex joints, such as shoulders 

(ball-and-socket) can be simulated. Also, each 

joint has its own coordinate axis, contained in the 

definition of the model. Most of the time, the 

Z-axis is along the direction of the segment as 

a convention, but this can be modified to suit the 

needs of the animator. As a joint is rotated along 

its coordinate axes, the axes are also rotated, so it 

does not matter what the orientation of the joint 

with respect to the world coordinate axes is. The 

local coordinate axes are always aligned in the 

same way with respect to the segment (Fig. 4). 

3.2 Segments 

Each joint has a base segment that is defined with 

respect to its local coordinate axis. The segments 

of a MARS model are defined as B6zier surfaces 

(Ferin 1990; Rogers 1989, 1990; Watt 1989), but 

instead of directly giving a set of B6zier control 

points for  each segment, the user first defines the 

segment bounding box (sbb) of the segment, which 

is simply the rectangular prism that bounds the 

segment itself, and then a set of B6zier control 
points. In fact, each base segment is defined in 

a unit cube, i.e., it is a set of normalized control 

points and their bounding box is a unit cube. 
Eventually this normalized segment definition is 
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Fig. 3. The structure of a model 

Fig. 4. A joint rotates with its coordinate axes 

Fig. 5. The segment bounding boxes (sbbs) and the 

actual model 

scaled with respect to the defined sbb. If no sbb is 
defined, a unit cube is assumed (Fig. 5). As each 
segment's sbb is defined, we use this simpler rep- 
resentation in the positioning and previewing 
phases. This speeds u]~ the respective processes. 
For each segment of a model, a transformation 
matrix is kept for each frame. This matrix is gener- 
ated from the local and the world coordinate axes 
and the joint positions. It is updated at every 
frame, should the segment change its place or 
orientation (Tokad 1990). 

4 Animation 

The MARS animator animates the 3D articulated 
rigid models using the parametric keyframe inter- 
polation method, though there are many other 
methods in the literature (Badler 1986; Badler and 
Manoochehri 1986, 1987; Getto and Breen 1990; 
Hewitt et al. 1986; Jackson and Morris 1988; 
Magnenat-Thalmann and Thalmann 1985; Ostby 
et al. 1990; Shoemaker 1985; Wyvill et al. 1991). 

4. 1 Interpolation strategy 

Inbetween frames are frequently linearly interpo- 
lated, resulting in temporal discontinuities and 
movements that only approximate actual trajec- 
tories and deform the animation (Badler 1987; 
Blinn 1987; Girard 1987). The MARS animator 
can interpolate the key frames by linear, acceler- 
ation, or deceleration methods. The position-ver- 
sus-frame graphs are shown in Fig. 6. While the 
motion is being edited, simple representation 
techniques are used (Fig. 7). The matrix opera- 
tions during the interpolations are shown in 
Fig. 8. 

4.2 Communication between the animator 
and the renderer 

After all the previewing is done and the desired 
motion sequence is achieved, the scenes are pre- 
pared for rendering. This expensive process is 
done on a multicomputer to cut down the total 
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animation time. This means that the data repres- 

enting the models and the animation must be 

transmitted to the multicomputer. After preview- 

ing, we have the model data and the motion 

sequence data. The important  point at this stage is 

the way this model and the motion data are trans- 

mitted between the animator and the renderer. 

There are a number of ways to do this. The cri- 
terion of optimized communication is that this 

data should be well compressed and it should 

have no redundancy, but it must contain all the 

necessary information about the models and the 

specifications of the motion. The format of this 

data is very significant. There is a tradeoff be- 

tween the amount  of data and the data interpreta- 

tion time. The data format for MARS commun- 

ication is shown in Fig. 9. The model-data com- 

munication is straightforward. Each model has 

some segments, and each segment has its own 

definition. However, for motion data, the trans- 

formation matrices for each segment of each 

model is communicated only for the first frame of 

the film. Then a tranformation matrix of a seg- 
ment is transmitted to the multicomputer if the 

place or orientation of the segment has changed 

since the previous frame. This provides a signifi- 

cant compression of the data, since only the neces- 

sary matrices are transmitted. This possibility, is 

also exploited in the processing of the data, as will 

be seen in the next section. 
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Fig. 10. Format ion of  the edge boxes in the Z-buffer algori thm 

Fig. 11. The high degree of  coherence in a film 

5 Rendering 

A comparison of algorithms for the removal of 
hidden surfaces is found in (Sproull et al. 1974). 
The Z-buffer algorithm developed by Catmull 

(1975) combined with the Phong shading model 

(Phong 1975) represents the most popular render- 

ing scheme. This algorithm, using Sutherland's 

classification scheme, works on image space or 
screen space (Fig. 10). The rendering method that 
MARS uses is the scanline Z-buffer algorithm for 

the removal of hidden surfaces (Watt 1989). We 

prefer this algorithm mainly due to its very special 
nature that perfectly suits our tools for optimizing 
the rendering process. First it runs on the object 
space and then the image space. Moreover, it 

requires much less memory than conventional 
Z-buffer algorithms that occupy all the screen 
space for the rendering. The speed of this algo- 
rithm is the bottleneck of all the film-making 
process. If we think of rendering a picture as 
reducing a 3D scene to a 2D image, then the 

rendering of an animated film, i.e., a sequence of 

frames, is reducing a 4D scene (including time as 
the fourth dimension) to a 3D image (including 
time as the third dimension). Thus, rendering an 

animated sequence of frames must be thought of 

differently from the rendering of a static scene. If 
we render a sequence of animated frames separ- 
ately, i.e., render each frame as totally irrelevant to 

the others, the result would be acceptable, but 

there are surely better ways to do this. In terms of 

efficiency of processing, what makes a sequence of 

animated film frames different from a sequence of 
totally irrelevant frames is the concept of tem- 

poral coherence (Watt 1989). This is a very impor- 

tant characteristic that can be put to good use. 

5. 1 Temporal coherence 

The successive frames of any object or joint in an 
animated film have a great degree of coherence. 

This is to say, in consecutive frames, an object or 

a joint makes a relative translation or a rotation 

to its previous position and orientation (Lasseter 

1987). The optimal rendering algorithm should 

fully exploit the temporal coherence between suc- 

cessive frames in order to reduce the work of 
rendering. It should avoid rendering the parts of 

the picture that are identical to those of the pre- 

vious frame. Such an algorithm should have 

a mechanism that buffers the parts of the picture 
that do not change separately from parts of the 

picture that will change in the next frame. After 
rendering a frame totally, the next frame can be 

created by simply rendering only those parts of 

data that have changed their place and/or orienta- 

tion since the previous frame. The basis of such an 

algorithm is that the coherence between success- 

ive frames of an animated film is high most of the 
time (Fig. 11). Temporal coherence is one phe- 

nomenon exploited fully to render animated film 
sequences more efficiently. 

5.2 Parallelization 

In this paper, we investigate the parallel rendering 

of frames generated by animation on distri- 
buted-memory message-passing architectures 
that are usually referred as multicomputers. In 
a multicomputer, the processors have only local 

5 



memories, and no memory is shared. In these 

architectures, synchronization and coordination 

among processors are achieved through explicit 
message passing. Multicomputers have been 

popular due to their nice scalability features. 
Achieving speed-up through parallelism on such 

architectures needs special attention. The parallel 

algorithm must be designed so that both compu- 

tations and data can be distributed to the proces- 

sors with local memories in such a way that com- 

putational tasks can be run in parallel, while the 

computational loads of the processors are bal- 
anced as much as possible. Communication be- 

tween processors for exchanging data is necessary, 
but it is an overhead component of the parallel 
algorithm that should be minimized for utmost 

efficiency. Another important factor in designing 
efficient parallel algorithms is granularity. 

Granularity depends on both the application and 

the parallel machine. In a parallel machine with 

a high communication latency, the program- 

mer must structure the algorithm so that large 
amounts of computation are done between com- 
munication steps. The implementation described 

in this work achieves efficient paralMization by 

considering all these points in designing a parallel 
rendering algorithm for multicomputers of me- 

dium-to-coarse grain parallelism. 
For the sake of simplicity, we assume that the 

numbers of inbetween frames in all intervals are 
always multiples of the number of processors P. 

Here, an interval refers to a sequence of inbetween 

frames between two successive keyframes. Hence, 
each processor can be assigned the rendering of an 

equal number of inbetween frames in an interval. 

Inbetween frames are dedicated to individual pro- 

cessors because of the unpredictable computa- 

tional load involved in the rendering of individual 
inbetween frames. If the granularity of rendering 
an inbetween frame is too small, parallel render- 
ing of that frame by P processors may take even 

longer than simple sequential rendering. In this 
way, data is processed as if it is compressed be- 

tween the successive keyframes. However, we can- 
not compress the data at the keyframes because of 
the nature of the scheme adopted for exploiting 
the temporal coherence during the rendering of 

inbetween frames. All objects are processed dur- 
ing keyframe rendering since stationary and mov- 
ing parts change partially or completely. Each 
keyframe is rendered concurrently by all P proces- 

sors because the maximum computational load 
occurs during keyframe rendering. 

5.2. 1 Model and film data distribution 

The 3D points in space constituting the model 

database are multiplied by the transformation 

matrices of the film data for each frame. Hence, 

both model and film data should be distributed 

among processors for an efficient parallelization 
on multicomputers. 

Data distribution for keyframe renderings. In the 
parallel rendering of keyframes composed of 3D 
objects, the distribution of the objects to the pro- 

cessors is a crucial problem in achieving balanced 
rendering computations. Note that, the model 
database corresponding to both stationary and 
moving parts should be distributed to the proces- 

sors during parallel keyframe rendering. There are 
two main approaches to this distribution prob- 

lem: image (screen) space and object-space subdi- 
visions. In these distribution schemes, objects con- 
stituting the model database are treated as lists of 

patches. In the image-space subdivision, proces- 

sors are assigned the responsibilities of rendering 
on disjoint subregions (usually slices) of the over- 

all screen. Then, the patches are distributed to the 
processors according to their locations on the 
view of the scene projected onto the screen (Fig. 

12). The advantage of schemes for image space 

decomposition is the fact that the processors inde- 
pendently construct the final images associated 

with their slices of the image plane at the end of 

their local rendering computations. However, 
computational load balance is a very crucial 

problem and must be solved in these types of 

decomposition schemes. 
In the object-space distribution schemes, the 
model database is decomposed evenly into P sub- 

sets, and the responsibility of rendering each sub- 
set is assigned to a unique processor. Tiled or 

scattered decomposition can be adopted for the 
even decomposition of the whole model database 

(Fig. 13). 
In tiled decomposition, patches belonging to the 
same objects are supplied consecutively and the 
successive N mod P processors are assigned the 
successive patch blocks of size [N/P~, whereas 
the remaining processors are assigned the success- 

ive patch blocks of size [N/P~. Here, N denotes 
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the total number of patches in the model 

database. In scattered decomposition, patches are 

assigned to processors in a round robin fashion. 
That is, the first patch is assigned to the first 

processor and the second patch is assigned to the 
second processor, etc. When P patches are as- 

signed, the next patch is assigned to the first 
processor, and this process continues. In both 

schemes, the number of patches assigned to the 

various processors may differ at most by one. 
However, assigning equal number of patches to 

each processor does not guarantee a good bal- 
ance. Different patches may require different ren- 
dering times depending on several geometric fac- 

tors such as their sizes, distances, and orientation 
to the screen, etc. In scattered decomposition, 

patches belonging to the same object are shared 
by various processors. The scattered decomposi- 
tion is more likely to yield a better load balance 
than the tiled decomposition since patches be- 

longing to the same object can be assumed to take 
almost equal rendering time. Thus, scattered de- 
composition can be considered as a simple yet 
effective scheme for even object-space distribu- 
tion. However, parallel rendering algorithms 
based on object-space decomposition necessitate 

global pixel merging after the completion of local 

rendering computations. Since different proces- 

sors may produce pixels at the same screen loca- 
tions, global Z-buffering is required to combine 

the pixels from each processor into a complete 

scene. This pixel merging problem introduces 
a very high computation and communication 

overhead. 

In this work, we divide the conventional algo- 

rithm for the removal of scanline Z-buffer hidden 

surfaces into two phases for the sake of efficient 
parallelization of keyframe renderings. In the first 

phase, each patch is passed through a projection 
pipeline consisting of clipping and edge rasteriz- 

ation to construct its associated edge boxes on the 

appropriate scan lines. Note that Z and normal 

values are also interpolated during edge rasteriz- 
ation. In the second phase, edge box pairs on 

scanline lists are processed to render and shade 
their respective segments. The nice feature of this 

two-phase approach is the fact that the first phase 
runs on the object space whereas the second phase 

runs on the image space. Hence, we exploit this 
feature by adopting object-space distribution of 
the model data for the first phase and image-space 
redistribution of the resulting edge box pairs for 
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the second phase. We use a scattered decomposi- 
tion scheme in the distribution of the model 
database for the first phase. In spite of the scat- 
tered decomposition of the model database, each 
processor stores its local patches in an object- 
based hierarchy. This hierarchical storage of sub- 
sets of local model database is very crucial for 
maintaining the coherence in the rendering of 
inbetween frames as will be explained later. The 
edge box pairs are redistributed in image space 
after the completion of the first phase of each 
keyframe rendering, as will also be explained later. 
The film data requirement for the parallel render- 
ing of each keyframe is only the replication of the 
identities of the moving objects in the following 
interval and the transformation matrix corres- 
ponding to the last inbetween frame in the pre- 
vious interval. 

Data distribution for inbetween frame render- 
ing. The rendering of inbetween frames by indi- 
vidual processors necessitates the replication of 
the model data corresponding only to the moving 
part(s) among processors for each interval. Note 
that, the moving part data is to be replicated by its 
initial positional information for the respective 
interval. The film data (transformation matrices) 
corresponding to the moving part(s) in each inter- 
val should be distributed among the processors 
according to the inbetween frame assignments of 
the processors. The assignment of inbetween 
frames to individual processors is also a crucial 
factor for efficient parallelization. 
The proposed scheme operates in a synchronous 
manner. All processors begin to render a keyframe 
in parallel after completing the rendering of the 
inbetween frames assigned to them in the previous 
interval. Those processors completing the render- 
ing of their inbetween frames earlier than the 
other processors may have to wait idle during the 
parallel rendering of the following keyframe. 
There are equal numbers of patches to be ren- 
dered in each inbetween frame of a particular 
interval. However, the rendering complexity of 
a moving object may vary during its motion. For 
example, the rendering complexity of an object 
moving towards (away from) the screen increases 
(decreases) during its motion due to the increase 
(decrease) in the projection areas of the patches 
belonging to that object. However, the rendering 
complexities of successive inbetween frames can 

be assumed to be very close. Hence, we adopt 
a scattering assignment of inbetween frames to the 
processors for a better computational balance 
during the pipelined rendering of inbetween 
frames. Figure 14 illustrates the scattered assign- 
ment of an interval with 20 frames to 4 processors. 
This figure also illustrates a typical variation of 
the rendering complexity of a moving object dur- 
ing its motion. 

5.2.2 Rendering of keyframes 

The object space is subdivided, based on scattered 
decomposition, only once during the preprocessing 
phase, and the subdivision is maintained for the 
parallel first phase computations of all keyframe 
renderings throughout the whole animation pro- 
cess. Image-space subdivision is repeated for the 
computations of each keyframe in the second 
phase. In this work, a scanline is chosen as an 
atomic process to be performed sequentially by an 
individual processor. Otherwise, further division of 
individual scanlines may necessitate an unaccept- 
able computation and communication overhead in 
order to maintain spatial coherence. In this work, 
the number of rendering computations to be per- 
formed for each scanline is assumed to be propor- 
tional to the number of edge segments which is 
equal to the (number of edge boxes)/2 on that 
scanline. Hence, the balanced image-space render- 
ing of the computations in the second phase of 
keyframe renderings can be formulated as follows: 

Input instance: We are given n scanlines (s~; 
s2; . . . ,  s,) with the corresponding computational 
weights (wl; w2; ... ,wn). Here, wi is taken as the 
number of edge segments on the scanline si and 
W is the sum of all wi's. 

Problem: These n scanlines must be assigned to 
P processors so that the sum of the weights of the 
scanlines mapped to each processor is as close to 
the optimal load W,verage = W/P as possible. 

This problem is in fact the number partition- 
ing problem that is NP-hard. Various heuristics 
have been proposed for the solution of this prob- 
lem. In this work we propose a simple yet effective 
greedy heuristic. The steps of the proposed algo- 
rithm for parallel keyframe rendering are given 

below: 
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Step 1: processors concurrently multiply their 

local 3D points belonging to the moving object(s) 
in the previous interval by the respective trans- 
formation matrix in order to compute the final 

positions of their local patches belonging to those 
objects. Processors mark these objects as station- 
ary for the following interval. Then, processors 

mark the moving objects in the following interval 
by using their local film data. 

Step 2: processors concurrently run the first 
phase of the scanline Z-buffer algorithm for their 

local patches. During this operation, each proces- 

sor constructs two edge lists. One is for its local 
patches belonging to the stationary objects, and 

the other is for its local patches belonging to 

moving objects in the following interval. Note 
that objects that are going to move in the follow- 

ing interval are effectively processed according to 
their initial positions. Meanwhile, each processor 

constructs a local edge-segment counter (ESC) (an 
array of size n) where ESC(i) denotes the total 

number of local edge segments to be rendered on 
scanline s~ during the second phase. Figure 15 

illustrates this operation for a scene with 7 patches 

and an image plane with 19 scan lines. No distinc- 

tion is made between moving and stationary 
patches, so that only one edge list is shown for the 

sake of simplicity in illustration. 

Step 3: each processor performs a prefix sum on 
its local ESC array so that ESC(i) holds the total 

number of local edge segments on the first i scan- 
lines. Then, a duplicated global vector sum opera- 

tion is performed on the local ESC vectors. At the 
end of this global operation, each processor holds 

a local copy of the ESC array where ESC(i) con- 
tains the total number of global patches on the 
first i scanlines. Figure 16 illustrates a sample 

operation of step 3. The leftmost ESC denotes the 
local ESC counter of an individual processor. The 

middle ESC denotes the result of the local prefix 
sum operation and the rightmost ESC denotes the 
result of the global sum operation on local ESC 
arrays. 

Step 4: in this step, each processor runs the same 

mapping heuristic using its own copy of the global 
ESC array. The proposed heuristic achieves the 
tiled decomposition of the scanlines by assigning 
consecutive scanlines from ki-1 + 1 to ki to pro- 
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F i g .  15 .  A n  edge list formation with a counter for each line 

F i g .  16 .  Prefix and global sums of  edge segment counters (ESCs) 

cessor i for i = 1 , 2 ,  . . . , P  with k o = 0  and 

ESC(0) = 0, while maintaining the even workload 
among scanline slices as much as possible. The 
k indices are determined as follows. Each pro- 

cessor, after computing ki-a, proceeds on the 
ESC array starting from ESC(ki_I + 1) until 

ESC(j) - ESC(ki_ 1) _-> Wavg,  where Wavg ~-- W / P  = 

ESC(n)/P denotes the perfect load balance. Then, 
k~ is set to j if 

E S C ( j )  - ESC(k~_  ~) - -  W a v g  ~ W a v g  - -  

( E S C ( j  - 1) - ESC(k~_  ~)) (1) 
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otherwise it is set to j  - 1. The left and right-hand 
sides of Eq. 1 denote the deviation of the work- 
loads of processor i from the perfect load 

balance if scanline slices [ki-1 + 1 . . . j ]  or 
[ki-1 + 1 ... (j - 1)] are assigned to processor i, 

respectively. Each processor respects this proced- 

ure for all processors i = 1, 2, ..., P. Figure 16 
illustrates the result of this greedy heuristic for the 

given ESC array. The numbers inside the parenth- 

esis denote the number of edge boxes to be pro- 
cessed by the respective processor. 

Step 5: at the end of step 4, each processor deter- 

mines the mapping information for all scanlines in 
the image. In this step, each processor sends the 

edge boxes of the nonlocal scanlines to its home 
processor according to the mapping information. 
Then, each processor concatenates (by simple 

pointer operations) the received edge list with its 

local edge list. 

Step 6: after each processor receives all edge box 
data to be rendered on its local scanline slice, it 
prepares to run the second phase of the rendering 

algorithm concurrently. Let ni denote the num- 
ber of scanlines assigned to processor i for 

i = 0, 1, ... , P - 1 where 2ni = n. Each proces- 
sor i concurrently allocates and initializes ni x r 

2D local arrays, the constant frame buffer (CFB), 
the constant Z-buffer (CZB), and the local moving 

Z-buffer (MZB), where r denotes the number of 

pixels in each scanline. That is, the screen is as- 

sumed to contain A = n x r pixels. Here, the CFB 
and CZB arrays correspond to the respective 

scanline slices of their processors. Similarly, the 
local moving Z-buffers (MZB) of the processors 

correspond to their scanline slice assignments. 

The local CFB and CZB arrays remain constant 
throughout the intervals, and they are updated at 

keyframes. Note that two Z-buffers (CZB and 
MZB) are maintained during keyframe render- 
ings. The local CZB arrays are maintained to keep 

the Z-values of the pixels produced by stationary 

parts that will be used to determine the visibility 
of the moving parts during the succeeding inter- 
val. The local MZB arrays are temporary arrays 
used to determine the visibility of the initial posi- 
tions of those moving parts on the keyframe. 
After these local initializations, the processors 
concurrently carry out the rendering of their local 
edge segments in two successive phases. In the 

first phase, they concurrently render the edge seg- 
ments belonging to the stationary objects by pro- 
cessing their local stationary edge lists. In this 

phase, pixels produced by the local edge segments 
belonging to the stationary parts are Z-buffered 
with the local CZBs and the resulting Z and pixel 

values are written into the local CZB and CFB 

arrays, respectively. This process is straightfor- 

ward as it is the same as that of the conventional 
Z-buffer algorithm. In the second phase, proces- 

sors concurrently render the edge segments be- 
longing to the moving objects (in the next interval) 

by processing their local moving edge lists. How- 

ever, the process in this phase is slightly different 
from the conventional sequential Z-buffer algo- 

rithm. The pixels produced by the local edge seg- 
ments belonging to the moving objects are Z- 
buffered with both local MZBs and CZBs. The 

resulting Z-values are written into the local MZBs 

whereas the resulting pixel values are written into 

the local CFBs. Although the local CZB arrays 

are used for Z-buffering, they are not modified at 
all during this phase. Thus, the Z-values of the 
pixels produced by stationary parts are not lost 

and the local CZBs can be exploited to realize the 

temporal coherence during inbetween frame ren- 
derings. At the end of this step, processors deallo- 

cate their MZB arrays. 

Step 7: At the end of step 6, the local CFBs 
contain the final images of an individual keyframe 

on the respective screen slices. The processors 
send their local CFBs to the host for display. Then 

processors concurrently run a global concatena- 
tion on their local CZB arrays. At the end of this 
global operation, each processor gets a copy of 

the global constant Z-buffer (GCZB) array of size 

n x r. Similarly, the processors concurrently run 
a global concatenation on their local patches be- 
longing to the moving objects in order to replicate 
the moving part database in each processor. This 
is done for the inbetween frame rendering in the 

next interval. At the end of this step, the proces- 

sors deallocate their local CZB arrays. 

5.2.3 Rendering of inbetween frames 

The processors maintain two local moving frame 
buffers (MFB) and MZB arrays of size n x r for 
inbetween frame renderings. These arrays are 
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static and are re-initialized just before each inbe- 

tween frame rendering. Recall that each processor 

also holds a local copy of the GCZB which con- 

tains the Z-values of the pixels produced by the 

objects that stay stationary during the respective 

interval. 

The processors concurrently multiply the 3D 

points of the moving object(s) with different 

transformation matrices using their local film 

data. Then, they concurrently and independently 

render the moving objects in different positions 

that are computed locally. Hence, P successive 

inbetween frames are rendered concurrently.  

During these local rendering computations, 

the processors compare the Z-values of the pixels 

produced by the moving object(s) with their 

local MZB and GCZB arrays and write the result- 

ing Z and pixel values into their local MZB 

and MFB arrays. Local copies of the GCZB 

array remain intact since they are needed for 

their rendering of other inbetween frames in the 

same interval. Each processor sends its local MFB 

array to the host for display upon completing the 

rendering of an inbetween frame. Then, it repeats 

this procedure for the next inbetween frame as- 

signed to it. No interprocessor communication is 

involved in the inbetween frame rendering except 

the transmissions of the resulting MFB arrays to 

the host. 

5.2.4 How the host interprets the image data 

coherence in the incoming data, the use of blocks 

instead of single pixels for flagging is efficient. 

The only issue in this mechanism is how large 

the blocks should be. If they are too large, un- 

necessary time will be spent in writing the back- 

ground buffer back to the screen. If they are 

too small, overheads in comparison will be 

introduced. 

5.2.5 Performance results and conclusion 

The performance of the parallel rendering of the 

animation data generated by MARS is tested on 

an Intel iPSC/2 Hypercube with 32 processors. 

Table 1 illustrates the execution times for the 

parallel rendering of inbetween frames of an ani- 

mation data for various numbers of processors 

and various sizes of moving parts. The data in 

Table 1 correspond to the averages of various 

types of movement of a number of segments (out 

Table 1. Variation of the execution times (T in ms), speed-ups 
(S), and efficicncies (E) with respect to two processors of the 
parallel rendering of inbetween frames for the animation of 
a model (with eight segments and 10400 patches) with the num- 
ber of processors and moving part sizes. 

Moving 
part 
size 

Number of processors (P) 

2 4 8 16 32 

T 806 442 227 126 82 
1300 S (1.82) (3.55) (6.40) (9.83) 

At each keyframe, the host receives a CFB. It E (0.91) (0.89) (0.80) (0.61) 
writes this buffer on the screen. Then it receives T 1188 634 323 172 122 

2600 S (1.88) (3.68) (6.91) (9.83) 
consecutive MFBs. To write a MFB on the screen, E (0.94) (0.92) (0.86) (0.61) 

the host first must copy the pixels that will be T 1484 783 394 209 124 
occupied by the MFB pixels. The background is 3900 s (1.90) (3.77) (7.10) (11.97) 
saved because the host will write it back before E (0.95) (0.94) (0.89) (0.75) 

T 2109 1101 563 290 163 
writing the moving parts of the next frame. Due to 5200 s (1.96) (3.76) (7.27) (12.93) 

the nature of the problem, we need a background- E (0.98) (0.94) (0.91) (0.81) 
saving mechanism for the MFB writing. The solu- T 2298 1178 598 307 173 
tion to this problem works as follows. We hold the 6500 s (1.95) (3.84) (7.48) (13.28) 

E (0.98) (0.96) (0.94) (0.83) 
received CFB after writing it on the screen as T 2551 1293 662 339 t88 
a background buffer. We also hold a 2D binary 7800 s (1.97) (3.85) (7.53) (13.57) 
array, where each bit denotes whether a block of E (0.98) (0.96) (0.94) (0.85) 

T 2691 1393 706 355 201 
pixels is overwritten or not. That is, as we write 9100 s (1.93) (3.81) (7.58) (13.39) 

any pixel of the MFB on the screen, we set the B (0.97) (0.95) (0.95) (0.84) 

corresponding bit to 1. Then, before writing a new Y 3215 1693 850 432 236 
MFB, the blocks of pixels with flags set are writ- 1o4oo s (1.90) (3.78) (7.44) (13.60) 
ten on the screen. As long as there is spatial E (0.95) (0.95) (0.93) (0.85) 
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of 8 segments) with 32 inbetween frames. Uni- 

processor execution times are not obtained due to 
insufficient memory. The speed-up and efficiency 

values illustrated in Table 1 (in parentheses) de- 
note the speed-up and efficiency values for 4, 8, 16, 

and 32 processors with respect to 2 processors. 
Scanning individual rows of Table 1 reveals that 

speed-up increases whereas efficiency decreases 
with an increasing number of processors for 

a fixed size of moving parts. The low efficiency 

values in the last column (P = 32) of Table 1 re- 
veal the load imbalance among the rendering of 

inbetween frames (only one inbetween frame is 

assigned to an individual processor for P = 32). 
However, considerably larger efficiency values in 

other columns (P = 4, 8, 16) confirm the expected 
high performance of the scattered assignment of 

inbetween frames to processors. The increase in 
the efficiency values with a decreasing number of 

processors (P = 16, 8, 4) for a fixed size of moving 
part confirms the increase expected in the perfor- 
mance of the scattered assignment with an in- 

creasing number of inbetween frames (2, 4, 8) 
assigned to an individual processor. As is seen 

from Table 1, scattered assignment yields suffi- 

ciently high efficiency even for 2 inbetween frames 

per processor (column P = 16). Furthermore, 

scanning individual columns (P = 4, 8, 16) of 
Table 1 illustrates that speed-up and efficiency 

values with respect to two-processors increase in 
general with increasing size of moving parts. This 

increase is attributed to two factors. The first is 

the granularity increase with increasing size of 
moving parts. The communication overhead due 

to the transmission of individual moving part 

images to the host is proportional to the screen 
size. However, computational times of inbetween 

frame renderings increase with increase in moving 
part sizes. The second factor that may contribute 
to this increase in the efficiency is the better load 

balance with increasing part sizes. In Table 1, the 

increase in moving part size is realized by increas- 
ing the number of moving segments. Hence, differ- 
ent motions of multiple segments may yield a bet- 

ter computational balance among various inbet- 

ween frame renderings. 

Table 2 illustrates the execution times for the 
parallel rendering of keyframes of various anima- 

tion data of various sizes on different number of 

processors. Execution times for one, two and four 

processors for N > 43224 were not obtained due 

to insufficient memory. Speed-up and efficiency 
values on a particular row P = 8 (N > 43224) and 

16 in Table 2 denote the speed-up and efficiency 

values with respect to the P/2 = 4 and 8 proces- 
sors, respectively, for the respective keyframe 

sizes. As is seen in the first column of Table 2, 

speed-down occurs for the smallest keyframe size 
(N = 5200) when we double the number of pro- 
cessors (i.e., from 4 to 8 and from 8 to 16). How- 
ever, we always obtain a speed-up for larger 

keyframe sizes (N > 10392) and speed-up and 

efficiency values monotonically increase with in- 
creasing keyframe sizes. Recall that the proposed 

parallel algorithm has two overhead components. 
The first one is the computation and communica- 

tion overhead introduced during the parallel load 
rebalancing after the parallel formation of local 

edge lists (steps 3 and 4). The second one is the 

communication overhead due to the transmission 
of local CFBs to the host at the end of the parallel 
rendering of keyframes (step 7). An additional 

overhead is the global concatenation of the local 
CZB array at step 7. The first overhead is a 

Table 2. Variation of the execution times (T in ms), speed-ups (S) and efficiencies (E) with respect to P/2 processors of 
the parallel rendering of the keyframes with the number of processors and data sizes. 

Number Number of patches in the keyffame (N) 

of pro- 
cessors 5200 10392 15568 17296 22488 43224 70880 82976 98536 138288 

4 T 1888 2248 2168 2427 2846 
T 1917 2031 1866 1961 2279 2441 3007 3026 3374 4121 

8 S (0.98) (1.11) (1.16) (1.24) (1.25) 
E (0.49) (0.55) (0.58) (0.62) (0.63) 
T 1970 2013 1856 1814 1991 2066 2202 2146 2325 2686 

16 S (0.96) (1.01) (1.01) (1.08) (1,14) (1,18) (1.37) (1.41) (1.45) (1.53) 
E (0.48) (0.50) (0,50) (0.54) (0.57) (0.59) (0.68) (0.71) (0.73) (0.77) 
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function of the total number of scanlines and the 
diameter of the interconnection topology of the 
parallel architecture (i.e., log2P in the hypercube). 
That is, the first overhead does not increase with 
increasing keyframe size. Similarly, the second 
and the third overhead components are only pro- 
portional to the screen size. The percentage of the 
overhead (overhead time/total parallel rendering 
time) decreases with increasing keyframe size (N), 
resulting in increasing speed-up and efficiency 
values with increasing N. As is seen in Table 2, we 
obtain a speed-up of 1.53 (an efficiency of 0.77) for 
the largest size of keyframe when we double the 
number of processors from 8 to 16. The proposed 
parallel algorithm is expected to yield a much 
better performance for larger keyframe sizes and 
parallel architectures with lower communica- 
tion/computation ratios (e.g., fine grain architec- 
tures). 
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