
MARS" a tool-based
modeling, animation,
and parallel rendering
system

Murat Aktlhano lu, Biilent 0zgiig,
Cevdet Aykanat

Department of Computer Engineering
and Information Science,
Bilkent University,
06533 Bilkent, Ankara, Turkey

This paper describes a system for model-

ing, animating, previewing and rendering
articulated objects. The system has

a modeler of objects that consists of joints
and segments. The animator interactively
positions the articulated object in its stick,

control vertex, or rectangular prism rep-

resentation and previews the motion in
real time. Then the data representing the

motion and the models is sent to a multi-

computer [iPSC/2 Hypercube (Intel)].

The frames are rendered in parallel, ex-

ploiting the coherence between successive
frames, thus cutting down the rendering
time significantly. Our main aim is to

make a detailed study on rendering of
a sequence of 3D scenes. The results show

that due to an inherent correlation be-

tween the 3D scenes, an efficient rendering
can be achieved.

Key words: Parallel rendering--Mult i -
computer architectures-- parallel z-buffer

a lgor i thm-- Keyframe animat ion-- in-
between coherence.

Correspondence to: B. Ozgiiq

1 Introduction

The modeling, animation, and rendering system

(MARS) is an ongoing study to provide a frame-

work or environment for developing high-quality
and cost-effective computer-generated anima-
tions. The animator is presented with an interac-

tive, flexible, powerful, and fast system. There
have been several goals in designing MARS.

First, the system is not intended for a specific

application. It is a multipurpose animation gener-

ator. Second, MARS tools were designed so that

any of them can easily be replaced. New tools

can be added to the system without disturbing
the integrity of the environment. Third, MARS

was designed so that it makes the most of the

current resources in the development environ-
ment (Fig. 1).

The process of generating a computer animation

by MARS can be broken down into three phases
(Fig. 2): modeling, animation, and rendering. In

the modeling phase, the modeler creates a 3D

model of the scene and its components. In the

animation phase, the animator describes how the
model will change its place and orientation over

time, generates the key-frames, and subsequently,

using a simplified model of the object, views the
motion described in real time. The most impor-

tant tool of the system is the renderer. In the
rendering phase, the renderer running on the

iPSC/2 multicomputer currently with 32 proces-
sors, takes the model and animation data and, for

each frame in the sequence, generates a 2D image

with the specified shading algorithm and camera
position.

2 Overview

In MARS, an animator can use graphical primi-

tives or B-spline surfaces. The models can have

any number of joints, thus any general object can

be modeled. By transforming various segments of

a model, many different versions can be created.
The animator can switch among the many avail-

able models by clicking them, and orient the cur-
rent model by selecting an axis, an angle,

and a joint from a menu (Heller 1990; Ozgii 9

1988). The rendering process, which is the most
expensive phase of the three, is done by a multi-
computer. The patches are rendered on 32
processors simultaneously. One of the most

The Visual Computer (1994) 11:1-14
�9 Springer-Verlag 1994]

SUN SPARC 1+~
Workstations ,[

running :[
[

Xwindows [_ _

iPSC/2 IN Graphical

Hypercube ~ Display &

l VCR

Modeler

D N @ N � 8 9
Frames

Models ~ All nuR)

Keyframer

[] D D D [] I--1D I--11--11--1161
~) Frames

Selected Models (Keyfraxnes are detined)

Animator

Frames

Selected Models (Au f~,~ f~Ued)

2

Fig. 1. A general view of the MARS system

Fig. 2. The process of generating a computer animation

important concepts in rendering is the distribu-

tion of the load among the processors, i.e., load-

balance. This is achieved by a hybrid subdivision

scheme that uses both object-space and image-

space concepts. Moreover, the rendering is done

even more efficiently by exploiting the temporal

coherence that exists between the frames of the

animation. Thus, the rendering time is shorter

than that of the traditional straight-ahead ren-

derers that work on uniprocessor machines and

do not use the principle of coherence.

3 MARS modeler

The problem of presenting a 3D definition to the

computer has been well researched in the past.

There have been many approaches and studies on

modeling in three dimensions (Cachola and

Schrack 1986; Ferin 1990; Grosso et al. 1989;

Mahmud and Ozgii~, 1990, 1991; Ostby et al.

1990). The MARS modeler treats a model as

a composition of a library of predefined or ready-

to-use graphical primitives. The model consists of

joints and their base segments, and the modeler

connects these base segments with one another as

specified in the joint definitions.

3.1 Joints

The joints form an n-ary tree structure (Fig. 3), i.e.,

the number of child joints of a given joint is not

limited. Each joint has a parent joint and n chil-

dren. Two vectors are used to define the X and

Y axes of the joint. The Z-axis is the vector prod-

uct of X and Y axes of that joint. A joint can be

rotated about each of the X, Y, and Z axes, thus it

has up to three degrees of freedom. With this

method, simple joints, such as fingers (hinge

joints) and complex joints, such as shoulders

(ball-and-socket) can be simulated. Also, each

joint has its own coordinate axis, contained in the

definition of the model. Most of the time, the

Z-axis is along the direction of the segment as

a convention, but this can be modified to suit the

needs of the animator. As a joint is rotated along

its coordinate axes, the axes are also rotated, so it

does not matter what the orientation of the joint

with respect to the world coordinate axes is. The

local coordinate axes are always aligned in the

same way with respect to the segment (Fig. 4).

3.2 Segments

Each joint has a base segment that is defined with

respect to its local coordinate axis. The segments

of a MARS model are defined as B6zier surfaces

(Ferin 1990; Rogers 1989, 1990; Watt 1989), but

instead of directly giving a set of B6zier control

points for each segment, the user first defines the

segment bounding box (sbb) of the segment, which

is simply the rectangular prism that bounds the

segment itself, and then a set of B6zier control
points. In fact, each base segment is defined in

a unit cube, i.e., it is a set of normalized control

points and their bounding box is a unit cube.
Eventually this normalized segment definition is

2

 omp er

body

uppertorso/Q~ lowertorso

 LZo
r ightarm neck leftarm rightleg leftleg

3 4

\

Local coordinate axis of the segment

Z

Fig. 3. The structure of a model

Fig. 4. A joint rotates with its coordinate axes

Fig. 5. The segment bounding boxes (sbbs) and the

actual model

scaled with respect to the defined sbb. If no sbb is
defined, a unit cube is assumed (Fig. 5). As each
segment's sbb is defined, we use this simpler rep-
resentation in the positioning and previewing
phases. This speeds u]~ the respective processes.
For each segment of a model, a transformation
matrix is kept for each frame. This matrix is gener-
ated from the local and the world coordinate axes
and the joint positions. It is updated at every
frame, should the segment change its place or
orientation (Tokad 1990).

4 Animation

The MARS animator animates the 3D articulated
rigid models using the parametric keyframe inter-
polation method, though there are many other
methods in the literature (Badler 1986; Badler and
Manoochehri 1986, 1987; Getto and Breen 1990;
Hewitt et al. 1986; Jackson and Morris 1988;
Magnenat-Thalmann and Thalmann 1985; Ostby
et al. 1990; Shoemaker 1985; Wyvill et al. 1991).

4. 1 Interpolation strategy

Inbetween frames are frequently linearly interpo-
lated, resulting in temporal discontinuities and
movements that only approximate actual trajec-
tories and deform the animation (Badler 1987;
Blinn 1987; Girard 1987). The MARS animator
can interpolate the key frames by linear, acceler-
ation, or deceleration methods. The position-ver-
sus-frame graphs are shown in Fig. 6. While the
motion is being edited, simple representation
techniques are used (Fig. 7). The matrix opera-
tions during the interpolations are shown in
Fig. 8.

4.2 Communication between the animator
and the renderer

After all the previewing is done and the desired
motion sequence is achieved, the scenes are pre-
pared for rendering. This expensive process is
done on a multicomputer to cut down the total

3

y
Frame Frame Frame

Linear Accelerating]] Decelerating

Fig. 6. Position versus frame graphs for linear, accelerating, and decelera-
ting interpolations

Fig. 7. Stick, control vertex, and rectangular prism

Fig. 8. A matrix interpolation scheme

Fig. 9. Data formats for communication

KI :nbewen Inbtwee

:4 l ---77.-221.."

Transfromation .!i.
Matrix i!

I4x4 lStep Matrix

Keyframe

4 4]
Transffomation
Matrix

8

Model data I Motion data
I

Model name

No of Segments

Segment name

Segment type

List of patches

Segment name

Segment type

List of patches

Model name

No of Segments

Segment name

Segment type

List of patches

Segment name

Segment type

List of patches

Frame No
Model name

Segment name, T-Matrix

Model name

Segment name, T-Matrix
Frame No

Model name

Segment name, T-Matrix

(Only those that

have changed)

Model name

Segment name, T-Matrix

9

animation time. This means that the data repres-

enting the models and the animation must be

transmitted to the multicomputer. After preview-

ing, we have the model data and the motion

sequence data. The important point at this stage is

the way this model and the motion data are trans-

mitted between the animator and the renderer.

There are a number of ways to do this. The cri-
terion of optimized communication is that this

data should be well compressed and it should

have no redundancy, but it must contain all the

necessary information about the models and the

specifications of the motion. The format of this

data is very significant. There is a tradeoff be-

tween the amount of data and the data interpreta-

tion time. The data format for MARS commun-

ication is shown in Fig. 9. The model-data com-

munication is straightforward. Each model has

some segments, and each segment has its own

definition. However, for motion data, the trans-

formation matrices for each segment of each

model is communicated only for the first frame of

the film. Then a tranformation matrix of a seg-
ment is transmitted to the multicomputer if the

place or orientation of the segment has changed

since the previous frame. This provides a signifi-

cant compression of the data, since only the neces-

sary matrices are transmitted. This possibility, is

also exploited in the processing of the data, as will

be seen in the next section.

4

. l _xj_,Xl_,_zJ_,_ _NJ
. ~0~ne_~__/_.,ffl" .
. I_n_te_rp_ _olafmn~/~_ _ _ _]

. ~f_ _/_ Each Edge box has :]_

_ x f Zo a, :

.

.

10

11

Fig. 10. Format ion of the edge boxes in the Z-buffer algori thm

Fig. 11. The high degree of coherence in a film

5 Rendering

A comparison of algorithms for the removal of
hidden surfaces is found in (Sproull et al. 1974).
The Z-buffer algorithm developed by Catmull

(1975) combined with the Phong shading model

(Phong 1975) represents the most popular render-

ing scheme. This algorithm, using Sutherland's

classification scheme, works on image space or
screen space (Fig. 10). The rendering method that
MARS uses is the scanline Z-buffer algorithm for

the removal of hidden surfaces (Watt 1989). We

prefer this algorithm mainly due to its very special
nature that perfectly suits our tools for optimizing
the rendering process. First it runs on the object
space and then the image space. Moreover, it

requires much less memory than conventional
Z-buffer algorithms that occupy all the screen
space for the rendering. The speed of this algo-
rithm is the bottleneck of all the film-making
process. If we think of rendering a picture as
reducing a 3D scene to a 2D image, then the

rendering of an animated film, i.e., a sequence of

frames, is reducing a 4D scene (including time as
the fourth dimension) to a 3D image (including
time as the third dimension). Thus, rendering an

animated sequence of frames must be thought of

differently from the rendering of a static scene. If
we render a sequence of animated frames separ-
ately, i.e., render each frame as totally irrelevant to

the others, the result would be acceptable, but

there are surely better ways to do this. In terms of

efficiency of processing, what makes a sequence of

animated film frames different from a sequence of
totally irrelevant frames is the concept of tem-

poral coherence (Watt 1989). This is a very impor-

tant characteristic that can be put to good use.

5. 1 Temporal coherence

The successive frames of any object or joint in an
animated film have a great degree of coherence.

This is to say, in consecutive frames, an object or

a joint makes a relative translation or a rotation

to its previous position and orientation (Lasseter

1987). The optimal rendering algorithm should

fully exploit the temporal coherence between suc-

cessive frames in order to reduce the work of
rendering. It should avoid rendering the parts of

the picture that are identical to those of the pre-

vious frame. Such an algorithm should have

a mechanism that buffers the parts of the picture
that do not change separately from parts of the

picture that will change in the next frame. After
rendering a frame totally, the next frame can be

created by simply rendering only those parts of

data that have changed their place and/or orienta-

tion since the previous frame. The basis of such an

algorithm is that the coherence between success-

ive frames of an animated film is high most of the
time (Fig. 11). Temporal coherence is one phe-

nomenon exploited fully to render animated film
sequences more efficiently.

5.2 Parallelization

In this paper, we investigate the parallel rendering

of frames generated by animation on distri-
buted-memory message-passing architectures
that are usually referred as multicomputers. In
a multicomputer, the processors have only local

5

memories, and no memory is shared. In these

architectures, synchronization and coordination

among processors are achieved through explicit
message passing. Multicomputers have been

popular due to their nice scalability features.
Achieving speed-up through parallelism on such

architectures needs special attention. The parallel

algorithm must be designed so that both compu-

tations and data can be distributed to the proces-

sors with local memories in such a way that com-

putational tasks can be run in parallel, while the

computational loads of the processors are bal-
anced as much as possible. Communication be-

tween processors for exchanging data is necessary,
but it is an overhead component of the parallel
algorithm that should be minimized for utmost

efficiency. Another important factor in designing
efficient parallel algorithms is granularity.

Granularity depends on both the application and

the parallel machine. In a parallel machine with

a high communication latency, the program-

mer must structure the algorithm so that large
amounts of computation are done between com-
munication steps. The implementation described

in this work achieves efficient paralMization by

considering all these points in designing a parallel
rendering algorithm for multicomputers of me-

dium-to-coarse grain parallelism.
For the sake of simplicity, we assume that the

numbers of inbetween frames in all intervals are
always multiples of the number of processors P.

Here, an interval refers to a sequence of inbetween

frames between two successive keyframes. Hence,
each processor can be assigned the rendering of an

equal number of inbetween frames in an interval.

Inbetween frames are dedicated to individual pro-

cessors because of the unpredictable computa-

tional load involved in the rendering of individual
inbetween frames. If the granularity of rendering
an inbetween frame is too small, parallel render-
ing of that frame by P processors may take even

longer than simple sequential rendering. In this
way, data is processed as if it is compressed be-

tween the successive keyframes. However, we can-
not compress the data at the keyframes because of
the nature of the scheme adopted for exploiting
the temporal coherence during the rendering of

inbetween frames. All objects are processed dur-
ing keyframe rendering since stationary and mov-
ing parts change partially or completely. Each
keyframe is rendered concurrently by all P proces-

sors because the maximum computational load
occurs during keyframe rendering.

5.2. 1 Model and film data distribution

The 3D points in space constituting the model

database are multiplied by the transformation

matrices of the film data for each frame. Hence,

both model and film data should be distributed

among processors for an efficient parallelization
on multicomputers.

Data distribution for keyframe renderings. In the
parallel rendering of keyframes composed of 3D
objects, the distribution of the objects to the pro-

cessors is a crucial problem in achieving balanced
rendering computations. Note that, the model
database corresponding to both stationary and
moving parts should be distributed to the proces-

sors during parallel keyframe rendering. There are
two main approaches to this distribution prob-

lem: image (screen) space and object-space subdi-
visions. In these distribution schemes, objects con-
stituting the model database are treated as lists of

patches. In the image-space subdivision, proces-

sors are assigned the responsibilities of rendering
on disjoint subregions (usually slices) of the over-

all screen. Then, the patches are distributed to the
processors according to their locations on the
view of the scene projected onto the screen (Fig.

12). The advantage of schemes for image space

decomposition is the fact that the processors inde-
pendently construct the final images associated

with their slices of the image plane at the end of

their local rendering computations. However,
computational load balance is a very crucial

problem and must be solved in these types of

decomposition schemes.
In the object-space distribution schemes, the
model database is decomposed evenly into P sub-

sets, and the responsibility of rendering each sub-
set is assigned to a unique processor. Tiled or

scattered decomposition can be adopted for the
even decomposition of the whole model database

(Fig. 13).
In tiled decomposition, patches belonging to the
same objects are supplied consecutively and the
successive N mod P processors are assigned the
successive patch blocks of size [N/P~, whereas
the remaining processors are assigned the success-

ive patch blocks of size [N/P~. Here, N denotes

6

Processor (

Processor I

Processor 2

Processor 3

12

Processor
assignment

14

G
Ti led subd iv i s i on

1 3 a

I
Rendering Load

Keyirame k+ l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Frame#

., : : : ,. : : : : ,, : : : : : ,, : : : :

p~ ! i ' pi~ i i ' ~ i i ' ~ o i i ' r~o i ; '

p:,~l p~ p:'l : p~l P? p.:2 P? p,:2 : : p ~ : ~ : :

: :: :: ~ : i :: P ~ . :, :, ~ ~ :~ i 0 .. i i ~ ~

Scat tered subd iv i s i on

Fig. 12. Image space subdivision

Fig. 13 a, b. Object space subdivision

(four processors)

Fig. 14. A scattered assignment of inbetween

frames in an interval to four processors

the total number of patches in the model

database. In scattered decomposition, patches are

assigned to processors in a round robin fashion.
That is, the first patch is assigned to the first

processor and the second patch is assigned to the
second processor, etc. When P patches are as-

signed, the next patch is assigned to the first
processor, and this process continues. In both

schemes, the number of patches assigned to the

various processors may differ at most by one.
However, assigning equal number of patches to

each processor does not guarantee a good bal-
ance. Different patches may require different ren-
dering times depending on several geometric fac-

tors such as their sizes, distances, and orientation
to the screen, etc. In scattered decomposition,

patches belonging to the same object are shared
by various processors. The scattered decomposi-
tion is more likely to yield a better load balance
than the tiled decomposition since patches be-

longing to the same object can be assumed to take
almost equal rendering time. Thus, scattered de-
composition can be considered as a simple yet
effective scheme for even object-space distribu-
tion. However, parallel rendering algorithms
based on object-space decomposition necessitate

global pixel merging after the completion of local

rendering computations. Since different proces-

sors may produce pixels at the same screen loca-
tions, global Z-buffering is required to combine

the pixels from each processor into a complete

scene. This pixel merging problem introduces
a very high computation and communication

overhead.

In this work, we divide the conventional algo-

rithm for the removal of scanline Z-buffer hidden

surfaces into two phases for the sake of efficient
parallelization of keyframe renderings. In the first

phase, each patch is passed through a projection
pipeline consisting of clipping and edge rasteriz-

ation to construct its associated edge boxes on the

appropriate scan lines. Note that Z and normal

values are also interpolated during edge rasteriz-
ation. In the second phase, edge box pairs on

scanline lists are processed to render and shade
their respective segments. The nice feature of this

two-phase approach is the fact that the first phase
runs on the object space whereas the second phase

runs on the image space. Hence, we exploit this
feature by adopting object-space distribution of
the model data for the first phase and image-space
redistribution of the resulting edge box pairs for

7

the second phase. We use a scattered decomposi-
tion scheme in the distribution of the model
database for the first phase. In spite of the scat-
tered decomposition of the model database, each
processor stores its local patches in an object-
based hierarchy. This hierarchical storage of sub-
sets of local model database is very crucial for
maintaining the coherence in the rendering of
inbetween frames as will be explained later. The
edge box pairs are redistributed in image space
after the completion of the first phase of each
keyframe rendering, as will also be explained later.
The film data requirement for the parallel render-
ing of each keyframe is only the replication of the
identities of the moving objects in the following
interval and the transformation matrix corres-
ponding to the last inbetween frame in the pre-
vious interval.

Data distribution for inbetween frame render-
ing. The rendering of inbetween frames by indi-
vidual processors necessitates the replication of
the model data corresponding only to the moving
part(s) among processors for each interval. Note
that, the moving part data is to be replicated by its
initial positional information for the respective
interval. The film data (transformation matrices)
corresponding to the moving part(s) in each inter-
val should be distributed among the processors
according to the inbetween frame assignments of
the processors. The assignment of inbetween
frames to individual processors is also a crucial
factor for efficient parallelization.
The proposed scheme operates in a synchronous
manner. All processors begin to render a keyframe
in parallel after completing the rendering of the
inbetween frames assigned to them in the previous
interval. Those processors completing the render-
ing of their inbetween frames earlier than the
other processors may have to wait idle during the
parallel rendering of the following keyframe.
There are equal numbers of patches to be ren-
dered in each inbetween frame of a particular
interval. However, the rendering complexity of
a moving object may vary during its motion. For
example, the rendering complexity of an object
moving towards (away from) the screen increases
(decreases) during its motion due to the increase
(decrease) in the projection areas of the patches
belonging to that object. However, the rendering
complexities of successive inbetween frames can

be assumed to be very close. Hence, we adopt
a scattering assignment of inbetween frames to the
processors for a better computational balance
during the pipelined rendering of inbetween
frames. Figure 14 illustrates the scattered assign-
ment of an interval with 20 frames to 4 processors.
This figure also illustrates a typical variation of
the rendering complexity of a moving object dur-
ing its motion.

5.2.2 Rendering of keyframes

The object space is subdivided, based on scattered
decomposition, only once during the preprocessing
phase, and the subdivision is maintained for the
parallel first phase computations of all keyframe
renderings throughout the whole animation pro-
cess. Image-space subdivision is repeated for the
computations of each keyframe in the second
phase. In this work, a scanline is chosen as an
atomic process to be performed sequentially by an
individual processor. Otherwise, further division of
individual scanlines may necessitate an unaccept-
able computation and communication overhead in
order to maintain spatial coherence. In this work,
the number of rendering computations to be per-
formed for each scanline is assumed to be propor-
tional to the number of edge segments which is
equal to the (number of edge boxes)/2 on that
scanline. Hence, the balanced image-space render-
ing of the computations in the second phase of
keyframe renderings can be formulated as follows:

Input instance: We are given n scanlines (s~;
s2; . . . , s,) with the corresponding computational
weights (wl; w2; ... ,wn). Here, wi is taken as the
number of edge segments on the scanline si and
W is the sum of all wi's.

Problem: These n scanlines must be assigned to
P processors so that the sum of the weights of the
scanlines mapped to each processor is as close to
the optimal load W,verage = W/P as possible.

This problem is in fact the number partition-
ing problem that is NP-hard. Various heuristics
have been proposed for the solution of this prob-
lem. In this work we propose a simple yet effective
greedy heuristic. The steps of the proposed algo-
rithm for parallel keyframe rendering are given

below:

8

Step 1: processors concurrently multiply their

local 3D points belonging to the moving object(s)
in the previous interval by the respective trans-
formation matrix in order to compute the final

positions of their local patches belonging to those
objects. Processors mark these objects as station-
ary for the following interval. Then, processors

mark the moving objects in the following interval
by using their local film data.

Step 2: processors concurrently run the first
phase of the scanline Z-buffer algorithm for their

local patches. During this operation, each proces-

sor constructs two edge lists. One is for its local
patches belonging to the stationary objects, and

the other is for its local patches belonging to

moving objects in the following interval. Note
that objects that are going to move in the follow-

ing interval are effectively processed according to
their initial positions. Meanwhile, each processor

constructs a local edge-segment counter (ESC) (an
array of size n) where ESC(i) denotes the total

number of local edge segments to be rendered on
scanline s~ during the second phase. Figure 15

illustrates this operation for a scene with 7 patches

and an image plane with 19 scan lines. No distinc-

tion is made between moving and stationary
patches, so that only one edge list is shown for the

sake of simplicity in illustration.

Step 3: each processor performs a prefix sum on
its local ESC array so that ESC(i) holds the total

number of local edge segments on the first i scan-
lines. Then, a duplicated global vector sum opera-

tion is performed on the local ESC vectors. At the
end of this global operation, each processor holds

a local copy of the ESC array where ESC(i) con-
tains the total number of global patches on the
first i scanlines. Figure 16 illustrates a sample

operation of step 3. The leftmost ESC denotes the
local ESC counter of an individual processor. The

middle ESC denotes the result of the local prefix
sum operation and the rightmost ESC denotes the
result of the global sum operation on local ESC
arrays.

Step 4: in this step, each processor runs the same

mapping heuristic using its own copy of the global
ESC array. The proposed heuristic achieves the
tiled decomposition of the scanlines by assigning
consecutive scanlines from ki-1 + 1 to ki to pro-

s i 6--[Z2X---12~

m
s3 m
s4

s5
s6

s 7 ~
s j ~
s9

s _ L ~

Sl

-

sl: ~ Edge-boxes
Sl,

~ e-4ZZZZx--4:~

s~

sv

ESC Edgelist Frame Buffer

15

2
2
4
4
4
6
6
8 After

2 prefix-sum
4
4
2
4
10
10
10
8

After

global sum

2
4
8
12
16
22
28
361
36!
42]
46 !
48
52
62
72
82
90

ESC

m
10

ESC ESC

22
34 pl (72)

52
64
72
100 >
112 p2 (68)
124
140
164
188 p3 (67)
207
234
258 p4 (73)
280

1 6 Wavg = 70

F i g . 15 . A n edge list formation with a counter for each line

F i g . 16 . Prefix and global sums of edge segment counters (ESCs)

cessor i for i = 1 , 2 , . . . , P with k o = 0 and

ESC(0) = 0, while maintaining the even workload
among scanline slices as much as possible. The
k indices are determined as follows. Each pro-

cessor, after computing ki-a, proceeds on the
ESC array starting from ESC(ki_I + 1) until

ESC(j) - ESC(ki_ 1) _-> Wavg, where Wavg ~-- W / P =

ESC(n)/P denotes the perfect load balance. Then,
k~ is set to j if

E S C (j) - ESC(k~_ ~) - - W a v g ~ W a v g - -

(E S C (j - 1) - ESC(k~_ ~)) (1)

9

otherwise it is set to j - 1. The left and right-hand
sides of Eq. 1 denote the deviation of the work-
loads of processor i from the perfect load

balance if scanline slices [ki-1 + 1 . . . j] or
[ki-1 + 1 ... (j - 1)] are assigned to processor i,

respectively. Each processor respects this proced-

ure for all processors i = 1, 2, ..., P. Figure 16
illustrates the result of this greedy heuristic for the

given ESC array. The numbers inside the parenth-

esis denote the number of edge boxes to be pro-
cessed by the respective processor.

Step 5: at the end of step 4, each processor deter-

mines the mapping information for all scanlines in
the image. In this step, each processor sends the

edge boxes of the nonlocal scanlines to its home
processor according to the mapping information.
Then, each processor concatenates (by simple

pointer operations) the received edge list with its

local edge list.

Step 6: after each processor receives all edge box
data to be rendered on its local scanline slice, it
prepares to run the second phase of the rendering

algorithm concurrently. Let ni denote the num-
ber of scanlines assigned to processor i for

i = 0, 1, ... , P - 1 where 2ni = n. Each proces-
sor i concurrently allocates and initializes ni x r

2D local arrays, the constant frame buffer (CFB),
the constant Z-buffer (CZB), and the local moving

Z-buffer (MZB), where r denotes the number of

pixels in each scanline. That is, the screen is as-

sumed to contain A = n x r pixels. Here, the CFB
and CZB arrays correspond to the respective

scanline slices of their processors. Similarly, the
local moving Z-buffers (MZB) of the processors

correspond to their scanline slice assignments.

The local CFB and CZB arrays remain constant
throughout the intervals, and they are updated at

keyframes. Note that two Z-buffers (CZB and
MZB) are maintained during keyframe render-
ings. The local CZB arrays are maintained to keep

the Z-values of the pixels produced by stationary

parts that will be used to determine the visibility
of the moving parts during the succeeding inter-
val. The local MZB arrays are temporary arrays
used to determine the visibility of the initial posi-
tions of those moving parts on the keyframe.
After these local initializations, the processors
concurrently carry out the rendering of their local
edge segments in two successive phases. In the

first phase, they concurrently render the edge seg-
ments belonging to the stationary objects by pro-
cessing their local stationary edge lists. In this

phase, pixels produced by the local edge segments
belonging to the stationary parts are Z-buffered
with the local CZBs and the resulting Z and pixel

values are written into the local CZB and CFB

arrays, respectively. This process is straightfor-

ward as it is the same as that of the conventional
Z-buffer algorithm. In the second phase, proces-

sors concurrently render the edge segments be-
longing to the moving objects (in the next interval)

by processing their local moving edge lists. How-

ever, the process in this phase is slightly different
from the conventional sequential Z-buffer algo-

rithm. The pixels produced by the local edge seg-
ments belonging to the moving objects are Z-
buffered with both local MZBs and CZBs. The

resulting Z-values are written into the local MZBs

whereas the resulting pixel values are written into

the local CFBs. Although the local CZB arrays

are used for Z-buffering, they are not modified at
all during this phase. Thus, the Z-values of the
pixels produced by stationary parts are not lost

and the local CZBs can be exploited to realize the

temporal coherence during inbetween frame ren-
derings. At the end of this step, processors deallo-

cate their MZB arrays.

Step 7: At the end of step 6, the local CFBs
contain the final images of an individual keyframe

on the respective screen slices. The processors
send their local CFBs to the host for display. Then

processors concurrently run a global concatena-
tion on their local CZB arrays. At the end of this
global operation, each processor gets a copy of

the global constant Z-buffer (GCZB) array of size

n x r. Similarly, the processors concurrently run
a global concatenation on their local patches be-
longing to the moving objects in order to replicate
the moving part database in each processor. This
is done for the inbetween frame rendering in the

next interval. At the end of this step, the proces-

sors deallocate their local CZB arrays.

5.2.3 Rendering of inbetween frames

The processors maintain two local moving frame
buffers (MFB) and MZB arrays of size n x r for
inbetween frame renderings. These arrays are

10

static and are re-initialized just before each inbe-

tween frame rendering. Recall that each processor

also holds a local copy of the GCZB which con-

tains the Z-values of the pixels produced by the

objects that stay stationary during the respective

interval.

The processors concurrently multiply the 3D

points of the moving object(s) with different

transformation matrices using their local film

data. Then, they concurrently and independently

render the moving objects in different positions

that are computed locally. Hence, P successive

inbetween frames are rendered concurrently.

During these local rendering computations,

the processors compare the Z-values of the pixels

produced by the moving object(s) with their

local MZB and GCZB arrays and write the result-

ing Z and pixel values into their local MZB

and MFB arrays. Local copies of the GCZB

array remain intact since they are needed for

their rendering of other inbetween frames in the

same interval. Each processor sends its local MFB

array to the host for display upon completing the

rendering of an inbetween frame. Then, it repeats

this procedure for the next inbetween frame as-

signed to it. No interprocessor communication is

involved in the inbetween frame rendering except

the transmissions of the resulting MFB arrays to

the host.

5.2.4 How the host interprets the image data

coherence in the incoming data, the use of blocks

instead of single pixels for flagging is efficient.

The only issue in this mechanism is how large

the blocks should be. If they are too large, un-

necessary time will be spent in writing the back-

ground buffer back to the screen. If they are

too small, overheads in comparison will be

introduced.

5.2.5 Performance results and conclusion

The performance of the parallel rendering of the

animation data generated by MARS is tested on

an Intel iPSC/2 Hypercube with 32 processors.

Table 1 illustrates the execution times for the

parallel rendering of inbetween frames of an ani-

mation data for various numbers of processors

and various sizes of moving parts. The data in

Table 1 correspond to the averages of various

types of movement of a number of segments (out

Table 1. Variation of the execution times (T in ms), speed-ups
(S), and efficicncies (E) with respect to two processors of the
parallel rendering of inbetween frames for the animation of
a model (with eight segments and 10400 patches) with the num-
ber of processors and moving part sizes.

Moving
part
size

Number of processors (P)

2 4 8 16 32

T 806 442 227 126 82
1300 S (1.82) (3.55) (6.40) (9.83)

At each keyframe, the host receives a CFB. It E (0.91) (0.89) (0.80) (0.61)
writes this buffer on the screen. Then it receives T 1188 634 323 172 122

2600 S (1.88) (3.68) (6.91) (9.83)
consecutive MFBs. To write a MFB on the screen, E (0.94) (0.92) (0.86) (0.61)

the host first must copy the pixels that will be T 1484 783 394 209 124
occupied by the MFB pixels. The background is 3900 s (1.90) (3.77) (7.10) (11.97)
saved because the host will write it back before E (0.95) (0.94) (0.89) (0.75)

T 2109 1101 563 290 163
writing the moving parts of the next frame. Due to 5200 s (1.96) (3.76) (7.27) (12.93)

the nature of the problem, we need a background- E (0.98) (0.94) (0.91) (0.81)
saving mechanism for the MFB writing. The solu- T 2298 1178 598 307 173
tion to this problem works as follows. We hold the 6500 s (1.95) (3.84) (7.48) (13.28)

E (0.98) (0.96) (0.94) (0.83)
received CFB after writing it on the screen as T 2551 1293 662 339 t88
a background buffer. We also hold a 2D binary 7800 s (1.97) (3.85) (7.53) (13.57)
array, where each bit denotes whether a block of E (0.98) (0.96) (0.94) (0.85)

T 2691 1393 706 355 201
pixels is overwritten or not. That is, as we write 9100 s (1.93) (3.81) (7.58) (13.39)

any pixel of the MFB on the screen, we set the B (0.97) (0.95) (0.95) (0.84)

corresponding bit to 1. Then, before writing a new Y 3215 1693 850 432 236
MFB, the blocks of pixels with flags set are writ- 1o4oo s (1.90) (3.78) (7.44) (13.60)
ten on the screen. As long as there is spatial E (0.95) (0.95) (0.93) (0.85)

11

of 8 segments) with 32 inbetween frames. Uni-

processor execution times are not obtained due to
insufficient memory. The speed-up and efficiency

values illustrated in Table 1 (in parentheses) de-
note the speed-up and efficiency values for 4, 8, 16,

and 32 processors with respect to 2 processors.
Scanning individual rows of Table 1 reveals that

speed-up increases whereas efficiency decreases
with an increasing number of processors for

a fixed size of moving parts. The low efficiency

values in the last column (P = 32) of Table 1 re-
veal the load imbalance among the rendering of

inbetween frames (only one inbetween frame is

assigned to an individual processor for P = 32).
However, considerably larger efficiency values in

other columns (P = 4, 8, 16) confirm the expected
high performance of the scattered assignment of

inbetween frames to processors. The increase in
the efficiency values with a decreasing number of

processors (P = 16, 8, 4) for a fixed size of moving
part confirms the increase expected in the perfor-
mance of the scattered assignment with an in-

creasing number of inbetween frames (2, 4, 8)
assigned to an individual processor. As is seen

from Table 1, scattered assignment yields suffi-

ciently high efficiency even for 2 inbetween frames

per processor (column P = 16). Furthermore,

scanning individual columns (P = 4, 8, 16) of
Table 1 illustrates that speed-up and efficiency

values with respect to two-processors increase in
general with increasing size of moving parts. This

increase is attributed to two factors. The first is

the granularity increase with increasing size of
moving parts. The communication overhead due

to the transmission of individual moving part

images to the host is proportional to the screen
size. However, computational times of inbetween

frame renderings increase with increase in moving
part sizes. The second factor that may contribute
to this increase in the efficiency is the better load

balance with increasing part sizes. In Table 1, the

increase in moving part size is realized by increas-
ing the number of moving segments. Hence, differ-
ent motions of multiple segments may yield a bet-

ter computational balance among various inbet-

ween frame renderings.

Table 2 illustrates the execution times for the
parallel rendering of keyframes of various anima-

tion data of various sizes on different number of

processors. Execution times for one, two and four

processors for N > 43224 were not obtained due

to insufficient memory. Speed-up and efficiency
values on a particular row P = 8 (N > 43224) and

16 in Table 2 denote the speed-up and efficiency

values with respect to the P/2 = 4 and 8 proces-
sors, respectively, for the respective keyframe

sizes. As is seen in the first column of Table 2,

speed-down occurs for the smallest keyframe size
(N = 5200) when we double the number of pro-
cessors (i.e., from 4 to 8 and from 8 to 16). How-
ever, we always obtain a speed-up for larger

keyframe sizes (N > 10392) and speed-up and

efficiency values monotonically increase with in-
creasing keyframe sizes. Recall that the proposed

parallel algorithm has two overhead components.
The first one is the computation and communica-

tion overhead introduced during the parallel load
rebalancing after the parallel formation of local

edge lists (steps 3 and 4). The second one is the

communication overhead due to the transmission
of local CFBs to the host at the end of the parallel
rendering of keyframes (step 7). An additional

overhead is the global concatenation of the local
CZB array at step 7. The first overhead is a

Table 2. Variation of the execution times (T in ms), speed-ups (S) and efficiencies (E) with respect to P/2 processors of
the parallel rendering of the keyframes with the number of processors and data sizes.

Number Number of patches in the keyffame (N)

of pro-
cessors 5200 10392 15568 17296 22488 43224 70880 82976 98536 138288

4 T 1888 2248 2168 2427 2846
T 1917 2031 1866 1961 2279 2441 3007 3026 3374 4121

8 S (0.98) (1.11) (1.16) (1.24) (1.25)
E (0.49) (0.55) (0.58) (0.62) (0.63)
T 1970 2013 1856 1814 1991 2066 2202 2146 2325 2686

16 S (0.96) (1.01) (1.01) (1.08) (1,14) (1,18) (1.37) (1.41) (1.45) (1.53)
E (0.48) (0.50) (0,50) (0.54) (0.57) (0.59) (0.68) (0.71) (0.73) (0.77)

12

function of the total number of scanlines and the
diameter of the interconnection topology of the
parallel architecture (i.e., log2P in the hypercube).
That is, the first overhead does not increase with
increasing keyframe size. Similarly, the second
and the third overhead components are only pro-
portional to the screen size. The percentage of the
overhead (overhead time/total parallel rendering
time) decreases with increasing keyframe size (N),
resulting in increasing speed-up and efficiency
values with increasing N. As is seen in Table 2, we
obtain a speed-up of 1.53 (an efficiency of 0.77) for
the largest size of keyframe when we double the
number of processors from 8 to 16. The proposed
parallel algorithm is expected to yield a much
better performance for larger keyframe sizes and
parallel architectures with lower communica-
tion/computation ratios (e.g., fine grain architec-
tures).

Acknowledgements. This project is supported by the following grants

and funds: Bilkent University Research Funds. Research Grant

MAG917-EEEAG5 of the Scientific and Technical Research Council
of Turkey, Intel Corporation Grant SSD100791-2

References

Badler NI (1986) Animating human figures: perspectives and
directions. Proc Graphics Interface & Vision Interface,
Toronto, Ontario, pp t15-120

Badler NI (1987) Articulated figure animation. IEEE Comput
Graph Appl 7:10~11

Badler NI, Manoochehri KH, Baraff D (1986) Multi-dimen-
sional input techniques and articulated figure positioning by
multiple constraints. Workshop on Interactive 3D Graphics,
New York, pp 151-169

Badler NI, Manoochehri KH, Walters G (1987) Articulated
figure positioning by multiple constraints. IEEE Comput
Graph Appl 7:28-38

Blinn JF (1987) Nested transformations and blobby man. IEEE
Comput Graph Appl 7:59-65

Cachola DG, Schrack GF (1986) Modelling and animating
three-dimensional articulate figures. Proc Graphics Interface
& Vision Interface, Toronto, Ontario, pp. 152 157

Catmull E (1975) Computer display of curved surfaces. In Proc
IEEE Conference on Computer Graphics, Pattern Recogni-
tion and Data Structures, p 11

Farin G (1990) Curves and Surfaces for Computer Aided Geo-
metric Design. Academic Press, Boston

Getto P, Breen D (1990) An object-oriented architecture for
a computer animation system. Visual Comput, 6:7942

Girard M (1987) Interactive design of 3D computer-animated
legged animal motion. IEEE Comput Graph Appl 7:
131-149

Grosso MR, Badler NI, Quach RD (1989) Anthropometry for
computer graphics human figures. Technical report, Univer-
sity of Pennsylvania, Philadelphia

Heller D (1990) X View Programming Manual 2n edn. O'Reilly &
Associates, California

Hewitt S, Ridscale G, Calvert TW (1986) The interactive speci-
fication of human animation. Proc Graphics Interface & Vi-
sion Interface, Toronto, Ontario, pp 121-130

Jackson AW, Morris JM (1988) Enhancement of diglib: com-
puter graphics software for animated computer-generated
video movies. Comput Graph 12:271 283

Lasseter J (1987) Principles of traditional animation applied to
3D computer animation. Comput Graph 21:35-44

Magnenat-Thalmann N, Thalmann D (1985) Computer Anima-
tion, Theory and Practice. Springer, Berlin Heidelberg New
York

Mahmud SK, Ozgtiq B (1990) Human body animation. Proc
Fifth International Symposium on Computer and Informa-
tion Science, Nev~ehir, Turkey, pp. 885-894

Mahmud SK, Ozgii~ B (1991) Semi goal-directed animation:
a new abstraction of motion specification in parametric key-
frame animation of human motion. Proc Second Euro-
graphics Workshop on Animation and Simulation, Vienna,
pp 75-87

Ostby EF, Reeves WT, Leftter SJ (1990) The menv modelling and
animation environment. J Visualization & Comput Anim,
1:33-40

Ozgfi9 B (1988) Thoughts on user interface design for multi
window environments. In Proc Second International Sympo-
sium on Computer and Information Science, Istanbul, pp
477-488

Phong B-T (1975) Illumination for computer generated pictures.
Commun ACM, 18:311-317

Rogers DF (1989) Mathematical Elements for Computer
Graphics. McGraw Hill, New York

Rogers DF (1990) Procedural Elements for Computer Graphics.
McGraw Hill, New York

Shoemaker K (1985) Animating rotation with quaternion curves.
Proc SIGGRAPH, pp 245-254

Sprouli RF, Sutherland IE, Schumacker RA (1974) A character-
ization of ten hidden surface removal algorithms. ACM Com-
put Surveys, 6:1-55

Tokad Y (1990) Analysis of Engineering Systems. Bilkent Uni-
versity, Ankara

Watt A (1989) Fundamentals of Three-dimensional Computer
Graphics. Addison-Wesley, Massachusetts

Wyvill B, Chmilar M, Herr C (1991) A software architecture for
integrating modeling with kinematic and dynamic animation.
Visual Comput 7:122-137

MURAT AKTIHANO~LU
works at Computer Services,
Inc., Tampa, Florida. His re-
search interests are in computer
graphics, animation and related
parallel algorithms.
Aktihano~lu received his B.S.
degree in electronic and electri-
cal engineering, and his M.S. de-
gree in computer engineering
and information science, both
from Bilkent University, in 1990
and 1993, respectively.

13

BULENT {~)ZGOC joined
Bilkent University, Faculty of
Engineering in 1986. He is cur-
rently a university professor of
computer science and the dean
of the Faculty of Art, Design and
Architecture. He formerly
taught at the University of Pen-
nsylvania, Philadelphia College
of Arts, Middle East Technical

University and worked as
a member of research staff at the
Schlumberger Palo Alto Re-
search Center. For the last fif-

teen years, he has been active in
the field of Computer graphics
and animation.

Ozgfi~ received his B. Arch. and M. Arch. degrees in architecture,
both from Middle East Technical University, Ankara, Turkey, in
1972 and 1973, respectively. He received his M.S. degree in
architectural technology from Columbia University, and his
Ph.D. degree in a joint program of architecture and computer

graphics from the University of Pennsylvania, in 1974 and 1978
respectively. He is a member of ACM Siggraph, IEEE Computer

Society and UIA.

'CEVDET AYKANAT joined
the department of Computer
Engineering and Information
Science, Bilkent University in
1988 where he is currently an
associate professor. Formerly,
he worked at the Intel Super-
computer System Division, Bea-
verton, as a research associate.
His research interests include
parallel processing, parallel
computer graphics applications,
and non-deterministic optimiza-

tion techniques.
Aykanat received his B.S. and
M.S. degrees from Middle East
Technical University, Ankara,

Turkey, and his Ph.D. degree from the Ohio State University,
Columbus, all in electronic and electrical engineering. He was

a Fulbright scholar during his Ph.D. studies.

14

