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This paper introduces the new novel four-parameter Weibull distribution named as the Marshall-Olkin alpha power Weibull
(MOAPW) distribution. Some statistical properties of the distribution are examined. Based on Type-I censored and Type-II
censored samples, maximum likelihood estimation (MLE), maximum product spacing (MPS), and Bayesian estimation for the
MOAPW distribution parameters are discussed. Numerical analysis using real data sets and Monte Carlo simulation are ac-
complished to compare various estimation methods. This novel model’s supremacy upon some famous distributions is explained
using two real data sets and it is shown that the MOAPW model can achieve better fits than other competitive distributions.

1. Introduction

In real-life phenomena, statistical distributions are widely
used to describe these phenomena. For this reason, the
theory of statistical distribution and generating new dis-
tributions are of great interest. Many authors studied and
generated new distributions from old ones. In the last few
years, many classes of generalized distributions have been
developed and applied to describe different events in real life.
These generalized distributions are preferred because they
have more parameters and hence more flexibility to real-life
model data.

Depending on a distribution with g (x) as the probability
density function (PDF) and G(x) as the cumulative dis-
tribution function (CDF), several distributions have been
generated using the PDF, the CDF, or also the survival
functions as the base distribution to introduce novel ones.
Marshall-Olkin’s family of distributions has been presented
by Marshall and Olkin [1], counting on adding a parameter

to a family of distributions called extended distributions. If
the CDF and PDF of a given random variable are G (x) and
g(x), then the CDF and PDF of the Marshall-Olkin (MO)
family are, respectively, given by

G(x)
0+(1-0)G(x)

_ 09 (x)
[0+(1- )G ()"

F(x) = >0,

(1)

f(x)

The MO extended distribution suggests a broad range of
behaviors than the basic distribution from which they are
originated. For more details, information, and examples
about this family, see the work of Ghitany [2], Ghitany et al.
[3], Alice and Jose [4], Okasha and Kayid [5], Ahmad and
Almetwally [6], and Ijaz and Asim [7].

Furthermore, alpha power (AP) transformation by
adding a novel parameter to gain a family of distributions
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has been discussed by Mahdavi and Kundu [8]. If G(x) is a
CDF of any distribution, then W (x) is a CDF that is defined
by the following equation:

Complexity

Considerable work in distributions based on AP
transformation had been done; for example, see the works of
Nassar et al. [9], Elbatal et al. [10], Dey et al. [11, 12], Hassan
etal. [13, 14], Basheer [15], and Almetwally and Ahmad [16].

G(x)
o - L ifa>0,a+1 The Marshall-Olkin alpha power (MOAP) family has
W (x) = a-1 , (2)  beenrecently introduced by Nassar et al. [17]. This is a novel
method to insert an extra parameter to a family of distri-
G(x), ifa=1, butions for more flexibility. By combining the CDF of the AP
family and the CDF of the MO family, the MOAP family
and the corresponding PDF has the form CDF is defined as follows:
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and its PDF can be expressed as
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The CDF and PDF of Weibull distribution with pa-
rameters 3 and A are given, respectively, as

G pN)=1-¢ ™ x50,p1>0, (6)
Al x A1 1
g(x;ﬁ,ﬂt)=/5<ﬁ) e ), (7)

In life testing and reliability experiments, there are
numerous situations where observations are missed or set
aside from experimentation before failure. The tester may
not secure complete information on failure times for all
experimental observations. The handled data from all such
mentioned trials are called censored data. Censored test has
many types and the most important and used schemes are
Type-I censored and Type-II censored; see, for example, the
works of Balakrishnan and Ng [18], EI-Morshedy et al. [19],
and Almetwally et al. [20].

This paper’s aim is to introduce a new lifetime distri-
bution defined as Marshall-Olkin alpha power Weibull
(MOAPW) distribution, depending on the MOAP family.
Associated statistical properties of MOAPW distribution are
shown. Parameter estimation for MOAPW distribution is

ifa=1.

discussed using MLE, MPS, and Bayesian methods. We also
conduct the estimation for MOAPW distribution with Type-
I and Type-II censored samples. Monte Carlo simulation is
accomplished to evaluate the efficiency of the estimators.
Two real data sets are elaborated to affirm the integrity of the
model and the scheme.

This paper is organized as follows: In Section 2, the new
distribution is introduced and described. In Section 3, re-
liability analysis is derived, while in Section 4, some sta-
tistical properties of MOAPW are discussed. Parameter
estimation of MOAPW with complete, Type-I censored, and
Type-1II censored samples is presented in Section 5. Monte
Carlo simulation study is conducted in Section 6. Appli-
cations with two real data sets are studied in Section 7.
Finally, the conclusion of this study is discussed in Section 8.

2. Model Description and Notation

The MOAPW model and its submodels have been intro-
duced in this section.

2.1. MOAPW Distribution. The MOAP family and Weibull
distribution have been wused to generate MOAPW
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distribution. It is represented by the random variable
X ~ MOAPW (a, 3,6,1). By using equations (5)-(7), the
PDF of MOAPW is given as

_ Pt )

bin(@) (WP ()~ 'e Pl

Frvoapw (%, ¥) = 2> (8)
L I R Rl CAR Y|
where ¥ = (a,f3,0,1), ¥ >0, and «a # 1. By using equations
(4) and (6), the CDF of MOAPW takes the form
L)
Fyoapw (x, V) = 9)

Figure 1 displays the PDF of the MOAPW for some 3, Reliability Analysis
parameters’ values.
The following equation defines the survival function of

2.2. Submodels from MOAPW. Many submodels can be MOAPW distribution:

derived from MOAPW distribution, as is shown in Table 1.

6[04 - a(l_ewﬂ)l)]

Smoapw (%, V) = Bt > (10)
@=n[6+-6)/@- (=) -1)]
while the following equation gives the hazard function of a
MOAPW distribution:
—1 —(x/B) _ew/s)*)
In (@) WB) (i)~ e o (
hyvioapw (%, ¥) = P (xlp (11)

a—a) To 4 (12 0) (a- 1)‘1<a(1‘6*w) - 1)]

The hazard function of the MOAPW model for different ~ for fitting skewed and different data, which may not be
parameter values is displayed in Figure 2. compatible with other popular distributions.

By examining Figures 1 and 2, we conclude that the Equation (12) defines the reversed hazard (RH) function
MOAPW distribution could be used as a compatible model =~ of MOAPW distribution:

A xIp
61n () V) (xlpy' e B o (1)
rhyoapw (%, V) = a—1 [ (e (e ?) : (12)
((x - —1)[9+(1—9)/((x—1)(¢x - —1)]
The reversed hazard function of the MOAPW distri- For the stress-strength reliability measure of MOAPW

bution for some values of the parameters is displayed in  distribution, let X and Y be the independent strength and
Figure 3. stress random variable, respectively, observed from
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FiGure 1: Plots of the PDF of the MOAPW with some values of parameters.

TaBLE 1: Submodels from MOAPW distribution.

Models

Marshall-Olkin alpha power exponential (MOAPEx) distribution (Nassar et al. [17])
Marshall-Olkin alpha power Rayleigh (MOAPR) distribution (new)

Alpha power Weibull (APW) distribution (Nassar et al. [9])

Marshall-Olkin Weibull (MOW) distribution (Ghitany et al. [2])

Weibull (W) distribution

Exponential (Ex) distribution

Rayleigh (R) distribution

=== =R R KR
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N = = > 2N | >

X X
— a=158=0560=181=2 — a=07f=156=051=12
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— a=158=360=051=3 — a=258=1560=051=12
- a=3f=20=151=3 - a=12B=150=151=12
- a=158=17560=181=0.8 - a=128=1560=31=12
(a) (b)

FIGURE 2: The hazard function of MOAPW under different parameters’ values.
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F1GURE 3: The reversed hazard of MOAPW with different values of the parameters.
MOAPW distribution; then, the stress-strength reliability R Integrating over y, we have
is calculated as
(o] X
R=P(Y<X)= J 0“ S ‘I’Z)dy]»f(x; ¥, )dydx,
x=| y=
(13)
M1 - (i) e~ (B)M e~ (0812
Oh In(a) (™ () e (60" o (o )1
1M 1
= dx.
By (o = 1) (@ = 1) JO 1- e ()™ : 1-ep)2
(o= ot =)o) o - ey () )|
(14)

It will be calculated numerically. Figure 4 displays plots
of the stress-strength reliability measure for the MAOPW
distribution for different values of the parameters. The
higher the value of «, with other parameters remaining
constant, the lower the reliability value. The greater the value
of a; with other parameters remaining constant, the greater
the reliability value, as shown in Figure 4.

-o{]

X

1—;1 1+
In(a)

From equation (15), we can obtain the median (M) or the
second quartile of MOAPW distribution when u = 0.5 as
follows:

4. Statistical Properties

This section is devoted to studying and obtaining some
statistical properties of the MOAPW distribution, such as
quantile, median, and mode.

4.1. The Quantile Function. By inverting the CDF equation
in (9), we have the quantile function of MOAPW distri-
bution as follows:

Ou(a—1) 1//\'
71_u(1_9)>]> . o<u<l. (15)
1 1+ab e
M:/3<—ln[1 —mln< 1+0 >:|> . (16)
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FIGURE 4: The stress-strength reliability measure for MAOPW.

We can obtain the first and third quartiles (g, and g5) of
MOAPW distribution when u =0.25 and u = 0.75, re-
spectively. From equations (15) and (16) first, second, and
third quartiles of MOAPW distribution, we can obtain the
Galton skewness (Sk), also known as Bowley’s skewness,
which is defined as

su=B=2Mra
45— 9

(17)

and the kurtosis (Ku) measure, which is given as

X, - X - X + X,
Ku = Y0875 ~ X0.625 ~ X0.375 + Xo125
93—

(18)

4.2. The Mode of The MOAPW Distribution. From equation
(8), the logarithm of MOAPW distribution is given by

A A
In(f (x, %)) o (A - 1)1n(f) —(f) +<1 - e‘("’ﬁ“>1n(a) - 21n[9 T % (a(l‘e“"” ) - 1)] (19)

B) \B

By differentiating equation (19) with respect to x and
equating to zero, we obtain

(e )

p

The mode value of the MOAPW distribution can be
obtained by solving numerically equation (20). Also, from
Figure 4, we can note that the MOAPW distribution has one
mode in most cases.

The first quartile, median, third quartile, skewness,
kurtosis, and mode of MOAPW distribution with different
values of the parameters are computed using the R program
and displayed in Table 2. The results indicate that, for fixed j3,

A-1 A <f)“ ,An(@) (5)* |t _2AIn(@)(1-6)
x B\B B Bla—1) 9+((1_9)/(“_1))<“(1,e+x/m)_1>

=0. (20)

0, and A, the first and third quartiles, median, and mode
increase when « increases, while the skewness and kurtosis
decrease when « increases. Also, for fixed a, f, and A, but
a <1, the first and third quartiles, median, and mode in-
crease when 6 increases, while the skewness and kurtosis
decrease when 0 increases. Likewise, for fixed 8 and A, but
a>1, the first and third quartiles and median increase with
0. It was also observed that the value of the model was
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TaBLE 2: The first and third quartile, median, skewness, kurtosis, and mode of MOAPW distribution with different values of the parameters.

o B 0 A ql Median q3 Sk Kt Mode
0.75 0.75 0.0856 0.2983 0.8316 0.4299 2.7266 0.1077

075 3 0.4359 0.5956 0.7696 0.0432 2.3643 0.4617

3 0.75 0.3999 1.0416 2.1093 0.2492 2.0719 0.4815

0.75 3 0.6409 0.8142 0.9712 —0.0491 1.7949 0.6713
0.75 0.75 0.3424 1.1930 3.3266 0.4299 3.1704 0.4308

3 3 1.7438 2.3823 3.0785 0.0432 2.1755 1.8467

3 0.75 1.5994 4.1663 8.4372 0.2492 1.6733 1.9259

3 2.5635 3.2567 3.8850 —0.0491 1.2838 2.6853

0.75 0.75 0.1961 0.5840 1.3634 0.3354 2.6743 0.2410

0.75 3 0.5363 0.7045 0.8709 —-0.0056 1.7729 0.5647

3 0.75 0.7468 1.6374 2.9146 0.1783 1.3558 0.8712

3 3 0.7492 09117 1.0530 -0.0694 1.0403 0.7786
0.75 0.75 0.7845 2.3359 5.4536 0.3354 2.6743 0.9642

3 3 2.1453 2.8181 3.4835 —0.0056 1.7729 2.2588

3 0.75 2.9871 6.5495 11.6583 0.1783 1.3558 3.4847

3 2.9968 3.6466 4.2121 —0.0694 1.0403 3.1145

different in increase and decrease when « was greater than
one and less than 1, while the skewness and kurtosis decrease
when 6 decreases. See Figure 1, which confirms the result of
Table 2: the MOAPW has left-skewed, right-skewed, re-
versed-J, and symmetric shapes.

5. Parameter Estimation under Different Cases

In this section, parameter estimation for the MOAPW
distribution using MLE, MPS, and Bayesian estimation
methods in the presence of Type-I and Type-II censoring is
discussed in detail.

5.1. MLE Based on Censored Samples. The general form for
the likelihood function for Type-I and Type-II censoring is
given as

n! n—r -
L) == 5= Flg:¥) gf(xi;n;‘l’), (21)
3 Oln(a)A " Xi x
=il 5 ) o v 3% )
S (1-0)
+2;1n[6+ TE)
1-6
_ln<9+ E“_ 1)) (¢ (o, B, A) - 1))].
l_ef(x/gﬂ)

where ¢ (x, &, 5, 1) = &

i

B

n

(¢ (% o o 1) — 1)] +(n-7)[In(6) —In(a—1) +In(a - ¢(x,,aB1))

where in Type-I censoring g = T and in Type-II censoring
© = Xx,. ,. For more information, see the work of Balak-
rishnan [21], El-Sherpieny et al. [22], Hassan and Abd-Allah
[23], Abd El-Raheem et al. [24], Hafez et al. [25], and Hassan
and Mohamed [26].

In Type-I censoring, we remove surviving units from a
test at a prespecified time. The data consists of the obser-
vations x;, , < x,., < -+ <g and the information that (n -
r) items survive beyond the time of termination T, where r is
the number of the uncensored items. Assuming that we have
n observation from MOAPW distribution which is found in
life testing, the test is finished at a certain time T before the
failure of all n observations. The number of failures r is
random. In Type-II censoring, a life test is ended after a
certain number of failures occur; here n and r are fixed and
predetermined, but p =T is random. The log-likelihood
function of MOAPW distribution, depending on Type-I and
Type-II censoring, is given by the following equation:

A ; .
) +1n(oc);<l—e ) )

(22)



Equation (22) can be maximized directly by applying the
R package by an optim function to solve the nonlinear
likelihood equations obtained by differentiating equation
(22) with respect to ¥ and equating to zero.

5.2. MPS under Censored Sample. The general form for the
MPS function under Type-I censored and Type-II censored
samples is given as

+1
n T

! n—-r
SO = (L= Flgs¥) Q(DM\P)), (23)
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Dy, =F(xy.,,Y¥),
where Di: n (\I/) = Di: n= F(xi: n’\y) - F(x(i—l): n> \II)’; i=
D(n+1): n= I- F(x \I’)>
2,...,r, where in Type-I censoring ¢ =T and in Type-II
censoring g = x,. .. For more information, see the work of
Almetwally and Almongy [27, 28] and Alshenawy et al.
[29, 30]. The natural logarithm of the product spacing
function in the general form for the two different types of
censored samples is given by

r.n’

(1-90)

InG(¥)=m-r)|{In(0) - In(a - 1)+ln(oc—(p(p,oc,[S,)t))—ln<9+ T (¢ (g, a,,A) - 1))]

+hﬂ¢whmmﬂJ)—U—zhma—n—h<e+

(1-6
(-1

(o5 fi) 1)
(24)
(1-90)

+In(0) +In(a— ¢(x,. ,,a B, 1)) —ln<9+ « D) (¢(x,. pa, B A) — 1))

r

+ Z In(Fyoapw (%i: 0 ¥) = Fyvioapw (%io1. o F))-

i=2

The partial derivatives of MPS under censored samples
with respect to the unknown parameters cannot be calcu-
lated directly. Hence, we utilize a numerical algorithm like
the conjugate gradients method that can be used to count the
MPS of V.

5.3. Bayesian Estimation. We consider the Bayesian esti-
mation of the unknown parameters ¥ = (a, 3, 0, 1) under
Type-1 censored and Type-II censored schemes. Bayesian
estimation is considered under the assumption that the
random variables ¥ have an independent and identical (iid)
gamma prior, where « ~ Gammal(a,, b;), ~ Gamma
(a,, by), 0 ~ Gamma (as, b;), and A ~ Gamma (a,, b,). The
prior joint PDF of ¥ should be documented as

9(¥) o le—(a/hl)ﬁaz— le—(ﬁ/bz)ea3— le—(G/b3)Aa4— 16—()L/b4)

4
g(‘{’)ocl_[‘l’?j_1 ef(\yjlbf , ajandb; >0;j=1,2, ...,4,
=1

(25)

where all the hyperparameters a;andb;, j=1,2,...,3, are
known and nonnegative. According to Kundu and Howlader
[31], the hyperparameters can be elected to fit the experi-
menter’s prior belief in terms of the prior gamma distri-
bution. By equating variance and mean of ¥, with the mean
and variance of the taken prior (Gamma priors),
j=1,2,...,kand k is the number of samples available from
the MOAPW distribution.
We have the following likelihood function:

- (82) oy

Bla—1) il

(xi/p)" "9 (i, s 1) >

[0+ ((1- 0)/(a— 1) (9(x; pas puh) = 1)]

(26)

_( Ola — ¢ (p, a, B, 1)]

(a— DO+ (A - 0)/(a— 1) (g (g, f,A) - 1)]) '
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In equation (25), the prior joint density is utilized in
getting the joint posterior of MOAPW with Type-I censored

OAIn(«)

m(¥lx) =M ] a1

(e (e

=1

'((a—l)[

where I is the normalizing constant.

Markov Chain Monte Carlo (MCMC) is used in esti-
mating the parameters. MCMC is specifically beneficial in
Bayesian inference as a result of focusing on posterior
distributions that are often hard to work with through

Ola — ¢ (g, o, f;1)]
0+ ((1-0)/(a— 1) (¢ (g B, 1) — 1)]

In(«)

) 3 Gy XH(

)nr
>

and Type-II censored samples of MOAPW distribution with
parameter ¥ as follows:

(x/B)" 9 (i, o 0 B, A)
0+((1- 0/ (a— ) (p(x; o pA) = 1]

(27)

analytic examination. MCMC allows the user to approxi-
mate the integrals for the posterior distributions that cannot
be directly computed.

The conditional posterior densities of ¥ are as follows:

q)(xi: n> “’B’A)

my (al, 6, A, x) o ot ! e(u/bl)<

'((a—l)[

(a=1)

) i=1 <[
[a— ¢ (B, A)]

0+ ((1-0)/(a-1))(¢(p,xp,A) - 1)]

)

6+((1_ 6)/(0(— 1))((P(xi:n’“’ﬁ’l)_ 1)]

)

n-r
>

[a— ¢ (g, a, B, )]

7 (Blas 6, 4,0 oc 7 (M)( ) DINCHD (

r

(xi/lB)/F l(p ('xi: w % ﬁ’A)

(a=D[O+((1-0)/(a—1))(¢(p, 1) - 1)]

2

gl

1

0+((1- 0/ (a = D) (9 (xi. w2 p,A) = 1)]

)

(28)
1

* 0 ) ,/L 6“3 (0/h3) 6
73 (Bla, B, A, x) o o H( 0+((1-0)/(a—1))

1
0+((1-0)/(a—1))(¢(p: 1) - 1)]

‘ -

(xi//j’)l_ 1(/’

)

(¢ (xi. 0 p,2) = DI’

('xi: n’ “’ﬂ’ /\)

7, (Ma, 8,0, x) o (¥]x) o HH< THGE

.([

[a—¢(p, % B M)]
0+((1-0)/(a - 1) (¢p(p,ap,A) - 1)]

9)/(0( - 1)) ((P(xi: n “’ﬂ’A) - 1)]

)

) a0 2 (s, )
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Therefore, to generate these parameters by this method,
we used the Metropolis-Hastings algorithm introduced by
Metropolis et al. [32] with normal proposal density function.
For more details regarding the Metropolis-Hasting algo-
rithm’s implementation, we refer the readers to the works of
Hafez et al. [25], Nassar et al. [33], Muhammed and.
Almetwally [34], and Almetwally et al. [35].

6. Simulation Study

In this section, a Monte Carlo simulation is done to estimate
MOAPW distribution parameters based on Type-I and
Type-II censoring by using MLE, MPS, and Bayesian
methods. Also, we used R packages for the following steps in
simulation.

In simulation algorithm, Monte Carlo experiments were
carried out under the following data generated from
MOAPW distribution by using the quantile function in
equation (15), where x is distributed as MOAPW distri-
bution for different parameters ¥ = (a, f3, 6, A,6) and the
initial values of the parameters are as follows.

We have the three following cases: Case 1:
a=15p=150=15A1=15, Case 2: a=3;5=1.5; 0=
0.75; A = 1.5, and Case 3: « = 0.75; 8 = 1.5;0 = 3; 1 = 1.5, for
different samples sizes n = 50,100 and 200 and for different
censored samples schemes, wherein in Type-Il when
p=0.7and 0.9 is ratio of sample size, r = (35, 45), (70, 90),
and (140, 180) of sample size, while in Type-I, we used different
times as 2 and 3.25. We can find the parameter estimation by
using equations (22) and (24), optim function in R packages by
using the Newton-Raphson algorithm, and 10,000 iterations.

We could define the best method as the scheme that
minimizes bias and mean squared error (MSE), where
MSE = Mean (¥ — ¥)? and Bias =¥ — ¥, where ¥ is the
estimated value of V.

By referring to the results in Tables 3-5 and Figure 5, we
can conclude the following

(1) Bias and MSE decrease when # increases in all the
estimates

(2) In Type-II censored sample, if the number of failures
(r) increases, then the values of the Bias and MSE
decrease for parameters of MOAPW distribution

(3) In Type-I censored sample, if the time (T') increases
for censoring samples, then the values of the Bias and
MSE decrease for the parameters of MOAPW
distribution

(4) The Bayesian estimates have more relative efficiency
than MLE and MPS for most parameters of MOAPW
distribution

(5) In cases 1, 2, and 3, we note that MPS provides better
estimation than MLE in most parameters in Type-I
and Type-II according to the values of their MSE

7. Application to Real Data Sets

In this part, we applied two real data sets to illustrate the
fitness of the MOAPW distribution in this section.

Complexity

Firstly, we deal with the first data discussed by Nassar
etal. [17], and these data refer to the fatigue times of 6061 T6,
aluminium coupons. The data consist of 101 units with
maximum stress per cycle 31,000 psi. Birnbaum and
Saunders [36] used these data to illustrate the applications of
their distribution. The data sets are as follows: 70, 90, 96, 97,
99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112,
112,113,114, 114, 114,116, 119, 120, 120, 120, 121, 121, 123,
124,124, 124, 124, 124, 128, 128, 129, 139, 130, 130, 130, 131,
131, 131, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134,
136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142,
142,142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152,
155, 156, 157, 157, 157,157, 158, 159, 162, 163, 163, 164, 166,
166, 168, 170, 174, 196, and 212. Bourguignon et al. [37] used
these data to fit the Weibull-Burr XII (WBXII) distribution.

The MOAPW model has the highest p value and the
lowest distance (D) of Kolmogorov-Smirnov (K-S) value
when it is compared with all other models used here to fit the
current data, which means that the new model fits the data
better than the MOAPEx, WBXII, MOW, APW, and W
models. The log-likelihood (LL) ratio test, Akaike infor-
mation criterion, (AIC), correct Akaike information crite-
rion (CAIC), and Hannan-Quinn information criterion
(HQIC) values for the five tested models are given for the
first data set in Table 6, where k is the number of parameters
in equation (29).

AIC = 222 (P|x) + 2k,

k(s )

29
AT (29)

CAIC = 22 (¥|x) + 2k + 2

HQIC = 2% (¥|x) + 2 klog[log(n)].

From Table 6, we find that the MOAPW distribution has
the lowest AIC, CAIC, and HQIC values. Based on Figure 6,
it is clear that the MOAPW model fits the first data.

Secondly, the second data set is obtained from Smith and
Naylor [38]. The data include 63 observations of 1.5 cm glass
fibers” strengths, measured at the National Physical Labo-
ratory, England.

The MOAPW model has the highest p value and the
lowest distance of K-S value when it is compared with the
MOW, APW, WBXII, MOAPEx, and Weibull distributions
used here to fit the current data, which means that the
MOAPW fits the second data better than the MOAPEX,
WBXII, MOW, APW, and W models. The LL, AIC, CAIC,
and HQIC values for the five tested models are given for
another data set. From Table 7, we find that the MOAPW
distribution has the lowest LL, AIC, CAIC, and HQIC
values. Based on Figure 7, it is clear that the MOAPW
provides the best fitting among all competitive models
according to the second data.

The relative histogram and fit of MOAPW distribution of
both data sets are discussed in Figures 6 and 7, respectively.
Also, the figures of the fitted MOAPW’s PDF and empirical
CDF of both data sets are displayed in Figures 6 and 7,
respectively. Also, we present the Q-Q and P-P plot for the
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TaBLE 3: MLE, MPS, and Bayesian estimation methods under different censored sample in case 1.
a=15p=150=151=15
Sch MLE MPS Bayesian
" cheme Bias MSE Bias MSE Bias MSE
Q -0.0360 0.1774 0.2175 0.1698 0.0419 0.1298
Complete [j 0.1846 0.1921 0.0603 0.1148 0.0577 0.0595
0 0.4359 0.8930 0.8054 0.7499 —0.0146 0.1780
2 -0.1620 0.1278 -0.3004 0.1200 -0.0716 0.0520
§c —-0.0232 0.2528 0.1915 0.2038 0.1838 0.1924
=35 [j 0.2013 0.2191 —0.0391 0.1241 0.2148 0.1802
Q -0.0207 0.9924 0.2372 0.8074 0.0421 0.3782
A 0.2716 0.4938 0.0389 0.3475 0.1185 0.1309
@ 0.0774 0.1479 0.1699 0.1328 0.0468 0.1520
50 =45 E 0.1949 0.2041 0.2372 0.1956 0.2199 0.1142
Q 0.0164 0.9007 0.0942 0.7554 —0.0403 0.2074
A —0.2474 0.2662 —0.2356 0.2361 —-0.1024 0.1064
@ 0.0823 0.1424 0.2635 0.1220 —0.0059 0.1208
T=2 E 0.5317 0.4697 0.2762 0.2208 0.2350 0.2028
Q 0.6363 1.0312 0.7207 0.9805 —0.0635 0.1919
A —0.5251 0.3035 —0.6084 0.3020 —0.3654 0.1663
§ —-0.0677 0.1339 0.1945 0.1214 0.0403 0.1181
T =325 E 0.2681 0.2086 0.0407 0.1143 0.1964 0.0879
’ Q 0.3725 0.8488 0.3577 0.8394 0.0594 0.1908
A -0.1146 0.1113 —0.1661 0.1081 —0.0665 0.0387
@ 0.0865 0.0955 0.1501 0.0913 0.0560 0.0813
Complete [j 0.1204 0.1225 —0.0354 0.0712 0.0587 0.0382
Q 0.0092 0.7482 0.1817 0.5471 —-0.0187 0.1522
A -0.1524 0.1055 0.0080 0.1120 0.0610 0.0518
gc 0.0059 0.1821 0.2294 0.1528 —0.0328 0.1495
=70 ﬁ 0.3972 0.2350 0.2505 0.1285 0.2346 0.0412
Q 0.7158 0.8813 0.9267 0.8284 —0.0646 0.1760
A 0.1761 0.3174 —0.5755 0.3049 —0.3818 0.1582
§ —0.0456 0.1104 0.1347 0.1046 0.0110 0.1055
100 =90 ﬁ 0.2078 0.1125 0.0718 0.0864 0.2040 0.0391
Q 0.5575 0.7737 0.4016 0.6121 0.0147 0.1609
A —0.1552 0.2859 —0.3288 0.1554 —0.1325 0.0936
o 0.1275 0.1087 0.2584 0.1076 —0.0005 0.0828
T=2 B 0.4158 0.2428 0.2697 0.1341 0.2336 0.1156
0 0.7382 0.9658 0.7934 0.9323 —0.0605 0.0953
2 —-0.5627 0.3295 —0.4616 0.3193 -0.4027 0.1732
@ —0.0463 0.1079 0.0914 0.0975 —0.0040 0.0801
T =325 é 0.1672 0.0880 0.0294 0.0526 0.1916 0.0635
’ Q 0.5028 0.7441 0.4778 0.7156 0.0114 0.0920
A —0.1895 0.1109 -0.1293 0.1102 —0.0885 0.0274
o 0.0490 0.1688 0.1233 0.0853 0.0081 0.0287
Complete B 0.0649 0.0667 —0.0389 0.0352 0.0119 0.0103
0 0.0367 0.5419 0.1535 0.3122 —0.0096 0.0226
) 0.0957 0.1172 -0.0270 0.0887 0.0169 0.0097
@ 0.1470 0.0745 0.1233 0.0711 0.0338 0.0327
= 140 E 0.3325 0.1433 0.2516 0.0927 0.2466 0.0742
Q 0.8358 0.9530 0.9500 0.9412 -0.0677 0.0329
A —0.5513 0.3128 —0.5846 0.3050 -0.3789 0.1482
é —0.0160 0.0720 0.0511 0.0710 0.0221 0.0307
200 =180 E 0.1567 0.0523 0.0748 0.0301 0.1671 0.0404
Q 0.6155 0.6336 0.7835 0.6388 0.0042 0.0243
A —0.2766 0.0997 -0.3367 0.0914 —0.1464 0.0276
'92 0.1457 0.0616 0.2310 0.1017 —0.0200 0.0308
T=2 E 0.3627 0.1626 0.2764 0.1048 0.2124 0.0610
0 0.8223 0.8876 0.7968 0.8197 —0.0690 0.0306
h) —0.5820 0.3448 —0.6162 0.3860 -0.3920 0.1579
o —0.0594 0.0607 0.0715 0.0915 0.0047 0.0271
T =325 E 0.1333 0.0450 0.0528 0.0270 0.1430 0.0292
’ Q 0.5418 0.5209 0.6965 0.7178 0.0034 0.0289
A —0.2187 0.0730 —0.2820 0.1038 -0.1017 0.0167
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TaBLE 4: MLE, MPS, and Bayesian estimation methods under different censored sample in case 2.

a=3;f=1560=0751=15

Sch MLE MPS Bayesian
" cheme Bias MSE Bias MSE Bias MSE
@ —-0.2255 0.3926 0.0956 0.0610 0.0431 0.0575
Complete [j 0.1382 0.2527 —-0.0333 0.1338 0.0342 0.0560
0 0.1338 0.7024 0.3240 0.7186 0.1909 0.2318
1 0.2241 0.4653 0.0858 0.4641 0.0645 0.1155
[ —-0.1867 0.1341 —0.0448 0.0759 —-0.0185 0.0698
r =35 [j 0.3993 0.3219 0.1584 0.1540 0.2654 0.1309
Q 0.8275 1.2105 1.1366 1.9224 -0.0753 0.0707
A -0.6171 0.4161 —-0.7008 0.5274 —0.3388 0.1476
@ -0.1125 0.1337 -0.1038 0.1096 0.0056 0.0955
50 r = 45 E 0.2095 0.1784 —-0.0133 0.1068 0.1681 0.0771
Q 0.6264 0.9327 0.9724 1.7041 0.0311 0.0603
A —-0.2997 0.1919 —0.4358 0.2977 —-0.1381 0.0502
@ -0.2269 0.1661 —-0.0747 0.0973 —-0.0228 0.0924
T=» [j 0.3579 0.2776 0.1249 0.1321 0.1135 0.1203
0 0.8357 1.2376 0.7502 1.1015 0.0282 0.1087
A —-0.5831 0.3713 —-0.6705 0.3482 —-0.3044 0.1469
@ -0.1525 0.1344 -0.1504 0.1275 —-0.0203 0.0901
T =395 B 0.1734 0.1616 —0.0430 0.1138 0.1687 0.0840
’ Q 0.5107 0.8129 0.6842 0.8047 0.0947 0.1163
A -0.1792 0.1547 —-0.3275 0.1452 —0.0550 0.0665
a -0.1928 0.1134 0.0822 0.0421 —-0.0337 0.0288
Complete [j 0.0434 0.1423 —0.0441 0.0910 -0.0037 0.0339
Q 0.1034 0.6417 0.2664 0.5098 0.1368 0.1421
A 0.1357 0.1635 0.0247 0.1531 0.0097 0.0741
a —-0.4302 0.3874 -0.2322 0.2279 -0.0184 0.0356
=70 B 0.3004 0.1625 0.1560 0.0846 0.1611 0.0448
Q 0.9529 1.2599 0.9418 1.1759 —-0.1429 0.0417
A -0.6675 0.4623 —-0.7230 0.4539 -0.3028 0.1081
a -0.2125 0.1382 —-0.0944 0.0630 —-0.0125 0.0314
100 r =90 [j 0.1335 0.0840 —-0.0032 0.0563 0.1096 0.0254
Q 0.6960 0.8407 0.5936 0.8299 -0.0251 0.0224
A -0.3760 0.1898 —0.4680 0.1727 —-0.1302 0.0310
a —0.4615 0.4541 —-0.2527 0.3012 —-0.0322 0.1221
T=» B 0.2498 0.1223 0.1119 0.0624 0.1013 0.0514
0 0.6944 0.9279 0.6167 0.8798 0.0018 0.0534
1 -0.6265 0.4081 —-0.6853 0.4850 —-0.3456 0.1397
o -0.2270 0.1667 —-0.1015 0.0793 —-0.0201 0.0711
T =325 B 0.1025 0.0807 —-0.0390 0.0661 0.1475 0.0487
’ Q 0.5257 0.6447 0.5680 0.6140 0.0365 0.0593
A -0.2376 0.1293 —-0.3516 0.1204 -0.0717 0.0336
a —-0.0825 0.1022 0.0640 0.0229 0.0146 0.0130
Complete B —-0.0710 0.1285 —-0.0251 0.0529 0.0038 0.0097
0 —0.0047 0.5160 0.1643 0.2726 0.0194 0.0139
M 0.1043 0.1289 0.0064 0.1416 0.0082 0.0138
o —0.3564 0.2818 —-0.2216 0.1706 0.0066 0.0220
= 140 B 0.2494 0.0912 0.1718 0.0558 0.2151 0.0591
Q 0.7983 0.8146 1.1072 0.7434 —-0.1085 0.3310
A -0.6921 0.4856 -0.7224 0.4528 —-0.3607 0.1388
o -0.1564 0.0633 -0.0939 0.0415 —-0.0052 0.0216
200 =180 L3 0.0852 0.3470 0.0061 0.0239 0.1581 0.0353
Q 0.7078 0.6909 0.6846 0.6901 -0.0104 0.0166
A -0.4136 0.1943 —0.4694 0.1824 —0.1541 0.0328
o —-0.5039 0.4500 —-0.3264 0.2498 —-0.0108 0.0337
T=» E 0.2073 0.0675 0.1305 0.0394 0.2213 0.0620
0 0.9640 0.7134 0.8097 0.6942 -0.0736 0.0237
2 —0.6432 0.4205 -0.6773 0.4656 -0.3202 0.1112
a —-0.1813 0.0707 —0.1092 0.0378 0.0212 0.0319
T =395 [:3 0.0433 0.0606 -0.0273 0.0338 0.1245 0.0267
’ Q 0.5239 0.5395 0.6971 0.6361 0.0190 0.0201
A —-0.2700 0.1187 —0.3464 0.1615 —0.0898 0.0189
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TaBLE 5: MLE, MPS, and Bayesian estimation methods under different censored sample in case 3.
a=075p=150=31=15
Sch MLE MPS Bayesian
" cheme Bias MSE Bias MSE Bias MSE
Q 0.0512 0.2843 0.1204 0.2456 0.0378 0.2365
Complete [j 0.1639 0.1279 —0.0561 0.0715 0.0534 0.0574
0 —0.1635 0.3660 0.2517 0.2201 -0.2279 0.2071
2 0.2591 0.0732 0.0538 0.0692 0.0381 0.0598
gc 0.3713 0.3574 0.5869 0.3613 0.2138 0.2400
=35 E 0.5082 0.4102 0.2668 0.1952 0.4358 0.3002
Q 0.1804 0.4252 0.1454 0.3620 —0.1546 0.1603
A -0.3757 0.1784 —0.3472 0.1611 —0.3341 0.1529
éc 0.2722 0.3011 0.4501 0.2565 0.1397 0.2395
50 r— 45 E 0.3083 0.2061 0.0930 0.0967 0.2408 0.0914
Q -0.0439 0.4594 0.1305 0.3059 —0.1547 0.2572
A —0.0860 0.0889 -0.2219 0.0913 —0.1003 0.0703
'g? 0.3552 0.3262 0.3548 0.3155 0.0625 0.1100
T=2 E 0.6355 0.5964 0.3683 0.2909 0.2894 0.1533
Q —0.0485 0.6034 0.3247 0.5875 —0.0454 0.1793
A -0.5173 0.2879 —0.5965 0.2379 —0.4294 0.2020
@ 0.2787 0.2885 0.2516 0.2560 0.1192 0.1023
T =325 ﬁ 0.3194 0.2132 0.0963 0.0934 0.1931 0.0879
’ Q 0.1837 0.3161 0.3996 0.3148 —0.1038 0.1750
A —-0.1016 0.0767 —0.2429 0.0712 —0.1048 0.0356
@ 0.0594 0.2035 0.1862 0.2033 0.0492 0.1692
Complete [j 0.0921 0.0693 —0.0531 0.0644 0.0282 0.0288
Q —0.0638 0.3419 0.2016 0.1389 —-0.1159 0.1290
A 0.1635 0.0621 0.0013 0.0615 0.0404 0.0442
gc 0.3751 0.2465 0.5134 0.3871 0.2324 0.1827
=70 ﬁ 0.4402 0.2618 0.3017 0.1504 0.4222 0.2422
Q 0.0521 0.4199 0.2932 0.3902 —0.0520 0.3138
A —0.4086 0.1837 —0.4655 0.2331 —0.3407 0.1334
éc 0.2969 0.2263 0.4724 0.4098 0.1215 0.1786
100 =90 [j 0.2441 0.1186 0.1102 0.0616 0.2560 0.1052
Q 0.1918 0.2093 0.3412 0.2986 -0.1163 0.3028
A —-0.1507 0.0651 —0.2437 0.0993 —0.0881 0.0347
o 0.4751 0.3949 0.6303 0.2592 —0.0459 0.0566
T=2 B 0.5061 0.3364 0.3499 0.1906 0.2457 0.0967
0 0.3453 0.3651 0.4948 0.4878 —-0.0427 0.0647
2 —0.5575 0.3221 —0.6094 0.3833 —0.4248 0.1924
@ 0.3282 0.2529 0.5023 0.2152 0.0439 0.0507
T =325 é 0.2313 0.1043 0.0972 0.0517 0.1664 0.0518
’ Q 0.0592 0.3084 0.3284 0.4415 —0.0140 0.0564
A —0.1651 0.0638 —0.2590 0.1024 —-0.1195 0.0264
Io4 0.0314 0.1923 0.1407 0.1903 0.0371 0.0250
Complete B 0.0640 0.0410 —0.0386 0.0256 —0.0007 0.0093
0 —0.0508 0.2378 0.1403 0.0736 —0.0162 0.0349
2 0.1181 0.0614 —0.0148 0.0583 0.0026 0.0078
Q 0.4520 0.2803 0.4553 0.2397 —0.0030 0.0261
= 140 E 0.3813 0.1767 0.2992 0.1192 0.2532 0.0762
Q 0.3042 0.2124 0.3421 0.2031 -0.0261 0.0316
A —0.4417 0.2039 —0.4785 0.2014 —0.3435 0.1225
éc 0.3164 0.1998 0.4313 0.2083 0.0305 0.0253
200 =180 E 0.1991 0.0640 0.1210 0.0357 0.1660 0.0402
Q 0.1133 0.1778 0.2635 0.1720 -0.0069 0.0289
A —0.1866 0.0954 —0.2442 0.0763 -0.1121 0.0198
'92 0.4485 0.2599 0.5327 0.34 -0.0609 0.0304
T-2 /j 0.4784 0.2676 0.3902 0.1873 0.2341 0.0698
0 0.1381 0.1634 0.274 0.2031 —0.059 0.0341
2 —-0.5603 0.3193 —0.5903 0.3537 -0.4174 0.1779
o4 0.3228 0.1761 0.4383 0.279 0.0314 0.0265
T =325 E 0.1961 0.0603 0.1206 0.0339 0.1722 0.0407
’ Q 0.2757 0.151 0.3633 0.1966 0.0054 0.0256
A —-0.1892 0.0511 —0.2438 0.0743 -0.1218 0.0203
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FiGgure 5: Continued.
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FIGURE 5: MSE for estimation methods under different schemes for MAOPW: case 1. (a) MSE (a). (b) MSE (B). (c) MSE (0). (d) MSE (A).

TaBLE 6: MLE, standard error (St. E), KS distance, p values, and different criteria for the first data set.

MOAPW MOAPEx WBXII MOW APW Weibull
» 187.2428 225.635 100.24 N 257.1313 N
(30.4985) (202.8139) (191.960) (252.805)
1.1396 0.06031 0.6383 2.180439 3.3823 6.0859
B (0.091) (0.00298) (0.3306) (0.3621) (0.3482) (0.4238)
9 21869.64 503.0672 151.42 97.3626 o .
(1228.397) (191.592) (12.817) (77.8902)
1 18.7292 . 0.0024 66.57344 107.656 143.2649
(2.8363) (0.0067) (12.7838) (5.2713) (2.4816)
. B B 13.23 B B B
(5.6938)
D 0.0535 0.10482 0.05642 0.9948 0.06559 0.1006
p value 0.9342 0.2171 0.9053 0.000001 0.7776 0.2584
LL 455.6693 461.4193 455.1338 456.861 462.2396
AIC 919.3385 928.8386 920.268 Not fitting 919.729 928.4791
CAIC 919.7552 929.086 920.92 919.9693 928.6016
HQIC 922.5732 932.014 925.561 922.8979 930.5965
TaBLE 7: MLE, St. E, K-S distance, p values, and different criteria for the second data set.
MOAPW MOAPEx WBXII MOW APW Weibull
" 1.0045 251.6759 0.0159 . 10.9377 .
(0.5185) (426.8926) (0.01526) (12.6298)
3.22067 5.2737 1.87171 3.222 4.5126 5.8099
B (0.9337) (0.4143) (1.3751) (0.9333) (0.7583) (0.5784)
9 16.98863 559.823 1.14334 16.9565 . B
(27.502) (356.482) (0.9228) (20.7189)
1 1.119755 o 2.04906 1.1203 1.4394 1.626
(0.2407) (1.3997) (0.2404) (0.0923) (0.0368)
. B B 2.05501 B B B
1.652
D 0.0996 0.1552 0.13917 0.9948 0.1233 0.1537
p value 0.5589 0.0961 0.1742 0.000001 0.2939 0.1018
LL 11.5193 16.1572 13.9978 13.051 14.854
AIC 31.0385 38.3144 37.9956 Not fitting 32.1021 33.7081
CAIC 31.7282 38.7212 39.0482 32.5088 33.9081
HQIC 34.4102 40.8431 42.2101 34.6308 35.39391
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Figure 7: Cumulative function, empirical CDF, PDF, Q-Q, and P-P plots for the MOAPW distribution for the second data set.

first and second data, respectively, which allows us to
compare the empirical distance of the data with the
MOAPW.

8. Conclusion

We propose a new four-parameter model in this paper,
called the Marshall-Olkin alpha power Weibull (MOAPW)
distribution, which is an extension of Weibull distribution.
The distribution of MOAPW is motivated by the wide use in
the Weibull model’s life testing and provides more flexibility
to analyze lifetime data. Some statistical properties of the
MOAPW distribution have been obtained, such as survival,
hazard, reversed hazard, stress-strength reliability measure,
quantile, median, and mode. The MOAPW distribution
parameter estimation is derived by MLE, MPS, and Bayesian
estimation methods. The estimation methods are used to
estimate the MOAPW distribution parameters based on
Type-I and Type-II censoring samples, and the simulation
result is used to test the model’s output. The Bayesian es-
timates have more relative efficiency than MLE and MPS for
most of the parameters of MOAPW distribution. The two
real-life types of data indicate that the MOAPW distribution
proposed consistently provides better fit than the MOW,
APW, WBXII, MOAPEx, and Weibull distributions.
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