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Abstract

Motivation: Combination therapies have emerged as a treatment strategy for cancers to reduce the probability of
drug resistance and to improve outcomes. Large databases curating the results of many drug screening studies on
preclinical cancer cell lines have been developed, capturing the synergistic and antagonistic effects of combination
of drugs in different cell lines. However, due to the high cost of drug screening experiments and the sheer size of
possible drug combinations, these databases are quite sparse. This necessitates the development of transductive
computational models to accurately impute these missing values.

Results: Here, we developed MARSY, a deep-learning multitask model that incorporates information on the gene ex-
pression profile of cancer cell lines, as well as the differential expression signature induced by each drug to predict
drug-pair synergy scores. By utilizing two encoders to capture the interplay between the drug pairs, as well as the
drug pairs and cell lines, and by adding auxiliary tasks in the predictor, MARSY learns latent embeddings that im-
prove the prediction performance compared to state-of-the-art and traditional machine-learning models. Using
MARSY, we then predicted the synergy scores of 133 722 new drug-pair cell line combinations, which we have
made available to the community as part of this study. Moreover, we validated various insights obtained from these
novel predictions using independent studies, confirming the ability of MARSY in making accurate novel predictions.

Availability and implementation: An implementation of the algorithms in Python and cleaned input datasets are
provided in https://github.com/Emad-COMBINE-lab/MARSY.

1 Introduction

Cancers are complex diseases that involve various pathways and are
regulated by a multitude of different genes (Sun et al. 2015; Li et al.
2020). Despite the emerging understanding of cancers, the develop-
ment of effective treatments remains a prevailing challenge.
Combination therapies, in which multiple treatments are adminis-
tered simultaneously, have emerged as an alternative to monothera-
pies (Sun et al. 2015; Bayat Mokhtari et al. 2017; Madani
Tonekaboni et al. 2018). By simultaneously targeting multiple
genes, proteins, and pathways, they can reduce the probability of
drug resistance while improving the treatment’s efficacy (Bayat
Mokhtari et al. 2017; Li et al. 2018, 2019, 2021), and allow for the
reduction of necessary dosage per drug, reducing the risk of drug
toxicity and adverse effects (Li et al. 2018, 2021; Kuru et al. 2021).

Due to the distinct molecular and clinical characteristics of can-
cer types, it is necessary to evaluate the response of cancer cells to
different treatments and treatment strategies in each cancer type.

The curation of molecular profiles of cancer cell lines (CCLs) and
their response to monotherapies in large databases such as the
Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. 2012) and
Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al. 2013)
initiated the development of various computational models for pre-
diction of single drug response in CCLs (Costello et al. 2014;
Hostallero et al. 2022) and patient tumors (Huang et al. 2020;
Hostallero et al. 2023). More recently, large databases of synergy
scores of drug combinations (mainly drug pairs) in CCLs such as
DrugComb (Zagidullin et al. 2019) have been curated based on the
results of many high-throughput drug screening studies. These data-
bases include different synergy scores to quantify the observed ef-
fectiveness of a drug combination compared to its expected
effectiveness if they are not interacting (Amzallag et al. 2019). In
spite of these efforts, the sheer size of possible (drug combination,
CCL) tuples and the cost of drug screening experiments have
resulted in sparse datasets with many missing values.
Computational models that can accurately predict the synergy
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scores of drug combinations and impute these datasets can have a
significant impact in this domain.

Various models have been proposed to achieve this goal (Bansal
et al. 2014). In one study (Sidorov et al. 2019), the authors used
various machine-learning (ML) models and obtained their best pre-
dictive performance using Random Forests (RF) and Extreme
Gradient Boosting (XGB) models. Other studies have also explored
ML models such as linear regression, support vector machine
(SVM), LASSO, RF, XGB, Extremely Randomized Trees, and
TreeCombo (which is an extreme gradient-boosted tree-based ap-
proach) (Janizek et al. 2018; Jeon et al. 2018; Celebi et al. 2019). In
addition to these traditional ML models, several deep-learning (DL)
models have been proposed. One of the earliest methods,
DeepSynergy (Preuer et al. 2018), used a fully connected neural net-
work composed of two hidden layers and showed significant im-
provement compared to the state-of-the-art ML models such as RF
and XGB. A more recent model, MatchMaker (Kuru et al. 2021),
showed that learning two distinct representations for each drug–
CCL pair in a combination can improve the performance.

Here, we present MARSY, a multitask DL model that predicts
the level of synergism between drug pairs tested on CCLs. Using
gene expression to characterize CCLs and drug-induced signatures
to represent each drug, MARSY learns a distinct set of embeddings
to obtain multiple views of the input features. Precisely, a represen-
tation of the entire combination and a representation of the drug
pair are learned in parallel. These embeddings are then fed to a
multitask network that predicts the synergy score of the drug com-
bination alongside single drug responses. A thorough evaluation of
MARSY revealed its superior performance compared to various
state-of-the-art and traditional computational methods. A detailed
analysis of the design choices of our framework demonstrated the
predictive contribution of the learned embeddings by this model.
Using MARSY, we then predicted the synergy scores of 133 722
new drug-pair CCL combinations, which can be used to guide future
drug screening and pharmacogenomics studies. Moreover, we vali-
dated various insights obtained from these novel predictions using
independent studies, confirming the ability of MARSY in making ac-
curate novel predictions.

2 Materials and methods

2.1 Prediction of drug-pair synergy scores and single

drug response using MARSY
MARSY (Multitask drug pAiR SynergY) is a DL-based model that
seeks to learn latent representations (embeddings) capable of predict-
ing the synergy score of two drugs in a CCL. As input, it receives fea-
ture vectors of two candidate drugs and a feature vector of a CCL
(Fig. 1). The architecture includes two parallel and separately parame-
terized encoders with a bottleneck layer, and one multitask predictor.
The first encoder (ENCPair) receives the concatenation of the feature
vectors of the drug pair to learn a (drug1 and drug2)-specific embed-
ding, while the second encoder (ENCTriple) receives all three feature
vectors to learn a (drug1, drug2, and CCL)-specific embedding. These
embeddings are then concatenated and provided as input to the pre-
dictor, which predicts the synergy score of the two drugs, along with
the single drug response of each drug in that CCL (performing three
tasks simultaneously). The inclusion of single-drug response predic-
tors as auxiliary tasks ensures that the representations learned by the
two encoders are constrained to capture biologically and chemically
important information corresponding to each drug, improving its
generalizability and performance.

ENCPair accepts a drug pair’s signature (a vector of length 3912)
as input and consists of two fully connected hidden layers of width
1024 and 2048. ENCTriple accepts a vector of length 8551 corre-
sponding to the concatenation of a drug pair’s signatures and a
CCL’s gene expression profile as input and consists of two fully con-
nected hidden layers of width 2048 and 4096. The first hidden layer
of both encoders is a bottleneck layer to perform dimensionality re-
duction, while the second hidden layer has a larger width to increase
the capacity of the model. The relative width of layers in these two

encoders is chosen to approximately match the length of inputs to
each encoder. A linear activation function is used for the first layer,
while a Rectified Linear Unit (ReLU) function is used for the second
layer of both encoders. Both encoders use dropout regularization
with a probability of 0.2. The embeddings obtained from these two
encoders are concatenated and provided as input to the predictor
(PREDResp). PREDResp consists of two fully connected hidden layers
of width 4096 and 1024 and an output layer of width 3 to predict
the synergy score of the drugs and their individual drug response. A
ReLU activation function is used for the first two layers while a lin-
ear activation function is selected for the output layer, given the re-
gression nature of the prediction task. Finally, a dropout
regularization with a probability of 0.5 is used for the predictor.
Details of hyperparameter tuning and training are discussed below.

2.2 Training and hyperparameter tuning
Both encoders (ENCTriple and ENCPair) and the predictor
(PREDResp) were trained in an end-to-end fashion using a mean
squared error (MSE) loss function and the Adamax optimizer
(Kingma and Ba 2014) with the default learning rate of 0.001 and
early stopping. The dropout probabilities and the activation func-
tion used on the input layer of both encoders were considered hyper-
parameters to be tuned using an independent validation set. All
possible combinations of the probabilities 0.2 and 0.5 were assessed
for both the encoders and the predictor. Furthermore, this assess-
ment was performed alternating between a ReLU and a linear acti-
vation function for the input layer of the encoders. The reason we
considered a linear activation function as an option for the first layer
is its ability to improve and simplify the optimization process. These
hyperparameters were evaluated on a small validation set (�1100
samples) that was excluded from the main dataset used for cross-
validation evaluation, in order to ensure that no data leakage occurs.
The rest of MARSY’s architecture followed the design choices
detailed above. The best-performing combination of hyperpara-
meters (as evaluated on the independent validation set) was used to
finalize the design of the MARSY framework.

2.3 Datasets and data cleaning
In this study, the feature vector of each CCL corresponded to its
baseline gene expression profile (before administration of any drug),
as measured in CCLE (Barretina et al. 2012). We downloaded the
log2ðRPKMþ 1Þ normalized RNA-seq profile of 1019 untreated

Figure 1 The overview of MARSY’s architecture. (A) The drug features and CCL

gene expression profile are provided as input to the two encoders. Separately para-

meterized encoders obtain representations corresponding to the drug pair and to the

drugs and CCL triple. (B) Both representations are concatenated and used as inputs

to a multitask predictor. (C) The predictor predicts the synergy score of the drug

combination, along with the single drug response of each drug (three outputs)
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CCLs (cataloged in the CCLE study) from the CellMiner database
(Shankavaram et al. 2009; Reinhold et al. 2012). We removed lowly
expressed genes whose log2ðRPKMþ 1Þ value was lower than 1 in
more than 75% of all CCLs. Additionally, we calculated the vari-
ance of genes across all CCLs and excluded those that had a vari-
ance smaller than 0.8, which resulted in a set of 4639 features
(Fig. 2). Finally, a z-score normalization was performed to the ex-
pression of each gene over all the CCLs, one gene at a time.

To represent drugs (as inputs to the model) we used their signa-
tures corresponding to the differential gene expression profile of two
CCLs (MCF7 and PC3) measured 24 h after treatment with that
drug with the dosage of 10 lM. We downloaded level 5 signatures
from the Library of Integrated Network-Based Cellular Signatures
(LINCS) (Subramanian et al. 2017), and only used experimentally
measured values corresponding to 978 landmark genes. The two
CCLs, the time after treatment, and the drug dosage were selected to
maximize the number of samples in our study. In instances where
replicate signatures existed for the same CCL, same drug, same dos-
age, and same time-point, we calculated their mean to obtain a con-
sensus signature. We concatenated the MCF7 and PC3 signatures of
each drug, resulting in a vector of length 3912 to represent each
drug pair (Fig. 2).

DrugComb is one of the largest publicly available datasets for
drug synergy scores with a total of 739 964 drug combinations
obtained from 8397 unique drugs. We downloaded drug synergy
scores (and single drug responses) corresponding to triples of
(drug1, drug2, CCL) for which we had both drug signatures (from
LINCS) and CCL gene expression profiles (from CCLE) from
DrugComb (V1.5, https://drugcomb.fimm.fi). Various measures of
drug synergy have been introduced in the literature, which typically
rely on the deviation of the observed response compared to that of a
theoretical model. In this work, we focused on two more recent
measures of synergism, Zero Interaction Potency (“ZIP”) and
“Smean”, which have been introduced to overcome some of the
shortcomings of older measures and provide more robust synergy
scores. ZIP calculates the synergism of a drug pair under the as-
sumption that there is no potency between the single drug responses
(Yadav et al. 2015). ZIP incorporates both the Loewe additivity
(Loewe 1953) and the Bliss independence (Bliss 1939) theoretical
models in order to capture different types of drug interaction pat-
terns and has been shown to be more robust and less sensitive to ex-
perimental noise (Yadav et al. 2015). On the other hand, Smean

calculates synergism of a drug pair assuming that the single drug ef-
fect is equivalent to the average of the single drug responses
(Malyutina et al. 2019). As opposed to ZIP, Smean is not calculated
for each combination of dosages; instead, a drug sensitivity measure
is computed directly from the dose–response curve of each drug and
used as the drug pair’s response. Thus, Smean serves not only as a
measure of drug-pair synergy but also of its sensitivity, which aims
to illustrate the actual response of a CCL (Malyutina et al. 2019),
and hence is more biologically informative. For these reasons, we
focused on these two measures, since they represent recent advances

in defining drug synergy with several advantages compared to older
models.

Since DrugComb contains (sometimes inconsistent) replicates, it
is important to carefully process such cases. To identify samples
with inconsistent replicates, we used two conditions. First, we only
kept samples for which at least 60% of the replicates had the same
synergy score sign. Second, we only kept the samples for which the
standard deviation of the synergy score over replicates did not ex-
ceed 0.1. Finally, to obtain a single consensus synergy score for each
sample, we calculated the replicates’ median score. The final dataset,
comprised of samples that were present in all three datasets above
and passed the filtering steps, contained 43 174 (drug1, drug2, and
CCL) triple samples corresponding to 670 unique drugs, 2353
unique drug pairs, and 75 unique CCLs. Finally, in order to ensure
that the trained model is invariant to the order of the drugs in its in-
put space, for each triple sample we constructed a new sample by
changing the order of the drugs (Fig. 2), resulting in a total of
86 348 triple samples. It is important to note that the samples with
known synergy scores above only correspond to 0.128% of all pos-
sible combinations of 670 drugs and 75 CCLs, further emphasizing
the importance of transductive computational models to complete
this sparse 3D tensor.

We used relative inhibition (RI), available in DrugComb, as the
response of each drug in a CCL. RI represents the normalized area
under the dose–response curve after a log10 transformation (Zheng
et al. 2021). More precisely, RI is the proportion of this area under
the dose–response curve to the maximal area that one drug can
achieve at the same range of dosages. This metric represents the
overall inhibition effect of a drug and has shown to be a robust way
to represent drugs’ sensitivity (Douglass et al. 2022). Additionally,
the RI metric allows the comparison of drug responses obtained
using different dose ranges (Zheng et al. 2021).

2.4 Baseline models
We considered several baseline models for benchmarking the per-
formance of MARSY. Off-the-shelf models included LASSO,
ElasticNet, Support Vector Machine Regression (SVM), Random
Forests (RF), and a multi-layer perceptron (MLP) with the same
depth and width as MARSY. State-of-the-art algorithms, developed
by others for the same task, included TreeCombo (Janizek et al.
2018), DeepSynergy (Preuer et al. 2018), and MatchMaker (Kuru
et al. 2021). All models were trained on the same dataset (with iden-
tical folds across models) and evaluated similarly to ensure a fair
comparison. Hyperparameters of these models were tuned using the
same independent validation set used to tune MARSY’s hyperpara-
meters (see Supplementary Methods for details). The model that per-
formed best on the validation set was used for cross-validation
analysis on the main dataset. In addition to the baselines above, we
performed an extensive ablation study to assess the effect of each
component of MARSY’s architecture on its performance. The
details of the ablation study are provided in Section 3.

2.5 Cross-validation, data splitting, and evaluation

metrics
The performance of MARSY (and other methods) was evaluated
using a 5-fold cross-validation (CV) approach combined with two
data-splitting strategies. The main dataset described above was ran-
domly divided into five folds (based on each data split strategy
described below); four folds were used to train each model using the
hyperparameters obtained from the independent validation set (not
used as part of these folds) and the remaining fold was used for per-
formance evaluation. This was repeated five times so that each fold
is set as the test set once. The mean and standard deviation of per-
formance metrics on these test sets were used for evaluation.

Two data splitting strategies were used corresponding to the
transductive setup of this study: leave-triple-out and leave-pair-out.
In the former strategy, random triples (drug pair and CCL) were
selected randomly to construct the five folds. In the latter strategy,
the folds were randomly selected based on drug pairs, to ensure that
the pairs of drugs are not seen together in the training set. To ensure

Figure 2 Overview of the number of features representing each element of the input.

To ensure the embeddings learned by MARSY are invariant to order of the drug

pairs, for each such pair, an additional sample is included by inverting their order

while keeping the same associated synergy score
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a fair comparison, we used the exact same folds for all models and
evaluated them in a similar manner. We evaluated the performance
of MARSY and other methods in predicting the continuous-valued
drug synergy scores using Root Mean Squared Error (RMSE),
Spearman’s Rank Correlation Coefficient (SCC), and Pearson
Correlation Coefficient (PCC). Additionally, we converted drug
synergy scores to binary classes (synergistic or antagonistic)
using different thresholds (0, 61, 65, 610, and 620) and used the
area under the receiver operating characteristic (AUROC) to evalu-
ate the performance. For a threshold t, synergy scores above þt
were considered synergistic and values below �t were considered
antagonistic.

3 Results

3.1 Performance of MARSY in the prediction of drug

synergy scores in a leave-triple-out data split
As the first evaluation study, we focused on the 5-fold CV with
leave-triple-out setup, discussed in Section 2 (Table 1). MARSY out-
performed all baseline models using all performance metrics. In par-
ticular, MARSY achieved a Pearson correlation coefficient of
PCC¼0.886 on ZIP and PCC¼0.864 on Smean. The substantial dif-
ference between the performance of MARSY and the MLP with a
similar depth and width, reveals the importance of learning separate
representations for input pairs and triples, and using a multitask pre-
dictor to constrain these representations using single drug priors. In
this evaluation, all state-of-the-art algorithms outperformed off-the-
shelf methods, yet did not achieve MARSY’s performance.

Next, we sought to determine the ability of MARSY (and other
models) in predicting the synergistic and antagonistic drugs in each
CCL (a binary classification task). Since the ZIP scores and Smean are
continuous values, we used five thresholds (0, 61, 65, 610, and
620) with an increasing degree of strictness to binarize these values.
For a specific threshold 6t, a score (ZIP or Smean) of a triple (two
drugs and a CCL) larger than þt was considered to be synergistic,
smaller than �t was considered to be antagonistic, and values be-
tween these two thresholds were considered low-confidence and
were discarded. Figure 3A and Supplementary Table S1 show the
AUROC of MARSY and other baselines models as a function of
these thresholds, revealing the superior performance of MARSY in
prediction of ZIP score in a classification formulation.

3.2 Performance of MARSY in prediction of drug

synergy scores in a leave-pair-out data split
Next, we sought to evaluate the performance of MARSY, when
folds in the 5-fold CV are determined only based on drug-pair iden-
tities (i.e. a drug pair in the test set is never observed in the training
set). Similar to the leave-triple-out framework, MARSY outper-
formed all other models (Table 2), reaching a Pearson correlation

coefficient value of PCC¼0.875 for prediction of ZIP score and
PCC¼0.841 for prediction of Smean. Similar to the leave-triple-out,
MatchMaker, TreeCombo, and DeepSynergy were the best perform-

ing models after MARSY. Figure 3B and Supplementary Table S1
show the AUROC of different models for different thresholds,

further demonstrating the superior performance of MARSY for the
majority of the thresholds.

3.3 Detailed evaluation of MARSY’s architecture
One aspect of MARSY’s architecture is its multitask predictor. We
replaced this predictor with a single-task predictor that only predicts

drug synergy scores. This modification resulted in a lower perform-
ance based on all three measures and both data split strategies
(Supplementary Table S2). For example, MARSY had a 6.12%

Table 1 The performance of MARSY and baseline methods using 5-fold leave-triple-out evaluation.a

Model Zip Smean

SCC PCC RMSE SCC PCC RMSE

MARSY 0.780 (60.010) 0.886 (60.005) 5.36 (60.19) 0.836 (60.002) 0.864 (60.003) 8.42 (60.09)

MatchMaker 0.742 (60.004) 0.873 (60.006) 6.11 (60.32) 0.810 (60.003) 0.840 (60.005) 9.84 (60.23)

TreeCombo

(XGBoost)

0.737 (60.004) 0.870 (60.003) 5.73 (60.17) 0.817 (60.002) 0.852 (60.002) 8.77 (60.06)

DeepSynergy 0.701 (60.003) 0.869 (60.004) 5.78 (60.18) 0.803 (60.003) 0.843 (60.002) 9.14 (60.12)

MLP 0.675 (60.002) 0.840 (60.004) 6.30 (60.15) 0.781 (60.011) 0.817 (60.009) 9.72 (60.24)

SVM 0.689 (60.004) 0.783 (60.006) 7.65 (60.19) 0.766 (60.005) 0.779 (60.004) 10.67 (60.07)

Random Forests 0.419 (60.003) 0.646 (60.016) 9.04 (60.21) 0.619 (60.006) 0.640 (60.005) 12.98 (60.05)

LASSO 0.342 (60.009) 0.433 (60.013) 10.41 (60.21) 0.561 (60.011) 0.525 (60.013) 14.22 (60.14)

Elastic Net 0.342 (60.009) 0.432 (60.012) 10.42 (60.21) 0.562 (60.011) 0.525 (60.013) 14.22 (60.15)

aThe folds and input data are the same across different models for a fair comparison. Best performance values are in boldface and underlined. The mean and

standard deviations are calculated across the folds. Models are sorted based on their ZIP PCC values.

Figure 3 Performance of MARSY and its embeddings in identifying highly antagon-

istic and synergistic drugs. (A and B) show classification performance of different

methods in terms of AUROC for ZIP score for leave-triple-out and leave-pair-out

5-fold cross-validation, respectively. (C and D) show principal component analysis

(PCA) of synergistic and antagonistic drug pairs for different thresholds (t) for

SK-MEL-28 cell line based on their triple representations (C) and their pair

representations (D) learned by MARSY
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higher SCC in leave-triple-out and a 5.05% higher SCC in leave-
pair-out 5-fold CV for prediction of ZIP score. These results further
demonstrate the importance of including a multitask predictor in the
architecture of MARSY. In fact, changing the predictor of DL base-
line models also improved their performance (Supplementary Table
S2).

Next, we sought to determine the role of input representations
and encoders’ architecture (Fig. 1A) on MARSY’s performance.
Figure 3C and D (visually) show that both triple and pair representa-
tions are able to separate the synergistic and antagonistic drug pairs.
To systematically evaluate their role, we implemented eight alterna-
tive architectures in which the predictor was identical to MARSY’s
multitask predictor, but the latent embeddings were learned using
different number and types of encoders. Supplementary Figs S1–S6
show the architecture of these models and Table 3 shows their per-
formance. These results show that overall, MARSY’s choice of
encoders performs better compared to these alternatives. In particu-
lar, using both Triple and Pair encoders is better than only using the
Triple encoder (Model1 (v1)) or replacing the Triple or Pair
encoders with a CCL encoder (Models 2 and 3). Similarly, it per-
forms better compared to using separate encoders for each drug
(Models 4–6). In addition to the Model1 (v1) which uses a triple en-
coder with similar architecture to that of MARSY, we implemented
two other variations of Model 1 with triple encoders (one with two

hidden layers, but larger width and one with four hidden layers) to
bring the number of their learnable parameters closer to that of
MARSY (Table 3, Supplementary Fig. S1). Table 3 shows that
MARSY outperformed Model1 (v2), Model1 (v3), and Model3, all
of which have similar number of parameters to MARSY. Moreover,
MARSY outperformed DeepSynergy and MatchMaker (Tables 1
and 2) that had 95 M and 59 M learnable parameters, respectively.
These results suggest that the performance of MARSY is not simply
an artifact of its number of parameters.

3.4 Effect of hyperparameters and input features on

MARSY’s performance
As described in Section 2, several aspects of MARSY’s architecture
were design choices selected a priori without hyperparameter tun-
ing. To assess how these choices influence MARSY’s performance,
we conducted a study based on leave-pair-out 5-fold CV in which
we ran MARSY with 576 different combinations of multiple hyper-
parameters to predict the ZIP score. These hyperparameters and
their options included the learning rate (0.01, 0.001, 0.0001), the
optimizer (Adam, Adamax), the input activation function (Linear,
ReLU), the batch size (64, 128), the dropout (with or without), and
the width and depth of the encoders and the predictor (see
Supplementary Table S3 in Supplementary File S1 for the specific
choices).

Table 2 The performance of MARSY and baseline methods using 5-fold leave-pair-out evaluation.a

Model Zip Smean

SCC PCC RMSE SCC PCC RMSE

MARSY 0.749 (60.011) 0.875 (60.005) 5.62 (60.15) 0.809 (60.007) 0.841 (60.011) 9.06 (60.45)

MatchMaker 0.720 (60.006) 0.864 (60.007) 6.23 (60.12) 0.788 (60.009) 0.816 (60.015) 10.34 (60.46)

TreeCombo (XGBoost) 0.689 (60.005) 0.856 (60.006) 6.00 (60.15) 0.775 (60.010) 0.815 (60.011) 9.69 (60.37)

DeepSynergy 0.676 (60.006) 0.860 (60.008) 5.95 (60.16) 0.762 (60.004) 0.804 (60.011) 10.17 (60.42)

MLP 0.642 (60.030) 0.822 (60.023) 6.68 (60.45) 0.744 (60.029) 0.752 (60.091) 11.36 (60.24)

SVM 0.649 (60.008) 0.773 (60.012) 7.79 (60.14) 0.737 (60.011) 0.752 (60.013) 11.15 (60.42)

Random Forests 0.413 (60.005) 0.650 (60.012) 9.02 (60.17) 0.608 (60.016) 0.627 (60.013) 13.14 (60.33)

LASSO 0.333 (60.019) 0.430 (60.007) 10.43 (60.17) 0.555 (60.013) 0.519 (60.012) 14.29 (60.39)

Elastic Net 0.333 (60.018) 0.429 (60.008) 10.44 (60.18) 0.555 (60.013) 0.512 (60.019) 14.29 (60.40)

aThe folds and input data are the same across different models for a fair comparison. Best performance values are in boldface and underlined. The mean and

standard deviations are calculated across the folds. Models are sorted based on their ZIP PCC values.

Table 3 The performance of different combination of embeddings using 5-fold leave-pair-out CV.a

Model Num.

Enc

Num.

Param.

Encoder

Type

Zip Smean

SCC PCC RMSE SCC PCC RMSE

MARSY 2 61M Pair, Triple 0.741 (60.018) 0.871 (60.009) 5.70 (60.14) 0.808 (60.010) 0.840 (60.008) 9.07 (60.35)

Model1 (v1) 1 36M Triple 0.679 (60.024) 0.848 (60.011) 6.22 (60.18) 0.762 (60.007) 0.801 (60.012) 10.17 (60.44)

Model1 (v2) 1 62M Triple 0.669 (60.012) 0.838 (60.006) 6.15 (60.11) 0.768 (60.006) 0.807 (60.008) 9.97 (60.38)

Model1 (v3) 1 57M Triple 0.706 (60.012) 0.862 (60.006) 5.89 (60.19) 0.790 (60.005) 0.830 (60.011) 9.36 (60.47)

Model2 2 23M CCL, Pair 0.706 (60.018) 0.857 (60.009) 6.52 (60.13) 0.793 (60.010) 0.826 (60.007) 10.85 (60.34)

Model3 2 62M CCL, Triple 0.734 (60.017) 0.867 (60.012) 5.77 (60.18) 0.804 (60.011) 0.837 (60.007) 9.17 (60.35)

Model4 3 19M Drug1, Drug2,

CCL

0.714 (60.019) 0.861 (60.008) 6.26 (60.15) 0.793 (60.009) 0.828 (60.007) 10.72 (60.34)

Model5 3 42M Drug1, Drug2,

Triple

0.737 (60.013) 0.871 (60.008) 5.80 (60.15) 0.798 (60.008) 0.830 (60.009) 9.94 (60.44)

Model6 4 33M Drug1, Drug2,

CCL, Pair

0.736 (60.016) 0.870 (60.008) 5.69 (60.14) 0.800 (60.010) 0.833 (60.005) 9.38 (60.31)

aFolds are the same across different models for a fair comparison. Best performance values are in boldface and underlined. The mean and standard deviations

are calculated across the folds. Architecture of the models are provided in Fig. 1 and Supplementary Figs S1–S6. In this table, Num. Enc. shows number of

encoders and Num. Param. shows number of parameters of each model. In this table, Model1 (v1) uses a triple encoder identical to that of MARSY, but the en-

coder of Model1 (v2) and Model1 (v3) are modified such that the number of parameters of the model become close to that of MARSY.
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Our analysis revealed that a large learning rate (0.01) results in
poor performance with Adamax (Fig. 4A) and also results in non-
convergence of the Adam optimizer. However, the two smaller
learning rates do not suffer from the same issue. When the learning
rate is selected appropriately (the default 0.001 or 0.0001), the
effects of other hyperparameters are relatively small (Fig. 4B and C).
In particular, other than the learning rate, number of encoder layers
and the choice of optimizer had the largest effect, where two en-
coder hidden layers resulted in 1.4% higher median SCC (0.3%
higher median PCC) compared to three hidden layers and Adamax
resulted in 1.1% higher median SCC (0.5% higher median PCC)
compared to Adam (Fig. 4C and Supplementary Fig. S7). In conclu-
sion, the learning rate seems to have the most effect [consistent with
our experience in other related studies (Hostallero et al. 2022)], but
when large learning rates are excluded, the results are not too sensi-
tive to the choice of hyperparameters. However, if computational
complexity is not an issue, marginal improvements can be achieved
using hyperparameter tuning based on an independent validation
set.

MARSY uses a concatenation of LINCS drug signatures corre-
sponding to MCF7 and PC3 cell lines. Since requiring that two
LINCS drug signatures be available for each drug may be a limiting
factor in the applicability of MARSY, we asked whether a compar-
able performance can be achieved when only one of these signatures
are used. Table 4 shows the performance of MARSY using 5-fold
leave-pair-out cross-validation with these different options of drug
signatures.

These results show a comparable performance between using a
single LINCS signature and combining the two in MARSY. For ex-
ample, the SCC for MARSY with MCF7 is only 0.1% lower than
the SCC for MARSY with both PC3 and MCF7 signatures in pre-
dicting Smean. Comparing these results with Table 2 also shows that

MARSY with any of these signatures above outperforms all baseline
models.

We next asked how the performance of MARSY changes if alter-
native drug signatures (e.g. based on their chemical structure) is
used instead of LINCS signatures. We obtained the chemical repre-
sentations of drugs from the DrugBank database (Wishart et al.
2018) and used the RDKit python library (Landrum 2013) to extract
two types of chemical feature representations: “Morgan finger-
prints” and “molecular descriptors”. To make the evaluation con-
sistent, we only conserved samples from DrugComb for which we
could obtain both chemical feature representations and LINCS drug
signatures, along with the gene expression of the CCLs, resulting in
73 768 samples. Table 5 shows the performance of MARSY with
different drug features using this dataset. Considering all three met-
rics on the two evaluation setups, LINCS signature performed better
compared to Morgan fingerprint and molecular descriptor. We also
concatenated different features to provide a combination of them as
input to the model. Combination of Morgan fingerprints and mo-
lecular descriptors performed better than each of them individually
in leave-triple-out, but its performance was inferior to Morgan fin-
gerprints in leave-pair-out. Additionally, combining all three types
of representations performed slightly better than LINCS signature
alone (and the other representation choices); however, one short-
coming of this combination is that it requires the availability of mul-
tiple type of representations for each drug, which sometimes limits
the number of datapoints for analysis.

The LINCS signatures used by MARSY were selected to maxi-
mize the number of training examples, which is crucial for training
any DL model. However, chemical structure data (e.g. Morgan fin-
gerprints) is readily available for a larger number of drugs, which
may allow to further increase the size of the training set. On the
other hand, LINCS drug signatures corresponding to other CCLs

Figure 4 The effect of hyperparameters on performance of MARSY for prediction of ZIP score in leave-pair-out 5-fold CV. In boxplots, red circle represents MARSY, solid

horizontal yellow line shows the median and dashed green line shows the mean. (A) Effect of learning rate on the performance of MARSY with Adamax optimizer. (B) The

histogram of performance metrics based on different hyperparameter options, excluding a learning rate of 0.01. (C) The boxplots show the distribution of SCC for different

hyperparameter options. Runs with a learning rate of 0.01 are excluded due to the large number of non-converging runs
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are also available, which can be used as alternatives to MCF7 and
PC3. We sought to assess the trade-off between the choice of drug
representations and the availability of data to form larger training
sets. For this purpose and using the same data cleaning and pre-
processing procedure used for forming the main dataset, we identi-
fied 6762 triples for which Morgan fingerprints as well as LINCS
molecular signatures of MCF7 (breast cancer), PC3 (prostate can-
cer), A549 (lung cancer), and A375 (skin cancer) were available. We
used data corresponding to these triples to form our validation set
(10%) and test set (90%). Then, we formed separate training sets
for each type of drug representation to include all triples with data
on that drug representation. This allows us to form different training
set sizes depending on the availability of each type of drug represen-
tation and assess the effect of the training set size on the
performance.

Performance of MARSY with different drug representations and
their corresponding training set sizes are provided in Supplementary
Table S4. In this analysis, Morgan fingerprints resulted in the largest
training set (n¼154 718, nearly double the size of the training set of
MCF7 that had the second largest training set), but its performance
was not the best in any of the categories. However, in most catego-
ries, it was only <2% worse than the best-performing option. A375
signatures resulted in the worst performance, but this was expected
due to its extremely small training set size of only 1558 samples.
Although A549’s training set was �32% smaller than that of
MCF7, it still resulted in acceptable predictions (e.g. Smean

PCC¼0.852). These results suggest that while extremely small
training set sizes affect the performance, all three LINCS signatures
that had more than 50 000 training samples resulted in acceptable
performance metrics. Additionally, in applications where LINCS
signatures are not available, Morgan fingerprints can be used as
alternatives.

Next, we asked how the performance of MARSY compares
against DeepSynergy, MatchMaker, and TreeCombo, when Morgan
fingerprints are used as drug representations. Supplementary Table
S5 shows the performance of these models using the same training,
validation, and test sets described above. These results show that
even when Morgan fingerprints are used, MARSY outperforms
these baseline models in most categories.

In a recent study, a high degree of correlation between the syn-
ergy of drug pairs and the correlation of the transcriptomic profiles

of the corresponding monotherapies in the same cell line was
observed, which motivated a drug synergy score predictor based on
this principle (Diaz et al. 2020). We designed a small study to inves-
tigate whether we also observe a correlation between the monother-
apy LINCS transcriptomic signatures and their synergism in the
same CCLs. We focused on three cell lines MCF7, PC3, and A549
for which we found a large number of signatures and we used in our
LINCS signature analysis discussed above. For each (CCL, drug1,
and drug2) triple in our dataset (where the CCL is one of the three
CCLs above), we calculated the correlation between the LINCS sig-
nature of drug1 and drug2 in that CCL. We then calculated the cor-
relation of these values with the synergy score of those drugs in that
CCL. Based on these analyses, we did not observe a similar pattern
to that reported in (Diaz et al. 2020) and the highest correlation val-
ues (achieved in A549 for Smean), were only equal to PCC¼0.08
and SCC¼0.104.

3.5 Prediction of drug synergy scores for new triples not

present in DrugComb
Next, we used our trained model to predict the ZIP synergy scores
of 133 722 new (drug pair, CCL) triples that were not present in
DrugComb. These triples correspond to all possible combinations of
69 unique drugs that appeared in at least 10% of the drug pairs in
our training set (Supplementary Table S6). Given these synergy
scores, we first asked which drug pairs show a synergistic effect on
all 75 CCLs. We identified seven drug pairs that had a minimum
ZIP score larger than 2 across all CCLs. The majority of these corre-
sponded to the combination of vincristine (a chemotherapy agent)
with other drugs. In particular, two of these combinations corre-
sponded to tyrosine kinase inhibitors (TKI) lapatinib (mean
ZIP¼28.6) and imatinib (mean ZIP¼17.9) combined with vincris-
tine. Several independent studies have shown the synergistic effect of
these drugs. For example, these two TKIs sensitized KBV20C oral
cancer cells to vincristine, and their combination up-regulated apop-
tosis and reduced cell viability (Kim et al. 2019). In addition, lapati-
nib significantly increased the efficacy of vincristine in epidermoid
carcinoma C-A120 cells that overexpress multidrug resistance-
associated protein 1 (MRP1) (Ma et al. 2014). Another noteworthy
combination corresponded to docetaxel (chemotherapy) and veli-
parib (a PARP inhibitor), (mean ZIP¼16.3). The siRNA

Table 4 The performance of MARSY using different LINCS signatures using 5-fold leave-pair-out evaluation.a

Model Zip Smean

SCC PCC RMSE SCC PCC RMSE

MARSY (MCF7þPC3) 0.749 (60.011) 0.875 (60.005) 5.62 (60.15) 0.809 (60.007) 0.841 (60.011) 9.06 (60.45)

MARSY (MCF7) 0.742 (60.012) 0.869 (60.003) 5.75 (60.14) 0.808 (60.007) 0.840 (60.011) 9.11 (60.41)

MARSY (PC3) 0.742 (60.012) 0.872 (60.004) 5.68 (60.16) 0.805 (60.008) 0.836 (60.013) 9.25 (60.48)

aThe folds are the same across different models for a fair comparison and are the same as the results reported in Table 2. Best performance values are in bold-

face and underlined. The mean and standard deviations are calculated across the folds.

Table 5 The performance of MARSY using distinct types of drug features.a

Drug features Leave-triple-out Leave-pair-out

SCC PCC RMSE SCC PCC RMSE

Molecular descriptors 0.702 (60.014) 0.849 (60.005) 5.57 (60.12) 0.676 (60.016) 0.841 (60.009) 5.67 (60.35)

Morgan fingerprints 0.739 (60.001) 0.858 (60.007) 5.24 (60.13) 0.729 (60.011) 0.854 (60.009) 5.36 (60.21)

Molecular descriptors and Morgan fingerprints 0.746 (60.003) 0.861 (60.007) 5.16 (60.15) 0.714 (60.016) 0.846 (60.012) 5.42 (60.35)

LINCS signature 0.756 (60.007) 0.869 (60.005) 5.02 (60.11) 0.725 (60.012) 0.857 (60.009) 5.22 (60.29)

All features combined 0.757 (60.005) 0.870 (60.005) 5.01 (60.13) 0.727 (60.010) 0.858 (60.008) 5.22 (60.28)

aEvaluation is performed using 5-fold leave-triple-out and 5-fold leave-pair-out on the prediction of the ZIP synergy score. Best performance values are in bold-

face and underlined. The mean and standard deviations are calculated across the folds.
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knockdown of PARP1 in PC3 cell lines has been shown to enhance
docetaxel activity (Wu et al. 2013) and MARSY predicted the ZIP
score of docetaxel and PARP-inhibitor veliparib in PC3 to be 9.8
(reflecting synergism).

Next, we sought to identify drug combinations that show syner-
gistic effect in a tissue-specific manner. For this purpose, we focused
on breast tissue, since it had the highest number of CCLs in our co-
hort (n¼26). To identify breast cancer-specific synergistic combina-
tions, we required a drug pair to not be antagonistic in any of the
CCLs of breast cancer (minimum ZIP in the tissue > 0) and then
ranked the remaining drug pairs based on the difference between
their mean ZIP score in CCLs of breast cancer and the mean ZIP
score of CCLs of other tissues (Supplementary Table S7). The top-
ranked drug pair corresponded to combination of paclitaxel (a
chemotherapy widely used in treating breast cancer) and ruxolitinib
(a selective JAK1/2 kinase inhibitor). A one-sided Mann–Whitney U
test also showed this difference to be statistically significant
(Benjamini–Hochberg false discovery rate¼7.76E-3). Ruxolitinib
has been shown to enhance the efficacy of paclitaxel in a synergistic
manner in ovarian cancer cells (Han et al. 2018). Recent studies of
triple-negative breast cancer (TNBC) samples have shown that in-
hibition of JAK1/2 by ruxolitinib sensitizes cancer cells to paclitaxel,
both in-vitro and in-vivo (Lian et al. 2020; Han et al. 2021). A
Phase I clinical trial of the combination of these two drugs in HER2-
negative metastatic breast cancer patients was recently completed
and showed these two drugs to be well tolerated by the participants
(Lynce et al. 2021). Following these results, a Phase II randomized
clinical trial is currently undergoing for the combination of these
two drugs in TNBC patients (Lynce et al. 2021). Our results also
showed that TNBC CCLs in our cohort have a higher mean ZIP
score for this drug combination compared to other subtypes of
breast cancer (difference mean ZIP¼1.4).

These examples illustrate the utility of MARSY to suggest syner-
gistic drug combination candidates for follow-up drug screening
experiments.

4 Discussion and conclusion

In this study, we proposed MARSY, a novel deep multitask learning
method for prediction of synergy scores of drug pairs in different
CCLs. Extensive evaluations using four different metrics and two
methods of data splitting for cross-validation revealed the better per-
formance of MARSY compared to various computational models
designed for this task. MARSY’s architecture was designed to learn
distinct embeddings that capture different and complimentary views
of the input features and are informative not just for drug synergy
score prediction but also enable single drug response prediction.
Given the gene expression profile of CCLs as well as the LINCS sig-
natures of each drug, the two encoders of MARSY learn different
views of the input features, capturing the interplay of the drugs, as
well as the drugs and the CCL. Our ablation study confirmed that
incorporating both of these encoders is beneficial to the performance
of the model. Moreover, the predictor of MARSY utilizes auxiliary
tasks of single drug prediction to enhance the synergy score predic-
tion performance, by enhancing the embeddings learned during the
end-to-end training of the model. We also observed that these auxil-
iary tasks can be helpful to other DL-based baseline models.

Unlike many previous models that utilize drug molecular pro-
files, we used the signatures of each drug representing the changes in
the expression profiles of two CCLs after administration of the
drug. We observed that using only one of these signatures results in
comparable performance to that of using both signatures simultan-
eously (e.g. only a 0.1% difference in Spearman’s correlation in pre-
dicting Smean when using only MCF7 signature, Table 4). This
suggests that MARSY can also be used with only one drug signature,
as long as there are a large number of samples available for training.
In fact, we observed that LINCS drug signatures corresponding to
different cancer types (MCF7, PC3, and A549) result in comparable
performance (Supplementary Table S4), even though the number of
training examples when using A549 drug signatures was 32%
smaller than MCF7. However, when the number of training

examples was very small in the case of A375, a significant deterior-
ation of performance was observed. Our analyses using a fixed test
set, but different training sets that included all samples with avail-
able drug features of each type, showed that although Morgan fin-
gerprints were not the best-performing option for MARSY (in spite
of having a training set with almost double the size of largest LINCS
signature), they resulted in prediction performances that were only
<2% lower than the best-performing option in most cases. Since
Morgan fingerprints are available for a larger number of drugs and
the use of them with MARSY results in only a small performance de-
terioration (Table 5 and Supplementary Table S5), they are viable
alternatives to LINCS signatures when such signatures are
unavailable.

In this study, our focus was on developing a transductive model
to impute the missing values in our dataset. As such, we used
MARSY to predict the synergy scores of 133 722 new (drug pair,
CCL) triples that were not present in DrugComb and validated
some of these predictions and insights obtained from them using in-
dependent datasets. However, one of the remaining challenges in
this domain is developing models that can predict the synergy scores
for unseen CCLs. Currently, the main challenge in achieving this
goal is data availability. For example, after data cleaning, pre-
processing, and quality control, we ended up with only 75 CCLs
that were usable for method development in this study. Such small
numbers do not allow DL model development that generalizes well
to unseen CCLs. However, as new data become available, we expect
that this shortcoming of current datasets will be resolved and accur-
ate models that can generalize to unseen CCLs can be developed.

Supplementary data

Supplementary data is available at Bioinformatics online.
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