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Abstract

Existing audio tools handle the increasing amount of computer audio data
inadequately. The typical tape-recorder paradigm for audio interfaces is
inflexible and time consuming, especially for large data sets. On the other
hand, completely automatic audio analysis and annotation is impossible
using current techniques.

Alternative solutions are semi-automatic user interfaces that let users
interact with sound in flexible ways based on content. This approach offers
significant advantages over manual browsing, annotation and retrieval. Fur-
thermore, it can be implemented using existing techniques for audio content
analysis in restricted domains.

This paper describes MARSYAS, a framework for experimenting, evalu-
ating and integrating such techniques. As a test for the architecture, some
recently proposed techniques have been implemented and tested. In addi-
tion, a new method for temporal segmentation based on audio texture is
described. This method is combined with audio analysis techniques and
used for hierarchical browsing, classification and annotation of audio files.



1 Introduction

There is a growing amount of audio data available on the Internet and else-
where today. The traditional tape-recorder sample-playback paradigm for
browsing, locating, manipulating and skimming audio is cumbersome and
inflexible. The main reason is that it treats audio data as a linear block of
samples. Traditional information retrieval (IR) [van Rijsbergen, 1979], used
by many of the popular Web search engines, uses computer-readable text
as data and offers the ability to quickly locate and browse large amounts of
data using the familiar search and “ranked by similarity” interface. Unfor-
tunately, there are no equivalent methods available for audio.

An obvious solution to the problem of handling large amounts of audio
data is to annotate it with textual information and then use traditional IR
techniques for searching. This approach works well and has the advantage
of using well-known and supported techniques. On the other hand, using
current interfaces human annotation of audio is extremely time-consuming.

Recently, a number of techniques for automatic analysis of audio informa-
tion have been proposed [Foote, 1999]. These approaches work reasonably
well for restricted classes of audio. Based on these techniques, a completely
automatic annotation system for audio could be envisioned. Although not
impossible in theory, there are two problems with such an approach. The
first is that current systems are not perfect and, therefore, annotation errors
are inevitable. This problem has to do with the current state of the art, so
it is possible that in the future it will be solved. There is a second prob-
lem, however, that is more subtle and not so easy to address. Audio, and
especially music, is heard and described differently by each listener. There
are, however, attributes of audio that most listeners will agree upon, like the
general structure of the piece, the style, etc. Ideally a system for annotation
should automatically extract as much information as it can and then let the
user edit and expand it.

This leads to a semi-automatic approach that combines both manual and
fully-automatic annotation into a flexible, practical user interface for audio
manipulation. This paper describes a framework for building audio analy-
sis tools and integrating them using a semi-automatic graphical interface.
The framework has been designed to be flexible and to accommodate new
algorithms easily.

In addition, a new approach to segmentation of audio files based on
texture is described. The combination of temporal segmentation and sound
classification significantly reduces the overhead of manual annotation and
forms a powerful foundation for audio analysis applications. Moreover, it can
be used to improve classification performance by using a texture-adaptive
window size for integrating classification results.
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1.1 Applications

There are several possible application areas for semi-automatic audio analy-
sis tools. Digital video libraries are an active area of research that could ben-
efit from the development of such tools. The Informedia project at Carnegie
Mellon [Hauptmann and Witbrock, 1997] contains a terabyte of data. In-
dexing the archive is done using a combination of speech-recognition, image
analysis and keyword searching techniques. Audio analysis and browsing
tools would enhance the current indexing techniques, especially for the re-
gions that do not contain speech.

Detecting speech segments is very important for automatic speech recog-
nition systems especially when dealing with real world multimedia data.
Moreover, detecting if a speaker is male or female or determining his iden-
tity improves recognition performance.

More generally, audio analysis tools can be used to implement signal re-
sponsive algorithms. A compression algorithm, for example, knowing that
a signal contains speech can use a method that takes advantage of speech
characteristics to achieve a higher compression rate. Responding to parame-
ters of analyzed audio can also be used by interactive algorithms performing
animation or sound synthesis in virtual reality simulations and computer
games.

There are many libraries of sound effects and instrument samples avail-
able. Due to their large size, searching for a particular sound can be a
daunting task. Using audio-similarity retrieval techniques and fast browsing
can greatly accelerate this process.

1.2 Related Work

A number of techniques for audio analysis have recently been proposed. In
this section, some of these systems , relevant to our work, will be briefly
described. A more complete overview can be found in [Foote, 1999].

A robust multi-feature music/speech discriminator is described in
[Scheirer and Slaney, 1997]. A similar discriminator is used in [Rossignol et al., 1998]
to initially separate speech from music and then detect phonemes or notes
accordingly. A multi-feature classifier based on spectral moments for recog-
nition of steady state instrument tones is described in [Fujinaga, 1998].

A retrieval-by-similarity system for isolated sounds has been developed
at Muscle Fish LLC [Wold et al., 1996]. Users can search for and retrieve
sounds by perceptual and acoustical features, can specify classes based on
these features and can ask the engine to retrieve similar or dissimilar sounds.

Speech Skimmer [Arons, 1997] is an example of pushing audio inter-
action beyond the tape-recorder metaphor. The user can audition spo-
ken documents at several times real-time, using time compression tech-
niques and segmentation based on pitch. Hidden Markov Models are used
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in [Boreczky and Wilcox, 1998, Kimber and Wilcox, 1996] for segmentation
and analysis of recorded meetings by speaker.

2 Framework

All these projects use similar features, classifications and algorithms for dif-
ferent tasks. Therefore, in the design of our system, we made an effort
to abstract the common elements and use them as architectural building
blocks. This facilitates the integration of different techniques under a com-
mon framework and interface. In addition, it helps rapid prototyping since
the common elements are written once, and developing and evaluating a new
technique or application requires writing only the new task-specific code.

Typically sound analysis systems follow a bottom-up processing architec-
ture where sensory information flows from low-level signals to higher level
cognitive representations. However, there is increased evidence that the
human auditory system uses top-down as well as bottom-up information
flow [Slaney, 1997]. A top-down (prediction-driven) approach has been used
for computational auditory scene analysis [Ellis, 1996]. An extension to
this approach with a hierarchical taxonomy of sound sources is proposed in
[Martin, 1998]. In the design of our framework, we tried to have a flexible
architecture that can support these models of top-down flow and hierarchical
classification as well as traditional bottom-up processing.

2.1 Architecture

The framework is named MARSYAS after a greek mythological figure. The
initials stand for MusicAl Research SYstem for Analysis and Synthesis. It is
implemented using a client-server architecture. The server written in C++,
contains all the signal processing and pattern recognition modules optimized
for performance. The client, written in Java, contains only the user interface
code and communicates with the computation engine via sockets.

This breakdown has the advantage of decoupling the interface from the
computation code and allows different interfaces to be built that use the
same underlying computational functionality. For example, the server can be
accessed by different graphical user interfaces, scripting tools, web crawlers,
etc. Both the server and the client run on Solaris, SGI, Linux and Windows
(95,98 and NT) platforms.

Special attention was given to abstracting the audio analysis process
using object-oriented programming techniques. Abstract classes are used to
provide a common API for the building blocks of the system. and inheritance
is used to factor out common operations. The main classes of the system
can roughly be divided in two categories: process-like objects and data-
structure-like objects.
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Process objects:

Transformations are the low-level signal processing units used by the sys-
tem. They take as input a frame of sound samples and output a trans-
formation of that frame. Some examples are: power spectral density,
cepstrum, windowing, digital filtering.

Features process a frame of sound samples and output a vector which
unlike transformations is reduced significantly in dimensionality. They
typically use sound transformations for their calculations. Because the
output is a vector, more than one “physical” features can be combined.
For example, both spectral centroid and rolloff involve the calculation
of power spectral density and it is possible to bundle them together
into one feature for increased performance or to use them separately
for rapid prototyping.

Memories are circular buffers that hold previously calculated features for
a limited time. They are used to compute means and variances of
features over large windows without recomputing the features. They
can have different sizes depending on the application.

Iterators break up a sound stream into frames. For each frame they use
features and memories to calculate a feature vector. The result is a
time-series of feature vectors which is called the feature map. Typi-
cally, there is a different iterator for each classification scheme. For
example, a silence/non-silence iterator uses energy as a feature and
has no memories. A more complicated iterator like the music/speech
iterator uses 9 features and 2 memories (of different size) for feature
calculation.

Classifiers take as input a feature vector and return its estimated class.
They are trained using labeled feature maps.

Segmentors take as input feature maps and output a signal with peaks
corresponding to segmentation boundaries.

Data structure objects:

Vectors are the basic data components of the system. They are float arrays
tagged with sizes. Operator overloading is used for vector operations
to avoid writing many nested loops for signal processing code. The
operator functions are inlined and optimized. The resulting code is
easy to read and understand without compromising performance.

Sound Data objects contain samples of audio as vectors with additional
header information such as sample rate, channels, etc.
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Feature Maps are time-series of feature vectors. Feature maps can be
class labeled for evaluation and training.

Time Regions are time intervals tagged with annotation information.

Time Lines are lists of time regions.

Time Trees are arbitrary trees of time regions. They represent a hierar-
chical decomposition of audio into successively smaller segments (see
Fig. 2).

All the objects contain methods to read/write them to files and transport
them using the socket interface. For example a calculated feature map can
be stored and used to evaluate different classifiers without having to redo
the feature calculation for each classifier.

Although the objects form a natural bottom-up hierarchy, top-down flow
of information can be expressed in the framework. As a simple example, a
silence feature can be used by an iterator for music/speech to avoid calcu-
lating features on silent frames. Similarly hierarchical classification can be
expressed using multiple iterators with different features.

2.2 Features

In our system we have implemented a number of the features that have been
proposed in the literature. These features form a pool from which different
algorithms can pick specific features depending on the specific task. Many
classification algorithms, for example, must be invariant to loudness so they
would not use energy as a feature. On the other hand, a segmentation
algorithm would probably include energy as one of the features indicating a
change in texture.

Some of the currently supported features, with references to systems that
describe and use them, are:

Spectral Centroid is the balancing point of the spectrum. It can be cal-
culated using

C =
∑

i iAi∑
i Ai

(1)

where Ai is the the amplitude of frequency bin i of the spectrum
[Scheirer and Slaney, 1997, Fujinaga, 1998, Wold et al., 1996, Rossignol et al., 1998].

Spectral Moments are statistical measures that characterize the shape of
the spectrum [Fujinaga, 1998].
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Spectral Flux is the 2-norm of the difference between the magnitude of
the Short Time Fourier Transform (STFT) spectrum evaluated at
two successive sound frames. The STFT is normalized in energy
[Scheirer and Slaney, 1997, Rossignol et al., 1998].

Pitch is a pitch estimate for the frame and can be calculated using various
different techniques [Rabiner et al., 1976].

Harmonicity is measure of how strong the pitch perception for a sound is
[Wold et al., 1996]. It can also be used for voiced/unvoiced detection.

Mel-Frequency Cepstral Coefficients (MFCC) are commonly used in
speech recognition [Kimber and Wilcox, 1996, Scheirer and Slaney, 1997].
They are a perceptually motivated compact representation of the spec-
trum [Hunt et al., 1996].

Linear prediction (LPC) reflection coefficients are used in speech re-
search as an estimate of the speech vocal tract filter [Makhoul, 1975].

Other features supported include Zero Crossings, RMS, Spectral Rolloff
and others. For all these features means,variances and higher-order statistics
over larger time windows can be calculated using memories. New features
can easily be added to the system by writing only the code for computing
the feature value from a frame of sound samples.

2.3 Classifiers

Currently, two statistical pattern recognition classifiers are implemented as
part of the system. For a more complete description of these classifiers and
statistical pattern recognition in general refer to [Duda and Hart, 1973].

The Gaussian (MAP) classifier assumes each class can be represented as
a multi-dimensional normal distribution in feature space. A labeled data
set is used to train the classifier by calculating the parameters for each
particular class. This classifier is typical of parametric statistical classifiers
that assume a particular form for the class probability density functions.

Unlike parametric classifiers, the K-Nearest-Neighbor classifier directly
uses the training set for classification without assuming any mathematical
form for the underlying class probability density functions. Each sample is
classified according to the class of its nearest neighbor in the training data
set. In K-NN, the K nearest-neighbors are calculated and voting is used to
determine the class.

Due to the flexibility of the architecture, new and more advanced classi-
fiers can easily be added. Gaussian Mixture and Neural Network classifiers
are currently under development. The ability to have different classifiers
allows trade-off between classification speed and accuracy depending on the
application.
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2.4 Framework Evaluation

The data used for evaluating the system consists of about 2 hours of audio
data. There are 45 minutes of speech, 45 minutes of music, and about 30
minutes of mixed audio. Radio, live recordings of speech, compact disks and
movies representing a variety of speakers and music styles were used as data
sources.

As a test for the architecture a music/speech discriminator similar to the
one described in [Scheirer and Slaney, 1997, Rossignol et al., 1998] was im-
plemented. The implementation was used to test and refine the design of the
framework. The discriminator runs in real-time on an SGI O2 workstation.
Fig. 1 shows the layout and information flow of the implementation.

The performance of our system for music/speech discrimination is com-
parable to the recognition accuracy of current systems [Scheirer and Slaney, 1997,
Rossignol et al., 1998] (90.1% for the K-NN(5) classifier). A direct compar-
ison is impossible due to the differences in data sets and classifiers. We use
a cross-validation testing framework [Scheirer and Slaney, 1997] to ensure
that the evaluation is not dependent on the particular test and training sets
we have used.

In addition, an instrument identification system for steady-state tones
similar to [Fujinaga, 1998] has been implemented. Similarity retrieval as
described in [Wold et al., 1996] is also supported.

3 Segmentation

Segmentation is based on the idea that transitions in audio texture will result
in sudden changes of values in most of the features. This idea is consistent
with research in psychoacoustics [Bregman, 1990] where multiple perceptual
cues are combined to indicate the onset of a new sound event.

The algorithm works in four stages:

1. A time series of feature vectors Vt is calculated by iterating over the
sound file. Each feature vector can be thought of as a short description
of the corresponding time-frame.

2. A distance-metric ∆t = ||Vt − Vt−1|| is calculated between successive
frames of sound. In our implementation we use a Mahalonobis dis-
tance. It is defined by

D(x, y) = (x − y)T Σ−1(x − y) (2)

where Σ is the feature covariance matrix calculated from the training
set. Other distance metrics, possibly using relative feature weighting,
can also be used.
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3. The derivative d∆t
dt of the distance signal is taken. Thresholding is

then used for finding the peaks of the result. The derivative of the
distance will be low for slowly changing textures and high during sud-
den transitions. Therefore the peaks roughly correspond to texture
changes.

4. Peaks are picked using simple heuristics and used to create the seg-
mentation of the signal into time regions. As a heuristic example, a
minimum duration between successive peaks can be set to avoid small
regions. The result is stored as a time line (i.e a list of time intervals)
and can be used for browsing and annotating (see Fig. 2).

3.1 Combining segmentation and classification

Most of the classification methods proposed in the literature report improved
performance if the classification results are integrated over larger time win-
dows. However, using fixed size integration windows blurs the transition
edges between classes. Usually, test data consists of files that do not con-
tain transitions to simplify the evaluation; therefore this problem does not
show up. In real world data, however, transitions exist and it is important
to preserve them.

The described segmentation method provides a natural way of breaking
up the data into regions based on texture. These regions can then be used
to integrate classification results. That way, sharp transitions are preserved
and the classification performance is improved because of the integration.
Initial experiments in a number of different sound files confirm this fact.
A more detailed quantitative evaluation of how this method comapres to
fixed-window integration is under way.

3.2 Segmentation Results

The method has been tested using various sound files from our data set.
Representative examples include detecting a guitar solo entrance or a cymbal
crash, change of speaker, transitions from music to speech, and musical
structure for cyclic (ABAB type) pop songs.

The segmentation results are difficult to evaluate quantitatively because
they depend on the choice of features and parameter values like the memory-
size, peak-threshold, distance-metric and others. Typically, the resulting
regions are perceptually meaningful. For now, fine-tuning of the parameters
is done by the user (or the programmer) depending on the desired result. For
example lowering the peak-threshold results into more and smaller regions.
Automatic parameter adjustment is investigated.
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4 User Interface

The interface looks like a typical tape-recorder style waveform-editor. How-
ever, in addition to the typical play, fast-forward, rewind and stop buttons
it allows skipping by either user defined fixed duration blocks or time lines
containing regions of variable duration. These time lines are created either
by hand or automatically using the segmentation method described above.

Skipping and annotating using regions is much faster than manual an-
notation, in the same way that finding a song on a CD is much faster than
finding it on a tape.

The user can select a region and retrieve similar sounds. Another possi-
bility is to classify the region using one of the available classification schemas
like the music/speech discriminator. Finally, each time region can be anno-
tated by multiple keywords.

In addition, the user can combine time regions to form a time tree that
can be used for multi-resolution browsing and annotation. The tree captures
the hierarchical nature of music pieces, and therefore can be used for musical
analysis.

5 Applications

The initial description of MARSYAS appeared in [Tzanetakis and Cook, 1999a].
A more detailed description of the segmentation algorithm as well as some
user experiments performed for evaluation are given in [Tzanetakis and Cook, 1999b].
A number of different applications have been developed using our system.
Most of them are undergraduate senior theses and class projects in Prince-
ton. Some examples are an instrument family classification system and a
content-based music library system. In addition, we have investigated the
use of MPEG audio compressed data as a basis for feature calculation. Fi-
nally the user interface has been used to conduct user experiments on how
humans annotate and segment audio [Tzanetakis and Cook, 2000].

6 Future work

On the interface side, we plan to support multiple time lines and fast key-
word search in annotations. Another interesting application of our segmen-
tation scheme is audio thumbnails. For each region, a characteristic segment
has to be selected. These segments are then used to create a shorter sum-
mary version of the original sound file.

On the computational side, we are investigating using a more perceptu-
ally accurate front end to the system. A number of computational models of
the ear physiology have been proposed in the literature [Slaney and Lyon, 1993,
Slaney and Lyon, 1990] and can be used as basis for feature calculation.
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Most attempts to build music analysis systems in the past have tried
to extract content by first transcribing the music into symbolic notation
and then using music theory to characterize it. This approach has been
challenged by [Martin et al., 1998, Scheirer, 1996]. Current systems try to
analyze structure and content directly from features calculated from the
audio signal. Such systems can easily be implemented and evaluated using
our framework. As a simple example of music analysis, the structure of
cyclic pop songs can be revealed using our segmentation scheme. We believe
that a combination of our segmentation scheme with beat tracking methods
[Scheirer, 1998] can offer significant information for music style identification
and music analysis.

Finally, we plan to write a web crawler that will automatically create
segmentation time lines and annotations for files on the Web.

7 Summary

We designed and implemented a flexible framework for building and integrat-
ing audio analysis tools. A number of existing techniques were implemented
and tested to evaluate the framework. A new method for audio segmentation
based on texture is presented. This method combined with the analysis tools
and using a semi-automatic user interface offers significant improvements for
audio searching, annotation and browsing. In addition, it can be used to
improve classification performance by using the results of the segmentation
to adaptively change the classification integration window size.
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