MARTIN BOUNDARY POINTS OF A JOHN DOMAIN AND UNIONS OF CONVEX
SETS
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Asstract. We show that a John domain has finitely many minimal Martin boundary points at
each Euclidean boundary point. The number of minimal Martin boundary points is estimated in
terms of the John constant. In particular, if the John constant is biggerBa?, then there

are at most two minimal Martin boundary points at each Euclidean boundary point. For a class
of John domains represented as the union of convex sets we gifecesti condition for the
Martin boundary and the Euclidean boundary to coincide.

1. INTRODUCTION

Let D be a bounded domain iR" with n > 2. Letdp(x) = dist(x, D) andx, € D. We say
thatD is a John domain with John constait> 0 and John center &t if eachx € D can be
joined toxg by a rectifiable curve such that

(1.1) oo(y) 2 Co(y(x.y)) forallyey,

wherey(x,y) is the subarc of from x toy and{(y(x, y)) is the length ofy(x, y). Itis easy to see
that a smooth domain is a John domain with John constaatl. We may say that the bigger
c; is, the smootheD is.

Since the main concern of this paper is the boundary behavior of functidbswe may
replacex, by a compact subsét, of D. We call such a domain general John domain with
general John centeK, and general John constang. Obviously, a John domain is a general
John domain and vice versa. Note that a general John constant is improved, i.e., a John do-
main with John center aty and John constam; can be regarded as a general John domain
with general John constaaf > c; by replacingx, by a larger compact sét,. Several general
John domains have been studied in connection with the Martin boundary, e.g. Denjoy domains
(Benedicks/1Q]), Lipschitz Denjoy domains (Ancon®l[7] and Chevallier11]), sectorial do-
mains (Cranston-SalisburiL?]), quasi-sectorial domains (Lomketd]), the connected union
of a family of open balls with the same radius (Ancobd pnd so on. The general John con-
stants for these domains can be estimated by the geometrical assumption on the domains. For
example, the general John constant 1 for a Denjoy domain.

Let G(x,y) be the Green kernel fdd. A Martin kernel at¢ € D (with reference poinkg)
is a limit of the ratioG(x,y;)/G(Xo, y;) with y; — &. The totality of Martin kernels gives an
ideal boundary oD, referred to as the Martin boundary Bf We identify a Martin kernel and
an ideal boundary point; a limit of the rat®(x, y;)/G(Xo, y;) with y; — ¢ is called a Marin
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boundary point a¥ as well. We say that a positive harmonic functioms minimal if every
positive harmonic function less than or equahtooincides with a constant multiple af If
a Martin kernel is a minimal harmonic function, then we call it a minimal Martin kernel or a
minimal Martin boundary point. In general, the Martin boundary need not be homeomorphic to
the Euclidean boundary. There may be even infinitely many minimal Martin boundary points at
a Euclidean boundary point (Martid9]).

The purpose of this paper is to show that every John domain has finitely many minimal
Martin boundary points at each Euclidean boundary point. Moreover, the number of minimal
Martin boundary points is estimated in terms of the John constant.

Theorem 1.1.LetD be a general John domain with general John constant

() The number of minimal Martin boundary points at every Euclidean boundary point
¢ € 0D is bounded by a constant depending only on the general John costant

(i) If c; > V/3/2, then there are at most two minimal Martin boundary points at every
Euclidean boundary poirt € 0D

Remarkl.l Let D be a sectorial domain whose boundary near the origin lies on three equally
distributed rays leaving the origin. Thdd is a general John domain with John constant
sin(r/3) = V3/2. There may be three fiierent minimal Martin boundary points at the ori-
gin. See Figur@.1 This simple example shows that the bounyd> v3/2 in Theorenil 1 is
sharp. Note that the same bounyd> V3/2 also applies to the higher dimensional case.

Ko

Ficure 1.1. The boundc; > V3/2 in Theorenfl 1 is sharp.

Remarkl.2 Theorenll.d generalizes some parts &0, [6, (7], [11], [12] and [18. One of

the main interests of these papers was to give a criterion for the number of minimal Martin
boundary points at a fixed Euclidean boundary point (via Kelvin transformi@dp.[ Such a
criterion seems to be veryfticult for a general John domain, since the boundary may disperse
at every point (See e.g3[Figure 3 b]).

One might think that the number of minimal Martin boundary points at a Euclidean bound-
ary point would be equal to 1 provided the John constaig suficiently close to 1. This is not
the case in view of Benedicks’ work on a Denjoy domalii)]. The best upper bound obtained
from the John constauy is at least two as given in Theoréhil Our second purpose isto find a
certain class of John domains whose boundary points have one minimal Martin boundary point.
We shall need some other informatiortftdrent from the John constanj. Ancona B,
Théoreme] gave a condition for the union of a family of open balls with the same radius to have
one minimal Martin boundary point at each Euclidean boundary pointB@yr) we denote
the open ball with center atand radiug. For a pair of distinct pointg andy let [x, y] be the
(open) line segment connectikgandy. For 0< 6 < 7 we denote byy(X,y) the open circular



cone{ze R" : zzxy< 6} with vertex atx, axis [x,y] and apertur@. Ancona says that a domain
D is admissiblaf

(Al) D is the union of a family of open balls with the same ragigls

(A2) Let¢ € dD. If D includes two open ballB; and B, with radiuspy tangential to each
other até, thenD includes a truncated circular cohg(é,y) N B(&, r) for somed > 0,
r > 0 andy in the hyperplane tangent & at£. See Figurd.2

A
Fo(£,y) N B(E.T)

Ficure 1.2. Condition (A2).

Theorem A (Ancona) LetD be a bounded admissible domain. Then every Euclidean boundary
point of D has one Martin boundary point and it is minimal. Moreover, the Martin boundary of
D is homeomorphic to the Euclidean boundary.

Let us generalize both (A1) and (A2). Clearly, (Al) implies tbas a general John domain
with general John constant 1. We would like to consider general convex sets rather than balls
with the same radius. They need not be congruent. Observe that Ancona’s condition (A2)
implies that two ball88; andB, areconnectedy a truncated congy(&,y) N B(&,r). If0 < ¢ <
6, then we have
U Ty (£,y) N B(&, ') Is connected,

yeD,
Ly (£.Y)NB(£.r)cD

providedr’ > 0 is suficiently small. In view of this observation, we generalize (Al) and (A2)
as follows. LetA; > 1 andpg > 0. We consider a bounded domddsuch that

() D is the union of a family of open convex s€tS,} . such thatB(z;,p9) ¢ C, C

B(Z/b ADOO),
(I) for eaché e aD, there are positive constarits < sin*(1/Ag) andp; < pocosf; such
that
C©) = U Ty, (€,Y) N B(£, 204) is connected.
D.
Ty, (f,y)f)geB(f,Zpl)CD
See Figur@.3

\Y,
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Ficure 1.3. Condition (11).



Theorem 1.2.LetD be a bounded domain satisfying (1) and (II). Then every Euclidean bound-
ary point ofD has one Martin boundary point and it is minimal. Moreover the Martin boundary
of D is homeomorphic to the Euclidean boundary.

Remarkl.3. Ancona’s admissible domains satisfy (1) and (Il) of TheofE& The argument of
Ancona depends on the special properties of a ball. His crucial lenfinagiinme 1]) relies on
the reflection with respect to a hyperplane, and is applied to a ball by the Kelvin transrm ([
Corollarie 2]). This approach is not applicable to our domains.

Remarkl.4. A Denjoy domain can be represented as the union of a family of open balls with
the same radius. A Lipschitz Denjoy domain, a sectorial domain and a quasi-sectorial domain
can be represented as the union of a family of open conveXsatisfying (). However, they
cannot be represented as the union of a family of open balls with the same radius. Our Theorem
[1.2is applicable to these domains.

Remarkl.5. Condition (lI) is local in the following sense: SuppoBes the union of a family
of open convex set,},ca satisfying (1). If a particular poing € 9D satisfies (ll), then there is
one Martin boundary point @tand it is minimal.

Remarkl.6. Note that O< 6, < n/2 by 0 < p; < poC0s6;. The bound®,; < sin‘l(l/Ag) and
p1 < poCO0sH, are sharp. See HiratdAT]. Under these assumptions, there exists a truncated
circular cond’, (¢,y) N B(&, 2p1) included inD.

Both Theoremf. 1 and1.2 are based on a common geometrical notasystem of local
reference pointsin Sectiori2, we shall introduce a quasihyperbolic metric and define a system
of local reference points. Then we shall observe that Thediefrendl.2are decomposed into
three propositions, namely, Propositi¢ghg, 2.2 and2.3 The first two propositions are purely
geometric and will be proved in the same section. ProposBi@rinvolves many potential
theoretic arguments. Among them, a Carleson type estimate (Lépalria Section) for
bounded positive harmonic functions vanishing on a portion of the boundary will be crucial.
This estimate will be deduced from a Domar’s type theorem (Doiég)) for nonnegative
subharmonic functions, as was employed by Benedidks §¢nd Chevallier(11]. Domar’s
argument is applicable to nonlinear equations in a metric measure sghce ([

By the symbolA we denote an absolute positive constant whose value is unimportant and
may change from line to line. If necessary, we égeA,, ..., to specify them. We shall say
that two positive functiond; and f, are comparable, writtefy ~ f,, if and only if there exists
a constanfA > 1 such thatA™1f, < f, < Af;. The constan will be called the constant of
comparison. We writd3(x,r) and S(x,r) for the open ball and the sphere of centexand
radiusr, respectively.

2. LOCAL REFERENCE POINTS

2.1. Restatements of Theorem&.1 and[I.2Z We define the quasihyperbolic metiig(x, y)
by

oty =inf [ $52.
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where the infimum is taken over all rectifiable curgesonnectingxtoy in D. We say thaD
satisfies a quasihyperbolic boundary condition if

dp(Xo)
op(X)
A domain satisfying the quasihyperbolic boundary condition is called a Holder domain by

Smith-Stegenga2(J, [21]. It is easy to see that a John domain satisfies the quasihyperbolic
boundary condition (sed§, Lemma 3.11]). We need more precise estimates.

+ A’ forall xe D.

(2.1) ko(X, Xo) < Alog

Definition 2.1. Let N be a positive integer and9n < 1. We say that € dD has a system of
local reference points of ord&with factorr if there existR. > 0 andA, > 1 with the following
property: for each positivR < R; there areN pointsy; = yi(R),...,yn = Yn(R) e DN S(¢,R)
such thatd;'R < 6p(y;) < Rfori=1,...,N and

_ R
i:T.IpN{kDR(X’ W < Aclog 0p(X)

whereDg = D N B(¢,77°R). If 5 is not so important, we simply say thiat 6D has a system of
local reference points of ordé\.

+A: for xe DN B R),

The proofs of Theoreni$.l and1.2 can be decomposed into the following three proposi-
tions. The first and the second are purely geometric; the third is potential theoretic.

Proposition 2.1.Let D be a general John domain with John constant Then every € gD
has a system of local reference points of ortlewith N < N(c;, n) < co. Moreover, if the John
constantc; > V3/2, then we can leN < 2 by choosing a suitable fact@ < < 1.

Proposition 2.2.Let D be a bounded domain satisfying (I) and (II). Then ever/ oD has a
system of local reference points of order

Remark2.1 In Propositiori2.], the constant®: andA; in Definition[2.J can be taken uniformly
for £ € 9D, whereas they may depend &im Propositiori2.2

By H;: we denote the family of all kernel functions &nhormalized at the John centey,

I.e., the set of all positive harmonic functiohn D such thath(xg) = 1, h = 0 g.e. ongD
andh is bounded orD \ B(&,r) for eachr > 0. Here we say that a property holds g.e. (quasi
everywhere) if it holds outside a polar set. A Martin kernef @vith reference poink) is a
limit of the ratioG(X, y;)/G(Xo, y;) of Green functions witly; — £. Supposg; c DN B(¢,r/2).
Then the (global) boundary Harnack principle for a John domain (Bass and B@jjiapplies
that theG(-, y;)/G(Xo, y;) is bounded orD \ B(£,r), and so is a Martin kernel & Obviously,

a Martin kernel a¥ is a positive harmonic function vanishing g.e. @b with value 1 atxy, so
that it belongs taH,. Thus Theorem@&.JandI.2will follow from Propositiond2.7,[2.2and the
following:

Proposition 2.3.Let D be a general John domain. Suppases 9D has a system of local
reference points of orde.

(i) The number of minimal functions #; is bounded by a constant depending onlyNan
(i) If N < 2, then there are at modd minimal functions ir#;. Moreover, ifN = 1, then
‘H; is a singleton and consists of a minimal function.



2.2. Proof of Proposition[2.1 For the proof of the second assertion in Proposiiol) we
prepare an elementary geometrical observation.

Lemma 2.1.Lete;, & ande; be points on the unit sphe&0, 1). Then
max r_gin|e, - gl = V3,
1#]
where the maximum is taken over all positiongek, ande;.

Proof. This is a well-known fact (FejedH]). For the convenience sake of the reader we provide
a proof. We can easily prove the lemmaioe 2. Letn > 3. We observe from the compactness
of S(0, 1) that the maximund is taken by some pointg, e ande; onS(0, 1). There is a unique
2-dimensional plané&l containinge;, & andes, since three distinct points d&(0, 1) cannot be
collinear. Observe th&(0, 1)NIIis a circle with radius at most 1. Sineg e, ande; are points

on this circle, it follows from the case= 2 thatd < V3. The lemma follows. m|

Proof of Propositior2.1 We prove the proposition witR: = 6p(Kop). Leté € 0D and 0< R <

op(Kp). Let us prove the first assertion with= 1/2. Takex € D n B(£, R/2). By definition
there is a rectifiable curvestarting fromx and terminating aKo such thatl{.1) holds. Then the

: . - R
first hit y(x) of S(¢, R) alongy satisfies 2'c;R < 6p(y(X)) < Randkp,(x, y(X)) < Alog ——

op(X

We associatg(x) with x, although it may not be unique. o)

Consider, in general, the family of balB(y, 4 'c;R) with y € S(¢,R). These balls are
included inB(£, (471c; + 1)R), so that at mosiN(c;, n) balls among them can be mutually
disjoint. Hence we findN points x;,...,xy € D N B(4,R/2) with N < N(cj,n) such that
{B(y1,47'c;R), ..., B(yn, 47 1c;R)} is maximal, whergy; = y(x;) € D N S(&, R) is the point asso-
ciate withx; as above. This means thakiE DNB(&, R/2), thenB(y(x), 4 c;R) intersects some
of B(y1, 471c;R), ..., B(yn, 47%c;R), sayB(y;, 41c;R). SinceB(y(X), 4 *c;R) N B(y;, 4 1c;R) # 0
andB(y(x), 2 1c;R) U B(y;, 271c;R) C Dg, it follows thatkp,(y(X),y;) < A". Hence

+ A

kpg(X, ¥i) < Kog(X, (X)) + Ko (Y(X), ¥i) < Alog 500

Repeating some points, sgy = y(x1), if necessary, we may assume that this property holds
with N independent oR andN < N(c;, n). Thus the first assertion follows.
For the proof of the second assertion, ¥B/2 < b’ < b < ¢; andp = 1 - b/c; > 0.
Let us prove thaf has a system of local reference points of order at most 2 with factbet
0 < R< 6p(Kp). Supposex e DN B(£,7R). In the same way as in the proof of the first assertion,

we findy(x) € S(¢, R) such thakp,(x, (X)) < Alog R and

op(X)
6D(y(X)) > CJ(l - ﬂ)R =bR>bR> ?R
LemmaZ.1says that at most two disjoint balls of radibi® can be placed so that their centers
lie on the spher&(¢,R). Hence we can choose, x, € D n B(£,nR) such thatB(y(x), 'R)
intersectB(y;, b’'R) for somei = 1, 2, wherey, = y(X). SinceB(y(x), R) n B(y;, b’'R) # 0 and
B(y(x), bRUB(Y;, bR) c Dg, it follows thatkp,.(y(X), yi) < A. Hence the proposition follows.o

Remark2.2 In casec; < V3/2, we may have an estimate Nfbetter than the above proof, by
considering a lemma similar to Lemri@all



2.3. Proof of Proposition[2.2 In this subsection, we assume, by translation and dilation, that
¢ = 0 andp; = 1 for simplicity. The aperturé; < sin*(1/Ap) is fixed and we writd'(x, y) for
[y, (X, y). Note that 1= p; < poC0s#,, so that O< 6, < 7r/2 andﬁo > sedd;. LetC, be a convex
set appearing in (I) and 1&(z,, po) € C, € B(z), Agoo)- If x € Cy \ B(zy, po), then
(22) F(X’ Z/l) N B(X’ 2) - CO({X} U B(Z/pr)) C C/l’
where co{x} U B(z;, po)) is the convex hull ofx} U B(z;, po). Let
Y ={ye S(0,1) :T(0,y) n B(0,2) c D}.

We first show thafy # () and that the point O can be accessible along a ray issuing from the

origin toward a point inv.

Lemma 2.2.There is a positive constaRy < 1 such that ifC, N B(0, Ry) # 0, thenC,NnY # 0.
In particular, Y # 0.

Proof. Suppose to the contrary, there is a sequégevith dist(0,C,) — 0 andCy, N Y = 0.
Letz,, be such thaB(z;;, po) € C;; C B(z;;, Aopo)- Taking a subsequence, if necessary, we may
assume thaztﬂj converges, say tm. We claim

(2.3) IW@O%@CU%.
j

We find x,, € dC,; with x;, — 0. Takex € I'(0, ) N B(0,2). Then/x0z < 6; and|x| < 2 by
definition. If j is suficiently large, thernrxx;,z;, < 6; and|x — X;,| < 2 by continuity, so that

X € F(X/lj’ Z/lj) N B(X/lj’ 2) c CO({X/IJ'} U B(Z/lj,PO)) - C/lja

by @.2). Thus .3 follows. Now, by definitionyg = zy/|20| € Y andy, € I'(0, z5) N B(0, 2)
U; Cy;- This contradict€,, N Y = 0. The lemma follows. O

Observe that i€ is a convex set, then the distance functie(x) = dist(x, dC) is a concave
function onC, i.e.,

(2.4) oc(2) > oc(y) forze[xy],

1z-V| IX—2
oc(X) +
Xy oW Ty

wheneverx # y € C. This fact will be used in the following lemma.

Lemma 2.3.Let0 < Ry < 1 be as in Lemm&.2 Suppos® < R < min{Ry, 37 *sing,}. If
C, N B(0O,R) # 0 andy € C, n Y, then there exists a poimt € C, N T'(0,y) N B(0, 3R/ siné,)

such that _
singy R

504 Nr(0,y) (W) 2

Proof. Takex € C;nB(0,R). Then [x,y] c C,. Observe that there is a point € [x, y] NT(0,y)
with |wy| < R/ sin6;. In fact, if x € I'(0,y), thenw; = x satisfies the condition. Otherwise, let
w; be the intersection o] y] andor' (0, y). By elementary geometry
R > dist(x, [0, y]) > dist(ws, [0,Y]) = |wy|Singy,

so thatjw;| < R/sin#;,. Sincelw; —y| > 1 - R/sinfd; and R/sind; < 1, we find a point
W, € [wy,y] € C, NnT(0,y) with |w; —w,| = R/ sinf;. By (2.4) with C = T'(0,y) we obtain
W1 — Wo| R/sing; . R

1) > —————SInf; > —-.
Wy — Y| roy(y) 2 R/sing; + 1 sinfL=>75

Or(oy) (W) >
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Moreover|w,| < 2R/ siné;. Sincelw, — z)| > po — 2R/ sinf; > Rby 3R/ sind; < 1 < po, we can
take a pointv € [wy, ;] c C, such thatw — w,| = R/4. Then it follows from[2.4) with C = C,
that

o) 2 [ ajoe ) 3oz SR
Hence
Orync, (W) = mln{g2 - FZQ, 5'291 } _ SIZHIR.
Moreover,
W) < W = Wal + [Wo — Wy + Wy < , R R 3R
4 Sinf;  sinf;  sSin6;
Thus the lemma is proved. ]

Proof of Propositiof2.2 Let 0 < Ry < 1 be as in Lemm&2and let 0< n® < 671sin6;.
Suppose < R < min{Ry, 37!sing;}. By LemmaZ.2we fix y, € Y and writeygr = Ry. Itis
suficient to show that

(2.5) Ko (X, Yr) < Alog + A for xe DN B(0,nR),

R
9p(X)

whereA is independent ok andR. Takex € D n B(0,nR). Then there is a convex s€},
containingx and there isy € C; N Y by LemmaZ.Z By LemmalZ.3 we find a pointw €
C.NT(0,y) N B(0, 3R/ sind;) such thabic, oy (W) > 4 *Rsing;. Since

IX — 6@( s Sirt 6,

0pg(2) = 6¢,(2) 2 IXx—2 forze[x,w]

by [x,w] c B(0, 2 1;7°R) and ﬂ), it follows that
Ko (X, W) < f ds2 < Alog R + A
[

xw] Opg(2) ~ op(X)
Since
W — sinf e
0pr(2) = Ory) (2 > || ZIM(Sr(oy)( y) > ) Lix—27 forze[w,Ry,
it also follows that
dg2
kor(W, RY) < < Alo + A.
MRY S o 5@ = A95000 T

Note thatC(0) N S(0, 1) is connected by the assumption (I1). In view of d¥t&(0, 1)\ C(0)) >
sing; andC(0) c D, we see thakp (RY, yr) < A, with Aindependent oR, y andyg. Thus 2.5
follows from the triangle inequality. m|

3. RerINEMENT OF DOMAR’ S THEOREM

Domar [13, Theorem 2] gave a criterion for the boundedness of a subharmonic function
majorized by a positive function. We need its quantitative refinement, i.e., the dependency of
the bound is given explicitly.



Lemma 3.1.Letu be a nonnegative subharmonic function on a bounded dof@aiSuppose
there ise > 0 such that

| = f(log+ u)"HEdx < co.
Then ’
(3.1) u(x) < exp(2+ AlY#54(x)™"%),
whereA is a positive constant depending only ®and the dimension.
For the proof we prepare the following.

Lemma 3.2.Letu be a nonnegative subharmonic function Bfx, R). Supposei(x) >t > 0
and

(3.2) R> L.{y € BX,R) : et < u(y) < etj|¥'",

whereL, = (€?/v,)Y" andv, is the volume of the unit ball. Then there exists a pgirt B(x, R)
with u(x’) > et

Proof. Observe thaf3.2) is equivalent to

lly € B(x,R) : et < u(y) < et}| 1
1B(x, R)I Ca
Supposai < eton B(x, R). Then the mean value property of subharmonic functions yields

t<u(x) <

1
u(y)d
IB(X, R JexR) )y

-1 ( f udy+ f udy)
IB(x, R)I B(x,R)N{u<e-1t} B(x,R)N{u>e1t)

<elt+ ! et<t
< = )
This is a contradiction. m|

Proof of Lemm&.1 Since the right hand side dB[J) is not less tha®?, it is sufficient to show
that

(3.3) 5a(X) < AlY"(logu(x)) ™", wheneveu(x) > €.
Fix x; € Q with u(x,) > € and let us proveé3d3) with x = x;. Let
Ri = Lolly € Q : &72u(xy) < u(y) < €u(x)}¥" forj > 1.

We choose a sequengg;} as follows: If6o(x1) < Ry, then we stop. [0q(x1) > Ry, then
B(x1, R1) € Q, so that there exists € B(x1, Ry) such thau(x,) > eux;) by Lemmd3.2 Next
we consideBg(X2). If da(X) < Ry, then we stop. 1H55(X) > Ry, thenB(X;, Ry) c Q, so that
there exists<; € B(X,, Ry) such thatu(xz) > €u(x,) by Lemma3.2 Repeat this procedure to
obtain a finite or infinite sequen¢g;}. We claim

(3.4) Sa() <2 ) R;.
=1
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Suppose firsfx;} is finite. If 6o(x1) < Ry, then B.9) trivially holds. If §o(x1) > Ry, then we
have an integed > 2 such that

da(X1) = Ry, ..., 00(X-1) = Ry_1,00(X5) <Ry,

X2 € B(X1, Ry), X3 € B(X2, Rp), ..., X3 € B(Xy_1, Ry_1).
Hence we have

0a(X1) < [Xg — Xo + -+ + Xy — Xg| + da(X) <Ri +--- + Ri_1 + Ry,
so that[B.9) follows. Suppose nexx;} is infinite. Sinceu(x;) > elu(x;) — oo, it follows from
the local boundedness of a subharmonic function thgbes to the boundary. Hence, there is
an integer) > 2 such thato(X;) < $6q(Xy). Then
6a(X)) S IXg =Xl + -+ [Xgu1 = X3l + 0a(X)) SR+ + Ry + %6Q(x1),
so that[B.4) follows. In view of (3.4) we observe thaf3 3 follows from
(3.5) D Rj < AIY(logu(x)) ",
=1
To show B.5), let j, be the integer such that < u(x;) < e1*1. Thenj; > 2 and
R < Lilfy € Q: 172 < u(y) < ey,

Since the family of intervalg(e/**1-2, el*1*1]}; overlaps at most 3 times, it follows from Holder’s
inequality that

Z R < 3"”2 fye Q: et <ufy) <en

j=1 =i

o 1 (n=1)/n , 1/n
< 3L, (Z m] (Z "y e Qe <uy) < €

=1 =1

1/n
< AjIS/n (f(|09+ u)n—l+sdy)
Q
< A(logu(xy))~/"1¥",
Thus B.5) follows. The lemma is proved. O

4. INTEGRABILITY OF NEGATIVE POWER OF THE DISTANCE FUNCTION

Inspired by Smith and Stegend2(0] Theorem 4] we have proved that for a bounded John
domain there is a positive constansuch that

f So(X)"dxX < 0o
D

([Z, Lemma 5]). We need its local version.

Lemma 4.1.LetD be a general John domain with John constey#nd generalized John center
Ko. Then there are positive constantand A depending ort; such that

f ( R )dxs AR
bnBER) \0D(X)

10




for eaché € 9D andO0 < R < 6p(Ko).
Proof. Let
={xeDNBE R+ (1+cH)2Y R : 27 R< 6p(X) < 27'R)

for j > 0. For a moment we fix € UiZj,; Vi. By definition there is a rectifiable curve
connecting andK, with (I.J). Hence we fing/ € y such thatp(y) = 271R > ¢;|x—Y|. In other
wordsx € B(y, ¢;'2-IR). We observe

(4.1) IB(y, 5¢;'27'R)| < AV, N B(y, ¢;'27'R).

In fact, takey* € 9D such thaty - y*| = 27IR, and then takg € [y, y*] with 6p(y) = 3(27'R+
2771R). An elementary geometrical observation gi&(y’, 2--2R) c V; n B(y,c;'27'R), so
that [4.7) follows.

Now the covering lemma yields a sequeiyg such that

U Vi c U B(yi, 5¢;'2-IR)

i=j+1

and{B(yx, ¢;*2-IR)} are disjoint. Hence

> Vi U

i=j+1
by @J). Letl<t<1+ A@l. In the same way as il Lemma 5] we have

< 1B 5¢5"271R)| < A1 ) IV N Bk, €;'2 1R)] < AglV|
k k

[« | 9
Zt V| < m;w < ABE R+ (1+¢;Y)2R) < AR

Sincet! < (R/6p(X))" < t*1 onV; with 7 = logt/log 2 > 0, it follows that

R\ L
dx< » t'*vj < AR
jl;ns(g,R) (5D(X)) JZ:; J

Thus the lemma follows. O

5. GROWTH OF POSITIVE HARMONIC FUNCTIONS

In this section we shall show Propositi@a3 (i) by investigating the growth ofi € H;.
Throughout the section we I& be a general John domain and éete 0D be fixed. We
say thatx,y € D are connected by a Harnack chaB(x;, l6D(x,)) Vo1 if X € B(Xg, %6D(x1)),
y € B(Yk, 360(Yk)), andB(X;, 360(X;j)) N B(Xjs1, 36p(Xj+1)) # O for j = 1,...,k— 1. The number
k is called the length of the Harnack chain. We observe that the shortest length of the Harnack
chain connecting andy is comparable td&p(X,y). Therefore, the Harnack inequality yields
that there is a constadt > 1 depending only on such that

09— expiatko(x.y) + 1))

(5.1) expEAp(ko(xy) + 1)) < — hy) =

11



for every positive harmonic functiomon D. If D is a John domain with John constaitand
John centek,, then we have fronid.J)

h) (aD(xO) )A

52 o) = B\ o9
with 1 andA; > 0 depending only on the John constantlf D is a general John domain with
John constart; and John centdf,, then £.2) holds with the same and anotheAg depending
only onc;, Xo andKo.

Let Q be an open set intersectidp. Let h be a bounded positive harmonic function in
D N Q vanishing g.e. o@D N Q. We extendh to Q \ D by 0 outsideD and denote by*
its upper regularization. Then we observe thiais a honnegative subharmonic function@n
(I8, Theorem 5.2.1]). We shall apply the refinement of Domar’s theorem (Lefipao the
subharmonic functioh* to obtain a Carleson type estimate.

Lemma5.1.Leté € 9D have a system of local reference poits . ., yn € DNS(£, R) of order
N with factorn for 0 < R < R.. Supposé is a positive harmonic function iB N B(£, n°R)

vanishing g.e. 0@D N B(¢, 77°R). If his bounded irD N B(¢, 7R) \ B(£, 1°R), then

N
(5.3) h< AZ h(y)) onD NS, 72R),
i=1

whereA is independent di andR.

Proof. Let 0 < R < R.. Then we findy, ..., yn € D N S(¢, R) with 6p(y;) * Rsuch that

rPinN{kDR(x,yi)} < Alog + A for xe DN B, nR).

i=1.... 6p(X)
By (6.1) we find a constard, > 1 such that

A N
5DFEX)) Z h(y) forxe DN B R).
i=1

Let us apply LemmB.Itoe = 1,u = h*/(Ag 2N, h(y))) andQ = B(£,7R) \ B, 7°R). Lett > 0
be as in LemmHd.1 Apply the elementary inequality:

(5.4) h(x) < A@(

n
(logt)" < (D) tt fort>1
T

tot = R/6p(X) > 1 forx € Q. Then

[Iog* (5DI?X) )]n = A(5DTX))T’

so that it follows from£.4) and Lemmat.] that

R T
I:flo+u”dstf ( )dstR”.
Q( gy bneER) \0p(X)
Hence, Lemm&.Jyields thatu < exp(2+ AIR™) < AonS(¢,°R), i.e., 5.3 holds. |

Let us apply Lemm&.Jto a kernel functior € H, to obtain the following growth estimate.

12



Lemma 5.2.Let¢ € 9D have a system of local reference poigts...,yn € D N S, R) of
order N with factorn for 0 < R< R.. Leth € H,. Then

h(x) < Alx— & for xe D,
whered > Ois as in(6.2) andAis independent dr, x andh.

Proof. By Lemmab. 1 we have[£.3). Sinceh is bounded apart from a neighborhoodépthe
maximum principle gives

N
h() <A) h(y) forxeD\B(EnR).
i=1
Apply (5.2 to eachy, € D N S(&, R) with 6p(Y;) ~ R. Then obtairh(y;) < AR™. This, together
with the above estimate, yieldi§x) < Ax — & for x € D. The lemma is proved. m|

Here we record another application of Lemd, as this will be useful later.

Lemma 5.3.Leté € 9D have a system of local reference poipts .., yn € DNS(&, R) of order
N with factorn for 0 < R < Re. Leth be a bounded positive harmonic function@n B(¢, n°R)
vanishing g.e. o@D N B(£,77°R). Then

N
h<A) h(y) onDnBE R
i=1
whereA is independent drR andh.
Proof. We have[B.3). Apply the maximum principle t® N B(¢, n°R). m|
The following lemma is well-known.

Lemma 5.4.Suppose there exist a positive intefeand a positive consta with the follow-
ing property: ifhy, ..., hy € H,, then there ig such that

hy<A> h onD.
i#]
ThenH, has at mosM minimal harmonic functions.

Proof of Propositior2.3for N > 3. Leth; € H; for j = 0,..., M. Leth; be the upper regular-
ization of the extension df; toR"\ {¢} as before Lemmia.Jand letH; be the Kelvin transform
of h’j* with respect td&5(¢, 1), i.e.,

Hi() = [x = £7hj(€ + [x = £7%(x = ).

Observe thaH; is a nonnegative subharmonic function Rhwhich is positive and harmonic
on the Kelvin imageD* of D and is equal to 0 g.e. outsid®. Moreover, Lemm&.2 shows

Hj(x) < Alx— &> ™"

ThusH; is of order at most 2 n + A. As in Benedicks10, Theorem 2], we let
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and letw* be the upper regularization of miax 0}. Thenw"' is a nonnegative subharmonic
function onR" of order at most 2 n + A. If none of{x : H;(x) > i, Hi(X)} is empty, therw*
hasM + 1 tracts. Hence/1[5, Theorem 3] yields
M+1

4
Hence, ifM > 4 exp(1-2n + 21) — 1, then{x : Hj(x) > ¥i.; Hi(X)} = 0 for somej = 0,..., M.
This means thatl; < 3’;; Hi on D", so that

hjSZhi onD.

i#]

1 3 .
- > = — > 3.
2 n+/1_2Iog( )+2 if M >3

Hence Lemm&.4implies thatH, has at mosM minimal harmonic functions, or equivalently
there are at mos¥l minimal Martin boundary points & Thus the number of minimal Martin
boundary points at is bounded by 4 exp(Z 2n + 21). O

Remark5.1 The above proof gives a coarse estimate of the number of minimal harmonic func-
tions of H, in terms ofA depending on the John constant More delicate arguments will be
needed for a sharp estimate.

6. WEAK BOUNDARY HARNACK PRINCIPLE

In this section we shall prove PropositidM@ for N < 2. Throughout the section we 1B
be a general John domain anddix 0D. Since most arguments are valid for ady>- 1, except
for (6.5, we shall state the results for genexalPropositior2. 3 will be derived from a certain
estimate of the Green function. There is &alience of the behavior of the Green functi®n
for D between the cases= 2 andn > 3, i.e., ifn > 3 andR > 0 is small, then

1 )
G(x,y) ~ RR™" for x € S(y, §5D(y)) with 8p(y) ~ R;

if n = 2, then this estimate does not necessarily hold. To avoid thisulty we consider the
Green functiorGg for the intersectiorDg = D N B(¢, AsR) with sufficiently largeAg > 3.
Then we have for ang > 2,

(6.1) Galx.y) ~ R for x& S(y. 3d0(y)) with 5o(y) ~ R

where the constant of comparison depends onlip@nd Ag.

By w(x, E, U) we denote the harmonic measurebofor an open set) evaluated ak. The
box argument inZ, Lemma 2] (se€d] for the original form) gives the following estimate of the
harmonic measure.

Lemma 6.1.Let¢ € 9D have a system of local reference poigts...,yn € D N S(¢, R) of
order N with factorn for 0 < R< Re. If x e D N B(¢, 7°R), then

N

(6.2) (% D N S(7°R), D N B 1°R) < AR™ )" Gr(x. ),
i=1

whereA depends only on, ¢;, R and A..
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Proof. Let us begin with an estimate of harmonic measure in a John domain.<0<06p (Ko)
letU(r) = {x € D : 6p(X) < r}. Then each poink € U(r) can be connected t§, by a curve
such that[{.T) holds. HenceB(x, Asr) \ U(r) includes a ball with radius, providedAg is large.
This implies that

w(XU(r) N S(x, Agr),U(r) N B(x,Agl)) <1-g for xe U(r)
with 0 < g < 1 depending only oyg and the dimension. Ld® > r and repeat this argument
with the maximum principle. Then there exist positive constéatandAg such that
(6.3) w(x,U(r) n S(x,R),U(r) n B(x,R)) < exp(Az — AgR/r).

See P, Lemma 1] for detalils.
Let 0 < R < R.. For eachx € DN B(¢, R) there is a local reference poi(tx) € {yi,.. ., Yn}
such that R

kpg(X, Y(X)) < A log 5000 " A

by definition. Lety'(X) € S(Y(X), 260(Y(X))). Then we observe thp,, (% Y (X)) < A: log(R/dp(X))+
A:. Lettingu(x) = R™2 >N Gr(x,Yi), we obtain from[B.1) and [.]) that

u(x) > A(éDF({X)

with somed > 0 depending only om, ¢;, R: andA;. LetD; = {x e D : exp21t1) < u(x) <
exp(2')} andU; = {x € D : u(x) < exp(=2')}. Then we see that

U;n B, nR) {x e D:6p(X) < ARexp(—%)}.

A
) for xe DN B(¢,7R)

Define a decreasing sequerReby Ry = 7°Rand

602 - 1) o 1 -
k=1
Let wy = w(-, D N S(¢, n°R), D N B(¢, n°R)) and put

sup wo(X)

xeD;nBER;) U(X)
d; =

0 if D; N B¢, Ry) = 0.
It is sufficient to show thatl; is bounded by a constant independenRafnd j, sinceR; > °R
forall j > 0. Apply the maximum principle t&J; N B(¢, Rj-1) to obtain
wo(X) < w(x,Uj N S(¢,Rj-1), Uj N B¢, Rj-1)) + dj_1u(X).
Divide the both sides by(x) and take the supremum ovef N B(¢, R;). Then [6.3) yields

if D;n B(¢, Rj) #0,

_ R,-R
. 2]+1 _ ] .J -
d; < eXIO( + A 'L‘EAReXp(_ZJM)) +dj1,
providedj is so large, say > jo, that
Ri-Rj _ 60 -m)exp@/)

ARexp(-2i/1) = n2 Ajg
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Hence, forj > jo,

JpC
< da+ Y exp(2 + - A2 DB

i=io

For j < jo we haved; < exp(2*!) < exp(2°*!). Hence we obtain sup,d; < co. Thus B.9)
follows. m]

Lemma 6.2.Let ¢ € 9D have a system of local reference poigts...,yn € D N S, R) of
order N with factory for 0 < R< R:. If x e D N B(£,7°R) andy € D N S(&,77°R), then

N N
(6.4) Gr(x,Y) < AR™2 > Gr(x i) ) Gr(Y,Y),

i=1 j=1
whereA depends only on, ¢;, R and A..
Proof. Apply Lemma5.3to h(x) = Gg(x,y) withy € D n S(£,773R). Then

N
Gr(xY) <A h(y) forxeDnS(EnR).

=1
Hencel6.2) yields

N N
Gr(XY) < AR™2 3" Gr(x i) > h(y) for xe Dn B °R)

i=1 =1
by the maximum principle. The lemma follows. O

For further arguments we need the following improvementef)( If x € D N S(&, n°R)
andy € D n S(¢,77°R), then

N
(6.5) Gr(X.Y) < AR >~ Gr(X YI)Gr(¥»Y)

i=1
whereA depends only om, ¢;, R: andA.. Note that the cross tern@(X, yi)Gr(Y;,Y) (i # j)
disappear from the right hand side &4).

If N = 1, then [.5) is nothing but[6.4). If N < 2, then Ancona’s ingenious tricl6]
Théoreme 7.3] give&(5) from (6.4). However, the proof is rather complicated and we postpone
the proof to the next section. The remaining arguments are rather easy and hold for arbitrary
N > 1, provided [6.5) holds. Let us show the weak boundary Harnack principle defined by
Ancona b, Définition 2.3].

Lemma 6.3 (Weak Boundary Harnack Principld)eté € dD have a system of local reference
pointsyi,...,yn € D N S(¢,R) of order N with factorn for 0 < R < R.. Moreover, suppose
(6.9 holds. Lethg, hy, ..., hy € H,. Then

(6.6) ho(X) < AZ O(y' h (x) forxe D\ B n°R).
whereA depends only on, ¢;, R and A..
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Proof. In (6.5 we replace the roles ofandy and writez for y. By dilation and changingg we
obtain from the symmetry of the Green function that € DN S(¢, ,°R) andz € DN S(¢, 7'R),
then

N
Gr(x.2) < AR"2 ) Gr(x.2)Gr(2. 2.
i=1

wherezi,...,zy € D n S(&,7*R) are local reference points. Moreover, for eachve find
a local reference point;q € D N S(¢,R) such thatks,, ., (2. Yi)) < A In view of .0,
we haveGg(x,z) ~ Gr(X,Yj@) andGgr(z,2) ~ Gr(Yjn,2), wheneverx € D n S(¢,7°R) and
ze DN S(¢,7?'R). Hence we obtain that € € D N S(¢,7°R) andz € D n S(¢, ?'R), then

N
(6.7) Gr(%,2) < AR"? > Gr(X, Y)Gr(Y:»2).

i=1
Letr = n~3Randp = 7*'R. Observe that the regularized reduced funcigi®“"">¢ with
respect tdr is a Green potential of measugesoncentrated oB N S(&, r) andy onDNS(E, p)

such thaRy" €72 = hy on D N B(&, 1) \ B(E, p). It follows from E.5) and E7) that for
x € DN S, n°R),

ho(x) = f Gr(x y)du(y) + f Gr(x D2
DNS(&,r) DNS(£,0)

SAR‘-ZZN;([D

N
= AR"? Z Gr(X, ¥i)ho(¥:).
=)

Gr(x Y)Gr(Yi. Y)u(y) + f

DNS(£,p)

GR(x,yi)GRwi,z)dv(z))

NS(&,r)

Lete = 1 - °. Observe from@.J) and the Harnack inequality thbi(y))R"2Ggr(X, yi) ~ hi(X)
for x € S(y;, e6p(y:)), and so is forx € D N S(&,7°R) € D\ B(y:, edp(Y;)) by the maximum
principle. Hencelg.g) follows for x € D \ B(¢, °R) by the maximum principle. O

Proof of Propositiof2.3 (ii) for N < 2. Obviously 6.5 holds forN = 1; (6.5) holds forN = 2,
as we shall show in the next section. Hence Lerfth&is applicable. VaryindR in Lemma
we obtain relationships among kernel functionsHp, which yield Propositiof2.3 This
procedure is the same as in AncobaThéoreme 2.5] and we omit the details. O

Remark6.1 We do not know whether the weak boundary Harnack principle holdblfor3.

In special cases, such as a sectorial domain whose boundary INsays leavings, we can

apply the weak boundary Harnack principle repeatedly to subdomains containing just one ray
and conclude the weak boundary Harnack principle for the sectorial domain itself (cf. Cranston
and Salisburyl12, p. 36]).

7. Proor oF (6.5
In this section we shall prove the following:

Lemma 7.1.Let¢ € 9D have a system of local reference poipsy, € D N S(¢, R) of order2
with factorn for 0 < R< R.. If xe D N S(¢,7°R) andy € D n S(&, n~°R), then(&.5) holds.
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We employ Ancona’s trick§, Theoreme 7.3]. Since our setting is slightlyfdrent from
Ancona’s, we provide a proof for the sake of the reader’s convenience.

Proof. Besides the local reference poitsy, € D N S(¢, R), we take local reference points
Yi. Y € DN S(& n°R) with

n°R e
+ for x e D N B(¢, n'R).
5500 A (¢.1'R)

Min{Kona(e.2r) (%, ¥7)} < A¢log

Then

Jfgllg{kDR(W,YJ) A log ()"‘Af As.

So, we may assume either

(7.1) Kor(Y2, Y1) < Aandkpg(Ys, Y1) < A,
or
(7.2) kor(Y1, Y1) < Aandkp, (Y, Y2) < A,

by replacing the roles of; andys,, if necessary.
First consider the case whdf.]) holds. Suppos& € D N S(¢,7°R). Then B.1) and .9

fory;,y; yield
Gr(X,y) < AR Z Gr(X ¥ )Gr(Y;,Y) < AR?Ggr(X, y1)Gr(Y1,Y)

I

fory € D n S(¢,7°R), and hence foy € D N S(&, 77°R) by the maximum principle. Hence the
lemma follows in this case.

Next consider the case whéfi) holds. Letd = {ze Dg : Gr(z Y1) > Gr(z Y2)}. If either
X,y € ® or x,y € Dg \ @, then E.5) follows from §.4). Let us consider the remaining cases.
If necessary, exchanging the rolesyafandy,, we may assume that € ® n S(¢, »°R) and
y e (Dr\ @) NS n3R). LetE = @\ B, 73R) and consider the regularized reduced function
/F\;EGR(M with respect toDg. This function is represented as the Green potential of a measure
u concentrated odE. For a moment lez € E. Then we have frong4) for y;,y, and the
maximum principle

(7.3) Gr(X2) < AR™? " Gr(X.¥)Gr(Y;. 2).

N
It is easy to see froni/(2) thatkp. (Y, i) < A, so thatGg(x,y) < AGR(x y.) for i =1,2by
(5.J). We also haveésg(y:, 2) < AGg(y;,2) for j = 1,2. Infact, ifz € B(y,, 5D(y,)) then

GR(yjaZ) ~ |yj Z|2 . 2 ARZ_n 2 AGR(y*aZ) if ze DR\ B(yp 5D(YJ)) then @) glves
Kor\z (Y5, Yj) < A, and henc&(y:, 2) ~ Gr(Y;, 2) by G.J). Hencell.3) becomes

Gr(x.2) < AR™ " Gr(X Y)Gr(Y;, D) < AR’Gr(X, y1)Gr(y1, 2

N
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by the definition ofd. Therefore
ﬁEGR(-,y)(X) < AR™Gg(x, 1) fl; Gr(Y1, 2du(2)

= ARQ_ZGR(X, yl)%R(.’y) (Y1) < ARq_ZGR(X’ yl)GR(yl’ y)

(7.5) w=0 g.e.0onE=a)\BE°R).
By (6.4) we have
(7.6) V(2) < Gr(zY) < ARV?GR(Z Y2)Gr(Y2,y) forze D nod N B °R).
Observe that

D N a(® N BE n°R) € (@ \ BE n°R) U (D N ad N BE, 71°R)).
Hence[(.5), (7.6) and the maximum principle yield

Vy < AR™?Gg(, ¥2)Gr(Y2,Y) on® N B(&, °R).
This, together with[{.4), implies
Gr(X,Y) < AR"(GRr(X, Y1)Gr(Y1, ) + Gr(X, ¥2)Gr(Y2, Y))-

The proof is complete. m|

(7.4)
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