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MARTIN’S CONJECTURE, ARITHMETIC EQUIVALENCE, AND
COUNTABLE BOREL EQUIVALENCE RELATIONS

ANDREW MARKS, THEODORE SLAMAN, AND JOHN STEEL

ABSTRACT. There is a fascinating interplay and overlap between recursion
theory and descriptive set theory. A particularly beautiful source of such in-
teraction has been Martin’s conjecture on Turing invariant functions. This
longstanding open problem in recursion theory has connected to many prob-
lems in descriptive set theory, particularly in the theory of countable Borel
equivalence relations.

In this paper, we shall give an overview of some work that has been done on
Martin’s conjecture, and applications that it has had in descriptive set theory.
We will present a long unpublished result of Slaman and Steel that arithmetic
equivalence is a universal countable Borel equivalence relation. This theorem
has interesting corollaries for the theory of universal countable Borel equiva-
lence relations in general. We end with some open problems, and directions
for future research.

1. INTRODUCTION

1.1. Martin’s conjecture. Martin’s conjecture on Turing invariant functions is
one of the oldest and deepest open problems on the global structure of the Turing
degrees. Inspired by Sacks’ question on the existence of a degree-invariant solution
to Post’s problem [21], Martin made a sweeping conjecture that says in essence,
the only nontrivial definable Turing invariant functions are the Turing jump and
its iterates through the transfinite.

Our basic references for descriptive set theory and effective descriptive set theory
are the books of Kechris [14] and Sacks [22]. Let <t be Turing reducibility on the
Cantor space 2%, and let =7 be Turing equivalence. Given x € 2%, let 2’ be the
Turing jump of . The Turing degree of a real x € 2 is the =p equivalence class
of x. A Turing invariant function is a function f : 2 — 2“ such that for all reals
x,y € 2¢ if x =p y, then f(x) =r f(y). The Turing invariant functions are those
which induce functions on the Turing degrees.

With the axiom of choice, we can construct many pathological Turing invariant
functions. Martin’s conjecture is set in the context of ZF + DC + AD, where
AD is the axiom of determinacy. We assume ZF + DC + AD for the rest of this
section. The results we will discuss all “localize” so that the assumption of AD
essentially amounts to studying definable functions assuming definable determinacy,
for instance, Borel functions using Borel determinacy.

To state Martin’s conjecture, we need to recall the notion of Martin measure. A
Turing cone is a set of the form {z : x > y}. The real y is said to be the base of
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the cone {z : x >1 y}. A Turing invariant set is a set A C 2 that is closed under
Turing equivalence: for all z,y € 2, if x € A and = =r y, then y € A. Martin has
shown that under AD, every Turing invariant set A either contains a Turing cone,
or is disjoint from a Turing cone [I9]. Note that the intersection of countably many
cones contains a cone; the intersection of the cones with bases {y; };c., contains the
cone whose base is the join of the y;. Hence, under AD, the function

(4) 1 if A contains a Turing cone
a ~ 10 if the complement of A contains a Turing cone

is a measure on the o-algebra of Turing invariant sets. This measure is called Martin

measure. For the rest of this section, by a.e. we will mean almost everywhere with

respect to Martin measure. Since we will care only about the behavior of functions

a.e., we will occasionally deal with functions which are only defined a.e.

For Turing invariant f, g : 2% — 2 let f <,, g if and only if f(x) <r g(z) a.e.
Similarly, f =,, ¢ if and only if f(z) =r g(x) a.e. Say that f is increasing a.e. if
f(x) >7 x a.e. Finally, say that f is constant a.e. if there exists a y € 2* such that
f(z) =r y a.e. (i.e. the induced function on Turing degrees is constant a.e.).

We are now ready to state Martin’s conjecture on Turing invariant functions.

Conjecture 1.1 (Martin [15, p. 281]). Assume ZF + DC + AD. Then
I If f:2%° — 2% 4s Turing invariant, and f is not increasing a.e. then f is
constant a.e.
II. <,, prewellorders the set of Turing invariant functions which are increasing
a.e. If f has <,,-rank «, then f' has <p,-rank o+ 1, where f'(x) = f(x)
for all .

While Martin’s conjecture remains open, significant progress has been made
towards establishing its truth. Let ¢; be the ith partial recursive function. Say
that © >7 y via i if p;(z) = y. Say that x =p y via (4,7) if x >r y viatand y >7 x
via j. Suppose that f is a Turing invariant function. Say that f is uniformly Turing
invariant if there exists a function u : w? — w? so that if x =7 y via (4, ), then
f(z) =r f(y) via u(i,j). Note that our definition of a uniformly Turing invariant
function is slightly different that the definitions of some of the papers we referencd].

Ln particular, the definition of uniformly Turing invariant that we give here is different than
the definitions used in [25] and [26] (which also differ from each other). The definition in [25]
requires only that there is a pointed perfect tree T and a function u : w? — w? such that for all
z,y € [T, if x = y via (4,]), then f(z) =r f(y) via u(i,j). This definition is related to our
definition in the following way:

Proposition. Let f be Turing invariant. Then there exists a uniformly Turing invariant g (using
our definition) which is defined a.e. such that g =m f if and only if there is a pointed perfect tree
T and a function u : w2 — w? such that for all x,y € [T), if x =1 y via (i,]), then f(x) =1 f(y)
via u(t, 7).

Proof. For the forward direction, consider the function 7 which maps z to the lexicographically
least (i,j) such that f(z) =1 g(zx) via (i, ). Now use Lemma[3.35] to find a pointed perfect set on
which 7 is constant.

For the reverse direction, first let [T] be the pointed perfect set on which f is uniform. Pass
to a uniformly pointed perfect tree T C T where there exists an e such that for all x € [T}, we
have pe(z) = T'. Now define the uniformly Turing invariant g by composing f with the canonical
homeomorphism from 2% to [T, and then restricting to the cone {z : z >p T}. O
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The first progress on Martin’s conjecture was made by Steel [26] and was contin-
ued by Slaman and Steel [25]. They proved that Martin’s conjecture is true when
restricted to the class of uniformly Turing invariant functions.

Theorem 1.2 (Slaman and Steel [25]). Part I of Martin’s conjecture holds for all
uniformly Turing invariant functions.

Theorem 1.3 (Steel [26]). Part IT of Martin’s conjecture holds for all uniformly
Turing invariant functions.

Theorems and[L3lalso imply that Martin’s conjecture is true when restricted
to the larger class of functions f so that f =,, g for some uniformly Turing invariant
g. Steel has conjectured that this is true of all Turing invariant functions.

Conjecture 1.4 (Steel [26]). If f: 2% — 2% is Turing invariant, then there exists
a uniformly Turing invariant g which is defined a.e., and f =, g.

Assuming Conjecture[[.4] Steel [26] has computed the <,,-rank of many familiar
such jump operators. Steel also proves that Conjecture [[4] implies that if f(x) €
L[z] a.e., then f has a natural normal form in terms of master codes in Jensen’s J.

The original intent of Martin’s conjecture was to be a precise way of stating that
the only definable non-constant Turing invariant functions are the Turing jump and
its transfinite iterates such as x — z(® for o < wy, & — O%, and x — a¥. Becker
has shown that Conjecture[[.4] precisely captures this idea. In [2], Becker defines the
notion of a reasonable pointclass, and shows that for any such reasonable pointclass
T, for every z, there is a universal I'(x) set, where T'(z) is the relativization of T’
to x. (Such a universal set is not unique, but the universal I'(z) subset of w will
be unique up to Turing equivalence.) For instance, if we consider the pointclass of
1} sets, the universal I1}(z) subset of w is O. Becker has shown that the strictly
increasing uniformly Turing invariant functions are precisely the functions which
map 2z to the universal I'(z) subset of w for some reasonable pointclass T'.

Theorem 1.5 (Becker [2]). Let f : 2 — 2% be a Turing invariant function so
that f(x) > x a.e. Then f is uniformly Turing invariant if and only if there is a
reasonable pointclass T, and a Turing invariant g so that g(x) is the universal T'(z)
subset of w, and f =, g.

Suppose f is Turing invariant. Then say that f is order preserving if x >7 y
implies that f(xz) >7 f(y). Say that f is uniformly order preserving if there exists
a function u : w — w so that x > y via i implies f(x) >7 y via u(z). It is clear that
if f is uniformly order preserving then f is uniformly Turing invariant. A corollary
of Becker’s work is that for any Turing invariant f, there exists a uniformly Turing
invariant g so that g =, f if and only if there exists a uniformly order preserving
h so that h =, f.

Two more cases of Martin’s conjecture are known. They are especially interesting
because they do not require uniformity assumptions.

Similar techniques along with Theorem [[22lcan be used to show that that for all Turing invariant
f, there exists a g =, f that is uniformly Turing invariant in our sense if and only if there exists
an h =, f that is uniformly Turing invariant in the sense of [26] (where g and h are both defined
a.e.).

Thus, the differences between these definitions are harmless; we have not changed what it
means for a function on Turing degrees to be represented a.e. by a uniformly invariant function.
We use our definition because of its simplicity, and because it generalizes in Section [3.] more
readily than the definitions of [26] and [25].
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Theorem 1.6 (Slaman and Steel [25]). If f is a Borel order preserving Turing
invariant function that is increasing a.e., then there exists an a < wi so that
f(x) =7 2@ ae.

The proof of this theorem uses a generalization of the Posner-Robinson theorem
for iterates of the Turing jump up through w;. To generalize this theorem beyond
the Borel functions, it would be enough to generalize the Posner-Robinson theorem
further through the hierarchy of jump operators. For instance, Woodin [33] has
proved a generalization of the Posner-Robinson theorem for the hyperjump. This
can be used to show that if f is increasing and order preserving a.e., and not Borel,
then f(z) >r OF a.e.

The last known case of Martin’s conjecture is for all recursive functions.

Theorem 1.7 (Slaman and Steel [25]). Suppose f(x) <t = a.e. Then either
f(@) =r x a.e., or f is constant a.e.

The proof of this theorem uses both game arguments and a significant amount
of recursion theory. Generalizing this theorem past the A functions appears to be
difficult, and the proof does not give much of an idea of how to do this.

The special case of a degree invariant solution to Post’s problem has also received
considerable attention. Lachlan [16] has shown that there are no uniform solutions
to Post’s problem. This result predated Theorem[L.3] which generalized it. Downey
and Shore [§] later put further restrictions on any possible solution. By using
Theorem [[L3] they showed that any degree invariant solution to Post’s problem
must be lows or high,. On the positive side, Slaman and Steel (unpublished) have
proved that there is a degree invariant solution to Post’s problem restricted to the
domain of 9 sets. Finally, Lewis has constructed a degree invariant solution to
Post’s problem on a set of sufficiently generic degrees [17].

Martin’s conjecture has also inspired a couple theorems for functions from 2% to
P(2%). Steel [26] has proved the existence of a natural prewellorder on inner model
operators using the uniform case of Martin’s conjecture. Slaman [24] has proved an
analogue of Martin’s conjecture for all Borel functions from 2% to P(2“) satisfying
certain natural closure conditions. This proof uses a technique that is reminiscent
of Theorem [[L6] and relies on a sharpening of the generalized Posner-Robinson
theorem due to Shore and Slaman [23].

The metamathematics of Martin’s conjecture has been the source of some inter-
esting results. Chong and Yu [5] have constructed uniformly Turing invariant IT3
counterexamples to Martin’s conjecture when the hypothesis of ZF + DC + AD is
replaced with ZFC + V = L. They raised the question of the consistency strength
of Theorem Chong, Wang, and Yu [4] have proved that the restriction of
Theorem [[3 to 13, ,; functions is equivalent to X3, ,, determinacy for all n > 0.

Next, we will turn to applications of the above in the field of countable Borel
equivalence relations. In this context, we will only need the restriction of Martin’s
conjecture to Borel functions. In what follows, when we assume Martin’s conjecture,
we will really mean that we assume its consequences for Borel functions. The
following characterization of Borel Martin’s conjecture is an easy consequence of
Theorems and [[.3

Theorem 1.8 (Slaman and Steel). The following are equivalent:

(1) Martin’s conjecture restricted to Borel functions.
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(2) If f is Borel and Turing invariant, then either f is constant a.e., or there
is an ordinal o < wy so that f(z) =7 (*) a.e.

(3) If f is Borel and Turing invariant, then there exists a uniformly Turing
invariant g such that f =,, g.

Assuming Martin’s conjecture, there is a particular fact about Turing invari-
ant functions that we will use several times. Given any subset A of 2% the =p-
saturation of A is defined to be the smallest Turing invariant set containing it. Let
f :2¥ — 2% be a countable-to-one function that is Turing-invariant. Then the
=p-saturation of ran(f) must contain a Turing cone. This is because f cannot be
constant a.e. and so it must be that f(x) >7 = a.e. Hence, the complement of the
=p-saturation of ran(f) cannot contain a Turing cone.

1.2. Countable Borel equivalence relations. Turing equivalence is an exam-
ple of a countable Borel equivalence relation. A Borel equivalence relation is an
equivalence relation F on a Polish space X that is Borel as a subset of X x X. A
Borel equivalence relation is said to be countable if all its equivalence classes are
countable.

Suppose F and F' are Borel equivalence relations on the Polish spaces X and
Y respectively, and f : X — Y is a function. f is said to be a homomorphism
from E to F if for all z,y € X, we have xEy — f(x)F f(y). In this language, a
Turing invariant function is a homomorphism from =r to =p. f is said to be a
cohomomorphism from E to F if for all z,y € X, we have f(x)Ff(y) — zEy. f
is said to be a reduction from E to F' if f is simultaneously a homomorphism and
a cohomomorphism from F to F. A reduction from F to F induces an injection
from the quotient X/FE to the quotient Y/F. If the reduction f is itself injective,
then f is said to be an embedding of F into F.

FE is said to be Borel reducible to F, noted E <p F, if there exists a Borel
reduction from F to F. The class of countable Borel equivalence relations under
<p has a rich structure that has been studied extensively. See for instance the
paper of Jackson, Kechris, and Louveau [I1].

We will be particularly interested in the phenomenon of universality. A count-
able Borel equivalence relation E is said to be universal if for all countable Borel
equivalence relations F', we have F' <p F. It is known that there exist universal
countable Borel equivalence relations [6].

Martin’s conjecture and the partial results surrounding it have turned out to have
many connections with the field of countable Borel equivalence relations. Indeed,
while Martin’s conjecture says something very beautiful and fundamental about
Turing reducibility and the hierarchy of definability, it is not so surprising that
Martin’s conjecture has been more applicable in this area, rather than in recursion
theory. Martin’s conjecture gives a complete classification of all homomorphisms
from Turing equivalence to itself, and homomorphisms are a basic object of study
in the area of countable Borel equivalence relations.

A countable Borel equivalence relation E is said to be hyperfinite if E = J,.,, Fi
where Ey C E; C ... is an increasing sequence of Borel equivalence relations with
finite classes. Slaman and Steel [25] realized that if =p was hyperfinite, this would
allow one to construct counterexamples to Martin’s conjecture. They showed that
= is not hyperfinite and they proved that a Borel equivalence relation is hyper-
finite if and only if it is induced by a Borel Z action. They obtained these results
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independently from the work that was beginning on the field of Borel equivalence
relations at the time. Their last result is due independently to Weiss [32].

In [25], Slaman and Steel posed further structurability questions about Turing
equivalence. These were answered by Kechris [12] via methods associated with the
concept of amenability. Amenability has since played a large role in the study of
Borel equivalence relations.

Kechris [13] has asked whether Turing equivalence is a universal countable Borel
equivalence relation. An affirmative answer to this question would contradict Mar-
tin’s conjecture, while Martin’s conjecture implies that = is not universal. See
[7] for a more thorough discussion of this topic. Essentially, if there is a reduction
from =7 U =p to =7, then the range of the reduction on one of the copies of =
must be disjoint from a cone.

A related question is due to Hjorth:

Question 1.9 (Hjorth [I], [1]). If E and F are countable Borel equivalence re-
lations on the Polish space X, and E is universal and E C F, then must F be
universal?

If this question has an affirmative answer, then =1 is universal; it is easy to find
subsets of =7 that are universal. Of course, an affirmative answer to this question
would have many more implications.

Let E be a countable Borel equivalence relation on the Polish space X, and u
be a probability measure on X. Given a countable Borel equivalence relation F,
we say that F is F-ergodic with respect to u if every Borel homomorphism from F
to F maps a set of measure 1 into a single F-class. F is said to be simply ergodic
with respect to p if it is A(Y')-ergodic with respect to u for every Polish space Y,
where A(Y) is the equivalence relation of equality on Y. Define a subset A of X to
be E-invariant if for all z,y € X, if x € A, and zFy, then y € A. Equivalently,
is ergodic with respect to u if and only if every Borel E-invariant set has measure
Oorl.

For the above definitions of ergodicity to make sense, i can be a measure on
merely the o-algebra of E-invariant Borel subsets of X, as Martin measure is for
=p. For example, =7 is ergodic with respect to Martin measure.

Strong ergodicity results for =7 and Martin measure would be very interesting.
Let Ey be the equivalence relation of equality mod finite on 2. Thomas [30] has
shown that if =p is Ey-ergodic with respect to Martin measure, then =7 is not
Borel bounded. Borel boundedness is closely connected to the long open increasing
union problem for hyperfinite equivalence relations [3]. It is currently open whether
there are any Borel equivalence relations that are not Borel bounded.

Thomas has shown that Martin’s conjecture implies that =7 is Ey-ergodic with
respect to Martin measure, and in fact, Martin’s conjecture implies the strongest
ergodicity for = that is possible with respect to Martin measure. If F and F are
countable Borel equivalence relations, then a weak Borel reduction is a countable-to-
one Borel homomorphism from F to F. If there exists a weak Borel reduction from
E to F, then we say that E is weakly Borel reducible to F', and write £ <}§ F. A
countable Borel equivalence relation E is said to be weakly universal if F' <% E for
all countable Borel equivalence relations F. Clearly, if E is weakly universal, then
=7 is not F-ergodic with respect to Martin measure, since there is a countable-to-
one Borel homomorphism from =p to E. Assuming Martin’s conjecture, Thomas
has proved the remarkable fact that the converse is true:
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Theorem 1.10 (Thomas [30]). Assume Martin’s conjecture is true. Let E be any
countable Borel equivalence relation. Then exactly one of the following hold:

(1) E is weakly universal.
(2) =1 is E-ergodic, with respect to Martin measure.

The proof of this theorem uses the fact that Martin’s conjecture implies that
the saturation of the range of a countable-to-one Turing invariant function must
contain a Turing cone. We will discuss Theorem more in Section [3l

Martin’s conjecture appears to be closely connected to the structure of the weakly
universal countable Borel equivalence relations. Thomas [30] has shown that as-
suming Martin’s conjecture, there are continuum many pairwise <p-incomparable
weakly universal countable Borel equivalence relations. These equivalence relations
are products of the form =r X E, where {E, : a € 2} is a family of non weakly
universal countable Borel equivalence relations on 2% so that if a # [, then E,, is
Eg-ergodic with respect to Lebesgue measure. The proof of this result uses Popa’s
cocycle superrigidity theorem to establish the existence of such a family of E,,
and then applies Theorem to prove the <p-incomparability of the product
equivalence relations.

Thomas has also used Martin’s conjecture to investigate weak universality in
another context. Say that a countable group G is weakly action universal if there is
a Borel action of G on a Polish space X so that the induced orbit equivalence relation
EF is weakly universal. Assuming Martin’s conjecture, Thomas has shown that G
is weakly action universal if and only if the conjugacy relation on the subgroups of
G is weakly universal [27].

Aside from these results, the structure of the weakly universal countable Borel
equivalence relations is poorly understood. For example, it is open whether there
exists more than one weakly universal countable Borel equivalence relation up to
Borel reducibility; this is equivalent to Hjorth’s Question having a negative
answer.

An appeal of Martin’s conjecture is that it provides a dimension of analysis that
is completely orthogonal to measure theory. This is particularly interesting because
all other known techniques for analyzing non-hyperfinite countable Borel equiva-
lence relations are measure-theoretic. Assuming Martin’s conjecture, Thomas [30]
has proved that the complexity of a weakly universal countable Borel equivalence
relation always concentrates on a nullset. This is strong evidence that techniques
that are not purely measure-theoretic are needed to unravel the structure of the
weakly universal countable Borel equivalence relations.

Theorem 1.11 (Thomas [30]). Assume Martin’s conjecture. If E is any weakly
universal countable Borel equivalence relation on X, and p is a Borel probability
measure on X, then there is a Borel set B C X with u(B) =1 so that E | B is not
weakly universal.

Thomas has applied this theorem to show that assuming Martin’s conjecture,
there does not exist a strongly universal countable Borel equivalence relation. We
will discuss this result more in Section [

The partial results on Martin’s conjecture have also found applications in the
field of countable Borel equivalence relations. Thomas [29] has used Theorem [[7] to
show the nonexistence of continuous Borel reductions between several equivalence
relations. These results are significant because in practice, most Borel reductions
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are continuous. Montalbén, Reimann, and Slaman (unpublished) have used Theo-
rem to show that =7 is not a uniformly universal countable Borel equivalence
relations. We will discuss their theorem more in Section Bl

2. THE UNIVERSALITY OF ARITHMETIC EQUIVALENCE

It is natural to consider analogues of Martin’s conjecture for other notions of
degree. In particular, this makes sense for any degree notion that has a natural
jump operator, and an analogue of Martin’s measure (which generally exists by
a proof similar to Martin’s proof in [19]). For instance, we can replace Turing
reducibility by arithmetic reducibility, the Turing jump with z — z), and Martin
measure with the arithmetic cone measure.

In [25], Slaman and Steel note that their arguments for proving Theorems
and adapt to the AL degrees, and to the degrees of construtibility. However,
they also note that their proofs do not work for arithmetic equivalence.

In later work, Slaman and Steel further investigated the analogue of Martin’s
conjecture for arithmetic equivalence. They showed that it is false, and the tech-
nique that they developed to build counterexamples adapted to prove a stronger
result: that arithmetic equivalence is a universal countable Borel equivalence rela-
tion. It is this long unpublished result that we will give a proof of in this section. In
Section Bl we will use this result to prove some theorems about universal countable
Borel equivalence relations in general.

2.1. Basic definitions. The Cantor space, noted 2“, is the set of all functions
from w to 2. There is a bijection between subsets of w and elements of 2¢; a subset
of w is represented by its characteristic function. In what follows, we freely move
between these two representations. Say that xz € 2“ has a limit if there exists an
i such that Vj > 4, 2(j) = z(i). Viewing z has a subset of w, this is the same as
saying that x is finite or cofinite.

Given two reals x,y € 2¥, the join of z and y is the real x & y defined by
(x®y)(2n) = x(n) and (z ®y)(2n+ 1) = y(n) for all n € w. The join of finitely
many reals is defined analogously. Fix a recursive bijection (-, ) from w X w — w.
Let z be a subset of w. The nth column of x, noted zI, is the subset of w defined
by 2l = {m : (n,m) € 2}. Conversely, if {2;};c. are all reals, then the join of
these reals, noted ®i€w x;, is the real whose nth column is z,,.

Let 2<¢ be the set of finite binary sequences. If o € 2<%, then the length of o,
noted |o|, is the domain of o. If z and y are functions from w to 2<%, define the
join of & and y similarly to the above.

If z,y € 2¢ then z is said to be arithmetically reducible to y, noted z <4 y,
if there is an n so that = has a X0 definition relative to y. Equivalently, y >4
if there is an n so that y(™ >p z, where y(™ is the nth iterate of the Turing
jump relative to y. The associated countable Borel equivalence relation is called
arithmetic equivalence and is noted = 4.

2.2. The proof. Let Fy be the free group on two generators. We define the
countable Borel equivalence relation E(F»,2) on 2f2 in the following way: for all
z,y € 2F2 let 2 E(Fy,2)y if and only if there exists a g € F» so that z(h) = y(gh)
for all h € Fy. By a theorem of Dougherty, Jackson, and Kechris [6], this is a
universal countable Borel equivalence relation. In order to show that arithmetic
equivalence is universal, we shall construct a Borel embedding f : 22 — 2% of
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E(F5,2) into =4. The particular properties of E(F»,2) will be unimportant to the
proof which would work equally well with any equivalence relation generated by
the Borel action of a finitely generated group.

When constructing f, we must satisfy two conflicting requirements: we must
make f both a homomorphism and a cohomomorphism. In making f a homomor-
phism, we must ensure that if xF(Fz,2)y, then f(z) =4 f(y). Let {w;}icw be a
recursive listing of all the words in F». We will ensure that f is a homomorphism
by fixing a way of “coding” f(w; - z) into f(z), for every i.

An obvious method of coding would be as follows. Let g : 22 — 2% be any Borel
function. Then define g : 272 — 2¥ to be

@) = Pg(wi - ).

1EW

Given any g, we see that g is a homomorphism from E(F»,2) to =4; from g(z), we
can obtain any g(w; - ) by recursively permuting columns. The task, then, would
be to construct a Borel g so that the associated g was also a cohomomorphism.

Unfortunately, this approach is doomed to failure. If such a g was a Borel
reduction of E(Fy,2) to =4, it would also be a Borel reduction of E(Fy,2) to =r,
and it would be a uniform reduction. Montalban, Reimann, and Slaman have shown
this is impossible. We will discuss their result more in Section Bl

Essentially, the problem is that the above coding is too easy to unravel compared
to how powerful arithmetic reductions are (or even how powerful Turing reductions
are). The coding we use must evidently match the power of arithmetic equivalence
more closely.

Our failed attempt above is interesting in the context of Hjorth’s Question
Suppose E and F' are countable Borel equivalence relations, and £ C F. A plausible
intuition as to why the universality of F would imply the universality of F' is as
follows: it might be that any coding mechanism we could use to prove E universal
must also work to prove F' universal, simply by taking a more “generic” function
that uses this coding. However, the above example shows that this is false; there are
equivalence relations that are subsets of =4 for which the above coding mechanism
can be used to prove universality.

The crux of the proof that =4 is universal is a method of coding so that for
every n, there are only finitely many words w; so that f(w;-z) is ¥, definable from
f(x). Hence, from the perspective of a ¥,, reduction, f(x) behaves as essentially a
finite join. By taking a generic function f for this type of coding, we can control
these finite joins, and ensure that our f is a cohomomorphism.

Definition 2.1. Given y,z € 2¥, say that z jump codes y if for every n, zI"! has
a limit, and y(n) = lim,, z["/(m). The Skolem function for this jump coding is the
function from w to w that maps n to the least ¢ such that Vj > i[z((n, j)) = z({n, i))].

The name of this coding derives from the fact that if z jump codes y, then 2z’ >
y. Indeed, using z’ as an oracle, we can compute both y and the Skolem function
for this jump coding. Given n, find the least i so that Vj > i[z({n,j)) = z((n,))],
using the oracle z’. Then the nth bit of y is z((n,)).

Definition 2.2. Let x : w — 2<% be any function. For any real y € 2%, define
J(x,y) € 2¢ to be the real that jump codes y via x. Precisely, we mean that the
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nth column of J(x,y) will be

(J(a,y)™ = {

Hence, J(z,y) jump codes y, and the Skolem function for the jump coding is
n— |z(n)| + 1, where |z(n)]| is the length of the finite sequence z(n).

If p is a partial function from w to 2<% and r is a partial function from w to 2
with dom(p) C dom(r), analogously define J(p,r), a partial function from w to 2,
where the nth column of J(p,r) is undefined if n ¢ dom(p).

The idea of coding a real as a limit of columns has a long history in recursion
theory. The proof we will present uses jump codings of “depth” w. In this way, it is
reminiscent of some constructions that have been used to investigate the structure
(D, <r,/) of of the Turing degrees under < and the jump operator. See the papers
of Hinman and Slaman [10], and Montalban [20].

In what follows, we will be using ideas from forcing in arithmetic, and in partic-
ular, reals with limited Cohen genericity. Let PP, o<« be the partial order of finite
partial functions from w to 2<“ ordered under inclusion. Say that a function z from
w to 2<% is arithmetically generic if it meets every arithmetically definable dense
subset of Py, a<w. Similarly, finitely many functions z1,...z, from w to 2<% are
mutually arithmetically generic if (x1,...,xz,) meets every arithmetically definable
dense subset of (P, 2<w)™.

We begin with a lemma whose proof is standard for the subject:

xz(n)10000... ify(n)=0
x(n)01111... ifyn) =1

Lemma 2.3. If z, z, and w are mutually arithmetically generic functions from w
to 2<%, then for alln € w and y € 2,

(1) (e J(@,y) @z) =r 0D oroye:
(2) 0 @ J(z,y) © 2z Frw

Proof. We prove part 1. Let P, 2 be the partial order of finite partial functions
from w to 2 ordered under inclusion.

Fix an e. Consider the set D of pairs (p,q) € (IP’W72<W)2 such that for every
r € P, with dom(p) = dom(r), either ¢.(00 @© J(p,r) @ q) halts, or for every
extension of (p, q,7) to (p*, ¢*,r*), we have that ¢.(0(™ @ J(p*,r*) ® ¢*) does not
halt. We claim that D is is dense in (]P’MQ@)Q.

Suppose (p, q) € (P, 2<«)°. We wish to show that that (p, q) can be extended to
meet D. Let r1,...,7, be alist of all elements of P, 2 such that dom(p) = dom(r;).
Let sg = 0, and qo = q. We will define an increasing sequence s; C ... C s, of
elements of P, » and an increasing sequence ¢; C ... C g, of elements of P, o<w.

Inductively, for 1 < i < n, consider 0" @ J(p,ri)Usi—1®¢;—1, a partial function
from w to 2. Either there no extension of this partial function that makes . halt
relative to it, or there is a finite such extension. If there is such an extension, let
it be 0 & J(p, i) Us; ® q;, where ¢; extends ¢;—1, where s; extends s;_1, and the
domain of s; is disjoint from J(p, ;). If there is no such extension, let ¢; = ¢;—1,
and S; = Si—1-

Extend p to any p so that for every (j, k) € dom(s,,), we have p(j)(k) = s, ((J, k)).
Note that this means that for any r € P, 2 with dom(r) = dom(p), J(p,r) will be
an extension of J(p,r) U s,. It is clear that (p, ¢,) meets D.

If z and z are arithmetically generic, then for each e, 0"+ @a@y@® 2 can compute
a place where (z, z) meets D. Hence, from 0"*Y) @ 2 @ y @ 2 we can compute the
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29 theory of 00 & J(z,y) ® 2, and thus 0"V Gr@y®z >7 (0 @ J(z,y) & z)l.
Obviously (00" & J(z,y) @ z)/ >r 0t oz pyd 2.

We now proceed to part 2, whose proof is similar to part 1. Fix an e. The
dense set that (z, z,w) must meet is the set of triples (p, ¢,7) € (P, 2<«)? such that
for every s € P, 5 with dom(p) = dom(s), there exists a k such that ¢.(0() @
J(p,s) @ q)(k)1# r(k), or for every extension of (p,q,s) to (p*,q*,s*), we have
that ©.(0() @ J(p,s) @ q)(k) does not halt. We leave the rest of the proof to the
reader. 0

Note that for all zg,...,z, and yo, ..., yn, we have that
J(20,90) B ... O J(@n,Yn) =7 J(@0 B ... P Xn, Yo B .. D Yn)

and that if xg,...,x, and zg,..., 2, are all mutually arithmetically generic, then
ToB ... Pz, and 2o D ... P x, are mutually arithmetically generic. Therefore, we
can conclude a more general fact:

Lemma 2.4. If zo,...,%;, 20,...,%5, and w are mutually arithmetically generic
functions from w to 2<%, then for all n € w and yo, . ..,y; € 2%
!/

(1) (0<"> ® J(20,40) B ... D J(@i,y:) D2 ® ... ® zj)
=r 0"V @10 ®..010Yd.. Oud2d...z2.
(2) 0 @ J(x0,90) ® ... ®J(xi,4:) D 20D ... D 25 Frw
We are ready to prove the universality of arithmetic equivalence.

Theorem 2.5 (Slaman and Steel). =4 is a universal countable Borel equivalence
relation.

Proof. Let F» = (a,b). To prove this theorem, we will construct a Borel embedding
of E(Fy,2) into =4. Let g : 272 — (2<¢)“ be a Borel function so that for every dis-
tinct o, . .., 2, € 22, we have that g(zo), ..., g(x,) are all mutually arithmetically
generic functions from w to 2<¢. The definition of the embedding f : 272 — 2¢ is
as follows:

fl@)=J (g9(2), fla-2) @ fla™" - 2) @ f(b-2) @ f(b" - ).
Note that while our definition of f is self-referential, it is not circular, as one can
see by repeatedly expanding the terms involving f on the right hand side, using
the definition of f.

First, f is a homomorphism. Recall that for all = and y, J(z,y)’ >7 y. Hence,
if z = w -y where w is a word of Fy of length n, then (f(z))™ >7 f(y).

Thus, we simply need to show that f is a cohomomorphism. That is, if  and y
are not F(Fy,2) equivalent, then f(z) and f(y) are not arithmetically equivalent.
Let {w; : |w;| < n} be all words in F of length < n, and let {w; : |w;| = n} be all
words in F» of length n. Then

(F@)™ =r0™e B gw-no B flw-)
{wi:|w;|<n} {wi:|wi|=n}
as one can see by inductively using part 1 of Lemmal[24l (Recall that by definition,
f(z) is of the form J(g(z),w) for some w, and g(z) is part of our set of mutual
generics). Hence, if  and y are not F(F3,2) equivalent, by part 2 of Lemma 2:4]

we see (f(2))™ %7 g(y) for all n. Hence, (f(z))"~1) 7 f(y), since f(y) >r g(yl)j



12 ANDREW MARKS, THEODORE SLAMAN, AND JOHN STEEL

The original proof of the existence of pathological arithmetically invariant func-
tions was a similar construction to produce an embedding of =4 into itself. Note
that the range of the embedding in Theorem [2.5is disjoint from the arithmetic cone
{z : x >4 0¥}. Hence, embedding =4 into itself via this technique produces an in-
jective arithmetically invariant function whose range is disjoint from an arithmetic
cone.

3. COROLLARIES AND OPEN PROBLEMS

A measure analogous to Martin measure exists for arithmetic equivalence. It
is called the arithmetic cone measure. An arithmetic cone is a set of the form
{z : * >4 y} for some y. An arithmetically invariant set has measure 1 with
respect to the arithmetic cone measure if it contains an arithmetic cone, otherwise
it has measure 0. Martin’s proof in [19] still works when Turing reducibility is
replaced by arithmetic reducibility. Hence, this function is indeed a measure on the
o-algebra of arithmetically invariant sets.

The proof that arithmetic equivalence is universal relativizes. That is, for every
x, arithmetic equivalence relative to x is universal. Equivalently, arithmetic equiv-
alence restricted to any arithmetic cone is universal. Using this fact, we can obtain
several interesting corollaries about universal countable Borel equivalence relations
in general. The results in this section are due to the first author.

Jackson, Kechris, and Louveau [I1] have asked the following question: suppose
FE is a universal countable Borel equivalence relation on X, and B is an E-invariant
Borel subset of X. Isoneof E | Bor E [ (X \ B) universal? The answer is yes, and
we prove a stronger fact, originally posed as a question by Thomas [31], question
3.20].

Theorem 3.1. Suppose X and Y are Polish spaces, E is a universal countable
Borel equivalence relation on X, and f : X — Y is any Borel homomorphism from
E to A(Y), where A(Y) is the relation of equality on'Y . Then there exists ay € Y
s0 that the restriction of E to f~1(y) is a universal countable Borel equivalence
relation.

Proof. First, note that it is enough to prove this for arithmetic equivalence. Let
E and f be as in the statement of the theorem, and let g : 2 — X be a Borel
reduction from =4 to E. If arithmetic equivalence restricted to (f o g)~1(y) is
universal, then E restricted to f~!(y) is universal.

Now let f be a homomorphism from =4 to A(Y’). Since arithmetic equivalence
is ergodic with respect to the arithmetic cone measure, there must be a y € Y so
that f~!(y) contains an arithmetic cone. Arithmetic equivalence restricted to this
set is thus universal. O

The use of Borel determinacy in our proof raises an interesting metamathemati-
cal question: must any proof of this theorem use Borel determinacy? For instance,
one could ask whether Theorem [3.]] implies Borel determinacy over some simple
base theory. We ask a weaker question of whether Theorem [B.I] shares a metamath-
ematical property of Borel determinacy:

Question 3.2. Does a proof of Theorem [31] require the existence of wy iterates of
the powerset of w?
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Let E be a countable Borel equivalence relation, and suppose f is a Borel ho-
momorphism from =4 to E. Then f is also a Borel homomorphism from =7 to
E. If B C 2¥ contains a Turing cone, then the = 4-saturation of B must contain
an arithmetic cone. It is therefore possible to use ergodicity results about Tur-
ing equivalence and Martin measure to obtain ergodicity results about arithmetic
equivalence and the arithmetic cone measure. We will apply Thomas’ Theorem [[.T0]
in this way to prove an analogous sort of ergodicity result for all universal countable
Borel equivalence relations.

Theorem 3.3. Assume Martin’s conjecture is true. Suppose E is a universal count-
able Borel equivalence relation, and F' is an arbitrary countable Borel equivalence
relation. Then exactly one of the following holds:

(1) F is weakly universal.
(2) For every Borel homomorphism f of E into F, there is a single F-class
whose preimage B has the property that E | B is universal.

Proof. As in the proof of Theorem B.I] we only need to prove this when E is =4.
Let f be a homomorphism from =4 to F. Then f is also a homomorphism from
=r to F, and hence by Theorem [[.T0] either F' is weakly universal, or there is a
single F'-class whose preimage B contains a Turing cone. In this latter case, since f
is also a homomorphism from =4 to F, the preimage of this single F'-class contains
the = 4-saturation of this Turing cone which is an arithmetic cone. Hence, since B
contains an arithmetic cone, =4[ B is universal. ([

In [30], Thomas proved a variant of this theorem where the assumption that F
is universal is changed to say E' is weakly universal, and option 2 is changed to say
that E | B is weakly universal. Theorem [3.3] strengthens this fact; by a result of
Miller and Kechris [31], E is a weakly universal countable Borel equivalence relation
if and only if there exists an F' C E that is a universal countable Borel equivalence
relation.

In the proof of Theorem 3.3 we have used the ergodicity of =7 that follows from
Martin’s conjecture. However, we only need the weaker ergodicity which Mar-
tin’s conjecture implies for arithmetic equivalence. We isolate this in the following
conjecture. It may be that it is easier to prove ergodicity results for arithmetic
equivalence and the arithmetic cone measure than it is for Turing equivalence and
Martin measure.

Conjecture 3.4. Let E be any countable Borel equivalence relation. Then exactly
one of the following holds:

(1) E is weakly universal.
(2) =4 is E-ergodic, with respect to the arithmetic cone measure.

A special case of the above conjecture is quite interesting. Thomas [30] has
raised the question of whether =7 is Ey-ergodic with respect to Martin measure.
It is weaker to ask whether arithmetic equivalence is Ey-ergodic with respect to
the arithmetic cone measure, but this would have similarly nice consequences. For
example, it would imply that =4 is not Borel bounded, and also that option 2 in
Theorem 3.3] holds when F' is Ey without the assumption of Martin’s conjecture.

For our next application, we will need to recall some facts about pointed perfect
sets. Recall that a perfect subset of a Polish space X is a closed subset of X with no
isolated points. Every perfect subset of 2¥ can be realized as the paths [T] through
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some infinite perfect tree T in 2<%. A pointed perfect tree T is a tree T so that for
all z € [T], x >p T. A pointed perfect set is the paths [T] through some pointed
perfect tree T'. Pointed perfect sets arise naturally in determinacy arguments, and
have many nice properties.

Given a perfect subset [T'] of 2¢, it is clear that 2* is homeomorphic to [T] via a
canonical homeomorphism that preserves the ordering on 2. This homeomorphism
will preserve the Turing degrees above T' if T is pointed. That is, let f : 2 — [T] be
this canonical homeomorphism. If T is a pointed perfect tree, then for all x > T,
we have = f(z), since both  and f(z) can compute a representation of T'
and hence also a representation of f. The analogous facts also hold for arithmetic
equivalence. In particular, if T is a pointed perfect tree, and f : 2¥ — [T] is
the canonical homeomorphism from 2% to [T], then for all x >4 T, we will have
2 =4 f(x). Hence, the restriction of =4 to any pointed perfect set is still a universal
countable Borel equivalence relation.

We will use the following lemma, which illustrates a useful feature of pointed
perfect sets in determinacy arguments. The proof of this lemma is a slight variation
of Martin’s cone theorem in [19].

Lemma 3.5 (Martin [19]). Assume ZF + DC + AD. Then given any function
w:2¥Y = w, there exists a pointed perfect set on which 7 is constant.

Proof. Consider the game where I plays e € w followed by = € 2¥, and II plays
y € 2, where the players alternate playing bits of these reals as usual. Let II lose
unless y >7 «, and if the game is not decided by this condition, then I wins if and
only if z >7 gy, and 7(x) = e.

Given any strategy 7 for II, I can win by playing 7(7) followed by 7. Hence, I
wins this game. Let ¢ be a winning strategy for I. Then our pointed perfect set is
the set of I's winning plays against II playing {y : y >1 o}. O

If F and F are countable Borel equivalence relations, then we say that E is Borel
embeddable in F' and write F Cp F if there exists a Borel embedding of E into
F. We can use the above lemma to derive the following fact about universality for
embeddings.

Theorem 3.6. Let E be a universal countable Borel equivalence relation. Then
given any countable Borel equivalence relation F', it must be that F Cp E. That s,
not only is F <p E (since E is universal), we can always find an injective Borel
reduction.

Proof. First recall that the reduction from FE(F%,2) to =4 in the proof of Theo-
rem [2.5]is actually a Borel embedding, and not merely a Borel reduction. Of course,
this remains true when the proof is relativized to any pointed perfect set. Recall
also that Dougherty, Jackson, and Kechris [6] have shown that every countable
Borel equivalence relation embeds into F(F3,2). Hence, it will be enough to show
that there is an embedding of =4 restricted to some pointed perfect set into F.
Since E is countable universal, there is a Borel reduction f from =4 to E. Using
Lusin-Novikov uniformization (18.10, 18.15 in [14]), split 2¢ into countably many
Borel pieces {B; }icw S0 that f is injective on each B;. One of these B; must contain
a pointed perfect set by Lemma B.5] 0

This theorem is an interesting counterpoint to the following theorem of Thomas:
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Theorem 3.7 (Thomas [28]). There exist countable Borel equivalence relations
E and F such that the equivalence classes of both E and F are all infinite, and
E<p F, and F <p E, but it is not the case that E Cg F.

Lemma also gives an easy proof of the following:

Theorem 3.8. Suppose E is a universal countable Borel equivalence relation on
a Polish space X, and let {B;}icw be a partition of X into countably many (not
necessarily E-invariant) Borel pieces. Then there exists some i such that E | B; is
a universal countable Borel equivalence relation.

Proof. As in Theorem [B] we only need to prove this for =4. Let {B;};c. be a
partition of 2¢ into countably many Borel pieces. By Lemma above, one of
these pieces must contain a pointed perfect set, and the restriction of =4 to any
pointed perfect set is countable universal. O

If the B; in the above theorem are all E-invariant, this theorem follows from
Theorem [BIl From this, we could also conclude the general case since for any
Borel B, E | B is universal if and only if E | [B]g is universal, where [B]g is the
E-saturation of B.

Theorem [B.§ associates two natural o-ideals to every countable Borel equivalence
relation.

Definition 3.9. Let E be a countable Borel equivalence relation on the Polish
space X. Define the non-universal ideal of F to be the Borel subsets B of X on
which E | B is not universal. Define the non-weakly-universal ideal of E to be the
Borel subsets B of X on which F | B is not weakly universal.

We will discuss these o-ideals more in what follows. They seem to be impor-
tant for developing the theory of universal and weakly universal countable Borel
equivalence relations.

Let E be a countable Borel equivalence relation on the Polish space X which
is equipped with an invariant ergodic Borel probability measure p. Say that F is
strongly universal if E | B is universal for every Borel B C X with u(B) = 1.
In [31), Thomas asked whether there exists a strongly universal countable Borel
equivalence relation. Thomas later settled this question under the assumption of
Martin’s conjecture using Theorem [[LTIl We are able to prove a weaker theorem
without the assumption of Martin’s conjecture.

Theorem 3.10. Let E be a universal countable Borel equivalence relation on the
space X, and let u be a Borel probability measure on X. Then there is a measure O
subset B of X for which E | B is a universal countable Borel equivalence relation.

First, recall the following theorem of Sacks (we give the relativized version of
the theorem):

Theorem 3.11 (Sacks [21]). If p is a Borel probability measure on 2, then for all
x € 2¥ such that there exists a representation y € 2¥ of pu such that x >7 y, the
cone {z: z >r x} has pu-measure 0.

Hence, for any Borel probability measure, sufficiently complicated cones are al-
ways nullsets. The same theorem is also true when Turing reducibility is replaced
with arithmetic reducibility. One way to see this is to first replace our measure p
with an = 4-quasi-invariant measure v that dominates p. Then we can find a Turing
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cone with v measure 0, and the =4-saturation of this cone will be the arithmetic
cone with the same base.

Sacks’ theorem implies that Martin measure and likewise the arithmetic cone
measure cannot be extended to probability measures on all the Borel sets of 2¢.
Pointed perfect sets seem to be as close as we can get to being able to measure
arbitrary Borel sets using these measures.

Proof of Theorem [310: Again, we need only prove this for arithmetic equivalence;
given any other universal countable Borel equivalence relation E on the space X
with Borel probability measure u, by Theorem [3.6]let f be a Borel embedding from
=4 to E. Presuming the range of f has positive y-measure, let v be the measure

on 2% defined by v(A) = mu(f(/l)) If =4] B is universal and v(B) = 0,
then E | f(B) is also universal, and p (f(B)) = 0.
As we have shown above, given any Borel probability measure u on = 4, there is

an arithmetic cone with measure 0, and =4 restricted to this cone is universal. [

The extra leverage that Thomas gets by assuming Martin’s conjecture is that for
all Borel B, =r| B is weakly universal if and only if B contains a pointed perfect
set. Hence if B is =p-invariant, then =p| B is weakly universal if and only if
=r] (2¢\ B) is not weakly universal.

This exact classification of the non-weakly-universal ideal for =7 that follows
from Martin’s conjecture seems very useful.

Question 3.12. Are there “nice” characterizations of the non-weakly-universal
ideals of naturally occurring weakly universal countable Borel equivalence relations?

One could also ask the same question for universal countable Borel equivalence
relations, and the non-universal ideal. Theorem seems to rule out charac-
terizations that are based purely on measure theory. The fact that these ideals
do not seem to be measure-theoretic is very interesting, since all known theorems
in the field of countable Borel equivalence relations that distinguish between non-
hyperfinite countable Borel equivalence relations are based on measure theory.

Marks [18] raises a question that seems to be relevant. Define a countable Borel
equivalence relation E to be measure universal if for every countable Borel equiv-
alence relation F' on a Polish space X equipped with a Borel probability measure
i, there exists a B C X that is F-invariant, and p(B) = 1, so that F' | B is Borel
reducible to E.

Question 3.13 (Marks [I8]). If F is a countable Borel equivalence relation that is
measure universal, is F universal?

This question was motivated by a result in Marks [18] that many-one equivalence
and recursive isomorphism are measure universal. It remains open whether these
equivalence relations are universal.

3.1. Some questions on uniformity. Borel Martin’s conjecture reduces purely
to a question about uniformity, as shown in Theorem [[L8 If we embrace Martin’s
conjecture and ponder what larger principle it might embody, we are naturally
led to the possibility that similar principles of uniformity might exist amongst a
much wider class of equivalence relations, even though the original form of Martin’s
conjecture appears to hinge on specific properties of Turing equivalence that do not
generalize to many equivalence relations. This is an intriguing possibility that
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would lead to a compelling theory providing a systematic way to explain many
phenomena. In this section, we shall adopt such a viewpoint and pose several
questions about uniformity in broader contexts. Our questions will be phrased so
that affirmative answers would be the most natural from the above perspective.
However, even negative answers would be very interesting as they might provide
starting points for constructing counterexamples to Martin’s conjecture.

Admittedly, we currently have little evidence supporting the viewpoint we shall
outline. Such questions of uniformity are presently poorly understood, and these
issues appear quite deep. We know of no general theorems in this area, and not
even any theorems in specific cases, beyond the work in [25]. Likewise, there are
few examples of nonuniformity which seem to have much bearing on the questions
we will ask.

Consider, for instance, the case of arithmetic equivalence. We have seen above
that the analogue of Martin’s conjecture fails for arithmetic equivalence. However,
many questions about arithmetically invariant functions remain, and chief among
them is the arithmetic analogue of Conjecture [[4l Say that an arithmetically
invariant function f is uniformly arithmetically invariant if there exists a function
w:w? — w? such that if x =4 y via (i, ), then f(x) =4 f(y) via u(i, j).

Question 3.14 (ZF + DC+ AD). If f:2¥ — 2% is arithmetically invariant, then
is there a uniformly arithmetically invariant g which is defined on an arithmetic
cone so that f(x) =4 g(x) on an arithmetic cone?

Little is known about this question. The pathological arithmetically invariant
functions that were constructed in Section are all uniformly invariant, and the
technique used to construct them gives no hint about questions of nonuniformity.
Likewise, the following conjecture is particularly intesting in light of the earlier
results in this section:

Conjecture 3.15. If f is a Borel homomorphism from =4 to =7, then there exists
a Borel homomorphism g from =4 to =r so that f(x) =4 g(z) on an arithmetic
cone and g is uniform in the sense that there exists a function u : w? — w? so that
forall x and y, if x =4 y via (i,7), then g(x) =1 g(y) via u(i, ).

This conjecture is weaker than Borel Martin’s conjecture, but it has many of
the same consequences for the theory of Borel equivalence relations. For instance,
it implies that Conjecture [3.4] is true, and hence that Theorem [3.3] is true without
the assumption of Martin’s conjecture. It also implies that Turing equivalence is
not a universal countable Borel equivalence relation. This is because it rules out
an embedding of =4 into =rp; for all a with w < a < wy, the map = — 2@ is not
a reduction of arithmetic equivalence restricted to any arithmetic cone into =7.

It seems interesting to consider questions of uniformity analogous to Conjec-
ture for most other equivalence relations from recursion theory. Even more
generally, we shall formulate such questions for arbitrary weakly universal countable
Borel equivalence relations.

In the field of countable Borel equivalence relations, uniformity is usually dis-
cussed in the context where an equivalence relation FE is equipped with a group G
and a Borel action of G that generates E. If G is a countable group that acts on a
Polish space X, define the orbit equivalence relation Eé{ where ng y if and only
if there exists a g € G such that g -z = y. By a result of Feldman and Moore [9],
every countable Borel equivalence relation F is of this form.
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In recursion theory, however, most equivalence relations (for instance =p and
=4) are not naturally generated by group actions. Further, while the Feldman-
Moore theorem guarantees that it is possible to construct group actions that gener-
ate recursion-theoretic equivalence relations, it is often difficult to work with them
using tools from recursion theory. Thus, when working with weakly universal equiv-
alence relations, it seems natural to expand our definitions, since recursion-theoric
equivalence relations seem so important in this context.

Definition 3.16. A generating family of partial Borel functions on a Polish space
X is a countable set {¢;} of partial Borel functions on X that is indexed by nat-
ural numbers (though we will omit the indexing for clarity), contains the identity
function, and is closed under composition. Precisely, by partial Borel function on
X, we mean that the domain of each ¢; is a Borel subset of X, and that the func-
tion ¢; : dom(¢;) — X is a Borel function. Such a generating family induces an
equivalence relation Effm e where fofm}y if and only if there exists ¢; and ¢; so

that ¢;(x) =y, and ¢;(y) = z. In this case, say that fofm}y via (2, 7).
‘We will use the notation E)fb to indicate a countable Borel equivalence relation

on the Polish space X that is ‘induced by the generating family of partial Borel
functions {¢;}.

For example, the Turing reductions are a generating family of partial Borel
functions for =, and the arithmetic reductions are a generating family of partial
Borel functions for =4.

Definition 3.17. Suppose Effm} and E{m are countable Borel equivalence rela-
tions on the Polish spaces X and Y induced by the generating families of partial
Borel functions {¢;} and {t;}. Say that a partial homomorphism f : X — Y is
uniform (with respect to {¢;} and {1;}) if there exists a function u : w? — w? such
that for all z,y € X, if fofm}y via (i,7), then f(:z:)EEm}f(y) via u(i, 7).

Let EX be a countable Borel equivalence relation generated by a Borel action
of the countable group G. To each g € G we associate the Borel automorphism
bg(z) = gz of X, and so EZ is the same as the equivalence relation Effbg} given

by the generating family {¢,}. Say that EY is freely generated if for all g € G
and for all z € X, if g- ¢ = x then g = 1. In the context where Eé and E}; are
freely generated countable Borel equivalence relations, then in the measure context,
the uniformity defined above is equivalent to saying that the cocycle induced by
a homomorphism between equivalence relations is cohomologous to a group homo-
morphism. Thus, the sort of uniformity implied by Martin’s conjecture (and more
general questions which we will soon discuss) shares something of the same spirit as
cocycle supperrigidity which was introduced by Zimmer [34]. Cocycle superrigidity
has since played an important part in developing the theory of countable Borel
equivalence relations.

We will now formulate an analogue of Conjecture for homomorphisms be-
tween two arbitrary weakly universal countable Borel equivalence relations. In pos-
ing such a question, we need an equivalent of a set of Martin measure 1; a “large”
subset of the underlying space on which we demand that uniformity is witnessed.
Here, the natural candidate is an invariant Borel set such that the restriction of the
equivalence relation to this set is still weakly universal. This notion agrees with
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Martin measure in the case of =p. The fact that the non-weakly-universal Borel
sets form a o-ideal is further evidence that this is a good notion of “largeness”.

Note that it is certainly not the case that for every homomorphism f between
equivalence relations Effbi} and E{wi}, there exists a uniform homomorphism g
from Effbi} to E{wi} so that f(a:)E@l}g(x) for all z. There are trivial counterex-
amples exploiting partiality of generating families. Even in the case of equivalence
relations freely generated by the actions of countable groups, not every cocycle
associated to a homomorphism of such equivalence relations is cohomologous to a
group homomorphism.

We proceed to our question:

Question 3.18. Let E{)fzbi} and E{wi} be weakly universal countable Borel equiv-
alence relations. Now suppose f is a homomorphism from E{)fzbi} to E{w} Must
there be an Ef;i}—invariant subset B of X such that Effm} [ B is weakly universal,
and a uniform partial homomorphism g : X | B = Y from Eﬁbi} to Eéi} such
that f(:E)E@}g(x) for allx € B?

As stated, an affirmative answer to this question does not seem to generalize
Borel Martin’s conjecture. For this to be the case, we also need a characterization
of the non-weakly-universal ideal of Turing equivalence.

Definition 3.19. Suppose that Effm} is a weakly universal countable Borel equiv-
alence relation. Say that Effm} is uniformly weakly universal if for every Eﬁm},

there is a uniform weak Borel reduction of E{wi} to E{)f;a}
A related definition will also be of interest to us:

Definition 3.20. Suppose that Effbi} is a universal countable Borel equivalence
relation. Say that Effbi} is uniformly universal if for every E%/wi}’ there is a uniform
Borel reduction from Eﬁm} to Effm}.

All known universal and weakly universal countable Borel equivalence relations
are uniformly universal and uniformly weakly universal when equipped with natu-
ral generating families. For instance, E(F5,2) is uniformly universal with respect
to the shift action of Fy, arithmetic equivalence is uniformly universal with respect
to the family of arithmetic reductions, and Turing equivalence is uniformly weakly
universal with respect to the family of Turing reductions. Note that uniform uni-
versality and uniform weak universality both depend on the generating family that
we use. In particular, every universal/weakly universal countable Borel equivalence
relation E is uniformly universal/uniformly weakly universal for some generating
family, as one can see by applying Theorem

Question 3.21. Suppose that Effbi} 18 a weakly universal countable Borel equiva-
lence relation. Must Effm} be weakly uniformly universal?
A positive answer to Question [B.21] would provide the characterization of the

non-weakly-universal ideal of = that is needed so that a positive answer to Ques-
tion 318 implies Borel Martin’s conjecture.

Proposition 3.22. An affirmative answer to both Question[3.21] and Question[3. 18
implies Borel Martin’s conjecture.
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Proof. In what follows, equip =7 with the generating family of Turing reductions.
Consider a =p-invariant subset B of 2 so that =7 | B is weakly universal. Suppos-
ing Question B.21] has a positive answer, there must be a uniform countable-to-one
homomorphism from =7 to =¢[ B. Hence, B must contain a cone.

Now let f : 2* — 2“ be a homomorphism from =p to =p. Supposing Ques-
tion B.I8 has a positive answer, there is a weakly universal =p-invariant subset B
of =7 and a uniform homomorphism ¢ from =7 to =7 so that f(z) =r g(z) on B.
By the above, B contains a Turing cone.

Versions of Questions and [3.27] that extend beyond the Borel realm also
seem interesting. For instance, one can consider these questions in the context of
ZF + DC 4+ AD™, where we use AD" as opposed to AD so that there is enough
uniformization so that weakly universal countable equivalence relations exist. Here,
positive answers to these questions would imply the analogue of Martin’s conjecture
for the Al degrees and the degrees of construtibility via versions of Proposition B.221
and Theorems and [[.3] for these degree notions.

We finish by stating a question about uniform universality which is related to
Question B.21] and has arisen naturally in other work.

If we generate =7 by the family of Turing reductions, then by applying the uni-
form case of Martin’s conjecture in Theorem [[.2] we see that there cannot be any
uniform embedding of =1 LI =7 into =p. Hence, =r is not uniformly universal
for the generating family of Turing reductions. Montalban, Reimann, and Slaman
(unpublished) have generalized this fact to show that = is not uniformly universal
when it is equipped with a certain generating group. The central technical obstacle
in their work is adapting the game proofs of [25] to work with this group. Mon-
talban, Reimann, and Slaman posed the question of what role uniformity plays in
universality proofs, and more broadly in the theory of countable Borel equivalence
relations. Their question has been inspiration for much of this section. In this
spirit, we ask the following:

Question 3.23. Suppose that Effm} is a universal countable Borel equivalence re-

lation. Must Eéi} be uniformly universal?

Uniform universality in this more general setting has also shown up naturally in
recent work of Marks [18], who has shown that many-one equivalence is uniformly
universal with respect to the generating family of many-one reductions if and only
if a question in Borel combinatorics has an affirmative answer. A resolution of
Question would help clarify this situation.
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