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MARTINGALE INEQUALITIES, OPTIMAL MARTINGALE TRANSPORT, AND

ROBUST SUPERHEDGING ∗

Nizar Touzi1

Abstract. In the recent literature, martingale inequalities have been emphasized to be induced by
pathwise inequalities independently of any reference probability measure on the paths space. This
feature is closely related to the problem of robust hedging in financial mathematics, which was originally
addressed in some specific cases by means of the Skorohod embedding problem. The martingale optimal
transport problem provides a systematic framework for the robust hedging problem and, therefore,
allows to derive sharp martingale inequalities. We illustrate this methodology by deriving the sharpest
possible control of the running maximum of a martingale by means of a finite number of marginals.

1. Introduction

This paper summarizes my plenary talk at the SMAI Congress, Seignosse 2013. The objective is to show
recent connections between martingale inequalities and the problem of robust hedging in financial mathematics.

Following the seminal paper by Hobson [18], the problem of robust hedging was addressed by exploiting the
connection with the so-called Skorohod embedding problem, see Hobson [20] and Obloj [26] for an overview. In
the context of some specific problems of hedging, Hobson [18] used the Azéma-Yor [2,3] solution of the Skorohod
embedding problem to derive the optimal bounds on the no-arbitrage valuation of such contracts, and showed
that they correspond to model-free hedging strategies which are exhibited explicitly. As a by-product of the last
results, [18] obtains a family of sharp martingale inequalities controlling the running maximum of a martingale
by the marginal distribution of its final value. Brown, Hobson and Rogers [7] extend these results to the
two-marginals case, building on a remarkable pathwise inequality which turns out to provide sharp martingale
inequalities. We also mention the papers [1, 8, 10–14,21–23] which follow the same line of thinking.

The previous literature raises two important questions. First, how specific is the finding by Hobson that
Doob’s type martingale inequalities is induced by a pathwise inequality ? Second, how to guess the pathwise
inequalities so that the induced martingale inequalities are sharp, i.e. hold with equality for some martingale ?

The first question was answered recently by Bouchard and Nutz [9] who proved that any martingale inequality
is induced by a pathwise inequality.

The second question was also answered recently by the newly introduced problem of martingale optimal
transport. A general formulation of the problem of robust hedging was recently introduced by Beiglböck, Henry-
Labordère, and Penkner [4] in discrete-time, and Galichon Henry-Labordère and Touzi [16] in continuous-time.
This formulation opens a new problem of optimal transport. See Tan and Touzi [29], Dolinsky and Soner [15],
and the numerical approximation by Bonnans and Tan [5]. Finally, Galichon, Henry-Labordère and Touzi [16],
and Henry-Labordère, Obloj, Spoida, and Touzi [17] illustrate how the martingale optimal transport approach
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allows to derive the sharp pathwise inequalities. The latter problem also opened the door for a multimarginals
extension, by Obloj and Spoida [27], of the Azéma-Yor solution of the Skorohod embedding problem.

The paper is organized as follows.Section 2 recalls briefly the Skorohod embedding problem together with the
corresponding Azéma-Yor solution, and the connection to the problem of model-free hedging. Sections 3 and 4
review the known pathwise inequalities which induce a Doob’s type martingale inequality. Section 5 introduces
the martingale optimal transport as a general formulation of the problem of robust hedging. Finally, Section 6
report some applications which illustrate the effectiveness of the martingale transport approach to derive the
sharp pathwise inequalities inducing sharp martingale inequalities.

2. Skorohod Embedding and Robust Superhedging

2.1. The Skorohod embedding problem

Let W be a Brownian motion, and µ a centered probability measure on R. The Skorohod embedding problem
is:

SEP(µ) Find a stopping time τ such that Wτ ∼ µ and {Wt∧τ}t≥0 UI martingale,

where UI is an abbreviation of ‘niformly integrable”.

Doob’s solution To start with, let us forget about the uniform integrability requirement, and provide an
easy example of a stopping time τ such that Wτ has distribution µ. As usual, we denote Fµ(x) := µ

(
(−∞, x]

)
and FN := FN (0,1). Define

τ := inf
{
t ≥ 1 : Wt = F−1

µ ◦ FN (W1)
}
.

where F−1
µ is the right-continuous inverse function of Fµ. Then Wτ = F−1

µ ◦ FN (W1) ∼ µ.
However, we observe that {Wt∧τ}t≥0 is not uniformly integrable. Indeed, assuming to the contrary that it is

UI, we would obtain by the martingale property that F−1
µ ◦ FN (W1) = Wτ = E[Wτ |W1] = W1, a.s., which can

not happen except in the trivial case µ = N (0, 1).

2.2. The Azema-Yor solution of the Skorohod embedding problem

For our future developments, we recall a particular solution of the Skorohod embedding problem, which will
be the driving example for the connection with the martingale optimal transport. We therefore focus on the
detailed presentation of this particular solution. The crucial ingredient for the Azéma-Yor construction is the
barycenter function of a probability measure µ ∈ PR defined by

bµ(x) := 1{µ([x,∞)>0}

∫
[x,∞)

yµ(dy)∫
[x,∞)

µ(dy)
+ x1{µ([x,∞)=0}, for all x ∈ R.

Theorem 2.1. Let B be a Brownian motion on (Ω,F ,P), denote by B∗ the corresponding running maximum
process, and let µ ∈ PR be a probability measure on R. Consider the stopping time θµ := inf{t ≥ 0 : B∗t ≥
bµ(Bt)}.

Then Bθµ ∼ µ, and B.∧θµ is a uniformly integrable martingale.

2.3. Connection with robust hedging

We now show that there is a one-to-one correspondence between the Skorohod embedding problem and the
choice of an arbitrage-free model with given marginal constraint.
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Financial market Consider a financial market consisting of a non risky asset with price process normalized
to unity, and a risky asset with price process X = {Xt, t ≥ 0}.

Let T > 0 be some given maturity. We also assume that the financial market allows for the trading
T−maturity European call and put options, with all possible strikes, defined respectively by the payoffs at
maturity T :

(XT −K)+ and (K −XT )+, K ∈ R.

The time zero price of the (T,K) call and put options are known and given respectively by cX(K) and pX(K),
which are assumed to satisfy the so-called call-put parity:

cX(K)− pX(K) = cY (K)− pY (K) = X0 −K, for all K ∈ R.

Moreover, by no arbitrage considerations, it follows that these prices are convex and can be written in terms of
a probability measure µ with mean X0:

cX(K) =

∫
(x−K)+µ(dx) and pX(K) =

∫
(K − x)+µ(dx) where µ := c′′X = p′′X .

In other words, as noticed by Breeden and Litzenberger [6], the observation of T−maturity call and put prices,
for all strikes, determines the marginal distribution XT ∼ µ.

Notice that any smooth function g can be decomposed in terms of calls and puts payoffs

g(XT ) = g(x∗) + (XT − x∗)g′(x∗) +

∫ x∗

−∞
(K −XT )+g′′(K)dK +

∫ ∞
x∗

(XT −K)+g′′(K)dK. (2.1)

Then, assuming that market prices are linear and continuous, we deduce that the price of the payoffs g(XT ) is:

g(x∗) + (X0 − x∗)g′(x∗) +

∫ x∗

−∞
pX(K)g′′(K)dK +

∫ ∞
x∗

cX(K)g′′(K)dK =

∫
g(K)µ(dK),

where the last equality follows from two integrations by parts. Consequently by the assumed continuity of
prices, we see that the previous pricing formula holds for any µ−integrable functions g.

Martingale with given marginal The above financial market allows for the dynamic continuous-time trading
of the non risky asset and the risky one, and for the static trading of european calls and puts with maturity T .
Then, the no-arbitrage condition is essentially equivalent to the existence of a martingale measure with given
T−marginal µ:

X is a martingale with XT ∼ µ.

Finally, throughout this note, we assume that the process X has continuous sample paths.

Connection with the Skorohod embedding problem By the Dubins-Schwartz time change theorem, it
follows that Xt −X0 = W〈X〉t , t ≤ T , for some Brownian motion W , and τ := 〈X〉T is a stopping time with
respect to the time changed filtration. Consequently τ is a solution of the SEP(µ).

Conversely, let W be a Brownian motion, and let τ be a solution of SEP(µ). Define

Xt := X0 +B t
T−t∧τ , t ≤ T.

Then, X is a continuous martingale, starting from X0, with XT ∼ µ.
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References The connection between the Skorohod embedding problem and the model-free hedging in finance
was introduced by Hobson [18] in the context of Lookback options, i.e. derivative contract with payoff defined
as a function of the running maximum of the underlying asset. We refer to Obloj [26] for a survey on the
Skorohod embedding problem collecting more than twenty known solutions. We also refer to the lecture notes
by Hobson [20] for an overview of the subject with link to the model-free hedging problem and applications to
various examples of path-dependent derivatives.

3. Pathwise martingale inequalities and robust hedging of Lookback options

In this section, we focus on the problem of model-free superhedging of Lookback options. A Lookback option
is a derivative contract with payoff at maturity T :

ξ = φ(X∗T ), X∗T := max
t∈[0,T ]

Xt, (3.1)

where φ : R −→ R is a measurable payoff function. Our main result applies for non-decreasing functions φ.
The current approach was initiated by Hobson [18], and is based on the following pathwise inequality with
elementary proof.

Lemma 3.1. Let ω : R+ −→ R be an arbitrary càdlàg function, and denote ω∗t := sups≤t ωs. Then:

1{ω∗T≥m} ≤
(ωT − ζ)+

m− ζ
+
m− ωT
m− ζ

1{ω∗T≥m} for all ζ < m,

and for all nondecreasing function φ:

φ(ω∗T ) ≤ φ(ω0) +

∫ ∞
ω0

( (ωT − ζm)+

m− ζm
+
m− ωT
m− ζm

1{ω∗T≥m}

)
dφ(m)

for all m ∈ R and ζm < m.

Proof. To verify the first inequality, notice that

1{ω∗T≥m} −
m− ωT
m− ζ

1{ω∗T≥m} =
ωT − ζ
m− ζ

1{ω∗T≥m}

≤ (ωT − ζ)+

m− ζ
1{ω∗T≥m} ≤

(ωT − ζ)+

m− ζ
.

The second (more general) inequality follows from the observation that:

φ(ω∗T ) = φ(ω0) +

∫ ∞
ω0

1{ω∗T≥m}dφ(m),

so that, given the non-decrease of φ, the required inequality follows from the first one. tu

As an immediate consequence of the last pathwise inequality, we obtain the following upper bound for the
no-arbitrage prices of Lookback options φ(X∗T ) with nondecreasing payoff function g.

Corollary 3.2. Let X be a càdlàg submartingale. Then, for all ζ < m:

E
[
1{X∗T≥m}

]
≤

E
[
(XT − ζ)+

]
m− ζ

for all ζ < m,
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and for all nondecreasing φ : R −→ R, we have

E
[
φ(X∗T )

]
≤ φ(X0) +

∫ ∞
X0

E
[
(XT − ζm)+

]
m− ζm

dφ(m) for all ζ < m.

Proof. As in the previous proof, given the non-decrease of φ, the second inequality is immediately obtained
from the first one. To prove the first inequality, we start from the pathwise inequality of Lemma 3.1, and we
take expected values on both sides. This provides for all ζ < m:

E
[
1{X∗T≥m}

]
≤

E
[
(XT − ζ)+

]
m− ζ

+
E
[
(m−XT )1{X∗T≥m}

]
m− ζ

.

Denote Ty := inf{t : Xt ≥ m}. Then, since X is a submartingale,

E
[
(m−XT )1{X∗T≥m}

]
= E

[
E{m−XT |FTm}1{Tm≥T}

]
≤ E

[
(m−XTm)1{Tm≥T}

]
≤ 0.

tu

Inspecting the last proof, we see that a necessary condition in order to restore equality is that E
[
(m −

XT )1{X∗T≥m}
]

= 0, which requires X to be a continuous martingale. Next, to obtain the best possible inequality,
we further minimize over ζ < m. Denoting by µ the marginal distribution of XT , we are then reduced to the
minimization problem:

inf
ζ<m

f(ζ) where f(ζ) :=

∫
(x− ζ)+µ(dx)

m− ζ
. (3.2)

We directly compute that

f ′(ζ) =

∫
[ζ,∞)

xµ(dx)−m
∫

[ζ,∞)
µ(dx)

(m− ζ)2
,

so that the first order condition for this minimization problem is:

m = bµ(ξm) where bµ(x) := 1{µ([x,∞)>0}

∫
[x,∞)

yµ(dy)∫
[x,∞)

µ(dy)
+ x1{µ([x,∞)=0}

is the barycenter function of the probability measure µ. We also verify immediately that df ′(ξm) = dµ(ξm)
m−ξm ≥ 0

which shows that ξm is indeed a minimizer.
The barycenter function bµ is positive, nondecreasing, and continuous whenever µ has no atoms. Hence the

above minimization problem is solved by

ξm := b−1
µ (m) where b−1

µ is the right-continuous inverse of bµ.

A pictorial representation of the barycenter function bµ was introduced by Hobson [18]. In the simple situation
where µ has no atoms, bµ(ζ) is the x−coordinate of the point where the tangent at ζ of the function cµ(ζ) :=∫

(x − ζ)+µ(dx) intersects the x−axis. If µ has atoms, then the barycenter function is discontinuous, and the
last pictorial representation is adapted suitably to this situation.

The following result shows that the Azéma-Yor solution of the SEP reaches the upper bound of Corollary
3.2.



ESAIM: PROCEEDINGS AND SURVEYS 37

Proposition 3.3. Let µ be a centered probability measure on R, and X̂t := Bτay∧ t
T−t

, t ≤ T , where B is a

Brownian motion and τay := inf{t ≥ 0 : Bt ≤ b−1
µ (B∗t )}. Then, for all càdlàg submartingale X with XT ∼ µ:

E
[
1{X̂∗T≥m}

]
=

∫ (
x− b−1

µ (m)
)+
µ(dx)

m− b−1
µ (m)

≥ E
[
1{X∗T≥m}

]
for all m ≥ 0.

More generally, for all nondecreasing φ, and all càdlàg submartingale X with XT ∼ µ:

E
[
φ(X̂∗T )

]
= φ(X0) +

∫ ∞
X0

dφ(m)

∫ (
x− b−1

µ (m)
)+
µ(dx)

m− b−1
µ (m)

≥ E
[
φ(X∗T )

]
.

Proof. (in the case of an atomless µ) As in the previous proofs, the second claim follows from the first one
due to the non-decrease of φ. We then focus on the first claim.

Given that b−1
µ minimizes the function f in (3.2), the right-hand side inequality is a consequence of Corollary

3.2. So we only need to prove the left-hand side equality.
By the definition of X̂, notice that X̂∗T ≥ y if and only if XT ≥ b−1

µ (y). Then

E
[
1{X̂∗T≥m}

]
= P

[
XT ≥ b−1

µ (m)
]

=

∫
[b−1
µ (m),∞)

µ(dx).

Moreover, by the definition of bµ, we have
∫

[b−1
µ (m),∞)

(x−m)µ(dx) = 0. Then:

E
[
1{X̂∗T≥m}

]
=

∫
[b−1
µ (m),∞)

[(
m− b−1

µ (m)
)

+ (x−m)
]
µ(dx)

m− b−1
µ (m)

=

∫ (
x− b−1

µ (m)
)+
µ(dx)

m− b−1
µ (m)

.

tu

We conclude this section by providing a financial interpretation of Lemma 3.1:

1{ω∗T≥m} ≤
(ωT − ζ)+

m− ξ
+
m− ωT
m− ζ

1{ω∗T≥m} for all ζ < m.

The left-hand side is the payoff of a Digital option on the running maximum. The right-hand side exhibits a
model-free semi-static hedging strategy with the following two components:

• Static hedge: the first term on the right-hand side corresponds to the outcome of 1
m−ζ units of

T−maturity European calls with strike ζ.
• Dynamic hedge: the second term on the right-hand side corresponds to the dynamic hedging strategy

m−ωT
m−ζ 1{ω∗T≥m} =

∫ T
0
Htdωt with a simple H, i.e. piecewise constant. Consequently, the stochastic

integral is well-defined in the obvious sense. This dynamic hedging strategy consists in selling 1
m−ζ

shares of underlying at time Tm whenever Tm ≤ T .

A similar financial interpretation holds for a Lookback option with payoff φ(ω∗T ) for some non-decreasing
function φ.

4. Multi-marginals Extension

In this section, we present the extension of the results of the previous section to the context of n−marginals
constraints. The main question is to find the corresponding pathwise inequality, as in Lemma 3.1, so as equality
holds for some convenient choice of a martingale.
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4.1. The two-marginals constraint case

The following inequality was introduced by Brown, Hobson & Rogers [7].

Lemma 4.1. Let ω : R+ −→ R be an arbitrary càdlàg function, and denote ω∗t := sups≤t ωs. Then, for all
ζ1 < ζ2 < m:

1{ω∗t2≥m}
≤ (ωt2 − ζ2)+

m− ζ2
+

(ωt1 − ζ1)+

m− ζ1
− (ωt1 − ζ2)+

m− ζ2
+1{m≤ω∗t1}

m− ωt1
m− ζ1

+ 1{ω∗t1≥m,ωt1≥ζ2}
ωt1 − ωt2
m− ζ2

+ 1{ω∗t1<m≤ω
∗
t2
}
m− ωt2
m− ζ2

Proof. The inequality is easily verified by considering separately each case. We shall prove a more general
result in Lemma 4.3 below. tu

Similar to the previous section, we may deduce from Lemma 4.1 a pathwise inequality for a payoff of the
form φ(ω∗T ) for any non-decreasing φ. We leave the details for the reader. The next result shows the optimality
of the previous pathwise inequality.

Proposition 4.2. For all right-continuous martingale M :

P
[
M∗t2 ≥ y

]
≤ inf

ζ1<ζ2<m

{E[(Mt2 − ζ2)+
]

m− ζ2
+

E
[
(Mt1 − ζ1)+

]
m− ζ1

−
E
[
(Mt1 − ξ2)+

]
m− ζ2

}
Moreover, for all probability measures µ1 � µ2 in the convex order, the exists a martingale M̂ such that
M̂t1 ∼ µ1, M̂t2 ∼ µ2, and equality holds in the previous inequality

The first part of the proposition follows by taking expectations in the pathwise inequality of Lemma 4.1.
The second part is proved by extending the Azéma-Yor solution of the Skorohod embedding problem. we refer
to Brown, Hobson and Rogers [7] for this construction.

We finally provide a financial interpretation of the pathwise inequality of Lemma 4.1 in terms of model-free
superhedging. Firs, the left-hand side is the payoff of a Digital option on the running maximum. As for the
right-hand side, we have the following interpretation of each term:

• The first line exhibits a linear combination of European options with maturities t1, t2, and strikes ζ1, ζ2.

• The term 1{m≤ω∗t1}
m−ωt1
m−ζ1 corresponds to a simple trading strategy to be implemented at time Tm,

whenever Tm ≤ t1.
• The term 1{ω∗t1≥m,ωt1≥ζ2}

ωt1−ωt2
m−ζ2 corresponds to a simple trading strategy at time t1.

• The term 1{ω∗t1<m≤ω
∗
t2
}
m−ωt2
m−ζ2 corresponds to a simple trading strategy to be implemented at time Tm,

whenever Tm ∈ (t1, t2].

4.2. The n−marginals constraints case

An intriguing question is how to guess a pathwise inequality as in Lemmas 3.1 and 4.1. Indeed, despite the
obvious verification of these inequalities, one has to come up with an interesting inequality which is sharp in the
sense that it is attained by some choice of a martingale. The answer to this question will be provided in Section
5 where an optimal transport approach will be introduced. The efficiency of the optimal transport approach is
outlined by the following extension of the pathwise inequality.
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Lemma 4.3. Let ω be a càdlàg path and denote ω∗t := sup0≤s≤t ωs. Then, for m > ω0 and ζ1 ≤ · · · ≤ ζn < m:

1ω∗tn≥m ≤
n∑
i=1

(
(ωti − ζi)+

m− ζi
+ 1ω∗ti−1

<m≤ω∗ti
m− ωti
m− ζi

)

−
n−1∑
i=1

(
(ωti − ζi+1)+

m− ζi+1
+ 1{m≤ω∗ti ,ζi+1≤ωti}

ωti+1 − ωti
m− ζi+1

)
. (4.1)

Proof. Denote by An the right-hand side of (4.1), and let us prove the claim by induction. First, in the case
n = 1, the required inequality is the same as that of Lemma 2.1 in [7]:

A1 =
(ωt1 − ζ1)+ + 1{ω∗t0<m≤ω

∗
t1
}(m− ωt1)

m− ζ1
≥ ωt1 − ζ1 +m− ωt1

m− ζ1
1{m≤ω∗t1}

≥ 1{m≤ω∗t1}
.

We next assume that An−1 ≥ 1{ω∗tn−1
≥m} for some n ≥ 2, and show that An ≥ 1{ω∗tn≥m}. We consider two

cases.
Case 1: ω∗tn−1

≥ m. Then ω∗tn ≥ m, and it follows from the induction hypothesis that 1 = 1{ω∗tn≥m} =

1{ω∗
tn−1}

≥m ≤ An−1. In order to see that An−1 ≤ An, we compute directly that, in the present case,

An −An−1 =
ωtn − ζn
m− ζn

(
1{ωtn≥ζn} − 1{ωtn−1

≥ζn}

)
≥ 0. (4.2)

Case 2: ω∗tn−1
< m. As (ω∗t ) is non-decreasing, it follows that ω∗ti < m for all i ≤ n − 1. With a direct

computation we obtain:

An = A0
n +

(ωtn − ζn)+

m− ζn
+ 1{m≤ω∗tn}

m− ωtn
m− ζn

, where A0
n :=

n−1∑
i=1

(
(ωti − ζi)+

m− ζi
− (ωti − ζi+1)+

m− ζi+1

)
.

Since m > ω∗ti ≥ ωti for i ≤ n− 1, the functions ζ 7−→ (ωti − ζ)+/(m− ζ) are non-increasing. This implies that

A0
n ≥ 0 by the fact that ζi ≤ ζi+1 for all i ≤ n. Then:

An ≥
(ωtn − ζn)+ + 1{m≤ω∗tn}(m− ωtn)

m− ζn
≥ (ωtn − ζn)+ +m− ωtn

m− ζn
1{m≤ω∗tn} (4.3)

≥ ωtn − ζn +m− ωtn
m− ζn

1{m≤ω∗tn} = 1{m≤ω∗tn}.

tu

Corollary 4.4. Let X be a càdlàg submartingale, and φ a nondecreasing function on R. Then, for all functions
ζ1(m) ≤ . . . ≤ ζn(m) ≤ m:

E
[
φ(X∗tn)

]
≤ φ(X0)−

n∑
i=1

∫ ∞
X0

(
E[(Xti − ζi(m))+]

m− ζi(m)
− E[(Xti − ζi+1(m))+]

m− ζi+1(m)
1{i<n}

)
dφ(m).

Proof. Use the pathwise inequality along the paths of X, and take expected values yields the required result
for φ(x) := 1x≥y for all y ∈ R. The extension to a general non-decreasing function φ follows from the same
argument as in Corollary 3.1. tu
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The bound derived in Corollary 4.4 is complemented by an optimality result in Brown, Hobson and Rogers [7]
in the two-marginals case n = 2, and by Henry-Labordère, Obloj, Spoida and Touzi [17] in the present context
of n marginals.

We conclude this section by the interpretation of the pathwise inequality of Lemma 4.3 in terms of model-free
superhedging of the Digital option on the running maximum defined by the payoff ξ = 1{X∗T≥m}. The right

hand side of (4.1) consists of three elements: a static position in call options, a forward transaction (with the
shortest available maturity) when the barrier m is hit and rebalancing thereafter at times ti. More precisely:

(i) Static position in calls:
n∑
i=1

(
(Xti − ζi)+

m− ζi
− 1{i<n}

(Xti − ζi+1)+

m− ζi+1

)
.

For 1 ≤ i < n, we hold a portfolio long and short calls with maturity ti and strikes ζi and ζi+1 respectively.
This yields a “tent like” payoff which becomes negative only if the underlying exceeds level m. Note that by
setting ζi = ζi+1 we may avoid trading the ti− maturity calls. For maturity tn we are only long in a call with
strike ζn.

(ii) Forward transaction if the barrier m is hit: 1{X∗ti−1
<m≤X∗ti}

m−Xti
m−ζi

At the moment when the barrier m is hit, say between maturities ti∗−1 and ti∗ , we enter into forward contracts
with maturity ti∗ .

Note that the long call position with maturity ti∗ together with the forward then superhedge the knock-in digital
barrier option, cf. (4.3). This resembles the robust semi-static hedge in the one-marginal case, cf. [7, Lemma
2.4]. All the “tent like” payoffs up to maturity ti∗−1 are non-negative.

(iii) Rebalancing of portfolio to hedge calendar spreads: −
∑n−1
i=1 1{m≤X∗ti ,ζi+1≤Xti}

Xti+1
−Xti

m−ζi+1

After the barrier m was hit, we start trading at times ti in such a way that a potential negative payoff of the

calendar spreads
(Xti+1

−ζi+1)+

m−ζi+1
− (Xti−ζi+1)+

m−ζi+1
, i∗ ≤ i ≤ n, is offset, cf. (4.2).

5. Optimal Transport Approach to Robust Hedging

Let ξ be an F1−measurable random variable. Our objective is to formulate the problem of robust super-
hedging of ξ by means of dynamic trading strategies, in the non risky and the risky assets, and static strategies
in T−maturity European call and put options.

5.1. Stochastic integration under a non-dominated family of probability measures

A dynamic strategy is defined as a predictable process H, where Ht indicates the number of shares of risky
assets to be held at time t. Then, the value of a self-financing portfolio at each time t is given by the stochastic
integral

Y Ht := Y0 +

∫ t

0

HsdXs. (5.1)

At this point, we have to discuss a major difficulty raised by the well-posedness of the last stochastic integral.
Indeed, on one hand, such a stochastic integral is defined almost surely under some specific measure under which
the canonical process X is a semimartingale. On the other hand, the robust feature of superhedging problem
imposes that there is no fixed probability measure which determines the distribution of X.

To solve this well-posedness problem, we introduce a set of martingale probability measures. Let P0 be the

Wiener measure on Ω. For all process σ with
∫ T

0
σ2
t dt <∞, P0−a.s., we introduce the measure

Pσ := P0 ◦ (Xσ)−1 where Xσ
t := X0 +

∫ t

0

σsdXs, P0 − a.s.
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i.e. Pσ is the distribution of the process Xσ under P0. We further introduce the set

MS :=
{
Pσ :

∫ T

0

σ2
t dt <∞,P0 − a.s. and Xσ is P0−martingale

}
.

For all P ∈ MS , we denote by H2
loc(P) the collection of all predictable processes H with

∫ T
0
H2
t dt <∞, P−a.s.

Clearly the stochastic integral Y H in (5.1) is well-defined for all H ∈ ∩P∈MS
H2

loc(P). In order to avoid dubbling
strategies, we now define the set of dynamic hedging strategies as:

H :=
{
H ∈ ∩P∈MS

H2
loc(P) : H is P−supermartingale, for all P ∈MS

}
.

5.2. Robust superhedging and martingale optimal transport

The set of admissible static positions is:

Λµ :=
{
λ ∈ L1(µ) : sup

P∈MS

EP[λ(XT )−] <∞
}
. (5.2)

Then, the robust super hedging problem is defined by For all λ ∈ Λµ, we denote ξλ := ξ− λ(X1). For technical
resons, w need to restrict the set MS (and enlarge the set H) as follows:

MS(ξλ) :=
{
P ∈MS : EP[(ξλ)−

]
<∞

}
,

H(ξλ) :=
{
H ∈ ∩P∈MS(ξλ)H2

loc(P) : H is P−supermartingale, for all P ∈MS(ξλ)
}
.

We are now ready for the definition of the robust super hedging problem:

Uµ(ξ) := inf
{
Y0 : ∃ Λµ and H ∈ H(ξλ), Y H1 ≥ ξλ, MS(ξλ)− q.s.

}
. (5.3)

where MS(ξλ)− q.s. (quasi-surely) means P−a.s. for all P ∈MS(ξλ).
The following result, proved in Possamäı, Royer and Touzi [28], relates the robust super hedging problem to

the martingale transport problem.

Theorem 5.1. Let ξ be an FT−measurable r.v. with supP∈MS EP[ξ+] <∞. Then:

Uµ(ξ) = inf
λ∈Λµ

sup
P∈MS

{
µ(λ) + EP[ξ − λ(XT )

]}
.

Under some additional regularity conditions on the random variable ξ, Dolinsky and Soner [15] prove in
addition that

Uµ(ξ) = inf
λ∈Λµ

sup
P∈MS

{
µ(λ) + EP[ξ − λ(XT )

]}
= sup

P∈MS(µ)

EP[ξ],
whereMS(µ) is the collection of all measures P ∈MS such that XT ∼P µ. Under this form, we now see clearly
that the robust superhedging reduces to an optimal transport problem on the canonical space of paths with
coupling function defined by the payoff of the derivative security, and under a martingale constraint on the
coupling measures. The last constraint, which is not present in standard optimal transport, is the main novelty
introduced by the robust super hedging problem.

Remark 5.2. The dual formulation of Proposition 5.1 gives access to the optimal hedging strategy and the
worst case model. This requires to prove an additional existence result of a solution to the inf-sup problem
(λ∗,P∗). Then λ∗ is the optimal T−maturity Vanilla profile, and P∗ is the worst case model corresponding
to the upper bound. The optimal dynamic hedging strategy in the underlying asset is as usual obtained by
representation of the residual security ξ − λ∗(XT ).
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Remark 5.3. The dual formulation of Proposition 5.1 is suitable for numerical approximation. Indeed, for
each fixed multiplier λ, the maximization problem is a (singular) stochastic control problem which may be
approximated by finite differences or Monte Carlo methods. The optimization stage with respect to λ requires
an additional iteration. This issue is addressed in Bonnans and Tan [5] and Tan and Touzi [29].

6. Application to Lookback options

Throughout this section, we consider the Lookback option example ξ = φ(X∗T ), as in (3.1), in the one
dimensional case d = 1. We recall that the distribution of XT is the fixed probability measure µ, and we assume
in addition that φ is C1 and nondecreasing.

6.1. The one-marginal case

Our main interest is to show that the optimal upper bound given by Proposition 5.1:

Uµ(ξ) = inf
λ∈Λµ

{
µ(λ) + uλ(0, X0, X0)

}
(6.1)

reproduces the bound corresponding to the Azema-Yor solution to the Skorohod embedding problem, as shown
by Proposition 3.3. Here, uλ is the value function of the dynamic version of the stochastic control problem

uλ(t, x,m) := sup
P∈P∞

EP
[
φ
(
M t,x,m
T )− λ(Xt,x

T )
]
, t ≤ T, (x,m) ∈∆, (6.2)

where ∆ :=
{

(x,m) ∈ R2 : x ≤ m
}

, Xt,x
u , u ∈ [t, T ]} is the canonical process on the shifted canonical space

started from (t, x), and

M t,x,m
u := m ∨ max

t≤r≤u
Xt,x
r , 0 ≤ t ≤ u ≤ T.

When the time origin is zero, we shall simply write Xx
u := X0,x

u and Mx,m
u := M0,x,m

u .
By standard time change techniques, we may convert the optimization problem uλ into the infinite horizon

optimal stopping problem:

uλ(x,m) = sup
τ∈T∞

EP0
[
φ(Mx,m

τ )− λ(Xx
τ )
]

for all (x,m) ∈∆, (6.3)

where T∞ is the collection of all stopping times τ such that the stopped process {Xt∧τ , t ≥ 0} is a P0−uniformly
integrable martingale.Then, the set Λµ of (5.2) translates to:

Λµ0 =
{
λ ∈ L1(µ) : sup

τ∈T∞
E[λ(Xτ )−] <∞

}
. (6.4)

By the definition of the dual problem Uµ in (6.1), notice that:

Uµ(ξ) ≥ EP0
[
φ(Mx,m

τ )
]

for all solution τ of SEP(µ).

Our objective is to prove that equality is achieved with the Azéma-Yor solution of the SEP.
1. We start from a guess of the value function uλ for functions λ in the subset:

Λ̂µ0 := {λ ∈ Λµ0 : λ is convex}. (6.5)

By classical tools from stochastic control theory, the value function uλ(x,m) is expected to solve the dynamic
programming equation:

min
{
uλ − φ+ λ,−uλxx

}
= 0 on ∆ and uλm(m,m) = 0 for m ∈ R. (6.6)
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The first part of the above DPE is an ODE for which m appears only as a parameter involved in the domain
on which the ODE must hold. Since we are restricting to convex λ, one can guess a solution of the form:

vψ(x,m) := φ(m)− λ
(
x ∧ ψ(m)

)
− λ′

(
ψ(m)

)(
x− x ∧ ψ(m)

)
, (6.7)

i.e. vψ(x,m) = φ(m)−λ(x) for x ≤ ψ(m) and is given by the tangent at the point ψ(m) for x ∈ [ψ(m),m]. For
later use, we observe that for x ∈ [ψ(m),m]:

vψ(x,m) = φ(m)− λ(ψ(m)) +

∫ x

ψ(m)

∂

∂y
{λ′(y)(x− y)}dy

= φ(m)− λ(x) +

∫ x

ψ(m)

(x− y)λ′′(dy) for x ∈ [ψ(m),m], (6.8)

where λ′′ is the second derivative measure of the convex function λ.
We next choose the function ψ in order to satisfy the Neumann condition in (6.6). Assuming that λ is

smooth, we obtain by direct calculation that the free boundary ψ must verify the ordinary differential equation
(ODE):

λ′′
(
ψ(m)

)
ψ′(m) =

φ′(m)

m− ψ(m)
for all m ∈ R. (6.9)

For technical reasons, we need to consider this ODE in the relaxed sense. Since λ is convex, its second derivative
λ′′ is well-defined as measure on R+. We then introduce the weak formulation of the ODE (6.9):∫

ψ−1(B)

λ′′(dy) =

∫
B

φ′(m)

m− ψ(m)
dm for all B ∈ B(R), (6.10)

and we introduce the collection of all relaxed solutions of (6.9):

Ψλ :=
{
ψ right-continuous : (6.10) holds and ψ(m) < m for all m ∈ R

}
. (6.11)

Then, by a standard verification argument based on Itô’s formula, we see that

uλ ≤ vψ.

Remark 6.1 (Pathwise inequality). The last verification argument is based on Itô’s formula which provides:

φ(X∗T )− λ(XT ) = vψ(X0, X0) +

∫ T

0

vψx (Xt, X
∗
t )dXt +

1

2

∫ T

0

vψxx(Xt, X
∗
t )dt+

∫ T

0

vψm(X∗t , X
∗
t )dX∗t .

Since vψxx ≤ 0 and vψm(m,m) = 0, this provides the pathwise inequality:

vψ(X0, X0) +

∫ T

0

vψx (Xt, X
∗
t )dXt + λ(XT ) ≥ φ(X∗T ),

which holds for any λ and any solution ψ of the ODE (6.9). The best pathwise inequality is the one induced by the
optimal choice of ψ, which completely determines the corresponding optimal λ by the ODE (6.9). Consequently,
the present approach is a constructive method for the pathwise inequality of Lemma 3.1.
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2. Given the expression of vψ in (6.7), the last inequality implies that

µ(λ) + uλ(X0, X0) ≤ φ(X0) + µ(λ)− λ(X0) +

∫
(X0 − y)+1{y≥ψ(X0)}λ

′′(dy).

Denoting c0(y) := (X0 − y)+ and c(y) :=
∫

(x − y)+µ(dx), and applying two integrations by parts to the
difference µ(λ)− λ(X0), we get:

µ(λ) + uλ(X0, X0) ≤ φ(X0) +

∫ (
c(y)− c0(y)(1{y<X0} − 1{ψ(X0)<y<X0})

)
λ′′(dy)

= φ(X0) +

∫ (
c(y)− c0(y)1{y<ψ(X0)}

)
λ′′(dy)

= φ(X0) +

∫
c(ψ(m))− c0(ψ(m))1{m<X0}

m− ψ(m)
φ′(m)dm,

by the ODE (6.9) satisfied by ψ in the distribution sense. This calculation provides the following bound for
Uµ(ξ):

Uµ(ξ) ≤ φ(X0) + inf
ψ(.)

∫
c(ψ(m))− c0(ψ(m))1{m<X0}

m− ψ(m)
φ′(m)dm.

3. Since g is non-decreasing, the right-hand side is easily shown to reduce to the pointwise minimization of the
function inside the integral. Recall that

∫
xµ(dx) = X0. Then, the last minimization provides:

inf
ξ<m

c(ξ)− c0(ξ)1{m<X0}

m− ξ
=
c(0)− c0(0)1{m<X0}

m
= 0 for m < X0,

and, for m ≥ X0, we are reduced to the same problem as in (3.2), namely:

inf
ξ<m

c(ξ)

m− ξ
=

c
(
b−1
µ (m)

)
m− b−1

µ (m)
for m ≥ X0,

where b−1
µ is the right-continuous inverse of the barycenter function bµ. This bound is in fact the so-called

Hardy-Littlewood transform of the measure µ:

µhl(([m,∞)) :=
c
(
b−1
µ (m)

)
m− b−1

µ (m)
,

which is known from to correspond to the distribution of the running maximum of the Brownian motion at the
Azéma-Yor stopping, i.e. Bτay ∼ µhl. Hence:

Uµ(ξ) ≤ φ(X0) +

∫
µhl(([m,∞)) φ′(m)dm = µhl(φ).

6.2. The case of finitely-many intermediate marginals

We now adapt our general methodology to the multiple-marginal context. Our objective is to solve the robust
superhedging problem for a Lookback derivative security

φ(X∗T ) given the marginals Xti ∼ µi for all i = 1, . . . , n. (6.12)



ESAIM: PROCEEDINGS AND SURVEYS 45

The probability measures µi are defined from market prices which do not admit arbitrage, which by classical
results imposes the condition:

(µi)1≤i≤n non-decreasing in the convex order.

Similar to the one-marginal case, the robust superhedging bound can be expressed in the dual formulation of
Proposition 5.1 as:

Uµn (ξ) := inf
λ∈Λµn(ξ)

{
µ(λ) + uλ(X0, X0)

}
, (6.13)

where

uλ(x,m) := sup
P∈P∗

EP
x,m

[
φλ(Xt1 , . . . , Xtn ,Mtn)

]
, φλ(x1, . . . , xn,m) := φ(m)−

n∑
i=1

λi(xi),

and the set of Lagrange multipliers is:

Λµn(ξ) =
{
λ = (λ1, . . . , λn) : λi ∈ L1(µi) and sup

P∈P∗
EP[φλ(Xt1 , . . . , Xtn , X

∗
tn

)+]
<∞

}
. (6.14)

Our approach to solve the present n−marginals Skorokhod embedding problem is to introduce the sequence of
intermediate optimization problems:

un(x,m) = φ(m) and uk−1(x,m) = sup
P∈P∗

EP
tk−1,x,m

[
uλk(Xtk ,Mtk)

]
, k ≤ n, (6.15)

where EP
tk−1,x,m

= EP[ · |(X,M)tk−1
= (x,m)

]
, and:

uλk(x,m) := uk(x,m)− λk(x) for (x,m) ∈∆. (6.16)

Given this iterative sequence of value functions, it follows from the dynamic programming principle that our
problem of interest is given by:

uλ = uλ0 for all λ ∈ Λµn(ξ).

Similar to the one-marginal case, we may convert the stochastic control problem in (6.15) into a sequence of
optimal stopping problems:

uk−1(x,m) = sup
τ∈T ∗

EP0
x,m

[
uλk(Xτ ,Mτ )

]
. (6.17)

Then, denoting by S∗n := {τ = (τ1, . . . , τn) ∈ T ∗ : τ1 ≤ · · · ≤ τn}, we see that

Uµn (ξ) = inf
λ∈Λµn(ξ)

{
µ(λ) + uλ0 (X0, X0)

}
where uλ0 (x,m) := sup

τ∈S∗n
EP0
x,m

[
φλ
(
Xτ ,Mτn

)]
, (6.18)

and the set Λµn(ξ) of (6.14) translates in the present context to:

Λµn(ξ) =
{
λ = (λ1, . . . , λn) : λi ∈ L1(µ) and sup

τ∈S∗n
EP0
[
φλ(Xτ , X

∗
τn)+

]
<∞

}
. (6.19)

The function uk−1 corresponds to the optimization problem considered in the previous section, with a payoff
φ(x,m) = uk(x,m) depending on the state variable x and the corresponding running maximum m. We then
need to extend the one-marginal problem to this context.
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To solve the multiple marginals problem, we introduce the candidate value functions:

vn(x,m) := φ(m), vλk (x,m) := vk(x,m)− λk(x), and

vk−1(x,m) := vλk (x ∧ ψk(m),m) +
(
x− ψk(m)

)+
∂xv

λ
k

(
ψk(m),m

)
(6.20)

= vλk (x,m)−
∫ x∨ψk(m)

ψk(m)

(x− ξ)∂xxvλk (dξ,m),

where ψ = (ψ1, . . . , ψn) with ψi an arbitrary solution of the ordinary differential equation

−ψ′k∂xxvλk (ψk,m) = γk(ψk,m), with γk(x,m) := (m− x)∂x

{∂mvk(x,m)

m− x

}
, (6.21)

which stays strictly below the diagonal. Notice that, in contrast to the one-marginal case, we have dropped

here the dependence of vk in ψ by simply denoting vk := vψk and vλk := vψ,λk .
Similar to the one-marginal case, we introduce the weak formulation of this ODE:

ψk(m) < m for all m ≥ 0, and
−
∫
ψ(E)

∂xxv
λ
k

(
., ψ−1

k

)
(dξ) =

∫
E
γk(ψk, .)(dm) for all E ∈ B(R),

(6.22)

and we introduce the set

Ψλ
n :=

{
ψ : R→ Rn with right-continuous entries ψk satisfying (6.22), k ≤ n

}
. (6.23)

We also follow the one-marginal case by restricting the minimization in (6.18) to those multipliers λ in the set:

Λ̂µn(ξ) :=
{
λ ∈ Λµn(ξ) : vk−1 concave in x and vk−1 ≥ vλk for all k ≤ n

}
. (6.24)

Similar to the one-marginal case, we may prove that

uλ(X0, X0) ≤ v0(X0, X0) for all λ ∈ Λ̂µn and ψ ∈ Ψλ
n.

This inequality is derived by an iterative verification argument based on Itô’s formula. In particular, similar
to Remark 6.1, we obtain as a by-product of the proof a family of pathwise inequalities parameterized by the
choice of the Lagrange multipliers λi and the corresponding free boundaries ψi. The optimal choice of ψi’s
determines the optimal choice of λi’s, by (6.21), and induces the sharpest pathwise inequality of Lemma 4.3.

We have then reproduced Step 1 of Subsection 6 in the present context of finitely-many intermediate laws.
The optimization over the Lagrange multipliers (and in fact the corresponding free boundaries ψi’s) can

now be processed as in Steps 2 and 3 of Subsection 6. The analysis in the present context is more involved.
Therefore, we refrain from reproducing it, and we refer the interested reader to [17].
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625–633, LNM 721.
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[27] Ob lój, J. and Spoida, P. (2013), An Iterated Azéma-Yor Type Embedding for Finitely Many Marginals. Preprint,

arXiv:1304.0368.
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