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MARTINGALE TRANSFORMS GOODNESS-OF-FIT TESTS
IN REGRESSION MODELS1

BY ESTATE V. K HMALADZE AND HIRA L. KOUL

Victoria University of Wellington and Michigan State University

This paper discusses two goodness-of-fit testing problems. The first
problem pertains to fitting an error distribution to an assumed nonlinear
parametric regression model, while the second pertains to fitting a parametric
regression model when the error distribution is unknown. For the first
problem the paper contains tests based on a certain martingale type transform
of residual empirical processes. The advantage of this transform is that
the corresponding tests are asymptotically distribution free. For the second
problem the proposed asymptotically distribution free tests are based on
innovation martingale transforms. A Monte Carlo study shows that the
simulated level of the proposed tests is close to the asymptotic level for
moderate sample sizes.

1. Introduction. This paper is concerned with developing asymptotically
distribution free tests for two testing problems. The first problem pertains to testing
a goodness-of-fit hypothesis about the error distribution in a class of nonlinear
regression models. The second problem pertains to fitting a regression model in
the presence of the unknown error distribution. The tests are obtained via certain
martingale transforms of some residual empirical processes for the first problem
and partial sum residual empirical processes for the second problem.

To be more precise, let� be an open subset of theq-dimensional Euclidean
space and let{µ(·, ϑ);ϑ ∈ �} be a parametric family of functions fromRp to R.
For a pair(X,Y ) of a p-dimensional random vectorX with distribution function
(d.f.) H and one-dimensional random variable (r.v.)Y with finite expectation let

m(x) := E[Y |X = x], x ∈ R
p,

denote the regression function ofY on X. In the first problem of interest one
assumesm is a member of a parametric family{µ(·, ϑ);ϑ ∈ �} and one observes
a sequence{(Xi, Yi),1 ≤ i ≤ n} such that for someθ ∈ �, the errors

εi(θ) = Yi − µ(Xi, θ), 1≤ i ≤ n,(1.1)

are independent, identically distributed (i.i.d.) r.v.’s with expected value 0. LetF be
a specified distribution function with mean 0 and finite Fisher information for
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location, that is,F is absolutely continuous with a.e. derivtivef ′ satisfying

0 <

∫ (
f ′

f

)2

dF < ∞.(1.2)

The problem of interest is to test the hypothesis

H0 : the d.f. ofε1(θ) is F,

against a class of all sequences of local (contiguous) alternatives where the error
d.f.’s An are such that for somea ∈ L2(R,F ),(

dAn

dF

)1/2

= 1+ 1

2
√

n
a + rn,∫

a dF = 0,(1.3)

n

∫
r2
n dF = o(1).

Occasionally, we will also insist thata satisfy the orthogonality assumption∫
a
f ′

f
dF = 0.(1.4)

In the second problem one is again given independent observations{(Xi, Yi),

1 ≤ i ≤ n}, such thatYi − m(Xi) are i.i.d. according to some distribution, not
necessarily known, and one wishes to test the hypothesis

H̃0 :m(·) = µ(·, θ), for someθ ∈ �.(1.5)

The alternative toH̃0 of interest here consists of all those sequences of
functionsmn(x) which “locally” deviate from one ofµ(x, θ), that is, for some
θ ∈ � and for some function�θ ∈ L2(R

p,H),

�θ ⊥ µ̇θ , mn(x) = µ(x, θ) + 1√
n
�θ (x) + rnθ (x),

(1.6)
n

∫
r2
nθ (x) dH(x) → 0,

while the errorsYi −mn(Xi) are still i.i.d. Hereµ̇θ (x) is a vector ofL2-derivatives
of µ(x, θ) with respect toθ , assumed to exist; see the assumption (2.4).

Both of these testing problems are historically almost as old as the subject of
statistics itself. The tests based on various residual empirical processes forH0
have been discussed in the literature repeatedly. For example, see Durbin (1973),
Durbin, Knott and Taylor (1975), Loynes (1980), D’Agostino and Stephens
(1986) and Koul (1992, 2002), among others. Several authors have addressed
the problem of regression model fitting, that is, testing forH̃0: see, for example,
Cox, Koh, Wahba and Yandell (1988), Eubank and Hart (1992, 1993), Eubank
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and Spiegelman (1990), Härdle and Mammen (1993), Koul and Ni (2004), An
and Cheng (1991), Stute (1997), Stute, González Manteiga and Presedo Quindimil
(1998), Stute, Thies and Zhu (1998) and Stute and Zhu (2002), among others. The
last five references propose tests based on a certain marked empirical or partial sum
processes while the former cited references base tests on nonparametric regression
estimators. See also the review paper of MacKinnon (1992) for tests based on the
least square methodology and the monograph of Hart (1997) and references therein
for numerous other tests of̃H0 based on smoothing methods in the casep = 1.

However, it is well known that most of these tests are not asymptotically
distribution free. This is true even for the chi-square type of tests with the exception
of the modified chi-square statistic studied in Nikulin (1973) in the context of
empirical processes. It is also well documented in the literature that chi-square type
tests often have relatively low power against many alternatives of interest, see, for
example, Moore (1986). Hence a larger supply of asymptotically distribution free
(ADF) goodness-of-fit tests with relatively good power functions is needed.

The aim of this paper is to propose a large class of such tests. These will be
the tests based on statistics of a certain ADF modification and extension [see, e.g.,
(5.3) and (5.4)] of the (weighted) empirical process of residuals

Ŵγ (y) := n−1/2
n∑

i=1

γ (Xi)
[
I
{
Yi − µ(Xi, θ̂ ) ≤ y

}− F(y)
]
,

−∞ ≤ y ≤ ∞,

whereγ is a square integrable function with respect toH . The ADF versions of
the Cramér–von Mises and the Kolmogorov–Smirnov tests will be particular cases
of such tests. WritêW1 for Ŵγ wheneverγ ≡ 1— see Sections 3.2 and 5.

As far as the problem of estimation ofθ is concerned, certain weighted residual
empirical processes play an indispensable role [cf. Koul (1992, 1996)]. A part of
the objective of the present paper is to clarify the role of these processes with
regard to the above goodness-of-fit testing problem.

To begin with, we shall discuss the basic structure of the first problem from a
geometric perspective. This perspective was explored in the context of empirical
processes in Khmaladze (1979). We shall show that underH0 the asymptotic dis-
tribution ofŴγ , and its general function-parametric formξn(γ,ϕ; ϑ̂) [see (2.2)], is
equivalent to that of the projection of (function-parametric) Brownian motion par-
allel to the tensor producṫµθ · (f ′/f ). Since a “projection” is typically “smaller”
than the original process we can intuitively understand why, at least for alterna-
tives (1.3), it will lead to increase in asymptotic power if we substitute an esti-
mator θ̂ even in the problems where the true value of the parameter is known.
The distribution of this projection depends not only on the family of regression
functions{µ(·, ϑ);ϑ ∈ �} andF , but also on the estimatorθ̂ . Therefore, the limit
distribution of any fixed statistic based on̂Wγ or onξn(γ,ϕ; ϑ̂) will be very much
model-dependent. However, using this “projection” point of view, we shall show
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in Section 3.2 that the tests based on̂Wγ corresponding to a certain nonconstantγ

may be useful, because they may have simpler asymptotic behavior, but at the cost
of some loss of the asymptotic power, and the tests based onŴ1, in general, will
have higher asymptotic power.

But, as mentioned above, the asymptotic null distribution ofŴ1 is model
dependent. Proposed martingale transforms ofŴγ (F−1) will be shown to
converge in distribution to a standard Brownian motion on[0,1] underH0, and
hence tests based on these transforms will be ADF for testingH0. It will also be
shown that for anyγ this transform is one-to-one and therefore there is no loss of
the asymptotic power associated with it.

The paper also provides ADF tests for the problem of testing

Hσ : the d.f. ofε1(θ) is F(y/σ ), ∀y ∈ R, for someσ > 0.

In the univariate design case, ADF tests forH̃0 based on certain partial sum
processes and using ideas of Khmaladze (1981) have been discussed by Stute,
Thies and Zhu (1998). An extension of this methodology to the general case of
a higher dimensional design is far from trivial. The second important goal of this
paper is to provide this extension. Here too we first discuss this problem from a
general geometric perspective. It turns out that the weighted partial sum processes
that are natural to this problem are

ξn(B; θ̂ ) := n−1/2
∑

I{Xi ∈ B}ϕ(Yi − µ(Xi, θ̂ )
)
,

for a fixed real valued functionϕ with Eϕ2(ε) finite, where B is a Borel
measurable set inRp. Tests based on these processes and the innovation martingale
transform ideas of Khmaladze (1993) [see, e.g., (6.4)] are shown to be ADF,
that is, their asymptotic null distribution is free of the modelµ(·, θ) and the
error distribution, but depends on the design distribution in the casep > 1.
These tests include those proposed in Stute, Thies and Zhu (1998), wherep = 1,
ϕ(y) ≡ y,B = (−∞, x], x ∈ R.

We mention that recently Stute and Zhu (2002) used the innovation approach of
Khmaladze (1981) to derive ADF tests in a special case of the higher dimension
design where the design vector appears in the null parametric regression function
only in a linear form, for example, as in generalized linear models, and where the
setsB in ξn(B; θ̂ ) are taken to be half spaces. This again reduces the technical
nature of the problem to the univariate case.

In another recent paper Koenker and Xiao (2002) studied tests based on
the transformations of a different process—regression quantile process to test the
hypothesis that the effect of the covariate vectorX on the location and/or on
the location-scale of the conditional quantiles ofY , givenX, is linear inX. They
then used the Khmaladze approach to make these tests ADF. Based on several
Monte Carlo experiments, Koenker and Xiao (2001) report that their tests have
accurate size and respectable power.
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The paper is organized as follows. Section 2 introduces some basic processes
that are used to construct tests of the above hypotheses. It also discusses some
asymptotics underH0 of these processes. Section 3 discusses some geometric im-
plications of the asymptotics of Section 2, while Section 4 gives the martingale
transforms of these processes whose asymptotic distribution underH0 is known
and free fromF . Section 5 contains some computational formulas of these trans-
formed processes. It also provides analogues of these ADF tests for nonrandom
designs and when the underlying observations form a stationary autoregressive
process. Section 6 contains the ADF processes for testingH̃0. Section 7 contains
some simulation results to show how well the asymptotic level approximates the
finite sample level for the proposed ADF tests. It is observed that even for the sam-
ple size 40, this approximation is quite good for the chosen simulation study. See
Section 7 for details.

2. Function-parametric regression processes with estimated parameter.

2.1. Function-parametric regression process. Consider a regression process
as is defined in Stute (1997):

ξn(B,y,ϑ) := n−1/2
n∑

i=1

I{Xi ∈ B}[I{εi(ϑ) ≤ y} − F(y)],
(2.1) −∞ ≤ y ≤ ∞, ϑ ∈ �,

whereB is a Borel measurable set in thep-dimensional Borel space(Rp,B(Rp))

and

εi(ϑ) := Yi − µ(Xi,ϑ), 1 ≤ i ≤ n.

We will use also notationIB(Xi) for the indicator functionI{Xi ∈ B} interchange-
ably. It is natural to consider an extension of the above process where the indica-
tor weights are replaced by some weight functionγ (Xi). The functionγ may be
scalar- or vector-valued. The weak convergence of such processes in they variable
and for a fixedγ has been developed in Koul (1992, 1996) and Koul and Ossiander
(1994).

It is not any less natural to consider an extension of these weighted empiricals
to those processes where the second indicator involving the error random
variable εi(ϑ) in (2.1) is also replaced by a function. Consider, therefore, a
function-parametric version of (2.1) indexed by a pair of functions(γ,ϕ):

ξn(γ,ϕ;ϑ) :=
∫

Rp+1
γ (x)ϕ(y)ξn(dx, dy;ϑ)

= n−1/2
n∑

i=1

γ (Xi)

[
ϕ
(
εi(ϑ)

)−
∫

ϕ(y) dF (y)

]
.

(2.2)
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We shall chooseγ ∈ L2(R
p,H) and ϕ ∈ L2(R,F ). In this way one can say

that ξn is defined for the functionα(x, y) = γ (x)ϕ(y), which is an element
of L := L2(R

p+1,H × F). For a generalα ∈ L we certainly have

ξn(α;ϑ) :=
∫

Rp+1
α(x, y)ξn(dx, dy;ϑ)

= n−1/2
n∑

i=1

(
α
(
Xi, εi(ϑ)

)− E
[
α
(
Xi, εi(ϑ)

)∣∣Xi

])
.

We will realize, however, that it is sufficient and natural for our present purpose to
restrictα to be of the above product type. In the sequel, for any functionalS onL

we will use the notationS(α) or S(γ,ϕ) interchangeably, wheneverα = γ · ϕ.
The processes defined at (2.1) and (2.2) are obviously closely related: (2.1)

represents a regression process as a random measure onR
p+1 while (2.2)

represents it as an integral from this random measure. Also, (2.2) defines a linear
functional onL.

The function-parametric version (2.2) will help to visualize in a natural way
the geometric picture of what is involved when we estimate parameters and show
why and when we need “martingale transformations” (Sections 4 and 6) to obtain
asymptotically distribution free tests.

2.2. Asymptotic increments of ξn with respect to parameter. Sinceθ is un-
known, in order to base tests ofH0 on the processξn we will need to replace
it by an estimator̂θ in this process. This estimator will be typically assumed to
ben1/2-consistent, that is,

‖θ̂ − θ‖ = Op(n−1/2).(2.3)

There is thus a need to understand the behavior ofξn(α; θ + n−1/2v) as a process
in v ∈ R

q,‖v‖ ≤ k < ∞. The first thing certainly is to consider the Taylor
expansion of this function inv.

To do this assume the followingL2-differentiability condition of the regression
function µ(x,ϑ) with respect toϑ : there exists aq × 1 vectorµ̇θ of functions
from R

p × � to R
q , such that

µ(x,ϑ) − µ(x, θ) = µ̇T
θ (x)(ϑ − θ) + ρµ(x;ϑ, θ),

0 <

∫
µ̇T

θ (x)µ̇θ (x) dH(x) < ∞,

Cθ :=
∫

µ̇θ (x)µ̇T
θ (x) dH(x) is positive definite,∫

sup
‖ϑ−θ‖≤ε

ρ2
µ(x;ϑ, θ) dH(x) = o(ε2), asε → 0.

(2.4)

Here, and in the sequel, for any Euclidean vectorv, vT denotes its transpose.
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Now, if additionallyϕ is differentiable with derivativeϕ′ ∈ L2(R,F ) satisfying

lim
ε→0

∫
sup

0<<ε

|ϕ′(y − ) − ϕ′(y)|2 dF (y) = 0,(2.5)

then, withα(x, y) ≡ γ (x)ϕ(y), we have the following proposition.

PROPOSITION 2.1. Under assumptions (2.4) and (2.5), the following holds
for every 0 < k < ∞.

(i) For any γ ∈ L2(R
p,H)

sup
‖v‖≤k

∣∣ξn(α; θ + n−1/2v) − ξn(α; θ)

− Eγ (Xi)µ̇
T
θ (X)Eϕ′(ε)v

∣∣= op(1).

(ii) For γ = ηIB , B ∈ B(Rp) and a fixed η ∈ L2(R
p,H),

sup
B∈B,‖v‖≤k

∣∣∣∣∣ξn(α; θ + n−1/2v) − ξn(α; θ)

− n−1
n∑

i=1

ηiIB(Xi)µ̇
T
θ (Xi)ϕ

′(εi)v

∣∣∣∣∣= op(1).

Hence, under (2.3)one obtains

ξn(α; θ̂ ) = ξn(α; θ) − n−1
n∑

i=1

ηiIB(Xi)µ̇
T
θ (Xi)ϕ

′(εi)n
1/2(θ̂ − θ) + ρn(B),(2.6)

where ρn(B) is a sequence of stochastic processes indexed by B ∈ B, tending to
zero uniformly in B ∈ B in probability.

The representation in (i) or in (2.6) will be very convenient and appropriate when
dealing with the fitting of a regression model in Section 6. But for testingH0
pertaining to the error distribution, as we will see in the next section, the
differentiability ofϕ is restrictive. We may wish, for example, to chooseϕ to be an
indicator function as in (2.1). Thus it is desirable to obtain an analog of the above
proposition for as general aϕ as possible.

Towards this goal, let� denote the linear span of a class of nondecreasing real
valued functionsϕ(y), y ∈ R, such that∫

ϕ2(y) dF (y) < ∞,

(∫
[ϕ(y − t) − ϕ(y − s)]2 dF (y)

)1/2

≤ ν(|t − s|),(2.7)

−ε ≤ s, t ≤ ε,
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for someε > 0 and for some continuous functionν from [0,∞) to [0,∞), with
ν(0) = 0,

∫ ε
0 logν−1(t) dt < ∞. This is a wide class of functions and will be a

source of ourϕ in what follows.
For any two functionsα, β ∈ L, let

〈α,β〉 :=
∫

Rp+1
α(x, y)β(x, y) dH(x) dF (y).

Note that ifα or bothα,β are vector functions, then〈α,β〉 or 〈α,βT 〉 is a vector
or a matrix of coordinate-wise inner products. Let‖α‖ := 〈αT ,α〉1/2 for a vector
functionα. Finally, let

ψf (y) := f ′(y)

f (y)
,

mθ (x, y) := µ̇θ (x)ψf (y), x ∈ R
p, y ∈ R.

Note that

〈µ̇θ , µ̇
T
θ 〉 = Cθ,

〈mθ,m
T
θ 〉 = Cθ‖ψf ‖2.

We are ready to state

PROPOSITION 2.2. Suppose that (1.2) and (2.4) hold. Then for α(x, y) =
γ (x)ϕ(y) with γ ∈ L2(R

p,H), ϕ ∈ �,

ξn(α; θ̂ ) = ξn(α; θ) + 〈α,mT
θ 〉n1/2(θ̂ − θ) + op(1).(2.8)

To appreciate some implications of (2.8) we need to consider those estimators
of θ that admit an asymptotic linear representation. For the purpose of the present
paper it would be enough to assume this. However, for completeness of the
presentation we give a relatively broad set of sufficient conditions under which
a class of M-estimators is asymptotically linear. Let{ηϑ,ϑ ∈ �} be a family
of q-dimensional functions onRp with coordinates inL2(R

p,H). Let βϑ :=
ηϑ · ϕ, ϕ ∈ �. Define an M-estimator̃θ to be a solution of the equation

ξn(βϑ ;ϑ) = 0.(2.9)

The following proposition gives a set of sufficient conditions for this estimator to
be asymptotically linear.

PROPOSITION 2.3. Suppose that (1.2) and (2.4) hold. In addition, suppose
ϕ ∈ � and {ηϑ,ϑ ∈ �} are such that∫

Rp
sup

‖ϑ−θ‖<ε

‖ηϑ − ηθ‖2 dH = o(1), as ε → 0,(2.10)
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and the matrix 〈βθ,m
T
θ 〉 is nonsingular. Then θ̃ defined at (2.9)satisfies

n1/2(θ̃ − θ) = −〈βθ,m
T
θ 〉−1ξn(βθ ; θ) + op(1).(2.11)

In particular, if {µ̇ϑ ;ϑ ∈ �} satisfies (2.10),then the solution θ̂ of the likelihood
equation

ξn(mϑ ;ϑ) = 0(2.12)

has the asymptotic linear representation

n1/2(θ̂ − θ) = −〈mθ,m
T
θ 〉−1ξn(mθ ; θ) + op(1).(2.13)

From now onθ̂ will stand for the solution of (2.12), and we shall use the
abbreviated notationξn(α) = ξn(α; θ), ξ̂n(α) = ξn(α; θ̂) and ξ̃n(α) = ξn(α; θ̃).
Combining (2.8) with (2.11) and (2.13), we see that the leading term ofξ̂n and
of ξ̃n, in general, can be represented as the linear transformation ofξn:

ξ̂n(α) = ξn(α) − 〈α,mT
θ 〉〈mθ,m

T
θ 〉−1ξn(mθ ) + op(1),(2.14)

ξ̃n(α) = ξn(α) − 〈α,mT
θ 〉〈βθ,m

T
θ 〉−1ξn(βθ) + op(1).(2.15)

These linear transformations have a remarkably simple and convenient structure
as is described in Section 2.3.

2.3. Processes ξ̂n and ξ̃n as projections. Let us use the notation 1 for the
function in y identically equal to 1, so that, for example,〈ϕ,1〉 = ∫

ϕ(y) dF (y)

and letϕ1 = ϕ − 〈ϕ,1〉, and for α = γ · ϕ let α1 = γ · ϕ1. It is obvious that
ξn(α) = ξn(α

1).
For α ∈ L and a vector-valued functionβ, with coordinates inL, such that the

matrix 〈β,mT
θ 〉 is nonsingular (we require this for simplicity, although it is not

necessary), let

�α = α − 〈α,mT
θ 〉〈mθ,m

T
θ 〉−1mθ,(2.16)

�βα = α − 〈α,mT
θ 〉〈β,mT

θ 〉−1β.(2.17)

PROPOSITION 2.4. (i) The linear transformation α → α1 is an orthogonal
projection in L parallel to functions which are constant in y.

(ii) The linear transformation �βθ
(and therefore �) is a projection. It projects

parallel to βθ on a subspace of functions orthogonal to mθ . In particular � is an
orthogonal projection parallel to mθ .

(iii) Adjoint projectors �∗
βθ

(and therefore �∗) project parallel to mθ . For any
two vector functions β,λ,

�∗
β�∗

λ = �∗
β.(2.18)
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We can therefore say that under the regularity conditions that guarantee
the validity of the expansions at (2.8), (2.11) and (2.13), the substitution of
the M-estimatorθ̃ in ξn(α; θ) for θ is asymptotically equivalent to projecting
ξn(α; θ) parallel to the linear functionalmθ generated bẏµθ andψf . Similarly,
the substitution of the MLÊθ in ξn(α; θ) for θ is asymptotically equivalent to
projectingξn(α; θ) orthogonal tomθ . Moreover, the property (2.18) shows that the
leading terms ofξn(α; θ̃1) andξn(α; θ̃2), for any two estimators̃θ1, θ̃2 admitting
the asymptotic linear representation (2.11), are in one-to-one correspondence with
each other. Even though one of the estimators may be asymptotically more efficient
than the other, (2.18) shows that the stocks of test statistics based on each of these
processes are asymptotically the same. Therefore the inference based on either
ξn(α; θ̃1) or ξn(α; θ̃2) will be asymptotically indistinguishable.

We end this section by outlining the proofs for Propositions 2.2 and 2.4.
Throughout,εi stands forεi(θ), 1≤ i ≤ n.

2.4. Some proofs.

SKETCH OF THE PROOF OFPROPOSITION 2.1. We shall sketch details
only for part (ii), while those for part (i) are similar and simpler. Leti(v) =
µ(Xi, θ + n−1/2v) − µ(Xi, θ). Rewrite

ξn(α; θ + n−1/2v) − ξn(α; θ) − n−1
n∑

i=1

ηiIB(Xi)µ̇
T
θ (Xi)ϕ

′(εi)v

= n−1
n∑

i=1

ηiIB(Xi)
[
ϕ
(
εi + i(v)

)− ϕ(εi) − iϕ
′(εi)

]

+ n−1/2
n∑

i=1

ηiIB(Xi)[i(v) − µ̇T
θ (Xi) n−1/2v]ϕ′(εi).

The condition (2.4) implies that for everyε > 0, ∃Nε < ∞ such that with
probability at least 1− ε the following holds for alln > Nε :

E

{
sup

‖v‖≤k

n∑
i=1

|i(v) − n−1/2µ̇T
θ (Xi)v|2

}
→ 0, sup

1≤i≤n;‖v‖≤k

|i(v)| = op(1).

This fact and (2.5) imply the conclusion (ii) in a routine fashion.�

Before proving the next proposition, we recall from Hájek (1972) that (1.2)
implies the mean-square differentiability off 1/2:

f 1/2(y + δ) − f 1/2(y)

f 1/2(y)
= 1

2

f ′

f
(y)δ + ρf (y; δ),∫

ρ2
f (y; δ) dF (y) = o(δ2), δ → 0.
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This fact is used implicitly in the following proof and throughout the discussion in
the paper without mentioning it explicitly.

PROOF OF PROPOSITION 2.2. Recallα(x, y) = γ (x)ϕ(y). Rewrite ξn =
ξno + ξ∗

n , where

ξno(α;ϑ) := n−1/2
n∑

i=1

γ (Xi)
[
ϕ
(
εi(ϑ)

)− Eθ

[
ϕ
(
εi(ϑ)

)∣∣Xi

]]
,

ξ∗
n (α;ϑ) := n−1/2

n∑
i=1

γ (Xi)
[
Eθ

[
ϕ
(
εi(ϑ)

)∣∣Xi

]− Eθ

[
ϕ
(
εi(θ)

)]]
.

Note thatξno(α; θ) = ξn(α; θ).
To prove Proposition 2.2 it thus suffices to show that for every 0< k < ∞,

sup
‖v‖≤k

|ξno(α; θ + n−1/2v) − ξno(α; θ)| = op(1),(2.19)

sup
‖v‖≤k

|ξ∗
n (α; θ + n−1/2v) − mT (α; θ)n−1/2u| = op(1).(2.20)

But (2.19) will follow from the equicontinuity condition of the processξno(α; ·):
sup

‖ϑ−θ‖≤ε

|ξno(α;ϑ) − ξno(α; θ)| = op(1),

asn → ∞ andε → 0. This in turn follows from the argument below.
A ϕ ∈ � may be written asϕ = ϕ1 − ϕ2, where nondecreasingϕ1, ϕ2 both

satisfy (2.7). LetIi := sign(γ (Xi)), i = 1, . . . , n. Then for anyδ > 0 and for all
i = 1, . . . , n,

γ (Xi)[ϕ1(Yi −  − δIi) − ϕ2(Yi −  + δIi)]
≤ γ (Xi)ϕ(Yi − )

≤ γ (Xi)[ϕ1(Yi −  + δIi) − ϕ2(Yi −  − δIi)].
The expected value of the square of the above upper and lower bounds is bounded
from above by ∫

γ 2dH 2ν2(2δ).

Therefore the bracketing entropy (log of covering number) does not exceed

logν−1
(
t
/[

2
∫

γ 2dH

]1/2)
,

and hence is integrable by the definition ofν. Therefore, by a result in van der
Vaart and Wellner (1996, Sections 2.5.2, 2.7), (2.19) follows.
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To prove (2.20), let, as above,i(v) = µ(Xi, θ +n−1/2v)−µ(Xi, θ). Then one
has

ξ∗
n (α; θ + n−1/2v)

= n−1/2
n∑

i=1

γ (Xi)

∫
ϕ(y)

[
f
(
y + i(v)

)− f (y)
]
dy

= n−1
n∑

i=1

γ (Xi)µ̇
T (Xi)

∫
ϕ(y)ψf (y) dF (y)v + ρn(v)

= 〈α,mT
θ 〉v + ρ∗

n(v),

where under the assumed conditions and using an argument similar to one used, for
example, in Hájek and Sǐdák (1967) one can show that sup‖v‖≤k |ρ∗

n(v)| = op(1).
�

PROOF OFPROPOSITION2.4. Let us prove part (iii) only. We need to show
that�∗

β�∗
λS(α) = �∗

βS(α). We have

�∗
β�∗

λS(α) = �∗
βS(α) − �∗

β〈α,mT
θ 〉〈λ,mT

θ 〉−1S(λ).

But, by definition,

�∗
β〈α,mT

θ 〉 = 〈α,mT
θ 〉 − 〈α,mT

θ 〉〈β,mT
θ 〉−1〈β,mT

θ 〉 = 0.

Hence the last claim. It implies that�∗
β�∗

β = �∗
β , that is,�∗

β is a projection. The
remainder of the proof is obvious.�

3. Limiting process and asymptotic power.

3.1. The limiting process. Let b(x, y), x ∈ R
p, y ∈ R, be a Brownian motion

with covariance functionH(x ∧ x′)F (y ∧ y′), wherex ∧ x′ is the vector with
coordinates min(xi, x

′
i), i = 1, . . . , p. In the discussion below allγ ’s and ϕ’s

are in L2(R
p,H) and L2(R,F ), respectively, that is,(γ,ϕ) ∈ L. Define, for

α(x, y) = γ (x)ϕ(y), the function parametric Brownian motion

b(α) := b(γ,ϕ) :=
∫

Rp+1
γ (x)ϕ(y) b(dx, dy).

Clearly the class{b(α) :α ∈ L} is a family of zero mean Gaussian random variables
with the covariance given by

Eb(α1)b(α2) = 〈α1, α2〉.
Let

ξ(α) := b(γ,ϕ) − 〈ϕ,1〉b(γ,1) = b(γ,ϕ1) = b(α1).
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The family{ξ(α) :α ∈ L} is also a family of zero mean Gaussian random variables
with the covariance

Eξ(α1)ξ(α2) = 〈γ1, γ2〉[〈ϕ1, ϕ2〉 − 〈ϕ1,1〉〈ϕ2,1〉] = 〈α1
1, α

1
2〉.

Thus,ξ(α) is a function parametric Kiefer process inα and simply a Brownian
motion inα1. Finally, define

ξ̂ (α) := ξ(α) − 〈α,mT
θ 〉〈mθ,m

T
θ 〉−1ξ(mθ ) = �ξ(α).

Since 〈ψf ,1〉 = ∫
f ′(y) dy = 0, we haveξ(mθ ) = b(mθ). Hence, ξ̂ can be

rewritten as

ξ̂ (α) = b(α1) − 〈α1,mT
θ 〉〈mθ,m

T
θ 〉−1b(mθ) = �b(α1) = b(�α1).(3.1)

It seems easier to use below the notationα⊥ for �α1:

α⊥ = α1 − 〈α1,mθ 〉〈mθ,m
T
θ 〉−1mθ,

which is the part ofα orthogonal to 1 andmθ .
Here and everywhere below we will consider only the case of orthogonal

projectors, which asymptotically correspond to the substitution of the MLE. As
our comment after Proposition 2.4 shows, we can do this without loss of generality.

In view of (2.14), the reason for introducing the processesξ andξ̂ is clear and
is given by the following statement.

PROPOSITION 3.1. Suppose that the conclusion (2.14) holds. Then the
following holds for every α ∈ L:
Under H0

ξn(α)
d→ ξ(α), ξ̂n(α)

d→ ξ̂ (α).(3.2)

Under the alternatives (1.3)

ξn(α)
d→ ξ(α) + 〈α,a〉,

(3.3)
ξ̂n(α)

d→ ξ̂ (α) + 〈α,a〉 − 〈α,mT
θ 〉〈mθ,m

T
θ 〉−1〈mθ,a〉.

Because bothξn and ξ̂n are linear inα, the above proposition is equivalent to
the weak convergence of any finite-dimensional distributions of these processes.
Hence the possible weak limits of these processes are uniquely determined.

From (3.2) and (3.3) we see that the asymptotic shift ofξ̂n under the
alternatives (1.3) and (1.4) is simply〈α,a〉, if α ⊥ mθ , that is, if eitherγ ⊥ µ̇θ

or ϕ ⊥ ψf .
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3.2. The case of γ ⊥ µ̇θ . In this case there exists an optimal choice ofγ which
will maximize the asymptotic “signal to noise” ratio of ξ̂n(γ,ϕ) uniformly in a,
that is, uniformly in alternatives (1.3), where

 := |〈α,a〉|
‖α‖ = |〈γ,1〉|

‖γ ‖
|〈ϕ,a〉|

‖ϕ‖ .

Here, too, we use the notation 1 for the function inx identically equal to 1. Clearly,
theγ that maximizes, uniformly in a, is theγ that maximizes the ratio

|〈γ,1〉|
‖γ ‖ ,(3.4)

subject to the condition thatγ ⊥ µ̇θ , and is given by

1⊥ := 1−
∫

µ̇T
θ dH C−1

θ µ̇θ = 1− 〈µ̇T
θ ,1〉C−1

θ µ̇θ .

On the other hand, theγ that maximizes or (3.4) among allγ ∈ L2(R
p,H) is 1.

Then 1⊥ is simply part of the identity function 1 orthogonal toµ̇θ . It thus follows
that 1⊥(x) ≡ 0 whenµ(x,ϑ) is linear inϑ and has a nonzero intercept.

Now consider̂ξ(1⊥, ϕ) as a process inϕ, assuming that‖1⊥‖ �= 0. Since 1⊥ · ϕ
is orthogonal toµ̇θ , from (3.1) we obtain

ξ̂ (1⊥, ϕ) = ξ(1⊥, ϕ) = b(1⊥, ϕ1).

It thus follows that̂ξ(1⊥, ϕ) is a Brownian bridge inϕ. If, for example, we choose
ϕ(y) = ϕt (y) = I(y ≤ F−1(t)), 0 ≤ t ≤ 1, then along the family of functions
{ϕt (·),0 ≤ t ≤ 1}, the process

u(t) := ξ̂

(
1⊥

‖1⊥‖ , ϕt

)
is a standard Brownian bridge withEu(s)u(t) = s ∧ t − st .

A prelimiting form of the processu is

ûn(t) = ξ̂n

(
1⊥,n

‖1⊥,n‖n

,ϕt

)

= n−1/2
n∑

i=1

1⊥,n(Xi)

‖1⊥,n‖n

[I{εi(θ̂ ) ≤ F−1(t)} − t],

1⊥,n(x) := [
1− 〈µ̇T

θ̂
,1〉nC−1

θ̂ ,n
µ̇

θ̂
(x)

]
, x ∈ R

p,

where

C
θ̂,n

:=
∫

µ̇
θ̂
µ̇T

θ̂
dHn,

〈µ̇T
θ ,1〉n =

∫
µ̇T

θ̂
dHn,

‖1⊥,n‖n := (
1− 〈µ̇T

θ̂
,1〉nC−1

θ̂ ,n
〈µ̇

θ̂
,1〉n)1/2
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and whereHn is the empirical d.f. of the design variables{Xi,1 ≤ i ≤ n}. One can
verify, using, for example, the results from Koul (1996), that under the present
setup, ûn converges weakly to a Brownian bridge. Hence, for instance, tests
based on

sup
t

|ûn(t)| or
∫ 1

0
|ûn(t)|2 dt

will have asymptotically the well-known Kolmogorov and Cramér–von Mises
distributions, respectively.

Now, suppose that the design d.f.H and the regression functionµθ are such
that

〈µ̇θ ,1〉 =
∫

µ̇θ dH = 0.(3.5)

Then 1⊥ ≡ 1, andûn ≡ Ŵ1(F
−1), the ordinary empirical process of the residuals

whose weak convergence to Brownian bridge can also be derived from Koul (1996)
under the present setup.

There is, however, a drawback in the choice ofγ ⊥ µ̇θ : although, as we see, this
choice ofγ makes the asymptotic behavior ofξ̂n in ϕ simple, the tests based on
the procesŝξn(‖1⊥‖−11⊥, ϕ) will in general have some loss of asymptotic power.
Consider for the moment the problem of testingH0 vs. the alternative (1.3) for
givena whenθ is known. Then the shift function that will appear in the asymptotic
power for ξn(γ,ϕ) is |〈γ,1〉〈ϕ,a〉|/‖γ ‖‖ϕ‖. This will attain its maximum inγ
when γ ≡ 1. However, for the procesŝξn(1⊥, ϕ) the corresponding shift is
uniformly smaller in absolute value:∣∣∣∣〈1⊥,1〉

‖1⊥‖ 〈ϕ,a〉
∣∣∣∣< |〈ϕ,a〉|

and, in particular, the statistiĉξn(1⊥, a) will have smaller asymptotic power
against the alternativea than the statisticξn(1, a). The actual loss may be quite
small, depending on the quantity

‖1⊥‖2 = 1− 〈µ̇T
θ ,1〉C−1

θ 〈µ̇T
θ ,1〉,

and may actually equal 0, if (3.5) holds. But, in general, there is some loss.
We shall see in Section 6 that the choice ofγ ⊥ µ̇θ will become most natural

when fitting a regression model. However, one should not think that the loss of
power associated with this choice in testing the hypothesisH0 is unavoidable due
to the estimation of the nuisance parameters. On the contrary, estimation of the
parameter may lead to anincrease of power against “most” alternatives. We will
see this better in the next section.

Finally, we remark that the geometric picture, similar to the one depicted by
Propositions 2.4 and 3.1 and also in this and the next sections, was developed in the
context of the parametric empirical processes in Khmaladze (1979). See also the
monograph by Bickel, Klaassen, Ritov and Wellner (1998) describing the related
geometry in connection with efficient and adaptive estimation in semiparametric
models.
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3.3. The case of ϕ ⊥ ψf . This case is important for two reasons. The first is
that in this case again̂ξ(γ,ϕ) = ξ(γ,ϕ), that is, the asymptotic behavior of the
processeŝξn(α) andξn(α) underH0 is the same. The second is that if we assume
that a of (1.3) also satisfies (1.4), then there is in general a gain in the signal to
noise ratio if we chooseϕ orthogonal toψf . Indeed, letϕ⊥ denote the part ofϕ
orthogonal toψf and 1. The signal to noise ratio forξ̂n(γ,ϕ⊥) is asymptotically
larger than that forξn(γ,ϕ), as is seen from the following elementary argument:

〈γ,1〉
‖γ ‖

〈ϕ,a〉
‖ϕ1‖ = 〈γ,1〉

‖γ ‖
〈ϕ⊥, a〉
‖ϕ1‖ ≤ 〈γ,1〉

‖γ ‖
〈ϕ⊥, a〉
‖ϕ⊥‖ ,

because‖ϕ1‖ ≥ ‖ϕ⊥‖.
It is also obvious that the optimal choice ofγ that maximizes uniformly in a

is γ ≡ 1. Therefore, consider the process

ξ̂ (1, ϕ) = ξ(1, ϕ) = b(1, ϕ)(3.6)

as a process inϕ, for ϕ satisfyingϕ ⊥ ψf andϕ ⊥ 1. From (3.6) it is clear that if
we had a family of functions{ϕt ,0 ≤ t ≤ 1} from L2(R,F ) such that

〈ϕt ,1〉 = 〈ϕt ,ψf 〉 = 0,(3.7)

〈ϕt, ϕt 〉 = t, 0 ≤ t ≤ 1,(3.8)

〈ϕt2 − ϕt1, ϕt1〉 = 0, t2 ≥ t1,(3.9)

then the processξ(1, ϕt ), 0 ≤ t ≤ 1, would be a Brownian motion in 0≤ t ≤ 1.
Hence, all tests based on

n−1/2
n∑

i=1

ϕt

(
εi(θ̂ )

)
, 0≤ t ≤ 1,

will be ADF.
It is straightforward to construct a family of functions satisfying (3.8) and (3.9).

For example, take any functionϕ from L2(R,F ) such thatL(y) := ∫ y
−∞ ϕ2dF is

a continuous distribution function onR, andϕ2f > 0, a.e. Then the family

ϕt (y) := ϕ(y)I{y ≤ L−1(t)},
L−1(t) := inf{y ∈ R :L(y) ≥ t}, 0≤ t ≤ 1,

(3.10)

satisfies these conditions. However, finding a family{ϕt,0 ≤ t ≤ 1} that satis-
fies (3.7) as well becomes far less straightforward. It is here we will exploit the
“martingale transform” ideas of Khmaladze (1981, 1993).
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4. A martingale transform. Let h(y) := (1,ψf (y))T be an extended score
function of the error distribution and set

�t :=
∫
z≥y

h(z)hT (z) dF (z) =
1− F(y) −f (y)

−f (y)

∫ ∞
y

ψ2
f (z) dF (z)

 ,

t = F(y).

The matrix�t will be assumed to be nonsingular for every 0≤ t < 1. This, indeed,
is true if and only if 1 andψf (y) are linearly independent on the sety > c for all
sufficiently largec. This, in turn, is true ifψf is not a constant in the right tail of

the support off . Then the unique inverse�−1
t exists for every 0≤ t < 1. [The case

when�t is not uniquely invertible does not create, however, much of a problem
for the transformation (4.1), as is shown in Tsigroshvili (1998).]

Now, observe that the condition (3.7) above is equivalent to requiring thatϕ be
orthogonal to the vectorh. For a functionϕ ∈ L2(R,F ), consider the transforma-
tion

Lϕ(y) := ϕ(y) −
∫
z≤y

ϕ(z)hT (z)�−1
F(z) dF (z)h(y), y ∈ R.(4.1)

Let, for a(γ,ϕ) ∈ L,

w(α) := ξ̂ (γ ,Lϕ), α = γ · ϕ.

We have the following:

PROPOSITION 4.1. Let H := {ϕ ∈ L2(R,F ) : 〈ϕ,h〉 = 0}. The transforma-
tion L of (4.1) is a norm preserving transformation from L2(R,F ) to H :

Lϕ ⊥ h, ‖Lϕ‖ = ‖ϕ‖.
Consequently the process w(α) is a ( function parametric) Brownian motion on L.

A consequence of this proposition is the following corollary:

COROLLARY 4.1. Suppose {ϕt ,0 ≤ t ≤ 1} is a family of functions satisfying
the conditions (3.8) and (3.9). Then {Lϕt ,0 ≤ t ≤ 1} is a family of functions
satisfying all three conditions (3.7)–(3.9).Consequently, {ξ̂ (γ ,Lϕt ),0 ≤ t ≤ 1},
for any fixed γ with ‖γ ‖ = 1, is a standard Brownian motion in t .

Now, if {ξ̂n(γ,Lϕt),0 ≤ t ≤ 1} converges weakly to{ξ̂ (γ ,Lϕt ),0 ≤ t ≤ 1},
then tests based on any continuous functionals ofξ̂n(γ,Lϕt) will be ADF for
testing H0. Some general sufficient conditions for the weak convergence of
{ξ̂n(γ,ϕt),0 ≤ t ≤ 1} can be drawn from Proposition 6.2. Others can be inferred
from, for example, van der Vaart and Wellner (1996). In particular, these claims
hold for the family{ϕt ,0 ≤ t ≤ 1} given at (3.10).
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It is also important to note that the transformationL is free fromγ and, hence,
the statement concerning the asymptotic distribution of{ξ̂n(γ,Lϕt ),0 ≤ t ≤ 1} is
valid for anyγ ∈ L2(R

p,H).
Another consequence of Proposition 4.1 is worth formulating separately.

PROPOSITION 4.2. Let θ̃ be any estimator which satisfies (2.3) [and does
not necessarily have a linear representation (2.11)] and let ψf be a function of
bounded variation. If, additionally, (1.2)and (2.4) hold, then for every α = γ · ϕ
with γ ∈ L2(R

p,H) and ϕ ∈ �, under H0,

ξ̃n(γ,Lϕ)
d→ w(α),

while under alternatives (1.3),

ξ̃n(γ,Lϕ)
d→ w(α) + 〈Lα,a〉.

This proposition shows that although we used asymptotically linear representa-
tions (2.11) and (2.13) of̂θ and θ̃ to develop the previous theory, for the as-
ymptotic behavior of the transformed processesξ̂n(γ,Lϕ) and ξ̃n(γ,Lϕ) the
behavior ofθ̂ andθ̃ plays only a minor role.

It is instructive to consider informally a probabilistic connection between the
processeŝξ(γ,ϕt) and ξ̂ (γ ,Lϕt). Let us associate with{ξ̂ (γ , ϕt ),0 ≤ t ≤ 1} its
natural filtration{Ft ,0 ≤ t ≤ 1}, where eachσ -field is

F̂t = σ
{
ξ̂ (γ , ϕs), s ≤ t

}
, 0 ≤ t ≤ 1,

and consider the filtered process{ξ̂ (γ , ϕt), F̂t ,0 ≤ t ≤ 1}. This is in t a Gaussian
semimartingale and it can be shown that the process{ξ̂ (γ ,Lϕt), F̂t ,0 ≤ t ≤ 1}
is actually its martingale part. In other words, ifV denotes the Volterra operator
defined by the integral on the right-hand side of (4.1), then the identity

ξ̂ (γ , ϕt ) = ξ̂ (γ ,Vϕt ) + ξ̂ (γ ,Lϕt), 0 ≤ t ≤ 1,(4.2)

is simply the Doob–Meyer decomposition of the process{ξ̂ (γ , ϕt), F̂t ,0≤ t ≤ 1}.
Details of this decomposition can be found in Khmaladze (1993), where the

general construction of this form for a function-parametric process was introduced
and studied. The notion of Doob–Meyer decomposition for a semimartingale can
be found, for example, in Liptser and Shiryayev (1977).

REMARK 4.1. SinceLϕ is orthogonal to 1 and toψf , the equality (4.2) can
be rewritten in terms of the processb:

b(γ,ϕt) = b(γ,Vϕt ) + b(γ,Lϕt).(4.3)

To some extent this is an unusual equation because both processesb(γ,ϕt)

and b(γ,Lϕt), taken separately, are Brownian motions. However, the nature
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of (4.3) can be more clearly understood as follows: let{F b
t ,0 ≤ t ≤ 1} be the

natural filtration of the processb(γ,ϕt) in t and let us enrich it with theσ -field
σ {b(γ,h)}. Then the process{b(γ,ϕt),F

b
t ∨ σ {b(γ,h)},0≤ t ≤ 1} is a Gaussian

semimartingale (and not a martingale) and (4.3) is its Doob–Meyer decomposition.
See, for example, Liptser and Shiryayev (1989) for more details on this.

REMARK 4.2. Another consequence of the orthogonality ofLϕt to 1 and
to ψf is this: although the processξ(γ,ϕt ) with ϕt chosen according to (3.10) with
a nonconstantϕ is not a Brownian bridge (because in this case‖ϕ1

t ‖2 < ‖ϕt‖2 = t)
and hence even the processξn(γ,ϕt ) with known value of parameter and statistics
based on it may have an inconvenient limiting distribution, the transformed process
ξ(γ,Lϕt ) is thestandard Brownian motion for any such choice ofϕt .

We shall now describe an analog of the above transformation suitable for testing
the hypothesisHσ :G(y) = F(y/σ ) ∀y ∈ R and for someσ > 0. Let σ̂ be an
estimate ofσ based on{(Xi, Yi),1 ≤ i ≤ n} satisfying

‖n1/2(σ̂ − σ)‖ = Op(1).(4.4)

The analog of the processesξ̂n here is

ξ̂nσ (γ,ϕ) := n−1/2
n∑

i=1

γ (Xi)

[
ϕ

(
Yi − µ(Xi, θ̂)

σ̂

)
−
∫

ϕ dF

]
.

To transform its weak limit̂ξσ underHσ , again define an extended score function
of F((y − µ)/σ ) with respect to both parametersµ and σ , which is hσ (y) =
(1,ψf µ(y/σ ),ψf σ (y/σ ))T , where obviously

ψf µ

(
y

σ

)
= 1

σ
ψf

(
y

σ

)
,

ψf σ

(
y

σ

)
= 1

σ

[
1+ y

σ
ψf

(
y

σ

)]
.

With notation

q(t) = 1

σ
f

(
y

σ

)
,

qσ (t) = y

σ 2f

(
y

σ

)
, t = F

(
y

σ

)
,

the analog of the�t matrix is

�σ,t :=



1− t −q(t) −qσ (t)

−q(t)

∫ 1

t
q̇2(s) ds

∫ 1

t
q̇(s)q̇σ (s) ds

−qσ (t)

∫ 1

t
q̇(s)q̇σ (s) ds

∫ 1

t
q̇2
σ (s) ds

 .
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Again, assume that�−1
σ,t exists for all 0≤ t < 1. Then, as above, let

Lσϕ(y) := ϕ(y) −
∫ y

−∞
ϕ(z)hT

σ (z)�−1
σ,F (z) dF (z)hσ(y), y ∈ R.(4.5)

One can show thatLσ is a norm preserving transformation fromL2(R,F ) to the
subspaceHσ = {ϕ ∈ L2(R,F ) : 〈ϕ,hσ 〉 = 0} and hencêξ(γ,Lσϕ) is a Brownian
motion onL.

PROOF OF PROPOSITION 4.1. Though we could refer to the proof of
Proposition 6.1, for presentational purposes it seems more convenient to give
it here separately. Let, within this proof only,ψ(t) := ϕ(F−1(t)) and g(t) =
h(F−1(t)) for 0 ≤ t ≤ 1. Then∫

Lϕ(y)h(y)T dF (y)

=
∫ 1

0
ψ(t)g(t)T dt −

∫ 1

0

∫ t

0
ψ(s)g(s)T �−1

s ds g(t)gT (t) dt

=
∫ 1

0
ψ(t)g(t)T dt −

∫ 1

0
ψ(s)g(s)T �−1

s

∫ 1

s
g(t)gT (t) dt ds

=
∫ 1

0
ψ(t)g(t)T dt −

∫ 1

0
ψ(s)g(s)T ds

= 0.

For the technical justification of the interchange of integration in the second
equation above see the proof of Proposition 6.1 below or Khmaladze (1993).
Similarly, we also have∫

[Lϕ]2 dF =
∫ 1

0
ψ2(s) ds − 2

∫ 1

0
ψ(s)gT (s)�−1

s

∫ 1

s
ψ(t)g(t) ds dt

+
∫ 1

0

∫ 1

0
ψ(s)gT (s)�−1

s �s∨t�uh(t)ψ(t) ds dt

=
∫

ϕ2dF. �

PROOF OF PROPOSITION 4.2. If ψf is a function of bounded variation
and ϕ ∈ �, then Lϕ ∈ � and therefore we can use (2.8). Together with the
orthogonality property Lϕ ⊥ ψf , which implies that〈Lα,mθ 〉 = 0, we obtain
that

ξ̂n(Lα) = ξn(Lα) + op(1)

and the rest follows from Proposition 4.1, the CLT forξn(Lα) and a standard
contiguity argument. �



ADF GOODNESS-OF-FIT TESTS 1015

5. Some explicit formulas and remarks.

5.1. Transformation of the processes Ŵ1 and ξ̂n(1, ϕt ). In this section we
shall apply the above transformation to residual empirical processes and give
computational formulae of the transformed processes for testingH0 andHσ .

Recall from the previous sections that, for 0≤ t ≤ 1,

Û1(t) := Ŵ1
(
F−1(t)

)= n−1/2
n∑

i=1

[I{εi(θ̂ ) ≤ F−1(t)} − t](5.1)

and

ξ̂n(1, ϕt ) = n−1/2
n∑

i=1

[
ϕ
(
εi(θ̂ )

)
I{εi(θ̂ ) ≤ F−1(t)} −

∫
y≤F−1(t)

ϕ(y) dF (y)

]
,(5.2)

where in (5.2)ϕt (y) = ϕ(y)I(y ≤ F−1(t)). Note thatÛ1(t) also corresponds to the
ξ̂n(1, ϕt ), with ϕt (y) = I{y ≤ F−1(t)}. As another practically useful consequence
of orthogonalityof Lϕ to 1, we have the following equality:

ξ̂n(γ,Lϕ) = n−1/2
n∑

i=1

γ (Xi)Lϕ
(
εi(θ̂)

)+ op(1).

It means that we only need to construct transformations of random summands
in (5.1) and (5.2). Introduce vector-functions

G(z) =
∫
y≤z

�−1
F(y)h(y) dF (y),

J (z) =
∫
y≤z

ϕ(y)�−1
F(y)h(y) dF (y), z ∈ R.

Then the transformationL of (4.1) applied toÛ1 of (5.1) gives

ŵn1(t) = n−1/2
n∑

P i=1

[
I{εi(θ̂) ≤ z} − [

1,ψf

(
εi(θ̂)

)]
G
(
z ∧ εi(θ̂ )

)]
,

(5.3)
t = F(z),

while the transformation of (5.2) is

ŵn2(t) = n−1/2
n∑

i=1

[
ϕ
(
εi(θ̂)

)
I{εi(θ̂) ≤ z} − [

1,ψf

(
εi(θ̂)

)]
J
(
z ∧ εi(θ̂)

)]
,

(5.4)
t = F(z).

Similarly, to describe ADF tests forHσ based on the analog of̂w1, let now
r̂i ≡ εi(θ̂ )/σ̂ , and let us consider the processes

n−1/2
n∑

i=1

[
I(r̂i ≤ z) − F(z)

]
, n−1/2

n∑
i=1

[
ϕ(r̂i)I{r̂i ≤ z} −

∫
y≤z

ϕ(y) dF (y)

]
,

t = F(z), z ∈ R.
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Then arguing as above, we are led to the following respective computational
formulae:

wn1(t) = n−1/2
n∑

i=1

[
I{r̂i ≤ z} − hT

σ̂

(
εi(θ̂ )

)
Gσ̂

(
z ∧ εi(θ̂)

)]
,

wn2(t) = n−1/2
n∑

i=1

[
ϕ(r̂i)I{r̂i ≤ z} − hT

σ̂

(
εi(θ̂ )

)
Jσ̂

(
z ∧ εi(θ̂)

)]
,

t = F(z), z ∈ R,

wherehσ (y) is as in the previous section, whileGσ andJσ are defined as withh
replaced byhσ and� replaced by�σ .

These formulae may be used in the computation of any test statistic based on
continuous functionals ofwn1, wn2. From the theory developed above, if these
functionals are invariant under the usual time transformationt = F(y), they will
be ADF!

5.2. Nonrandom design. We now state some analogous facts for the case of a
nonrandom design where now the design vectors are denoted byxni . An analog of
the condition (2.4) here is as follows: There exist aq-vectorµ̇ on R

p × � and a
q × q positive definite symmetric matrix� such that

�n := n−1∑n
i=1 µ̇(xni, θ)µ̇T (xni, θ) → �,

max1≤i≤n n−1/2‖µ̇(xni, θ)‖ = o(1),(5.5)

sup1≤i≤n,n1/2‖ϑ−θ‖≤k
n1/2

∣∣µ(xni, ϑ) − µ(xni, θ) − (ϑ − θ)T µ̇(xni, θ)
∣∣= o(1).

Under these conditions on the regression function and the rest of the conditions as
before, the analogs of the above results withµ(Xi, ·) replaced byµ(xni, ·) remain
valid in the present case. Using the results from Koul (1996), it is possible to obtain
the analog of the expansions (2.14) and (2.15) under more general conditions on
the functionµ than given in (5.5), but we refrain from doing this for the sake of
not obscuring main ideas and for the sake of brevity.

A similar remark applies to the linear regression model. In particular, in the
case of nonrandom and general designs, but having then × p design matrixX of
rank p, just replacen−1/2Xi in the above formulas by(X′X)−1/2xni , 1 ≤ i ≤ n,
everywhere. Then tests based on the analogues ofŵn1 andŵn2 are ADF forH0,
provided max1≤i≤n n1/2‖(X′X)−1/2xni‖ = O(1).

5.3. Autoregressive time series. Because of the close connection between
regression and autoregressive models, analogues of the above ADF tests pertaining
to the error distribution are easy to see in this case. Accordingly, supposeYi ,
i ∈ Z := {0,±1,±2, . . . }, is now an observable stationary and ergodic time series.
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Let µ be as before satisfying (1.1) withXi := (Yi−1, . . . , Yi−p)T , wherep ≥ 1 is
a known integer. Then the above tests with thisXi will be again ADF for testing
H0. A rigorous proof of this claim is similar to that appearing above, with the
proviso that one uses the ergodic theorem in place of the law of the large numbers,
and the CLT for martingale differences in place of the Lindeberg–Feller CLT. Note
that nowH is the d.f. of the random vectorX0.

In the case of a stationary and ergodiclinear AR(p) model, that is, when
µ(x,ϑ) = x′ϑ , if the null error d.f.F has mean zero and finite variance, then
EX0 = 0, that is, (3.5) is automatically satisfied, and hence tests based on the
analog ofÛ1 of (5.1) will be a priori ADF forH0. This was first proved in Boldin
(1982), assumingF has bounded second derivative, and in Koul (1991) when
F has only a uniformly continuous density. Thus, in linear autoregressive models
the above transformation is useful only when there is a nonzero mean present in
these models.

6. Fitting a regression model. In this section we shall develop some tests
based on innovation processes that will be asymptotically distribution free for
fitting a parametric model to the regression functionm(x) := E(Y |X = x).
Actually we consider a somewhat more general problem where we fit a parametric
model to a general regression function defined as follows.

For a real-valued measurable functionϕ on R, let Fϕ denote a class of
distribution functionsF onR such thatϕ ∈ L2(R,F ) and

∫ |ϕ(y + t)|F(dy) < ∞
for all |t| ≤ k < ∞. Let mϕ(x) be defined by the relation

E
[
ϕ
(
Y − mϕ(x)

)∣∣X = x
]= 0.(6.1)

Note that ifϕ(y) = y, thenmϕ(x) = m(x), while if ϕ(y) ≡ I{y > 0}− (1−α), for
an 0< α < 1, thenmϕ(x) is theαth quantile of the conditional distribution ofY ,
given X = x. The choice ofϕ is up to the practitioner. The d.f.F of the error
Y − mϕ(X) will be assumed to be an unknown member ofFϕ for a givenϕ.

The problem of testingH̃0 is now extended to testing the hypothesis that
Hϕ :mϕ(x) = µ(x, θ) for someθ ∈ � against the alternatives described in (1.6).
Consider again the function-parametric regression process

ξn(γ,ϕ;ϑ) := n−1/2
n∑

i=1

γ (Xi)ϕ
(
Yi − µ(Xi,ϑ)

)
.

Note that because of (6.1), underHϕ Eξn(γ,ϕ; θ) = 0.
Let θ̃ be an M-estimator ofθ satisfying (2.9) corresponding toηϑ ≡ µ̇ϑ .

Suppose, additionally,F ∈ Fϕ is such that the functiont → ∫
ϕ(y + t)F (dy),

t ∈ R, is strictly monotonic and differentiable in a neighborhood of 0. Now, if
we consider problems whereϕ(y) is differentiable, such asϕ(y) = y, which is a
most interesting case, then we need to assume regularity condition (2.4) on the
regression functionµ(·, ϑ). While in the case of a nondifferentiableϕ, as in, for
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example,ϕ(y) = I{y > 0} − (1− α), we need to assume as well thatF , although
unknown, satisfies also (1.2). In both cases, under (2.4) and (2.10)θ̃ satisfies (2.11)
and we obtain

ξ̃n(γ,ϕ) = ξn(γ,ϕ) − 〈γ, µ̇T
θ 〉C−1

θ ξn(µ̇θ , ϕ) + op(1)

= ξn(γ⊥, ϕ) + op(1),

where

γ⊥(x) = γ (x) − 〈γ, µ̇T
θ 〉C−1

θ µ̇θ (x), x ∈ R
p,

is the part ofγ orthogonal toµ̇θ and no transformation ofϕ is involved.
We emphasize that it is only for motivational purposes we are confining

attention here to M-estimators. As we shall see later, anyn1/2-consistent estimator
may be used to construct ADF tests forHϕ .

Now one can show that underHϕ , for eachγ,ϕ of the given type,

ξ̃n(γ,ϕ)
d→ b(γ⊥, ϕ),(6.2)

while under any sequence of alternatives (1.6),

ξ̃n(γ,ϕ)
d→ b(γ⊥, ϕ) + λ〈γ⊥, �θ 〉,

where λ is either 〈ϕ′,1〉 or −〈ϕ,ψf 〉 depending on whether we assume
(2.4) and (2.5) or (1.2).

As this last result shows, the asymptotic shift of the regression processξ̃n(γ,ϕ)

under the alternatives (1.6) is the linear functional of�θ defined by the functionγ⊥.
Therefore, to be able to detect all alternatives of the assumed type, we need to have
a substantial supply ofγ⊥, that is, we need to considerξ̃n(γ,ϕ) as a process inγ ,
and there is no need to varyϕ just in the same way as we had to varyϕ when
testing our previous hypothesisH0 and keepγ fixed. We do not try to choose in
any sense “optimal”ϕ because the result will depend onF , while we prefer to
work under the assumption that we do not know this d.f. Thus we can and will
assume thatϕ in the rest of this section is fixed.

From (6.2) we note that the limiting process as a function inγ is again a
projection of Brownian motion, but as a function inγ⊥, it is just a Brownian
motion.

Now we may have a convenient and customary way to parameteriseb(γ,ϕ) in
γ ∈ L2(R

p,H) to obtain processes with a standard and convenient distribution,
and if we had similar ways to do this in subspaces ofL2(R

p,H), we could have
the same convenient limiting processes in our problem. This, however, is not a
straightforward task, as we have said earlier, especially because these subspaces,
being orthogonal toµ̇θ , change from one regression function to another, and
may even well change for the same regression function along the changes in the
parameterθ .
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Nevertheless, we will see below that given a “convenient” indexing classG0 ⊂
L2(R

p,H), in the sense that{b(γ,ϕ), γ ∈ G0} forms a “convenient” asymptotic
process—say, we can find the distribution of statistics based on{b(γ,ϕ), γ ∈ G0}
easily, and so on—we can map it isometrically into the subspace of functions
orthogonal toµ̇θ . Thus, we obtain the process{b(γ,ϕ), γ ∈ G′

0}, whereG′
0 is the

image of this isometry, which on the one hand has exactly the same distribution
and therefore carries the same “convenience” as the process{b(γ,ϕ), γ ∈ G0}, and
on the other hand, is the limiting process forξ̃n(γ,ϕ) if we index it byγ ∈ G′

0.
To achieve this goal, first introduce the so called scanning family of measurable

subsetsA := {Az : z ∈ R} of R
p such thatAz ⊆ Az′ , for all z ≤ z′, H(A−∞) = 0,

H(A∞) = 1, andH(Az) is a strictly increasing absolutely continuous function
of z ∈ R.

To give examples, letXj denote thej th coordinate of thep-dimensional
design variableX, j = 1, . . . , p. Suppose that the marginal distribution ofX1 is
absolutely continuous. Then we can take the familyAz = {x ∈ R

p :x1 ≤ z} as a
scanning family. Or, if the sumX1 + · · · + Xp is absolutely continuous, then one
can take the family of half spacesAz = {x ∈ R

p :x1 + x2 + · · · + xp ≤ z}.
Now letBc denote the complement of the setB,

z(x) := inf{z :Az � x},
Cϑ,z :=

∫
Ac

z

µ̇ϑ(y)µ̇T
ϑ (y) dH(y), z ∈ R,

Tϑγ (x) =
∫
Az(x)

γ (y)µ̇T
ϑ (y)C−1

z(y) dH(y) µ̇ϑ(x), x ∈ R
p, ϑ ∈ �.

We shall often writeCz, T for Cθ,z, Tθ , respectively. Now, define the operator

Kγ (x) := γ (x) − T γ (x), x ∈ R
p.

PROPOSITION 6.1. Let G := {γ ∈ L2(R
p,H) : 〈γ, µ̇θ〉 = 0}. Assume Cz is

nonsingular for all −∞ < z < ∞. Then the transformation K is a norm
preserving transformation from L2(R

p,H) to G:

Kγ ⊥ µ̇θ , ‖Kγ ‖ = ‖γ ‖.
Consequently, for any fixed ϕ, the process w(γ,ϕ) = ξ̃ (Kγ,ϕ) is ( function
parametric) Brownian motion in γ .

Similarly to Proposition 4.2, the following corollary shows that much less is
required from an estimator̃θ than its asymptotic linearity. The random vectorZ

below can be thought of as the limit in distribution of
√

n(θ̃ − θ).

COROLLARY 6.1. Let ξ̃ be any process of the form

ξ̃ (γ , ϕ) = b(γ,ϕ) − 〈γ, µ̇T
θ 〉Z,
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where Z is a random vector (not necessarily Gaussian) in R
q . Then for any fixed

ϕ ∈ L2(R,F ), the process

w(γ,ϕ) = ξ̃ (Kγ,ϕ)

is Brownian motion in γ ∈ L2(R
p,H).

Now we shall, as an example, focus on the caseγ = IB , for B a Borel set inRp.
Then

KIB(x) = IB(x) −
∫
Az(x)

IB(y)µ̇T
θ (y)C−1

z(y) dH(y) µ̇θ(x).

In view of the above discussion, our transformation is the process

wn(B) := ξ̃n(KIB,ϕ)

= n−1/2
n∑

i=1

[
IB(Xi) −

∫
Az(Xi )

IB(y) µ̇T
θ (y)C−1

z(y) dH(y) µ̇θ(Xi)

]

× ϕ
(
Yi − µ(Xi, θ̃)

)
.

(6.3)

We do not consider in this paper the problem of weak convergence of transformed
processes{ξ̃n(γ,Lϕ),ϕ ∈ �0} or {ξ̃n(Kγ,ϕ), γ ∈ G0} to corresponding Brown-
ian motions for appropriate indexing classes�0 andG0 in full generality. Nev-
ertheless we shall now state a sufficient condition under which the process (6.3)
converges weakly to a set-parametric Brownian motion on the practically impor-
tant class of sets—a subclassB0 of all right closed rectangles inRp, that is,
B0 ⊂ {(−∞, v], v ∈ R

p}. Our assumption is the following:

There exists aτ > 0 such thatB ⊆ A1−τ for all B ∈ B0.(6.4)

This condition isnot necessary, but simplifies the proof substantially. See
Khmaladze (1993) for the version without this condition.

Let {w(B),B ∈ B0} be set-parametric Brownian motion onB0 with covariance
function

Ew(B)w(B ′) = cH(B ∩ B ′),

where, without loss of generality we can assume the constantc to be 1; compare
Remark 6.1.

The space in which we will consider weak convergence ofwn will be �∞(G0),
whereG0 = {IB(·),B ∈ B0} is equipped with theL2-norm. [See, e.g., page 34 in
van der Vaart and Wellner (1996).] Now, writeε̂i , ε̃i for εi(θ̂), εi(θ̃ ), respectively.
Also, letε denote a r.v. having the same distribution asε1(θ).
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PROPOSITION 6.2. Suppose regularity conditions (2.4) and (2.5) are satis-
fied. Suppose also Eϕ2(ε) = 1 and θ̃ is any estimator such that

√
n(θ̃ − θ) =

Op(1). If B0 is such that (6.4) is satisfied then, under Hϕ

wn
d→ w, in l∞(G0).

REMARK 6.1. In the definition (6.3) of the processwn we assumed that
Eϕ2(ε) = 1 without loss of generality. Indeed, we can always replaceϕ(ε̂i) by
ϕ(ε̂i)/σ̂ in wn, where σ̂ 2 = n−1∑n

i=1 ϕ2(ε̂i) is an estimator ofσ 2 = Eϕ2(ε).
Then it is obvious that the processes which incorporateϕ(ε̂i)/σ̂ and ϕ(ε̂i)/σ ,
respectively, will converge to each other, uniformly inB, in probability.

Since the kernel of the transformationT depends onθ , we will certainly need
to replace it with an estimator. It seems the simplest to use the same estimatorθ̃ as
is used inξ̃n, although it is not necessary and in principle any consistent estimator
can be used: small perturbation ofθ in Tθ will only slightly perturb the process
ξ̃n(Tθ γ,ϕ). To prove this latter statement formally, we need to complement (2.4)
by the following two mild assumptions.

Let

d2(ϑ1, ϑ2) := E
∥∥µ̇ϑ1(X) − µ̇ϑ2(X)

∥∥2
Eϕ2(ε̃), ε̃ := ε(θ̃ ), ϑ ∈ �,

ρ(δ) := sup
‖ϑ1−ϑ2‖≤δ

d(ϑ1, ϑ2), δ > 0.

Suppose thatEϕ2(ε) = 1, and that for someε > 0,

sup
‖ϑ1−ϑ2‖≤ε

∣∣∣∣∣1n
n∑

i=1

∥∥µ̇ϑ1(Xi) − µ̇ϑ2(Xi)
∥∥2 − d2(ϑ1, ϑ2)

∣∣∣∣∣= op(1),

(6.5)
asn → ∞,

∞∑
k=0

kρ(ε2−k) < ∞.(6.6)

Define the estimated tranformed process:

w̃n(B) := ξ̃n(IB,ϕ) − ξ̃n(Tθ̃ IB,ϕ).

We have the following statement.

PROPOSITION6.3. Let {IB,B ∈ B0} be any collection of indicator functions
such that B0 satisfies (6.4).Then under the assumptions (6.5)and (6.6),

sup
B∈B0

|w̃n(B) − wn(B)| = op(1).
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To prove this last proposition we will use the following lemma, which is of
independent interest. Let, for ac > 0,

Dn =
{

sup
‖ϑ1−ϑ2‖≤δ

1

n

n∑
i=1

∥∥µ̇ϑ1(Xi) − µ̇ϑ2(Xi)
∥∥2

ϕ2(ε̃i) ≤ (1+ c)d2(δ)

for all 0 < δ < c

}
.

LEMMA 6.1. Let {IA,A ∈ A′} be any collection of indicator functions. Then
under the assumptions (6.5)and (6.6),

P

(
sup

‖ϑ−θ‖≤ε

|ξ̃n(IAµ̇ϑ,ϕ) − ξn(IAµ̇θ , ϕ)| > x|Dn

)

≤ exp

{
−(x/2)C

∞∑
k=0

kρ(ε 2−k)

}
,

E

{
sup

‖ϑ−θ‖≤ε

|ξ̃n(IAµ̇ϑ,ϕ) − ξ̃n(IAµ̇θ , ϕ)|2|Dn

}

≤ C

∞∑
k=0

kρ(ε 2−k) → 0,

as ε → 0, where C is a positive universal constant.

Now we prove all three propositions and the lemma.

PROOF OF PROPOSITION 6.1. Fix ak < ∞ and considerγk := γ IAk
. We

shall first show that〈Kγk, µ̇
T
θ 〉 = 0. Note thaty ∈ Az(x) is equivalent tox ∈ Ac

z(y)

for almost allx, y with respect to the measureH . This fact, together with changing
the order of integration, yields

〈Kγk, µ̇
T
θ 〉

=
∫

Rp
γk(x)µ̇T

θ (x) dH(x)

−
∫

Rp

∫
Az(x)

γk(y)µ̇T
θ (y)C−1

z(y) dH(y)µ̇θ (x)µ̇T
θ (x) dH(x)

= 〈γk, µ̇
T
θ 〉 −

∫
Rp

γk(y) µ̇T
θ (y)C−1

z(y) dH(y)

∫
Ac

z(y)

µ̇θ (x)µ̇T
θ (x) dH(x)

= 〈γk, µ̇
T
θ 〉 − 〈γk, µ̇

T
θ 〉

= 0.
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Now we shall show that

〈Kγk,Kγk〉 = 〈γk, γk〉.(6.7)

Using the notation

ρT
k (z) :=

∫
Az

γk(y)µ̇T
θ (y)C−1

z(y) dH(y), z ∈ R,

rewrite

〈Kγk,Kγk〉
= 〈γk, γk〉 − 2

∫
Rp

ρT
k (z(x))µ̇θ (x)γ (x) dH(x)

+
∫

Rp
ρT

k (z(x))µ̇θ (x)µ̇T
θ (x)ρ(z(x)) dH(x)

= 〈γk, γk〉 − 2
∫
z≤z0

ρT
k (z)Cz dρk(z) +

∫ ∞
−∞

ρT
k (z) dCzρk(z)

= 〈γk, γk〉 − ρT
k (z)Czρk(z)

∣∣∞−∞.

Becauseγk = γ IAk
, the functionρk remains bounded asz → ∞ and hence the

substitution in the above equals zero, thereby proving (6.7).
Next, by definitionγk → γ ask → ∞. Let k → ∞ in (6.7) to conclude that it

remains true for a generalγ ∈ L2(R
p,H). �

PROOF OFPROPOSITION6.2. Using the definition of the operatorK one can
write

sup
B∈B0

|wn(B) − ξn(KIB,ϕ)|

≤ sup
B∈B0

|ξ̃n(IB,ϕ) − ξn(IB,ϕ) − Eϕ′E(IBµ̇T
θ ) n1/2(θ̃ − θ)|

+ sup
B∈B0

|ξ̃n(T IB,ϕ) − ξn(T IB,ϕ) + Eϕ′E(IBµ̇T
θ )n1/2(θ̃ − θ)|.

However, Proposition 2.1 implies that thefirst supremum on the right-hand side
is op(1). To deal with the second supremum, let us use the fact thatIAz(x)

(y) =
IAc

z(y)
(x) a.e. and change the order of summation and integration:

ξn(T γ,ϕ) = n−1/2
n∑

i=1

∫
At(Xi)

γ (y) µ̇T
θ (y)C−1

z(y) dH(y)µ̇θ (Xi)ϕ(ei)

=
∫

γ (y)µ̇T
θ (y)C−1

z(y)ξn

(
IAc

t (y)µ̇θ , ϕ
)
dH(y).
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Similar equality is certainly true for̃ξn. Therefore, using Proposition 2.1 once
again, we obtain

sup
B∈B0

|ξ̃n(T IB,ϕ) − ξn(T IB,ϕ) − Eϕ′E(IBµ̇T
θ )n1/2(θ̃ − θ)| = op(1). �

PROOF OFPROPOSITION6.3. First note that from the previous proof we have

w̃n(B) − wn(B) = ξ̃n(Tθ̃
IB,ϕ) − ξ̃n(Tθ IB,ϕ).

Now let

ηT (y,ϑ) = µ̇T
ϑ (y)C−1

ϑ,z(y)

and

ξ̃n(z,ϑ) = ξ̃n

(
IAc

z(y)
µ̇ϑ , ϕ

)
.

Then we can rewrite

ξ̃n(Tϑ IB,ϕ) =
∫

IB(y)µ̇T
ϑ (y)C−1

ϑ,z(y)ξ̃n

(
IAc

z(y)
µ̇ϑ , ϕ

)
dH(y)

=
∫

IB(y)ηT (y,ϑ)ξ̃n

(
z(y),ϑ

)
dH(y).

Since

|ξ̃n(Tθ̃
IB,ϕ) − ξ̃n(Tθ IB,ϕ)|

≤ I{‖θ̃−θ‖≤ε} sup
‖ϑ−θ‖≤ε

|ξ̃n(TϑIB,ϕ) − ξ̃n(Tθ IB,ϕ)|

+ I{‖θ̃−θ‖>ε}|ξ̃n(Tθ̃
IB,ϕ) − ξ̃n(Tθ IB,ϕ)|

andθ̃ is consistent estimator, it is enough to prove that

sup
B∈B0,‖ϑ−θ‖≤ε

∫
IB(y)

∣∣ηT (y,ϑ)ξ̃n

(
z(y),ϑ

)− ηT (y, θ)ξ̃n

(
z(y), θ

)∣∣dH(y)

= op(1),

as ε → 0 andn → ∞. Using the Cauchy–Schwarz inequality and the fact that
B ⊂ A1−τ , we find that the left-hand side of the above equality is bounded
above by

sup
‖ϑ−θ‖≤ε

‖η(·, ϑ) − η(·, θ)‖H ‖ξ̃n(·, ϑ)‖H

+ ‖η(·, θ)‖H sup
‖ϑ−θ‖≤ε

‖ξ̃n(·, ϑ) − ξ̃n(·, θ)‖H ,

where‖ · ‖H is theL2 norm with respect toH .



ADF GOODNESS-OF-FIT TESTS 1025

SinceCz is nonsingular forz < 1 − τ , we have‖η(·, θ)‖H < ∞. Moreover,
µ̇ϑ being continuous inϑ in mean square sense [condition (2.4)], it follows that
for all sufficiently smallε, Cϑ,z is nonsingular for all‖ϑ − θ‖ ≤ ε, z < 1− τ , and
that sup‖ϑ−θ‖≤ε ‖η(·, ϑ) − η(·, θ)‖H is small. What remains therefore to show is

that supB∈B0,‖ϑ−θ‖≤ε ‖ξ̃n(·, ϑ)‖H = op(1), and that supB∈B0,‖ϑ−θ‖≤ε ‖ξ̃n(·, ϑ) −
ξ̃n(·, θ)‖ = op(1) as n → ∞ and ε → 0. These properties are proved in
Lemma 6.1. �

PROOF OF LEMMA 6.1. First note that a symmetrization lemma [see, e.g.,
van der Vaart and Wellner (1996), Section 2.3.2] can be used to imply that

‖ξ̃n(z,ϑ1) − ξ̃n(z,ϑ2)‖ ≤ 2‖ξ̃0
n (z,ϑ1) − ξ̃0

n (z,ϑ2)‖,
where

ξ̃0
n (z,ϑ) = n−1/2

n∑
i=1

eiIAc
z
µ̇ϑ(Xi)ϕ(ε̃i),

and {ei}ni=1 are Rademacher random variables independent of{(Xi, Yi)}ni=1.
Averaging first over{ei}ni=1, we obtain for allt > 0,

E
[
exp

{
t−1‖ξ̃0

n (z,ϑ1) − ξ̃0
n (z,ϑ2)‖}|Dn

]
≤ E

[
exp

{
2t−2n−1

n∑
i=1

∥∥µ̇ϑ1(Xi) − µ̇ϑ2(Xi)
∥∥2

ϕ2(ε̃i)

}∣∣∣Dn

]

≤ exp
{
2t−2(1+ c)ρ2(‖ϑ1 − ϑ2‖)}.

Following van der Vaart and Wellner (1996), Section 2.2, denote by‖X‖ψ,Dn the
Orlicz norm of the random variableX induced by the functionψ(x) = ex −1—this
is the smallest constantt such thatE[exp(|X|/t) − 1|Dn] ≤ 1. Then the previous
inequality implies that

‖ξ̃0
n (z,ϑ1) − ξ̃0

n (z,ϑ2)‖ψ,Dn ≤ Cρ(‖ϑ1 − ϑ2‖).
Sinceex/t − 1> (x/t)2/2!, it immediately follows that

E sup
‖ϑ−θ‖≤ε

‖ξ̃n(y,ϑ) − ξ̃n(y, θ)‖2

≤ 2
∥∥∥∥ sup
‖ϑ−θ‖≤ε

‖ξ̃n(y,ϑ) − ξ̃n(y, θ)‖
∥∥∥∥
ψ,Dn

.

We now show that the Orlicz norm on the right-hand side is small for smallε.
We will do this by slightly adjusting the chaining argument. LetN(δ) be the
covering number [the cardinality of the minimalδ-net N (δ)] of the unit ball in
R

q . Let eachζk+1 ∈ N (2−k−1) be linked to uniqueζk ∈ N (2−k) in such a way
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that‖ζk+1 − ζk‖ ≤ 2−k . Then using the Fundamental Lemma 2.2 of van der Vaart
and Wellner (1996), Section 2.2, one can write (withϑ = εζ )∥∥∥∥ max

ϑk,ϑk+1
‖ξ̃n(y,ϑk) − ξ̃n(y,ϑk+1)‖

∥∥∥∥
ψ,Dn

≤ C lnN(2−k)ρ(ε 2−k).

Hence ∥∥∥∥ sup∥∥ϑ−θ‖≤ε

‖ξ̃0
n (y,ϑ) − ξ̃0

n (y, θ)‖
∥∥∥∥
ψ,Dn

≤
∞∑

k=1

∥∥∥∥ max
ϑk,ϑk+1

‖ξ̃n(y,ϑk) − ξ̃n(y,ϑk+1)‖
∥∥∥∥
ψ,Dn

≤ C

∞∑
k=1

lnN(2−k)ρ(ε2−k) ≤ Cq

∞∑
k=1

kρ(ε2−k),

(6.8)

where the last inequality follows from obvious estimation from above,N(δ) ≤
Cδ−q . Sinceρ(ε2−k) → 0 asε → 0 and the series converges for someε > 0, it
tends to 0 asε → 0.
Finally, combine the symmetrization and Markov inequalities to obtain

P

(
sup

‖ϑ−θ‖≤ε

‖ξ̃n(y,ϑ) − ξ̃n(y, θ)‖ > x
∣∣Dn

)

≤ P

(
sup∥∥∥ϑ−θ‖≤ε

‖ξ̃0
n (y,ϑ) − ξ̃0

n (y, θ)‖ >
x

2

∣∣∣Dn

)

≤ E

[
exp

{
t−1 sup

‖ϑ−θ‖≤ε

‖ξ̃0
n (y,ϑ) − ξ̃0

n (y, θ)‖
}∣∣∣Dn

]
exp

(
− x

4t

)
.

From the definition of the Orlicz norm‖sup‖ϑ−θ‖≤ε ‖ξ̃0
n (y,ϑ) − ξ̃0

n (y, θ)‖‖ψ,Dn

and the inequality (6.8), it follows that the expectation above does not exceed 2 for
t = q

∑∞
k=1kρ(ε 2−k). Hence the inequality of the lemma.�

We end this section by pointing out that the conditions (6.5) and (6.6) are
trivially satisfied in the caseµ(x,ϑ) ≡ ϑ ′S(x), whereS(x) is a vector of functions
of x with finite second momentE‖S(X)‖2.

7. Some simulations. This section presents some simulations to see how well
the finite sample level of significance is approximated by the asymptotic level
for the supremum of the absolute values of the transformed processes defined
at (5.3) and (6.3). It is noted that when fitting a standard normal distribution to the
errors with a rapidly changing regression function, or when fitting a two-variable
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linear regression model with standard normal errors and using the least squares
residuals, this approximation is very good even for the sample size 40, especially
in the right tail.

The lack of an analytical form of the distribution of the supremum of
the Brownian motion on[0,1]2 created an extra difficulty here. We had to
first obtain simulated approximation to this distribution. This was done by
simulating an appropriate two time parameter Poisson process of sample size 5K ,
with 20K replications. Selected quantiles based on this simulation are presented
in Tables 2 of Section 7.2. This should be of independent interest also.

7.1. supz |ŵn1(z)| of (5.3). This section presents some selected empirical
percentiles of the transformed statisticDn := supz |ŵn1(z)| of (5.3) for testing
H0 :F is the standard normal d.f. The regression function is taken to be
µ(x,ϑ) = eϑx , with trueθ = 0.25, the regressorsXi, i = 1, . . . , n, are chosen to be
uniformly distributed on[2,4], and the errorsεi ≡ εi(θ), i = 1, . . . , n, are standard
Gaussian. In this case the� function of Section 5.3 becomes

�−1
F(y) = 1

[1− F(y)][ya(y) + 1− a2(y)]
(

1+ ya(y) a(y)

a(y) 1

)
,

where a(y) = f (y)/(1 − F(y)), with f and F denoting the standard normal
density and d.f., respectively. Consequently, the vector-functionG of (5.3) is now
equal to

GT (z) =
∫ z

−∞
(1,−y)�−1

F(y)f (y) dy

=
∫ z

−∞
1

ya(y) + 1− a2(y)

(
1, a(y) − y

)
a(y) dy

and, eventually, the transformed process of (5.3) has the form

ŵn1(t) = n−1/2
n∑

i=1

[
I{εi(θ̂) ≤ z}

(7.1)

−
∫ z∧εi(θ̂)

−∞
1+ εi(θ̂ )(a(y) − y)

ya(y) + 1− a2(y)
a(y) dy

]
, t = F(z).

Although the form of the regression function does not participate in the
martingale transformationL it still may affect the finite sample behavior of the
transformed process as far as it affectsεi(θ̂), i = 1, . . . , n, whereθ̂ is the MLE
under the null hypothesis. It was thus of interest to see whether the estimation
of θ will not affect the values ofεi(θ̂ ), i = 1, . . . , n, too much and worsen the
convergence of the transformed process to its limit. For this reason we chose a
more or less rapidly changing regression function. On the other hand there was
no point in choosing multidimensional regressorsXi here, since the transformed
process depends solely onεi(θ̂), i = 1, . . . , n.
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TABLE 1
Selected quantiles of P(Dn > dα)

α 0.2 0.1 0.05 0.025 0.01

n \ dα 1.64 1.96 2.24 2.50 2.81

40 0.168 0.084 0.046 0.029 0.019
100 0.178 0.093 0.052 0.029 0.014

We simulated{(Xi, Yi = e0.25Xi + εi),1 ≤ i ≤ n} for sample sizesn = 40, 100
and for each sample calculated the value of the Kolmogorov–Smirnov statistic
Dn := sup{|ŵn1(t)|;0 ≤ t ≤ 1}, with ŵn1(t) as in (7.1). This was donem = 10K
times. In Table 1dα is the 100(1− α)% percentile of the limiting distribution of
Dn. The values are obtained by approximating the d.f. of the supremum of the
Brownian motion over[0,1] by G(z) := P (sup0≤t≤1 |ξn(t) − nt|/√n ≤ z), with
n = 5K , whereξn(t), t ∈ [0,1], is a Poisson process with intensityn. The d.f.G
was calculated using the exact recurrence formulas and code given in Khmaladze
and Shinjikashvili (2001). The values obtained are accurate to 5· 10−3.

Table 1 also gives the Monte Carlo estimates ofP (Dn > dα) for n = 40 and
n = 100 based onm = 10K replications. The resulting (simulated) distribution
functions ofDn along with G as solid line are shown in Figure 1. The quality
of approximation appears to be quite close to what one has in the classical case of
the empirical process and the limiting Brownian bridge especially in the upper tail,
where we need it the most.

FIG. 1. E.d.f. of Dn for n = 40,100,m = 10K and G.
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7.2. supB |wn(B)| of (6.3). Here the regressorsXi , i = 1, . . . , n, are two-
dimensional Gaussian random vectors with standard normal marginal distributions
and correlationr . The regression function being fitted is chosen to be linear:

µ(x,ϑ) = ϑ1x1 + ϑ2x2,(7.2)

with the true parameterθ ′ = (1,1), while the scanning familyA = {Az : z ∈ R}
is just one of the examples mentioned in Section 6:Az = {x ∈ R

2 :x1 ≤ z}.
Let wn, wH be as in Section 6.

For the above regression function and the scanning family the matrixC−1 has
the form

C−1
z = 1

[1− r2][1− F(z)]
(

r2 −r

−r 1

)
+ 1

1− F(z)

(
(za(z) + 1)−1 0

0 0

)
and the integral in (6.3) becomes∫ x1∧Xi1

−∞
ya(y)

ya(y) + 1
F

(
x2 − ry√

1− r2

)
dy X1i −

∫ x1∧Xi1

−∞
a(y)

1√
1− r2

dy (Xi2−rXi1).

Here, as above,f and F denote the standard normal density and distribution
function, respectively. In our simulations the class of setsB was chosen to
be (−∞, x], x ∈ R

2. Write wn(x), wH(x) for wn(B), wH(B) wheneverB =
(−∞, x], x ∈ R

2, respectively. Choosingϕ(y) = y and θ̃ to be the least squares
estimator, the transformed process (6.3) becomes

wn(x) = n−1/2
n∑

i=1

[
I(Xi ≤ x) −

∫ x1∧Xi1

−∞
ya(y)

ya(y) + 1
F

(
x2 − ry√

1− r2

)
dy X1i

−
∫ x1∧Xi1

−∞
a(y)

1√
1− r2

dy (Xi2 − rXi1)

]

× (
Yi − µ(Xi, θ̃ )

)
.

Let Vn := supx |wn(x)|,VH := supx |wH(x)|.
In order to demonstrate how well the null distribution ofVn is approximated by

the distribution ofVH , we had to first understand the form of the latter distribution.
We thus first obtained an approximation for the distribution of this r.v. as follows.

Let H(x1, x2; r), x = (x1, x2)
′ ∈ R

2, denote the d.f. of the bivariate normal
distribution with standard marginals and correlationr . Let

Hr(s, t) := H
(
F−1(s),F−1(t); r

)
, 0 ≤ s, t ≤ 1,(7.3)

be the corresponding copula function, and letw(s, t) := wH(F−1(s),F−1(t)).
The d.f.P (sup0≤s,t≤1 |w(s, t)| ≤ v) is the limit asn tends to infinity of, and is
approximated by,

Lr(v) := P

(
sup

0≤s,t≤1

∣∣ξnHr (s, t) − nHr(s, t)
∣∣/√

n ≤ v

)
,
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TABLE 2
Selected values of (v,Lr(v))

(a) for r = −0.5

x 0.71 0.88 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

Lr(x) 0.00 0.01 0.05 0.25 0.50 0.69 0.82 0.91 0.95 0.98 0.99 0.995

(b) for r = 0

x 0.66 0.84 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

Lr(x) 0.00 0.01 0.07 0.30 0.53 0.72 0.84 0.91 0.95 0.98 0.99 0.995

(c) for r = 0.5

x 0.59 0.79 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

Lr(x) 0.00 0.01 0.11 0.35 0.57 0.74 0.85 0.92 0.96 0.98 0.99 0.996

whereξnHr (s, t) is a Poisson process on[0,1]2 with expected valuenHr(s, t).
Table 2 gives the simulated values of these probabilities forr = −0.5, 0, 0.5 and
n = 5K , with m = 20K replications. This table is based on the tables and graphs of
the distribution functionLr and percentile points, prepared by Dr. R. Brownrigg,
available at www.mcs.vuw.ac.nz/˜ray/Brownian.

Although the distribution ofVH depends on the copula functionHr , the first
useful observation is that relatively sharp changes inHr do not appear to change
the distribution of this r.v. by much. Table 3 summarizes a few selected percentiles
to readily assess the effect ofr on them. It contains the values ofvα defined by the
relation 1− Lr(vα) = α. One readily sees that these values are very stable across
the three chosen values ofr , especially forα ≤ 0.1.

We illustrate the closeness of the distribution ofVn for finite n to the limiting
distribution with the graphs of e.d.f.s forn = 40, 100, withm = 10K replications.
Figure 2 shows the (simulated) d.f.’s ofVn for n = 40, 100;m = 10K , and the
approximating d.f.Lr (solid line) for Hr as in (7.3) withr = −0.5, 0, and 0.5.
One readily notes the remarkable closeness of these d.f.’s, especially in the right
tail.

TABLE 3
Selected values of vα for r = −0.5, 0, 0.5

r \ α 0.5 0.25 0.20 0.10 0.05 0.025 0.01

−0.5 1.50 1.86 1.95 2.23 2.50 2.74 3.03
0.0 1.46 1.81 1.91 2.21 2.46 2.70 3.03
0.5 1.42 1.77 1.88 2.17 2.43 2.70 2.98
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(a)

(b)

(c)

FIG. 2. (a) E.d.f. of Vn, n = 40, 100,with m = 10K , and d.f. Lr , r = −0.5. (b) E.d.f. of Vn,
n = 40, 100,with m = 10K , and d.f. Lr , r = 0. (c) E.d.f. of Vn, n = 40, 100,with m = 10K , and
d.f. Lr , r = 0.5.
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TABLE 4
P(Vn > vα), m = 20K

n r \ α 0.2 0.1 0.05 0.01

40 −0.5 0.166 0.084 0.045 0.012
0.0 0.166 0.085 0.045 0.011
0.5 0.162 0.084 0.042 0.008

100 −0.5 0.179 0.092 0.046 0.009
0.0 0.183 0.092 0.048 0.008
0.5 0.178 0.093 0.046 0.009

Table 4 gives the simulated values ofP (Vn > vα) for several values ofα and
sample sizesn = 40 andn = 100, based onm = 10K replications. From this table
one also sees that the large sample approximation is reasonably good for even the
sample size of 40 and fairly stable across the chosen values ofr .
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