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MARTINGALES IN MANIFOLDS - DEFINITION,

EXAMPLES, AND BEHAVIOUR UNDER MAPS.

by

R. W. R. DARLING

1. Introduction

We consider stochastic processes X with continous trajectories

taking values in a differential manifold with a connection r . We

introduce an intrinsic definition of r-martingale, using the idea of

r-convex function. We give a variety of examples, showing how the

definition is used in practice. In § 5 we construct a class of martin-

gales on the Lie group Gl(n). Sections § 7 - § 9 study the behaviour

of Brownian motion and r-martingales under affine maps, harmonic maps,

and harmonic morphisms. The affine maps are the ones which preserve
the martingale property. For maximum simplicity, we avoid the notions

of horizontal lifting and stochastic integration of differential

forms.

2. Differential geometry notations

Let M be an n-dimensional manifold of class Ck, k ~ 2.

Whenever n : E --i M is a vector bundle of class Cr, 1 S r S k, the

vector space of Cr sections of E will be written Cr(E); thus

Cr(TM) and Cr(T*M) denote the Cr vector fields and the Cr
1-forms over M respectively . The Cr functions M -.~ R will be

written Cr (M) instead of 

If (U,cp) is a chart at x, giving a local co-ordinate system

(x1, . , , , xn) , and if f E C 1 (M) , we write Dif (x) or Dilxf for

2014-. (jc). Thus D. t is a tangent vector at x . On U, the total

differential of f is written :- df = D.f dx1, with the summation
convention for repeated indices.

Research supported by a studentship from the Science Research Council

of Great Britain, and supervised by K. D. Elworthy (Warwick).
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Suppose o ~ r ~ k-2, and consider a Cr linear connection r

on the cotangent bundle of M ; we regard r as an R-linear

operator 7 : C r+1 (T*M) --> Cr (T*M) for each X E C r+1 (TM), such
that

(a) vfxe = 
(b) ~xf03B8 = f~x03B8 + (xf)e

for f E Cr+1 (M), e E (T*M)

In the chart (U,cp) , the Christoffel symbols rlk ( . ) are Cr
functions from U to R , defined by :-

rjk i dxk - - VD. J 
dx i

For f E Cr+2(M), the second covariant derivative of f , written

Vdf, can be expressed in local co-ordinates as an nxn matrix with

(j,k)th entry

(1) (Vdf) jk = 
where Djk 

= 

DjDk and , > represents the duality between TM

and T*M.

When M is Riemannian with metric g , the Laplacian Af of

f E Cr+2(M) is defined to be the trace of Vdf; thus if (gij)
is the inverse of the metric tensor in local co-ordinates, then

0394f (x) = gij (x) (~df (x)) ij, x ~ U

If V we say that f is harmonic (resp. subharmonic) on V

if Af(x) = o (resp. ? o) for x E V

The connection r on the cotangent bundle induces a connection

on the tangent bundle; thus for each X E (~ (TM), an R-linear
operator

V : : ~ Cr(TM) is defined by :-

03B8,~xY> + Y,~x03B8> = X03B8,Y> for e E Cr+1 (T*M) ,
and X,Y E Cr+1 (TM)

Suppose y : (-a, a) --~ M is a Cr+2 curve in M , for some

positive numbers a and a. We say that y is a geodesic (with

respect to r ) > if 7~~y(t) = o, - a  t  S . Suppose V is

open in M and f E Cr+2(V). Such an f is called r-convex on

V if for all geodesics y : (-a,~) ~ V, the composite map
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f o y : -~.~ R has non-negative second derivative (well-

defined since r ~ o). This definition is consistent with the

definition of C2 convex function when M = Rn with the Euclidean

connection r.k - 0, in which case geodesics are just line segments

Using the geodesic equation, as found in Kobayashi and Nomizu

[ 10, p, 140], it is easy to check that f is r-convex on V if

and only if the matrix (adf),k defined above is positive semi-

definite on V , with respect to any local co-ordinate system. From

this one easily deduces that the r-convex functions on V

are a subset of the subharmonic functions on V , in the case

where M is Riemannian and r is the Riemannian connection.

Let M and N be C manifolds with connections r and Nr
respectively, and let cp: M --~ N be a C map. To say that "cp

pulls back local r-convex functions to local r-convex functions"
means that for all open sets V c N and all r-convex functions
f : V --~ ~ (always of class Cr+2 ) , the map f o cp is r-convex
from to R . The following table gives functorial

characterizations of three classes of maps (p , following Ishihara

[ 8 ].The abbreviation "Riem" It means that M is a Riemannian

manifold. The "stochastic characterizations" will be explained
later.

In the definition which follows, the restriction that M be

finite-dimensional is lifted. The definitions of connection and

r-convex function carry over to the setting of Banach manifolds.

For a full account of connections on vector bundles over Banach

manifolds, the reader is referred to Eliasson [ 5 ].

3. Definition of a r-martingale on M

Let M be a Banach manifold of class Ck, k ~ 2, and

a filtered probability space satisfying the usual

conditions. Let X = (Xt,Ft) be a process taking values in M up

to its E n.

Henceforward all on M will have a.s. continuous

up to their lifetime: that is, the map

[0, ~ (w) ) --~ M, t ~ X (t,w) is continuous for almost all co E Q .

For simplicity, we shall avoid mention of the lifetime in the

sequel.
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Following L. Schwartz [13 , p. 6] we say that X is a

on M if for all f E C2 (M) , f o X is a real-valued

semimartingale.

Suppose now that M has a connection r of class C°. A
or simply tester, (U,V,W,f) will consist of:

- open sets U,V,W in M with U c= V c: V c W,

- a C2 r-convex function f :W -~ R.

Associated to each tester and each process X is the collection

of stopping-times ai’ T., i ~ 0, defined by:

00 = 0, ~o = 0

o. = inf {t > Zi-1 : : Xt E U}, i ~ 1

zi 
= inf {t > ai : Xt  V}, i ~ 1.

We define the previsible set F to be

F = U (03C3,03C4 ]
i=1 

~ ~-

DEFINITION

Let X = (Xt,Ft) be a continuous semimartingale on a manifold

M with connection r . X to be a ~.~ 
all testers (U,V,W,f), the process Y = (Yt,Ft)

t

Yt = f 1F(s)d(f o Xs)
0

is a local submartingale.

Remarks

(i) A natural question is: are there enough r-convex functions

to make the definition meaningful? Given any x E M we can take

a normal co-ordinate system in a neighbourhood of x ; then within

a smaller neighbourhood it is possible to take a local co-ordinate

system consisting of r-convex functions which are quadratic
functions of the normal co-ordinates - see Ishihara [ 8 , p. 219].

(ii) Strictly speaking, what we have defined is a continuous

local r-martingale.

Footnote: This definition of r-martingale arose from a

suggestion of J.Eells and K.D.Elworthy in 1980, and is equi-
valent to Bismut’s definition given in [11,p.54].
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(iii) The random variable Yt is always well-defined; for given

a C2 convex function f:W -~ R, there exists a C2 function

f 1: M -~ !R such that

f«t_ = fl . Hence f1 o X is a real-valued semimartingale, and
V V 

’

t

Yt = J 1 
o Xs)

o

which is well-defined because 1F is a bounded previsible process.

(iv) An equivalent definition would result if one took F to

be E V}, which is also previsible, since X is

continuous. The present definition, however, is more explicit.

4.. Examples

Since the Ito formula for continuous semimartingales in Rn
will be used repeatedly, we state it here for reference.

Ito formula.

Let Xt = (X1,...,Xn) be a continuous semimartingale in ~n ,
and f:Rn  R a C 2 function.
Then

t 
.. 

t . ,

f(Xt) = f ( X o) + J + ~ 2 j 0 
t 

 X"’, , X-’ >

(I) Euclidean local martingales

Let M with the Euclidean connection, r. Let

X - (X1,...,Xn) be a continuous semimartingale. If X is a

local martingale in the usual sense and (U,V,W,f) is a tester,

then

t t .

1F(s)d(f o Xs) =  1F(s)Dif(Xs)dX1s

+ 1 2 t 1F(s)Dijf(Xs)d Xi, Xj>s.
o ’ s s

The first integral on the right is a local martingale, and the

second is an increasing process since D..f(.) is positive
semidefinite on W. So the left side is a local submartingale,

verifying that X is a r-martingale.
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Conversely by taking U = V = W = f(x) = x and f(x) = -x,

we can verify that a r-martingale is a local martingale in the

usual sense.

(II) Brownian motion

Suppose M is Riemannian with metric g and Riemannian

connection r . . Brownian motion is characterized as the diffusion

B = with generator 1 0394 ; in other words, for all

f E C2(M), the process C , where

f (B ) - f (B ) - ~ ! 
t 

1~(s) A(f.f) 

is a local martingale. If (U,V,W,f) is a tester, we integrate 1F
against C and rewrite the equation as

t t . t

(1 ) ~ o 1 F (s)d(foB ) - j s = ; + ~ 2 0 J 
We saw in § 2 that f r-convex implies f subharmonic, so

> o. Thus the right side is a local martingale plus an

increasing process. This verifies that f 1Fd(foB) is a local

submartingale. Hence Brownian motion is a r-martingale with

respect to the Riemannian connection

(III) Processes on geodesics

Let I = or (-a, ~ ) , some > o.

Let Y:z -~ M be a geodesic with respect to a connection r on M.

Let L = be a continuous local martingale with values in I.

Then,the M-valued process Xt = Y o Lt is a r-martingale. This

follows because y is an affine map - see section § 9.

The result also holds when y is a closed geodesic, for example

a great circle on a sphere.

(IV) Image of Brownian motion under a harmonic map

Let M be Riemannian with Riemannian connection Mr , and let N

be a manifold with a connection Nr . The term ’harmonic map’ is

defined in the table in section § 2; for more information and

examples, see the survey by Eells and Lemaire [4 ]. The following

result is due to Meyer [ ~2, p. 265].
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PROPOSITION A

A C map 03C6:M ~ N is hanmonlc if and only if for all

a E M, the o whene B ~.~ the

Brownian motion on M started at a.

Many proofs are possible, according to the various characterizations

of r-martingale and harmonic map; a new proof is given in section

§ 7 .

(V) A class of dif f usions on M

Suppose L is an elliptic operator on M of the form

L = bi ~ ~xi + 1 2ajk ~2 ~xj~xk bi = - 1 2 ajk0393ijk, (ajk) symmetric> o

This expression is intrinsic, and under regularity assumptions
the diffusion associated to L is a r-martingale. This subject
is treated fully in the author’s forthcoming paper [ 3 ], where
a Girsanov theorem is also given.

(VI) An example on the Lie Group Gl(n)

Let M be Gl(n), the Lie group of non-singular nxn matrices,
with the canonical left-invariant connection. It will follow from

Theorem B of § 5 that if w = (wt,Ft) is one-dimensional Brownian

motion, then

X - BeAwt , , B E Gl (n) , ( A E gl (n)

defines a r-martingale in Gl(n).

(VII) A diffusion on the torus T2

Let T2 be the torus imbedded in R3 , with major and minor radii
r and a whose ratio u = r/a satisfies 1  u - /2. We give
T2 the imbedded Riemannian metric and the Riemannian connection r.

Parametrize T2 by angles (0,(p) , where e moves around the big
circle and (p around the little circle. Let E denote the half

of the torus that can be seen by a person at the centre, namely
{ (6,c~) : -n/2  ~/2 } .

Define l: SI --> [0,1] ] by :-

l(03C6) 2 cos (p 
if - n/2  n/2

O otherwise
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Let be two-dimensional Brownian motion. For any

(03B8o,03C6o) E E, the following stochastic differential equation on T2
has a unique solution H 

t 
= since the coefficients are

bounded and Lipschitz :-

H o = 

d0 = ~ (cp) ~ ~ZdW + ( 1-~ (cp) ) ~ ~2dW’ - sin cp dt

d(p = + sin (p dt

Let T be the first exit time of H from the region E . Then

the process H stopped at 03C4 has the following remarkable

property :- it is both a r-martingale on T2 and is mapped into

an R3 local martingale by the inclusion map i : T ~20142014~ R .
This example is studied in detail in a forthcoming paper.

(VIII) A diffusion on a non-compact surface of revolution

This example will be constructed in § 6 .
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5. A class of r-martingales on the Lie group 

A connected Lie group G admits a canonical invariant

connection, which is described in Kobayashi and Nomizu

[ 10 , Vol. II, p. 192]. When G is the group Gl (n) of all

non-singular nxn matrices over R , the connection r may

be characterized thus:

the geodesics through an element B of Gl(n) are all maps

y : --> M, some > o, of the form t --~ Bexp(At) for

some A in the Lie algebra gl(n) (= all nxn matrices over R);

exp is here the usual exponential function defined by a power
series. When W is open in this gives a convenient

expression for the C2 r-convex functions on W:

f is r-convex on W if and only if :-

2 f (Bexp(At))! I ~ o, for all B E W, A E gl(n).
dt t=o

It is convenient in calculations to regard W as a subset of the

vector space of all nxn matrices over R . Thus Df and D2f are

well-defined, and the r-.convexity condition may be differentiated

to give :-.

(1) Df (B) (BA~) + D 2 f (B) (BA, BA)  o for all B E W, A E g l (n)

We now present a method of constructing r-martingales from

certain martingales in the Lie algebra. Recall first that two

local square integrable martingales on the same filtration are

said to be orthogonal if their product is a local martingale.

THEOREM B

Let A1,,,.,A be commuting elements of .gl(n), i.e.

AiAj = AiAj for all i, j . Suppose 03B21 = (03B21(t),Ft) is a

real-valued continuous local square-integrable martingale for

i E {1,2,...,p}, and the family {03B2i : 1 s i s p}is mutually
orthogonal. For any B E Gl(n), the process

Xt = B 

is a r-martingale on Gl(n).
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First we recall a well-known fact about the exponential function :-

LEMMA

If A1,...,A are commuting nxn matrices, then for all

) in IR , p exp (Aixi) )

Proof of Theorem B

To simplify notations, take p = 2; the method is quite general.

Thus let A and G be commuting nxn matrices and let a and Y

be orthogonal real-valued continuous local square-integrable

martingales. Define a C°° function h : R2 ~ Gl(n) by :-

h(x,y) = exp(Ax+Gy). Using the Lemma, and regarding h as a map

into gl(n)

Dh(x,y) (u,v) = (Au+Gv) ,

D2h(x,y)((u,v),(w,z)) = h (x,y) (u,v) (A2 AG)(w))
(AG G2)(z)

where all the expressions on the right commute. By Ito’s formula,

(2) h(03B1t,03B3t) - h(03B1o,03B3o) =  h(03B1s,03B3s)(Ad03B1s+Gd03B3s)+

1 2 h(03B1s,03B3s[A2d03B1>s + G2d03B3>s ]

where 03B1>s = 03B1,03B1>s; the AG coefficient does not appear because

= o by assumption.

Now suppose B E G.~(n) and X is the process Xt = B exp(Aat+GYt).
in G.~ (n) . Suppose (U,V,W,f) is a tester. Regarding Xt as

g.~(n)-valued, we may write formally

~. D2f(Xt) (dX 8 dX)t
Since dXt = (2) gives : -

= Df(Xt)B h(03B1t,03B3t){(Ad03B1t = Gd03B3t) + 1 2 [A2d03B1>t + G2d03B3>t]} +

- 
Since a and y are local martingales, the da and dy

differentials are both local martingale differentials, and the

bounded variation part of the last expression is :-
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~ (X~) + 
y (X~G~) + D~F(X~) (X~) 
By formula (1) for 0393-convexity this can be written as

K~ dCL>~ + L. dy> , where K > o, L > o.

Since a> and y> are increasing processes, this proves that
is a local submartingale differential. Hence X is a

r-martingale.

, 
a

Example If w = (w~F~) is one-dimensional Brownian motion and

A ~ g~(n), then X~ = is a r-martingale on Gl(n).

Acknowledgment The author thanks Professor K. R. Parthasarathy
for help in finding this example.

6. An example of a r-martingale on a surface of revolution whose
local co-ordinate processes are martingales

The definition of r-martingale given by Meyer in [ 12 , p. 54]

is that for each local co-ordinate system (jc~) with domain W ,

the local co-ordinate processes Xi satisfy :-

(1) dAit + 1 2 0393ijk(Xt)dXj,Xk>t = 0 on {X 6 W}

where Xit = Mit + Ait is the decomposition of Xi into local

martingale and finite variation parts. To see that this condition
is sufficient, write

d(f(X~)) = Dj_f(X~)dX~ + ~/2 
= D~f(X~)(dA~ + ~/2 

+ ~/2(7df(X~))~j d 
by formula (1) of § 2. When (1) holds and (U,V,W,f) is a tester,
then this reduces to = d (local martingale + increasing
process) which verifies that is a local submartingale.

To prove that (1) is necessary is harder; see Darling [ 2 ].
To demonstrate the utility of (1), we give a computational

example.
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Let r : be a C2 convex function, i.e. with

non-negative second derivative. Let M be the surface of revolution

in R3 defined by

M = { (jc.y.z) : : x + y~ = r(z)2}
and let g be the embedded metric on M and r the Riemannian

connection. Take co-ordinates (z,e) on M , so that

jc = (z)cos Of y = r(z)sin a. If we denote dZ by r and

2 by r ~ g~can be expressed as the matrix

g = (1 + 
r2 

O )o r
2

The Christoffel symbols can be computed from the usual formula in

Kobayashi and Nomizu [ ~0 ~ p. 160], and one finds that

r’1 1 = r22 1 = -rr/(1+r~), r 12 2 - r/r = r 21 2
and all other r.k are zero.

Let (Xt) = (zt,03B8t) be a stochastic process on M .

Decompose the semimartingales (z ) and (at) into their local

martingale and finite variation parts: zt 
= Mt + At, 6t = Nt + Ct.

The condition for X to be a r-martingale can be written :-

dA + M> + r22 d N>) - o

M,N> + r21 2 d N, M> ) - o
in other words,

(1 ) dA + l(1+r~)’~ 1 ( rrdM> - rrdN> ) - o
dC + (r/r) d M,N> = o

An interesting example may be constructed as follows. Let

(Wt,Wt) be two-dimensional Brownian motion and suppose

zt = Mt = r(zs) 1/2dWs , 03B8t = Nt = r(zs) 1/2dWs

At = Ct = o .

Notice that the second definition is valid because o by our

initial assumption. It is easy to see from (1) that Xt = 
is a r-martingale for which both the local co-ordinate processes are

real-valued martingales. (This property does not hold in general).
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7. Proof ,of Proposition A:- - harmonic maps send Brownian motion

to r-martingales

The proof gives an example of how the definition of r-martingale
is used.

Proof. ’=>’

Say + is harmonic, and (U,V,W,f) is a Nr-martingale tester.
Then f o ~ : ~-~1 (W) -~ R is subharmonic, so by formula (1) of

§ 4,

o ~ o 0 f t 1F (s) ~~ (Bs) ds

which is a local martingale plus an increasing process.

’==’ Let W be open in N and f :W -~ R be Nr-convex, and let
V be open in N with V c W. Let U be a relatively compact
connected subset of ~-1(V) in M . It suffices to prove that

f o ~ ; : U -~ R is subharmonic (note that it is bounded, by
compactness of U).

Fix a E U, and let B = (Bt) be Brownian motion on M with

Bo = a. Let L be the first exit time of (Bt) from U .

Fix E > 0. Define

E = ~ (s,w) : : s  z (w) , o !))(Bg)  -E}.

We know that ( o B is a N0393-martingale on N , so

Zt = f o ~ o Btnz
is a local submartingale, and indeed a submartingale since f o (p

is bounded on U .

However by the definition of Brownian motion on M ,

Hft O 03C6 := f o 03C6 (Bt^03C4) - f o 03C6(a) - 1 2 0394M(f o 03C6) (Bs)ds

is a local martingale, and indeed a martingale by boundedness.
Hence

o f t 1 E = 0 f 
t 

1E 
1 0 f o ~) (Bs)ds

t t 
’

~ 1E dZs + ~ 2  1E ds.
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If mt is Lebesgue measure on the time interval [o,t], then

IDtQP(E) = J g (f 0 
t 

1E ds) dP ~ 2 ~ IE J 1E(dHfso 03C6 - dZs)
since the stochastic integral on the right side is a supermartingale

with starting value zero. Hence 0, and this holds for

every E > 0; so the -measure of the set

{ (s, 03C9) : s  03C4(03C9) , 0394M(f o 03C6) (Bs)  O}

is zero, for every t . Hence by continuity of s ~ A (Bs) ,

(Bs)  o, some o  s  z}) - o

Since U is connected, the Brownian motion hits every non-empty

open subset of U with positive probability. Moreover o cp)

is continuous on U . Hence (x) Z o for all x E U .

a

The Proposition has a wide range of uses of which Theorem B

(harmonic morphisms) and the following surprising result are

examples.

COROLLARY

Let M be any connected, non-compact Riemannian manifold of

dimension n, , Riemannian connection r . Thene ih a pnopen

embedding i:M R2n+1 iuch that i o B is a martingale in

1R2n+1 , where B is Brownian motion on M .

Proof

The result follows from the last proposition, and a theorem of

Greene and Wu, [ 7 , p. 231], which says that such an M has a

proper embedding by harmonic functions in R2n+1; ; (we use here

the result obtained in example (1), namely that r-martingales in

a Euclidean space are the same as local martingales).
a

For other uses of stochastic methods in harmonic maps see

Kendall [ 9 ].
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8. Harmonic morphisms and Brownian motion

Let M and N be Riemannian manifolds of dimensions m and n

respectively. Recall from § 2 that a C~ map (b:M -~ N is said to

be a harmonic morphism if for each V open in N and each harmonic

function f :V -~ R, the function f o ~ : : ~r1 (V) -~ R is harmonic.

The following characterization of harmonic morphisms is due to
Fuglede,. [ 6 , , p, 11 6].

LEMMA

A C2 mapping 03C6:M ~ N is a hanmonlc monphllm if and only if thene
exists a function 03BB ~ 0 on M unique and such that

03BB2 is C°) the property that

o d)) = A2 o ~]

for all C2 functions f:N ~ R.

This enables us to characterize harmonic morphisms as those C~
maps which preserve the paths of Brownian motion, as proved below.
This result is related to those of Bernard, Campbell and Davie [1].

THEOREM C.

A C2 mapping 03C6:M ~ N of Riemannian manifolds is a harmonic

morphism if and (*) holds for all a E M:

(*) Let B = (Bt) be Brownian motion on M Bo = a. There

exists a continuous increasing pnoceil A = (At) and a Bnownlan

motion B on N such that

BoA = I> 0 B .

Remark

If m ~ n, then a harmonic morphism 03C6 is necessarily constant,
and so At = 0 a.s.

Proof. . ’===>’

Fix a E M . Let B = (Bt) be Brownian motion on M with Bo = a.
Let h be as in the lemma. Define a continuous increasing process
A = (At) by:

At = to 03BB2(Bs)ds
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and define its inverse by

A >u}. °

Denote (() o B by Y = (Y ) on N . We shall prove that Y o C

is a Brownian motion B on N . Then B o A = Y as desired.

It suffices to show that for all C functions f:N -~ R~

L~ : = f(Y o C~) - f(Y~) - y J o 

is a local martingale. However under the change of variables

0394Nf(Y o Cs)ds = 0394Nf(Yu)dAu =  03BB2(Bu) 0394Nf(Yu)du

=  0394M(f o 03C6) (Bu)du

by the Lemma. By definition of B ,

H~ := f o t)(B~) - f o (b(a) - ~ J o d)) 

is a (continuous) local martingale ; hence so is (H o C.)? but

so the result follows.

~’

Let V be open in N and ’let f:V ~ IR be harmonic. Fix a ~ M

with Ka) ~ V~ and assume (*) holds. Let T be the first exit

time of B from (~" (V) ; then (f o 
A ) ) is a (continuous)

local martingale, and so is (f o E o A. ) = (f o 03C6 o B. ).
Consider f o j) as a C map : f" (V) ~ R. It sends Brownian

motion stopped at T to a local martingale, and hence is a harmonic

map by Proposition A of §4 . This proves that f o )) is a local

harmonic function on M whenever f is a local harmonic function

on N . So (~ is a harmonic morphism.
a
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9. Maps preserving the martingale property

If d):V -~ W is a map between vector spaces, local martingales
on V are sent to local martingales on W if and only if (i) is

linear.

If (M,r) and (N,r’) are manifolds with connections, a

C2 map (t):M -~ N is said to be (or totally if its

derivative T(~ sends parallel vector fields to parallel vector

fields. Affine maps are discussed in Kobayashi and Nomizu

[10 Ch. VI]. Affine maps are harmonic, and when M has dimension 1,
the two are identical; see Eells and Lemaire [ 4 , p. 9]. Ishihara

points out [ 8 , p. 220] that affine maps are those which pull back

local r-convex functions to local r-convex functions, in the sense

of § 2 .

THEOREM D. .

A C2 map b:M -~ .~~ and ~ end

to 

Proof.

’=>’ Let (U,V,W,f) be a r’-martingale tester on N . Since c6

sends qeodesics to geodesics, the definition of r-convex in section

§ 2 shows that (~ - 1 U, 1V,~ 1W, f o ~) is a r-martingale tester on

M . The result is immediate from the definition of r-martingale.

’~===’. It suffices to show that if a, S > o and y : (-a, ~) -~ M

is a r-geodesic, then + o y : (-a, (3)~ N is a r’-geodesic. Let

W = (Wt,Ft) be one-dimensional Brownian motion with Wo = 0,
stopped at the first t at which [Wtl = min (a,P). By § 4, (III)

Proposition A , y o W is a r-martingale, so + o y o W is

a r’-martingale. Applying the Proposition again, ~ o y must be

harmonic, hence affine since has dimension 1. So + o y

is a r’-geodesic.
a

Immersed submanifolds

Suppose i:M~(N,g) is a Riemannian immersion, and r and

r’ are the induced Riemannian connections on M and N . The

condition for all M-valued r-martingales to be r’-martingales is
that M be a totally geodesic submanifold of N , by the preceding
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Theorem. What are the possibilities when i is not totally

geodesic? We take as examples the sphere and the torus embedded

in Euclidean space.

Examples

(a) Let M be the sphere embedded in Rn, with the
induced metric and Riemannian connection r . Let a E S
have co-ordinates (a1,...,an). Suppose X is a r-martingale

on Sn-1 with X = a. Then X cannot be a local martingale

in Rn , unless it is constant a.s. For if so, then

y = would be a local martingale, and in

fact a martingale (since X is bounded), with Yo = 1. Hence

E Yt = 1 for all t . But for any x = , ... ,xn) E S n-1
with x ~ a, a1r1+...+anxn  ] . So Xt = a a,.

(b) Consider the torus example of § 4 (VII); the embedding

i: T2~ R3 is not totally geodesic, and yet we constructed a

r-martingale on T2 which was also an R3-martingale.
It seems likely that the existence of such examples for more

general embeddings i:M-~ will depend upon the sectional

curvatures of M .
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