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Solutions to the nonlinear heat equation for maps between Riemannian manifolds
are studied by determining starting points for martingales on Riemannian mani-
folds with prescribed terminal values. Monotonicity properties of the Riemannian
quadratic variation for these martingales allow to explain blow-up of the heat flow
in finite time. Moreover, the probabilistic construction of martingales with given
terminal state is discussed, and partial regularity results for the heat flow are
established.

1 Harmonic mappings and deformation by heat flow

Let (M,g) and (N,h) be Riemannian manifolds of dimensions m and n, let
f: M — N be a smooth map. We consider the two fundamental forms of f.

(a) (First fundamental form of f) The pullback of the metric h under f
gives a bilinear form f*h € I'(T*M ® T*M) which is defined by

(f*h)z(u,v) = hyp) (dfpu, dfv)  for u,v € T, M.

(b) (Second fundamental form of f) With respect to the Levi-Civita-connec-
tions on M and N one considers Vdf € I'(T*M @ T*M ® f*T N) defined
as covariant derivative of df € I'(T*M @ f*TN).

By taking traces (with respect to the Riemannian metrics on M and N) we get
(i) ||df||* = trace f*h € C>°(M), the energy density of f, and
(i) 7(f) = trace Vdf € T'(f*T'N), the tension field of f.

Smooth maps f: M — N with vanishing tension field 7(f) are called harmonic.
In local coordinates the harmonic map equation is written as

™) = Apff+ Tk o f) (df,df) =0, k=1,...,n (1.1)

where Ay is the Laplace-Beltrami operator on (M, g). The analytical difficul-
ties in the study of harmonic maps arise from the nonlinearity in (1.1) which
reflects the fact that the map f takes its values in a curved Riemannian mani-
fold (N, h).
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Given some smooth initial map ug: M — N, we are interested in its develop-
ment under the heat flow

%u = %T(u) , Up—g = Up - (1.2)

If M is not compact we assume that the energy E(up) of ug is finite, and
moreover, that ||dug||? is bounded on M. Note that harmonic maps f: M — N
are stationary points of the energy functional

B(f) = /M 1|12 dvol (1.3)

with respect to compactly supported variations of f. On the other hand, solu-
tions of (1.2) satisfy the energy inequality

E(u(t, ) + /Ot/MH%‘|2(S’$) vol(dz) ds < E(ug) - (1.4)

From (1.4) it looks reasonable to expect that the flow defined by (1.2) will
come to a rest, as t — oo, producing a harmonic map.

If M and N are compact, there is a famous global existence result in this di-
rection, due to Eells and Sampson®. Suppose the sectional curvature Riem” of
N is non-positive, then for any ug € C°°(M, N) the heat equation (1.2) admits
a unique, global, smooth solution u: [0,00[ x M — N. Moreover, as t — 0o,
the maps u(t, -) converge smoothly to a harmonic map us, € C*° (M, N) ho-
motopic to ug. Thus deformation by heat flow allows to determine harmonic
representatives in each homotopy class.

If the curvature assumption Riem”™ < 0 is dropped the situation turns out
to be much more complicated. Equation (1.2) may blow up in finite time by
topological reasons ! in the sense that for some T' > 0 and some zo € M,

limsup sup ||du(t,z)|]* = (1.5)
t/ T ze€B.(x0)
for any € > 0; here B () is the geodesic ball about z¢ of radius €. One main
problem is to determine conditions creating singularities out of smooth initial
data in finite time. In addition, we would like to understand such results in
probabilistic terms.

It is well-known how to use probability, i.e., the theory of Brownian motion,
in the linear case of harmonic functions. For N = R", the unique solution of
the heat equation (1.2) is given by

u(t,z) = Elug o X{] (1.6)

where X? is BM(M, g) started at x, provided that Brownian motion on (M, g)
has infinite lifetime.
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Obviously, formula (1.6) is meaningless in the general case of curved targets IV;
taking expectations is by definition a linear operation ruling out straightfor-
ward generalizations of (1.6) to the nonlinear heat equation. Nevertheless, we
would like to give an interpretation of the harmonic map heat flow in terms of
appropriate “expectations” of the N-valued random variables ug o XF. There
are several approaches to define expectations (means) for manifold-valued ran-
dom variables??. It turns out that the correct replacement of the linear expec-
tation operator is given by a quite sophisticated nonlinear concept, namely the
starting points of V-martingales with the given random variable as prescribed
terminal value '6. It has interesting consequences that global geometry enters
the description via the concept of martingales on Riemannian manifolds.

2 Probabilistic Description of the Harmonic Map Heat Flow

In the linear case, N = R"*, u(t,z) = E[ug o X}] represents the solution of the
heat equation, moreover, for each (¢,z) € Ry x M,

Y = B [uo 0 X{] = (P—suo)(X3), 0<s<t,

defines a (uniformly integrable) martingale with starting point Yy = u(t, z) and
terminal value ugo XF. The observation that u(t, z) may be seen as expectation
of upo X in the sense that there is a martingale, starting at u(¢,z) and ending
up at ugo X7, carries over to the general case of non-trivial target manifolds!6.

Theorem 2.1 Let u: [0,T[ x M — N be a smooth solution of the heat equa-
tion (1.2). Then, for (t,x) € [0,T[ x M, the N-valued process

Yi=u(t—s5,X7), 0<s<t, (2.1)
is an H?-martingale on (N,h) with Yo = u(t,z) and Yy = ug o X7.

Martingales on (IV,h) are taken with respect to the Levi-Civita-connection ®;
recall that Y is in the Hardy class H? if its Riemannian quadratic variation
satisfies

]E/t h(dY,dY) < oo (2.2)

The underlying probability space is (without restriction of generality) the stan-
dard m-dimensional Wiener space (C(R;,R™), F,P) with its natural Brown-
ian filtration (F¢)¢cr,. With respect to this filtration, the Brownian motions
X*? on (M,g) are constructed in the usual way "'? by solving an SDE on the
orthonormal frame bundle O(M) & M

dU = % Ll(U) * dBi, UO =ec 7]'_1{"1;}, (23)

=1
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and projecting U down to M, i.e., X* = w o U. Here B is BM(R™); in other
words, X* is the stochastic development on M of a flat BM B in R™ = T, M
(identified via the frame e). Note that any manifold-valued semimartingale is
a stochastic development of a flat semimartingale, and vice versa. In our situa-
tion, the anti-development Z on R™ = T, N of the N-valued semimartingale

X = fo X%, defined as image of X% under a map f € C°°(M, N), is given by
dz = //ttO df /fo. dB + %//;,0 T(f) o X*dt, (2.4)

where //, ; and /[y, are the parallel transports along the paths of X, resp. X.

Specifically, the Riemannian quadratic variation of X measures the energy of f
along the paths of X*, i.e.,

h(dX,dX) = (||df||* o X*) dt. (2.5)

Applied to the N-valued semimartingale Ys = u(t — s, X?) in (2.1), we get for
its anti-development Z in T, )N (modulo differentials of local martingales)

dZ = //:70(—(3tu +i7r(w)(t—5,X2)ds =0. (2.6)

Recall that martingales are characterized as stochastic developments of con-
tinuous local martingales ®. Thus, if u solves the heat equation (1.2), then
Ys = u(t—s, X7) is a martingale on N. In addition, its Riemannian quadratic
variation is given by

h(dY,dY) = ||du(t — s, -)||>(XT) ds. (2.7)

3 Monotonicity Properties and Blow-up in Finite Time

In this section we use the description of the heat flow in terms of manifold-
valued martingales to derive development of singularities in finite time; detailed
proofs of our results can be found in Thalmaier '®. For the sake of simplicity,
we restrict ourselves to the special case M = R™; from now on N is supposed
to be compact. Let u: [0,T[ x R™ — N be a solution of (1.2) such that

E(up) < 00, and ||dug||? is bounded on R™. (3.1)

As explained above, for each (t,z) € [0,T[ x R™, there is an H2-martingale
y(te) = (Ys(t’x))ogsgt with starting point Yo(m) = u(t,z) and terminal value
Yt(t’w) = ug o X a.s. The Riemannian quadratic variations of these martinga-
les satisfy a specific monotonicity property. This monotonicity is basically a
consequence of Brownian scaling and the appropriate parabolic version of the
famous monotonicity conditions in the theory of harmonic maps 415,
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Theorem 3.1 (Monotonicity Formula) Let u: [0,T[ x R™ — N be a solution
of the heat equation (1.2) such that condition (3.1) is fulfilled. Then, for each
(t,z) € [0,T] x R™ and each a € ]0,1],

P:r— IE/ h(dY &) dy (o)) (3.2)

I

defines a non-decreasing function ® on |0, 1] .

The crucial observation is that smallness of ®(r) can be turned into a priori
estimates for the heat flow.

Theorem 3.2 There exists a constant eg = go(m, N) > 0 depending only on
m and N such that for any solution u: [0,T] X R™ — N of the heat equation
satisfying condition (3.1) the following is true: If

d(r)=E [ hdy®? dy®)) < g (3.3)
r/2

for some (t,x) € [0,T] x R™ and some r such that 0 < r < t < T, then
| dul|*(t,z) < C with a constant C = C(r,m, N, E(uo)).

The a priori estimates of Theorem 3.2 can be adapted to obtain a global
existence result for solutions of the heat equation, which immediately leads
to blow-up in finite time in certain cases of homotopically nontrivial initial
data wug. If the energy of wg is sufficiently small, then the deformation under
the heat flow necessarily goes towards a constant map; singularities develop in
finite time if this is impossible from topological reasons 2.

Theorem 3.3 For any T > 0 there exists a constant €1 = ¢;(m,N,T) de-
pending only on m, N such that any solution u: [0,T[ x R™ — N of the heat
equation with ||dug||?> bounded on R™ and E(ug) < €1 can be extended to a
global (smooth) solution u: [0,00] x R™ — N which converges to a constant
harmonic map us, ast — oo.

Corollary Let T > 0, and take €1 = e1(m, N,T) as in Theorem 3.3. Then,
for homotopically nontrivial ug: R™ — N with ||dug||> € L* and E(up) < €1,
solutions of the heat equation (1.2) blow up before time T'. Moreover, the blow-
up time T* = T*(up) approaches 0 as E(ug) decreases to 0.

Proof . Otherwise, by Theorem 3.3, there would exist a global solution to (1.2)
inducing a homotopy uy ~ us = const, in contradiction to the assumption
that ug is homotopically nontrivial. O
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4 Backward Stochastic Differential Equations

As explained in section 2, associated to the nonlinear heat equation is the
following reachability problem for N-valued martingales.
Problem Given f: M — N and £€5%) = fo X7} for some (t,z) € Ry x M,
where X* is BM(M, g) as constructed above. Find an N -valued H?-martingale
Y = (Ys(t’m))oggt, adapted to the standard m-dimensional Brownian filtration
on C(Ry,R™) with m = dim M, such that Y; = £6%) q.s.

By Ito’s formula®, an N-valued semimartingale Y obeys the composition rule
d(poY) =dp(UdZ) + $Vdp(dY,dY) (4.1)

for p € C°°(N); here U is a horizontal lift of Y to the orthonormal frame bundle
O(N) over N (uniquely determined by a choice of Uy over Yy) and Z is the R™-
valued anti-development of Y which may be expressed as Stratonovich integral
Z = [0 of the canonical connection 1-form ¢ on O(M) along U "'°. The
requirement that Y provides a martingale on (IV, h) means by definition that Z
is a local martingale on R™. In this case, by It6’s representation theorem, there
exists a predictable R™ ® R™-valued process representing Z as Z; = fot HdB
where B is canonical Brownian motion on m-dimensional Wiener space with
respect to which the M-valued BM X7 is defined; see (2.3). Substituting
dZ = HdB into (4.1) gives

m
d(p oY) =dp(CdB) + > Vdp(Ce;,Ce;) dt (4.2)
i=1
for any ¢ € C°(N) where C' := UH is an R™ ® T'N-valued semimartingale
above Y, ie.,, Cs € R®" @ Ty,N a.s.
Thus, given an N-valued random variable of the type ¢br) = fo X7, the
problem is to find a semimartingale C' taking its values in the vector bundle
R™ @ TN over N, adapted to the m-dimensional Brownian filtration, such
that with Y := 7o C for each ¢ € C*°(N) the following equation holds for any
0<s<t

t m t
po §(t7$) =poY;+ / dp(CdB) + % Z/ Vdp(Ce;,Ce;) dr. (4.3)
s i=1 s

Of course, it is enough to assure (4.3) for the coordinate functions ¢ = ¢;
(1 < j < ¢) of an embedding ¢: N < Rf. In terms of a classical solution
to (1.2) the process C is easily determined as

Cs =du(t—s,X2?)Us (4.4)
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where U is horizontal Brownian motion on O(M) such that 7 o U = X7, as
defined by equation (2.3).

Equation (4.3) defines a backward SDE and is easily reduced to an equation
of the type studied by Pardoux-Peng'2. For instance, according to their set-up,
given a (differentiable) map

F: M xR x (R™ @ RY) - R,

and an F;-measurable random variable ¢ € L2(IP; RY) for some ¢ > 0, one may
consider the problem of finding continuous adapted R¢-, resp. R™ ® Rf-valued
processes (Ys)o<s<¢ and (Cs)o<s<¢ such that

{ dY = CdB + F(X®,Y,C) ds

Y= ¢ (4.5)

(the filtration is again the Brownian filtration of the m-dimensional Brownian
motion B); note that in integrated form (4.5) reads as

t t
f:Ys+/ CdB+/ F(X*Y,C)dr, 0<s<t. (4.6)

We observe that for the “linear” case F' = 0, a solution (Y,C) to (4.5) is
given by

Y, =E[¢] = E[¢] + /0 CdB, (4.7)

where the matrix process C' is determined by Y via It6’s representation theo-
rem. Among other things, Pardoux-Peng'? show that under a global Lipschitz
condition for F, there exists a unique pair (Y, C) of square-integrable continu-
ous adapted processes solving (4.5), or equivalently (4.6).

As is well-known %'¢, the main difficulty in applying the theory of back-
ward SDE to the construction of martingales on manifolds with prescribed
terminal state comes from the fact that (4.3) fails to satisfy a global Lipschitz
condition: Due to the geometric nature of the problem the drift term on the
right-hand side depends quadratically on C' which implies that equation (4.3)
is not covered by the existence and uniqueness results of Pardoux-Peng. How-
ever, this fact should not be seen as shortcoming of the theory of backward
stochastic differential equations; it precisely reflects the nontrivial interplay of
local analysis and global geometry captured in the nonlinear heat flow.

Obviously there is no easy way around the mentioned difficulties of con-
structing martingales on manifolds with given terminal value >13:16_ In the
following section we suggest an approximation scheme to construct appropri-
ate martingales for terminal values of the form £(6%) = fo X7 where ¢t may be
arbitrarily large'”. From now on both M and N are supposed to be compact.
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5 Penalty Approximation for Martingales

Since the target N is compact, we may assume that (N,h) is isometrically
embedded into R for some £ € N; by composing with the embedding N < R,
maps M — N will be considered as maps into Rf. The main problem with
harmonic maps f: M — N taking their values in a curved submanifold N C R
is now the nonlinear constraint f(M) C N.

A possible way to deal with this difficulty is to relax the constraint f(M) C N
but to penalize its violation. Applied to the case of the heat equation, we
may construct Rf-valued processes which approximate the desired N-valued
martingale closer and closer. More accurately, we construct an approximating
sequence of Rf-valued semimartingales by solving backward SDEs on R’, each
satisfying a global Lipschitz condition, and use compactness arguments to find
an N-valued martingale with the prescribed terminal value. There are several
ways to achieve this; we follow the so-called penalty approximation . The
method is most easily explained in the context of the variational problem
for harmonic maps. Roughly speaking, instead of working with the standard
Dirichlet form

E(f) = /M 172 dvol (5.1)

for maps f: M — R’ with f(M) C N, we drop the target constraint and
regard all maps f: M — R’ as admissible, but penalize violations of the
constraint f(M) C N proportional to the distance from the submanifold N.
More precisely, let V(N) be a tubular neighborhood of N of radius 30 in
the flat ambient space R’, diffeomorphic to N x Bss(0) where Bss(0) is the
ball in R‘~" of radius 36. Thus, elements in V(N) are represented as (y,v)
with y € N and v € T, N*; both the projection 7: (y,v) — y onto N and
dist?>(-, N): (y,v) = ||v||* are C* on V(N). Further, choose a differentiable
real function x on R, with x’ > 0 such that x(r?) = r? for r < § and
x(r?) = 46 for r > 26. Now, instead of (5.1) consider the variational integral

E.(f) = /M [larll® + g x(dist?(f, N))] dvol, 2> 0, (5.2)

for functions f: M — R’. The idea is that, when minimizing (5.2) for small
values of e, the term (2/¢) [, x(dist®(f, N)) d vol will force the unconstrained
functions f to approach the submanifold NV, since violations of f(M) C N are
penalized more severely, as £ N\, 0. Instead of 7(f) = 0, the Euler-Lagrange
equation associated with the functional (5.2) reads as

Auf —(2/¢) (grad ¢)(f) =0 (5-3)
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where ¢ := (1/2) X(distz( - ,N)). Hence, in replacement of the heat equation
(1.2), we consider for € > 0 the following evolution equation:

0 1
Y —AMu + = (gradd))(u) =0 on[0,00] x M (5.4)
Ulpg = Uo -

Note that grad¢ is a smooth vector field on Rf with gra do out51de

the tubular neighborhood V' (N) and (grad ¢). = x'(dist*(z, N)) dist A,
where A, € Ty, )N+ for z € V(N). It is well- known that ( 4) has a umque
global smooth solution u(): R, x M — R¢ for each € > 0.

The nonlinear equation (5.4) is easily represented in stochastic terms. Fix
e >0 and (t,z) € Ry x M. Let again B be the canonical Wiener process on
the underlying m-dimensional Wiener space (Q =C(R,R™), F,P; (}'t)teR+),
and let X® be BM(M,g) with starting point 2, constructed via stochastic
development of B as in (2.3). For £%) = ug0 Xt , consider the backward SDE

problem of finding adapted processes Ys 2) C (0 < s < t) with values in Rf,
resp. R™ ® R¢, such that

{ dY®) = C©) dB + 1 (grad ¢)(Y ) ds

9.5
Yt(s) — é(t,w) . ( )

Obviously, (5.5) satisfies a global Lipschitz condition, and hence for each € > 0,
according to Pardoux-Peng 2, there is a unique pair (Y(€), C(®)) of continuous
(Fs)-adapted processes, square integrable over €2 x [0, ¢] with respect to P®ds,
providing a solution to (5.5). Note that

(g) {é(t ) _ - /t (grad ) (YT(E)) dr] , (5.6)

S

and specifically,

vy =E[ete) —i / (grad o) (1, ) ar]. (5.7)

Moreover, observe that (5.6) does not involve C () using Ito’s representation
theorem, C®) is recovered from Y(®) via

s t
Y — % /0 (grad ¢)(v,?)) dr = B [5““) —i / (grad ) (Y, )dr]

=¥, + / c® dB.
0

(5.8)
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It is easily checked by means of It6’s formula that, in terms of the solution
u®): Ry x M — R’ to (5.4), the unique pair (Y*),C(®)) of square integrable
processes solving (5.5) is given by

V) =u®(t—s,X2), CO =dul®(t—s,X")U,. (5.9)

S

On the other hand, given (Y(*),C(®)), the solution to (5.4) is determined by
uwl® (t,z) = YO(E); in addition du'®)(t,z) = C’ég) Uyt

Our goal is to construct the desired N-valued martingale Y (»%) with ter-
minal value K(t’w) = ¢ from the Y(*) as € \, 0 suitably. The main tool to
achieve this is formulated in the following lemma 7.
Lemma 5.1 Let (t,z) € Ry x M and sy € ]0,t]. Fore > 0 let (Y&, C(9))
be the unique square-integrable pair solving (5.5). There is a constant ¢ =
c(s0, E(u)) depending only on so and the energy E(uo) of ug such that

, 1
sup []E||C§E) 2+ 2 Ex(dist2(Ys(5),N))] <e. (5.10)

s0<s<t -

Using compactness arguments relying on Lemma 5.1, we are able to show 17
that for each sg > 0

YED) =y in L2 ([s0,t] x Q)

as 5, \( 0 appropriately, where (Y;)s,<s<¢ is an N-valued martingale. Hence,
for any (¢t,z) € Ry x M, we can find a martingale Ys(t’w) on (N, h), defined for
0 < s < t, such that ¥\ = ug o0 Xg a.s. Note that (%) may not necessarily
have a starting point. The obvious question is what can be said about the
“singularity set”

Y= {(t,x) ERy X M: 21\1‘% Y 5% does not exist a.s.}. (5.11)

Moreover, we like to consider u(t,x) := Yo(t’z) for (t,x) ¢ ¥ and to clarify in
which sense u provides a solution of the heat equation.

6 Partial Regularity

As seen in section 3, solutions to the heat equation (1.2) may blow up in
finite time. Note that after the first singularity has appeared, equation (1.2)
is no longer well-defined as a classical PDE; one has to consider distributional
solutions. Existence of global weak solutions to (1.2) has been established by
Chen-Struwe .
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In the stochastic description the starting points of martingales on (NN, h) with
terminal value ug o X correspond to solutions of the heat equation (1.2). The
construction of appropriate martingales should be seen as a way of pulling out
randomness of the variables ug o X, in order to reduce it to a constant point.
There may be topological obstructions to do this: The paths of the martingales
Ys(t’w) constructed above may start oscillating as s N\, 0 in such a way that

t
IE/ h(dY &2 4y B0)) 5 o0

as s N\ 0. In other words, the martingales behave as started at ¢ = —oo on
their intrinsic time scale. The following theorem summarizes our main results
in this direction.

Theorem 6.1 (Main Theorem) Let (M, g) and (N, h) be compact Riemannian
manifolds and ug € C*°(M,N). For x € M let X* be BM(M,g) started at z,
adapted to the standard m-dimensional Brownian filtration. Then, for each

point (t,x) € Ry x M, there is a martingale Y (6% = (Ys(t’m) :0< s<t)on
(N, h) with terminal value Yt(t’m) = ug o X7 such that for

¥ = {(t,x) ERy X M : li\I‘% Y5 does not exist a.s.}
s

the following statements hold:

r

(i) == {(t,m) €R, x M : lim IE/ h(dY &) dy By > 0}.
N0

r/2
(ii) X is closed, and u(t,z) := Yo(t’z) is smooth for (t,z) ¢ X.

(iii) If t > 0, then ¥ N ({t} x M) has finite (m—2)-dimensional Hausdorff
measure.

(iv) u(t,z) for (t,z) ¢ ¥ defined by (ii) extends to a global distributional
solution of (1.2).

(v) For all (t,z) € Ry x M, we have y{#®) = u(t—s,X7), 0<s<t.

(vi) u coincides with the classical solution on [0,T*[ x M where T* € ]0, 0]
is the first blow-up time for the classical solution to (1.2).

Details of the proof will appear elsewhere !7. It looks plausible to conjecture
that (s, X?) does not hit the singularity set ¥ a.s. if not started there.
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