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ABSTRACT 
 
Alternative splicing is an important source of heterogeneity in gene expression 
between individual cells but remains an understudied area due to the paucity of 
computational tools to analyze splicing dynamics at single-cell resolution. Here, we 
present MARVEL, a comprehensive R package for single-cell splicing analysis 
applicable to RNA sequencing generated from the plate- and droplet-based methods. 
We performed extensive benchmarking of MARVEL against available tools and 
demonstrated its utility by analyzing iPSC differentiation into endoderm cells and 
cardiomyocytes. MARVEL enables systematic and integrated splicing and gene 
expression analysis of single cells to characterize the splicing landscape and reveal 
biological insights.  
 
INTRODUCTION 
 
Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying transcriptional 
heterogeneity in normal tissues (1-5) and pathological conditions (6-11). The vast 
majority of scRNA-seq analyses focus on gene-level expression, however, alternative 
splicing represents an important additional layer of transcriptional complexity 
underlying gene expression  (12). Alternative splicing has not been widely investigated 
at single-cell resolution and thus remains an untapped source of knowledge in both 
health and disease states  (13). This is potentially due to the lack of available 
computational tools to interrogate alternative splicing for scRNA-seq data. Although 
existing analysis pipelines such as Seurat (14), Monocle (15), and Scanpy (16) 
enabled integrative analysis workflows for single-cell gene expression, they do not 
support comprehensive analyses to combine gene-level and alternative splicing 
information.  
 
Recently, analysis tools, such as BRIE (versions 1 and  2) (17,18) and Expedition (19), 
were developed to analyze alternative splicing in scRNA-seq datasets generated from 
the plate-based platforms e.g., Smart-seq2  (20). BRIE uses a Bayesian approach to 
learn informative sequence features for percent spliced-in (PSI) estimation, leading to 
the improvement of PSI estimation for splicing events that have low-to-no coverage in 
scRNA-seq data (17,18). Expedition introduces the concept of “modalities” to stratify 
PSI distributions into discrete categories (19). However, a number of functionalities 
required to comprehensively characterize alternative splicing dynamics at the single-
cell level are not yet available. For instance, current analysis tools focus on PSI 
quantification for skipped-exons (SE) and mutually exclusive exons (MXE) splicing 
events (17,19) but did not include retained-introns (RI), alternative 5’ and 3’ splice sites 
(A5SS and A3SS), and alternative first and last exons (AFE and ALE). While SE are 
the major splicing event type (21), other types of splicing events are also important 
sources of gene expression heterogeneity and have been shown to contribute to the 
cellular phenotype. For example, RI are a source of neoantigens in melanoma (22), 
whereas A5SS, A3SS, AFE, and ALE are often dysregulated in myelodysplastic 
syndrome (MDS) and acute myeloid leukemia (AML) patients carrying mutations in 
genes encoding for splicing factors (21,23,24). 
 
Modality classification enables the changes in splicing patterns across different cell 
populations (19). Biases from PCR amplification and library preparation prevalent in 
scRNA-seq have been shown to lead to a high proportion of false positives, in 
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particular for the bimodal classification (25). Therefore, modality assignment should 
incorporate these technical biases to enable better classification of splicing patterns. 
 
Taken together, current computational tools may not comprehensively facilitate the 
characterization of alternative splicing dynamics at single-cell resolution. Moreover, 
existing analysis workflows do not integrate gene expression and alternative splicing 
information into a single framework. Here, we introduce MARVEL, an R package for 
integrative single-cell alternative splicing and gene expression analysis. We 
benchmarked MARVEL against existing computational tools for single-cell alternative 
splicing analysis and demonstrated its utility by analyzing publicly available datasets 
generated from the plate- and droplet-based library preparation methods derived from 
induced pluripotent stem cells (iPSCs) differentiated into endoderm and 
cardiomyocytes, respectively (26,27).  
  
MATERIALS AND METHODS 
 
Processing of publicly available datasets 
 
Plate-based scRNA-seq datasets 
 
To assess and validate the performance of MARVEL on scRNA-seq data generated 
from plate-based library preparation protocols, we retrieved four datasets from 
previous studies (15,19,26,28). Raw sequencing reads (FASTQ) were downloaded 
from the Sequence Reads Archive (SRA). Adapters and 3’ bases with Phred quality 
scores <20 were trimmed using Trim Galore 0.6.5 (29). Trimmed reads were mapped 
to the GRCh38 reference genome using STAR 2.6.1d in 2-pass mode (30). STAR was 
also used to detect and quantify splice junction counts, while RSEM v1.2.31 was used 
to quantify gene expression in transcripts per million (TPM).  Binary Alignment Map 
(BAM) file statistics including total mapped reads and mitochondrial reads were 
computed using Samtools 1.9 (31).  
 
The first dataset consisted of human-induced pluripotent stem cells (iPSCs), neural 
progenitor cells (NPCs), and motor neurons (MNs) (19). Cells with >100,000 mapped 
reads, >70% alignment rate, and <15% mitochondrial reads were retained for data 
with paired-end reads. For the dataset with single-end reads, cells with >5,000,000 
mapped reads, >90% alignment rate, and <10% mitochondrial reads were retained 
(Supplementary Figures 1A-F). Single cells that were annotated as outliers by the 
original study were excluded. In total, 62 iPSCs, 68 NPCs, and 60 MN cells were 
included for analysis. In addition, 2 iPSC, 3 NPC, and 3 MN matched-bulk samples 
were included for analysis. 
 
The second dataset consisted of human myoblasts cultured and sequenced at 0-, 24-
, 48-, and 72-hour (15). Cells with >100,000 mapped reads, >75% alignment rate, and 
<20% mitochondrial reads were retained (Supplementary Figures 1G-I). Single cells 
that were annotated as control wells by the original study were excluded. In total, 82, 
85, 88, and 72 myoblasts at 0-, 24-, 48-, and 72-hour time points, respectively, were 
included for analysis. In addition, 3 matched-bulk samples for each time point were 
included for analysis. 
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The third dataset consisted of iPSC and endoderm cells (26). Cells with >100,000 
mapped reads, >75% alignment rate, and <20% mitochondrial reads were retained 
(Supplementary Figures 1J-L). Five cells that were annotated as the unknown cell type 
by the original study were excluded. In total, 83 iPSC and 53 endoderm cells were 
included for analysis. 
 
The fourth dataset consisted of single cells derived from the spinal cord of mice 
induced with experimental autoimmune encephalomyelitis (EAE) and control mice 
(28). Cells that passed sequencing QC were defined as having read alignment > 50%, 
> 40,000 mapped reads, and mitochondrial reads < 55% (Supplementary Figures 1M-
O). Eight cells annotated as doublets by the original publication were removed. In total, 
1,078 EAE and 978 control mice cells were included for analysis. 
 
All datasets were used for benchmarking MARVEL. The third dataset consisting of 
iPSC and endoderm cells was used to demonstrate the analyses provided by 
MARVEL. 
 
10x Genomics dataset 
 
To demonstrate the utility of MARVEL for single-cell alternative splicing on a dataset 
from a droplet-based platform, we retrieved scRNA-seq data from iPSC and iPSC-
derived cardiomyocytes on days 2, 4, and 10 generated using 10x Genomics 
Chromium Single Cell 3’ Reagent Kit (version 2) (27). Raw sequencing reads (FASTQ) 
were downloaded from the Sequence Reads Archive (SRA) and were aligned to the 
GRCh38 reference genome using Cell Ranger v2.1.1. The resulting BAM files for each 
sample were used as inputs for STARsolo (available in STAR v2.7.8a) to generate the 
gene expression count matrices (32). SingCellaR (1,33) was subsequently used to 
identify and retain good-quality cells based on per-cell UMI counts and the number of 
detected genes (Supplementary Figures 2A-D) (1). Additionally, only cells with <15% 
mitochondrial counts and genes expressed in at least 10 cells were retained. Good-
quality cells from iPSC and day-10 cardiomyocytes were subsequently integrated and 
the t-Distributed Stochastic Neighbor Embedding (tSNE) coordinates were generated 
using SingCellaR.  
 
Isoform detection 
 
Plate-based scRNA-seq datasets 
 
We analyzed isoform usage at the exon level for scRNA-seq data. For each cell type, 
the bulk samples were used to create a cell-type-specific gene transfer file (GTF) using 
StringTie2 (34). When the bulk samples were not available, pseudo-bulk samples were 
generated by merging the single-cell BAM files. The GENCODE GTF v31 file was used 
as a guide to generate the cell-type-specific GTF files (35). The GTF represents the 
transcriptome assembly and hence the catalog for all genes, transcripts, and exons 
detected for a particular cell type.  The cell-type-specific GTF files were then merged 
to obtain the final GTF file for isoform detection in BRIE and MARVEL. Expedition 
performed de novo detection of splice junctions, exons, and alternative splicing events 
directly on the single-cell and bulk BAM files. 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.25.505258doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505258
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 
 

MARVEL takes SE, MXE, RI, A5SS, and A3SS splicing events detected by rMATS 
4.1.0 (36).  rMATS identifies these alternative splicing events using the 
aforementioned merged GTF file as previously described (25). Splice junction counts 
were generated using STAR 2.6.1d in a two-pass mode (30). The gene expression 
matrix, splicing junction count matrix, detected exon-level alternative splicing events, 
and GENCODE GTF v31 file, were used as inputs for MARVEL. MARVEL created an 
R object from these inputs using the CreateMarvelObject function for downstream data 
processing and analyses. After creating the MARVEL object, additional splicing event 
types, AFE and ALE, were detected by MARVEL from the GENCODE GTF v31 
provided by using the DetectEvents function. 
 
10x Genomics dataset 
 
We analyzed isoform usage at the splice junction level for scRNA-seq data generated 
from a droplet-based platform. Splice junction counts were generated using STAR 
v2.7.8a (STARsolo). The filtered gene count matrix and tSNE coordinates from 
SingleCellaR, raw splice junction count from STARsolo, and reference gene transfer 
file (GTF) were used as inputs for MARVEL. MARVEL created an R object from inputs 
using the CreateMarvelObject.10x function for downstream data processing and 
analyses. 
 
Isoform validation and quantification 
 
Plate-based scRNA-seq datasets 
 
The percent spliced-in (PSI) values were used to measure the degree of alternative 
exon inclusion for scRNA-seq data generated from the plate-based protocol. The 
briekit-event function in BRIE was used to detect alternative splicing events from the 
GTF provided (see “Isoform detection” section). Next, the briekit-event-filter function 
was used together with the options [--add_chrom chrX --as_exon_min 10 --
as_exon_max 100000000 --as_exon_tss 10 --as_exon_tts 10 --no_splice_site] to filter 
for high-quality alternative splicing events. The briekit-factor function was then used to 
calculate the set of sequence features to use to infer PSI values for each alternative 
splicing event. Only skipped-exon (SE) splicing event was analyzed by BRIE here. 
The PSI values of these detected splicing events were subsequently quantified in three 
different modes using the brie-quant function with the options --interceptMode None, 
--interceptMode cell, and --interceptMode gene. The first mode (mode 0) uses a prior 
distribution centered at 0.5 to impute PSI values for alternative splicing events. The 
second mode (mode 1) combines a prior distribution centered at 0.5 with an 
informative prior inferred from genomic sequence-based features to impute PSI 
values. The third mode (mode 2) uses a prior distribution centered on the mean PSI 
values across the cell population to impute PSI values. 
 
For Expedition analysis, we performed de novo detection of alternative splicing events 
using the outrigger index function and computed the PSI values for each alternative 
splicing event using the outrigger psi function. Each PSI value represents the fraction 
of splice junction reads supporting the alternative exons over the total splice junction 
reads supporting or skipping the alternative exons. For each cell, alternative splicing 
events supported by <10 splice junction reads were annotated as missing values. The 
types of alternative splicing events analyzed by Expedition included SE and MXE.  
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The types of exon-level alternative splicing events analyzed by MARVEL included 
seven main exon-level alternative splicing events comprising SE, MXE, RI, A5SS, 
A3SS, AFE, and ALE.  To ensure high-quality alternative splicing events for 
downstream analyses, both alternative and constitutive exons of these alternative 
splicing events needed to be supported by the splice junction reads. Only alternative 
splicing events whose exons were supported by splice junction reads were retained 
(Supplementary Figure 3A). Furthermore, for the RI event, introns that overlap with 
any alternative or constitutive exons were filtered away (37). This resulted in high-
quality introns and was termed “independent” intron because they do not overlap with 
any annotated exons. 
 
Similar to Expedition, MARVEL uses a splice junction-based approach to compute PSI 
values. For SE, MXE, A5SS, A3SS, AFE, and ALE alternative splicing events, PSI 
values are computed as a fraction of splice junction reads supporting the alternative 
exons over the total splice junction reads supporting or skipping the alternative exons 
(Supplementary Figures 3B-G).  

𝜓!"#$,&!'' =	
𝐶𝑜𝑢𝑛𝑡𝑠()	(,$&'-.!.),&!''

𝐶𝑜𝑢𝑛𝑡𝑠()	(,$&'-.!.),&!'' + 𝐶𝑜𝑢𝑛𝑡𝑠()	(!"&'-.!.),&!''
 

 
For the RI event, the PSI values of the intron are computed as the total intron read 
counts normalized by the intronic length and then divided by the sum of total intron 
read counts normalized by the intronic length and total splice junction counts skipping 
the introns (Supplementary Figure 3H). 

𝜓,$01#$,&!'' =	

𝐶𝑜𝑢𝑛𝑡𝑠1!2.(	(,$01#$),&!''	
𝐿𝑒𝑛𝑔𝑡ℎ,$01#$

𝐶𝑜𝑢𝑛𝑡𝑠1!2.(	(,$01#$),&!''	
𝐿𝑒𝑛𝑔𝑡ℎ,$01#$

	+ 𝐶𝑜𝑢𝑛𝑡𝑠()	(!"&'-.!.),&!''
 

 
The ComputePSI function was used to validate the alternative splicing events and 
calculate the corresponding PSI values. SE, MXE, A5SS, A3SS, AFE, and ALE 
alternative splicing events supported by <10 of splice junction reads supporting or 
skipping the alternative exons in a given cell were annotated as missing values. RI 
alternative splicing events supported by <10 of length-normalized introns read counts 
or <10 of splice junction skipping introns in a given cell were annotated as missing 
values.  
 
10x Genomics dataset 
 
To ensure the inclusion of high-quality splicing junctions for downstream analyses, the 
exons of each splice junction were cross-checked with the GTF file and were 
categorized as annotated, multi-mapped, and unannotated. An annotated exon is an 
exon that maps to a single gene. A multi-mapped exon is an annotated exon that maps 
to multiple genes.  An unannotated exon is an exon with no matching record in the 
GTF file.  Only splice junctions consisting of both annotated exons were retained for 
downstream analyses. The AnnotateSJ.10x function was used to annotate each splice 
junction, while the FilterSJ.10x function was used to filter splicing junctions consisting 
of unannotated and multi-mapped exons.   
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Splice junction usage was used to measure the degree of splice junction inclusion. For 
a given cell type, the splice junction usage was computed as the fraction of the sum 
of splice junction counts across all cells over the sum of gene counts for the 
corresponding splice junction across all cells (38).  

𝑈(),&!''	034!	 =	
∑ 𝐶𝑜𝑢𝑛𝑡𝑠(),&!''5!''	∈	&!''	034!

∑ 𝐶𝑜𝑢𝑛𝑡𝑠7!$![()],&!''&!''	∈&!''	034!
 

The ComputeSJusage.10x function was used to compute the cell type-specific usage 
of validated splice junctions. 
 
Benchmarking processing time for isoform quantification 
 
To compare processing time between BRIE and MARVEL, we measured the time 
taken to compute the PSI values for the same set of 1,000 SE splicing events. To 
compare processing time between Expedition and MARVEL, we measured the time 
taken to compute the PSI values for the same set of 500 SE and 500 MXE splicing 
events. We additionally measured the time taken to compute the PSI values for 1,000 
splicing events per each of RI, A5SS, A3SS, AFE, and ALE. We measured the 
processing time using the Slurm Workload Manager (v20.02.0) on CentOS Linux 7 
(Core). 
 
Sequence conservation analysis 
 
The sequence conservation scores for the 5’ and 3’ constitutive exons, and alternative 
exons were computed using the phastCons100way.UCSC.hg38 R package (39). The 
Pearson correlation between alternative exon conservation scores and mean PSI 
values for each cell line was analyzed (26). 
 
Modality assignment 
 
Song et al. proposed that the PSI values for a given alternative splicing event can be 
categorized into five modalities comprising included, excluded, bimodal, middle, and 
multimodal (19). Here, MARVEL models each alternative splicing event as a beta 
distribution and estimates the alpha and beta parameters using the maximum 
likelihood approach. Based on the parameters' values, each alternative splicing event 
was categorized sequentially into their respective modality as follows (see also 
Supplementary Figures 4A-E): 
1. Bimodal (PSI ≈ 0, 100):  α < 0.5 or β < 0.5 
2. Included (PSI ≈ 100): α > β 
3. Excluded (PSI ≈ 50): β < α 
4. Middle (PSI ≈ 50): α > 1 & β > 1 & α = β 
5. Multimodal (uniform distribution): α = β = 1 
MARVEL further expands the current repertoire of modalities by stratifying the 
included and excluded modalities into primary and dispersed. In included and 
excluded primary modalities, the PSI values cluster tightly around 100 and 0. In 
included and excluded dispersed modalities, PSI values cluster towards 100 and 0 
with the addition of some values that trended towards opposite ends. Therefore, the 
dispersed modality has a higher variance among PSI values than the primary modality. 
Here, we applied a heuristic threshold of variance at 0.001 to categorize the included 
and excluded modalities into primary (<0.001) and dispersed (>=0.001; 
Supplementary Figures 4B-C).  
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Modality assignment for alternative splicing events was performed using the 
AssignModality function. In this study, alternative splicing events supported by at least 
10 reads in at least 25 cells were included for modality assignment by Expedition and 
MARVEL. 
 
Bimodality adjustment 
 
A significant proportion of bimodal splicing patterns detected were previously reported 
to be artifacts of single-cell RNA-sequencing (25). To distinguish between true and 
false (spurious) bimodal splicing patterns, we generated a set of false and true positive 
bimodal splicing patterns from a previous study with experimental validation of 
alternative splicing events detected from RNA-sequencing using quantitative 
polymerase chain reaction (qPCR) and small molecular fluorescent in situ 
hybridization (smFISH) (19). We further expanded our search for additional true 
bimodal splicing patterns in two additional studies (15,26) whereby bimodal splicing 
patterns constituted of single cells in which the corresponding gene had 10 or more 
mRNA molecules as previously described (25). The mRNA count for each gene was 
computed using the monocle R package (15). In total, 45 true and 7 false bimodal 
splicing patterns were included for analysis. We assessed the ability of three features 
to distinguish true from false bimodal patterns: (1) fold difference between the 
proportion of cells with PSI > 75 and PSI < 25 (and vice versa), (2) difference between 
the proportion of cells with PSI > 75 and PSI < 25 (and vice versa), and (3) average 
PSI value. Heuristic thresholds of 75 and 25 were chosen because they distinguished 
true from false bimodal patterns (Figures 2F-H). The argument bimodal.adjust=TRUE 
can be used in the AssignModality function to detect true and false and subsequently 
reassign false bimodality into either included or excluded modality. 
 
We then assessed the ability of Expedition and MARVEL to distinguish bimodality and 
non-bimodality. From the datasets (15,19,26), we generated a set of alternative 
splicing events consisting of 45 bimodal and 17,259 non-bimodal (included, excluded, 
middle, and multimodal) modalities as previously described in (25). We cross-
tabulated the bimodal and non-bimodal assignment of Expedition and MARVEL 
against this set of ground truths to create a confusion matrix. This allowed us to 
compute and compare several evaluation metrics consisting of sensitivity, specificity, 
negative predictive value, and precision for Expedition and MARVEL. 
 
Differential splicing analysis 
 
Plate-based scRNA-seq datasets 
 
To detect differences in splicing patterns between groups of single cells, we need to 
take into account both mean and variance. For example, it would not be possible to 
distinguish between bimodal, middle, and multimodal splicing patterns based on mean 
alone. To this end, MARVEL implements three nonparametric statistical tests for 
assessing the differences in splicing patterns between groups of single cells. These 
are the Kolmogorov-Smirnov, Anderson-Darling (AD) (40) and D Test Statistic (DTS) 
approaches (41). These tests take into account the overall PSI distribution and assess 
the differences in PSI distribution for each alternative splicing event between groups 
of single cells. MARVEL combines differential splicing analysis using AD and DTS, 
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followed by the outlier removal.  MARVEL also includes Wilcoxon rank-sum test, t-test, 
and permutation test for differential alternative splicing analysis, used for comparing 
PSI values in bulk samples. Differential splicing analysis can be performed using the 
CompareValues function and subsequently visualized using the PlotDEValue function. 
In this study, alternative splicing events supported by at least 10 reads in least at 25 
cells were included for differential splicing analysis. Alternative splicing events with 
FDR < 0.10 were considered to be differentially spliced. 
 
For BRIE, differential splicing analysis was performed using the brie-quant function 
with default parameters. Alternative splicing events with evidence of lower bound 
(ELBO) gain > 4 were considered to be differentially spliced as previously described 
(18). 
 
10x Genomics dataset 
 
Due to the sparsity of genes and splice junctions detected in scRNA-seq data 
generated from a droplet-based method, we performed differentially splicing analysis 
at the cell type level (pseudo-bulk) as opposed to at the single-cell level (38,42). 
MARVEL utilizes a permutation approach for assessing differentially spliced junctions 
between two cell populations (43). For a given splice junction, the cell-type labels of 
single cells in the two cell populations are shuffled (permutated). PSI values per cell 
population are computed. Differences in the PSI values between populations are noted 
(ΔPSIpermutated). The differential process is iterated 100 times, and these differences in 
the PSI values will form the null distribution. Then, the observed differences in the PSI 
values between the cell populations (ΔPSIobserved) are compared against the null 
distribution to obtain P-values. Differentially spliced junctions were defined as mean 
log2-transformed normalized gene expression > 1.0, |Δ PSI| > 5, and P-value < 0.05.  
Differential splicing analysis can be performed using the CompareValues.PSI.10x 
function and subsequently visualized on the PCA/tSNE/UMAP plot using the 
PlotDEValues.PCA.10x function.  
 
To assess the ability of MARVEL to identify biologically relevant genes that are 
differentially spliced, we performed differential splicing analysis on a dataset 
generated from iPSC and iPSC-derived cardiomyocytes on day 10 (27). 

 
Differential gene expression analysis 
 
For plate-based scRNA-seq datasets, differential gene expression analysis was 
performed using the CompareValues.Exp function and subsequently visualized using 
the PlotDEValue.Exp function in MARVEL. Wilcoxon rank-sum test was used to 
assess the differences in normalized and log2-transformed gene expression values 
between two cell populations. Genes with FDR < 0.10 and log2 fold change of > 0.5 
or < -0.5 were considered to be differentially expressed. 
  
For a droplet-based scRNA-seq dataset, differential gene expression analysis was 
performed using the CompareValues.Exp.Global.10x function and subsequently 
visualized using the PlotDEValues.Exp.Global.10x function in MARVEL. Wilcoxon 
rank-sum test was used to assess the differences in normalized and log2-transformed 
gene expression values between two cell populations. Genes with FDR < 0.10 and 
log2 fold change of > 1 or < -1 were considered to be differentially expressed. 
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Gene ontology analysis 
 
MARVEL implements the gene ontology analysis provided by the clusterProfiler R 
package (44,45).  Gene ontology analysis to detect enriched pathways among 
differentially spliced genes can be performed using the BioPathways and 
BioPathways.10x functions for scRNA-seq data from the plate- and droplet-based 
methods. 
 
Linear dimension reduction analysis 
 
For plate-based analysis, principal component analysis (PCA) was used for linear 
dimension reduction analysis. Only genes and alternative splicing events expressed 
in at least 3 and 25 cells, respectively, were included for analysis. For alternative 
splicing events whose PSI values were NA, i.e., coverage <10 in a given cell, they 
were re-coded randomly with values ranging from 0-100 prior to dimension reduction 
analysis. PCA was performed and visualized by MARVEL using the RunPCA function.  
 
Nonsense-mediated decay (NMD) prediction 
 
For a given alternative exon with >5 PSI difference between iPSCs and endoderm 
cells and FDR < 0.10, MARVEL will retrieve the gene identifier from which the 
alternative exon is related. All protein-coding isoforms from this gene that encode the 
alternative exon are retrieved. MARVEL inserts the alternative exon sequence into 
these isoforms and predicts the resulting amino acid sequences using the translate 
function implemented by the Biostrings R package. The position(s) of any stop codon 
and its relative position in base-pair to the final exon-exon junction is noted. 
Consequently, there are four categories of isoforms (1) alternative exons belonging to 
novel isoforms (no matching record in GTF), (2) non-protein-coding isoforms (isoforms 
with no open reading frame), (3) protein-coding isoforms with a premature terminal 
codon (PTC) introduced by the alternative exons, and (4) protein-coding isoforms 
whose open reading frame are not disrupted by the alternative exons. 
 
Protein-coding isoforms are further stratified into isoforms that are subjected to 
nonsense-mediate decay (NMD) or not (21). For the former, PTC(s) are located within 
50bp before the final exon-exon junction. For the latter, the isoforms either have 
PTC(s) located further than 50bp before the final exon-exon junction or the isoforms 
do not have any PTC(s) introduced by the alternative exons. 
 
 
RESULTS 
 
MARVEL provides a comprehensive alternative splicing analysis framework for 
scRNA-seq generated from plate-based and 10x Genomics platforms  
 
The workflow requires pre-processed tab-delimited files to perform MARVEL analysis 
for scRNA-seq data generated from plate-based protocols. The input files include 
spliced junction count and normalized gene expression matrices, alternative splicing 
events, gene and sample metadata (Figure 1A). Spliced junction counts, normalized 
gene expression values, and alternative splicing events are generated by STAR 
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aligner (32), RSEM (46), and rMATS (36), respectively. It is noteworthy that rMATS 
provides splicing events from alternative and constitutive exons that are mapped to 
the same gene, thus avoiding ambiguous multi-mapping exons, i.e., exons mapped to 
multiple genes. First, MARVEL identifies high-quality alternative splicing events, 
defined as events validated by at least 10 splice junctions reads (Figure 1B). The PSI 
values of these alternative splicing events will be subsequently computed for 
downstream analyses, using the total number of reads supporting the alternative exon 
divided by the total number of reads supporting the alternative exon and constitutive 
exons (Figure 1C). Only junction-spanning reads, but not reads aligning to exon 
bodies, are used for PSI quantification (19,47,48). MARVEL performs linear and non-
linear dimensionality reduction based on PSI values using principal component 
analysis (PCA) (Figure 1D), t-distributed stochastic neighbor embedding (t-SNE) (49), 
and uniform manifold approximation and projection (UMAP) (50). To assign alternative 
splicing events into distinct modalities (splicing patterns based on PSI distributions 
comprising included, excluded, bimodal, and multimodal (19)), MARVEL models each 
PSI distribution as a beta distribution and corrects the bimodal distributions for PCR 
amplification and library preparation biases (Figure 1E). In addition to the original 
modalities prescribed previously (19), MARVEL further stratifies the included and 
excluded modalities into primary and dispersed, thus providing a finer classification of 
PSI distribution. MARVEL also performs differential splicing and gene expression 
analysis to reveal the changes in alternative splicing relative to gene expression in 
addition to changes in modality across different cell populations (Figure 1F). In 
addition, MARVEL provides a function for gene ontology analysis of differentially 
spliced genes to reveal gene sets that are coordinatedly spliced. Furthermore, to 
explore the effect of alternative splicing on gene expression, MARVEL can be used to 
predict nonsense-mediated decay (NMD) of differentially spliced genes (Figure 1G). 
 
Similar to plate-based alternative splicing analysis, MARVEL requires pre-processed 
tab-delimited files as input for droplet-based (e.g., 10x Genomics) scRNA-seq data 
analysis. MARVEL takes the sparse splice junction and gene count matrices, 
normalized gene expression matrix, and splice junction, gene and sample metadata 
(Supplementary Figure 5A). Splice junction and gene counts are generated by 
STARsolo (38), and normalized gene expression values are generated by SingCellaR 
(33). In this step, the cell-level information, such as pre-defined cell types, and the 
coordinates of dimension reduction embeddings, analyzed using other pipelines, can 
be incorporated. MARVEL identifies and removes splice junctions comprising multi-
mapping exons (exons mapping to multiple genes) and retains only uniquely mapped 
exons (Supplementary Figure 5B). The splice junction usage of the remaining high-
quality splice junctions is computed as the total splice junction counts divided by the 
total corresponding gene counts (Supplementary Figure 5C) (38). MARVEL allows 
users to explore the splice junction and gene expression distribution and select 
informative (expressed) genes and splice junctions for downstream analysis 
(Supplementary Figure 5D). MARVEL integrates differential splice junction usage and 
gene expression analysis and performs functional annotation of differentially spliced 
genes to identify gene sets that are coordinatedly spliced (Supplementary Figures 5E 
and F). We summarize analysis features provided by MARVEL compared to available 
alternative splicing computational tools described in Supplementary Table 1. 
 
MARVEL is benchmarked against established packages 
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Percent spliced-in estimation 
 
To estimate PSI values from scRNA-Seq data, Bayesian regression prediction- and 
sequencing read-based approaches have been used (13,17-19,26). The former 
incorporates genomic features such as nucleotide context and cell-specific features 
such as cell-type, together with sequencing reads into the PSI value prediction, 
whereas the latter uses only sequencing reads, specifically splice junction reads, to 
compute PSI values.  
 
The Bayesian approach based on genomic features for PSI estimation has been 
applied to SE splicing events only (17). Here, we assessed the predictive value of a 
genomic feature in inferring PSI values for other types of splicing events. We observed 
relatively low-level correlations between PSI values from MXE, RI, A5SS, A3SS, AFE, 
and ALE splicing events and the phastCons conservation scores compared to SE 
(Figures 2A-B). The phastCons score was identified as the most predictive feature for 
PSI value estimation using BRIE, as previously described (26). This would suggest 
reliable estimation of PSI values if the Bayesian regression based on genomic features 
was to be applied to SE, but other methods of PSI estimation, such as those based on 
sequencing reads alone, may be more suitable for non-SE splicing events.  Therefore, 
MARVEL implements the splice junction read-based for PSI estimation of SE, MXE, 
RI, A5SS, A3SS, AFE, and ALE. 
 
To assess the precision of estimated PSI values computed using a splice junction 
read-based approach, we evaluated the reproducibility of PSI quantification across 
homogenous cell populations in different cell types (51). Compared to all three modes 
of computing PSI values by BRIE, the median cell-to-cell correlation in PSI values for 
SE splicing event was higher for Expedition and MARVEL (Figure 2C). Expedition and 
MARVEL showed similar median cell-to-cell correlation in PSI values for SE and MXE 
splicing events. This is because Expedition and MARVEL both used splice junction 
counts to compute PSI values. In addition, MARVEL computes PSI values for RI, 
A5SS, A3SS, AFE, and ALE that are not provided by BRIE and Expedition. 
Furthermore, we assessed the median cell-to-bulk correlation for SE splicing events 
and observed a significantly higher correlation for MARVEL and Expedition compared 
to BRIE modes 0 and 1 (Figure 2D). There was no significant difference in median 
cell-to-bulk correlation in PSI values for SE and MXE splicing events between 
MARVEL and Expedition. The overall median cell-to-cell and cell-to-bulk correlation 
for SE, MXE, RI, A5SS, A3SS, AFE, and ALE splicing events computed by MARVEL 
were generally higher than 0.82 per category, suggesting robust PSI values generated 
using MARVEL.  
 
We further compared the computational efficiency in processing time and Random-
Access Memory (RAM) usage for computing the PSI values by BRIE, Expedition, and 
MARVEL. MARVEL required less time to compute the PSI values than BRIE and 
Expedition for the same dataset of SE and MXE splicing events (Figure 2E). Except 
for RI, the processing time across all datasets for A5SS, A3SS, AFE, and ALE was 
less than one minute. Lastly, the RAM usage was slightly higher for MARVEL than 
BRIE but lower than Expedition for computing the PSI values for the same dataset 
(Supplementary Figure 6A). 
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Taken together, MARVEL enables computationally efficient PSI quantification of all 
exon-level splicing event types and demonstrates reproducible PSI values across 
different cell populations that are comparable with existing single-cell splicing 
software. 
 
Modality classification and correction 
 
Modality classification concept was previously introduced to stratify the PSI distribution 
in a cell population into discrete categories, comprising excluded (PSI ~ 0), included 
(PSI ~ 100), middle (PSI ~ 50), bimodal (PSI ~ 0,100), and multimodal (uniform 
distribution) (19). However, the current modality assignment does not identify and 
correct for false classification caused by technical noise of scRNA-Seq experiments. 
Specifically for bimodal distributions, recent simulated and empirical data showed that 
a significant proportion of bimodality was spurious due to PCR amplification bias 
during the single-cell library preparation (25). Analyzing highly expressed alternative 
splicing events defined as genes with high mRNA count, and hence genes with low 
possibility of dropouts, e.g., genes with at least 10 molecules, has been shown to 
mitigate the false bimodal classification (25). However, this approach would preclude 
the majority of genes from downstream alternative splicing analysis. For example, we 
observed that >90% of genes were excluded when at least 10 molecules were required 
(Supplementary Figures 6B and C).  
 
To retain alternative splicing events for analysis irrespective of gene abundance and 
at the same time mitigate false bimodal classification, we sought to identify 
distinguishable features between true and false bimodal distributions. We tabulated a 
set of true and false bimodal distributions encompassing alternative splicing events 
previously validated using qPCR or smFISH (19). Additionally, we tabulated a set of 
true bimodal distributions consisting of highly expressed alternative splicing events as 
previously described (25) (Figure 2F). We observed that the fold difference or 
difference in the proportion of cells at both ends of PSI distribution could delineate true 
from false bimodal distributions with thresholds of < 3 and < 50%, respectively (Figures 
2G and H). Therefore, MARVEL incorporated these heuristic thresholds to identify true 
bimodality. Moreover, true bimodality revealed an average PSI (from both ends) of 
about 50, whereas the PSI values of false bimodality trended towards 100 or 0 
(Supplementary Figure 6D). Therefore, MARVEL reclassifies the false bimodality into 
included or excluded modalities when the average PSI value is above or below 50. 
 
Next, using our bimodal-adjusted modality approach, we compared Expedition’s and 
MARVEL’s ability to distinguish bimodal distributions from other modalities (e.g., 
included, excluded, middle, and multimodal). We tabulated a set of presumed true 
bimodal and non-bimodal distributions based on qPCR and smFISH validation and 
mRNA counts comprising 17,304 splicing events (25) (Supplementary Figure 6E). 
Expedition and MARVEL showed similar sensitivity, specificity, and negative 
predictive values in classifying bimodal and non-bimodal distributions (Figure 2I). 
However, Expedition showed a higher number of non-bimodality, leading to higher 
false-positive rates than MARVEL (p < 0.01; Fisher’s exact test; Supplementary Figure 
6F). MARVEL, therefore, is more precise in classifying bimodality than Expedition.  
 
Finally, we compared the percentage of splicing events classified as bimodal 
distribution by MARVEL and Expedition for highly expressed alternative splicing 
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events and alternative splicing events that do not meet the criteria for high mRNA 
counts. Expedition classified a median of 7.8% of all splicing events as bimodal 
distribution compared to 1.4% by MARVEL, whereas only 0.2% of highly expressed 
splicing events were classified as bimodal distribution (Supplementary Figure 6G). 
However, MARVEL identified a bimodal distribution of the lowly expressed PKM gene, 
previously validated using smFISH (19). This gene would be missed if only highly 
expressed alternative splicing events were included for analysis (Supplementary 
Figures 6H and I).  It is also noteworthy that almost four times more splicing events 
were eligible for modality assignment by MARVEL than when only highly expressed 
alternative splicing events were included for analysis.  
 
Taken together, MARVEL leverages the concept of modality assignment introduced 
previously (19) while adjusting for technical biases from scRNA-seq library preparation 
(25) to enable robust classification of splicing patterns. 
 
Differential splicing analysis 
 
Statistical approaches for differential splicing analysis for scRNA-seq, such as BRIE 
(17), BRIE2 (18), and Expedition (19) were recently developed. However, BRIE 
requires a pairwise comparison between all possible pairs of cells that might use high 
computational resources and processing time to detect differential splicing events in a 
large number of cells (17). BRIE’s approach is suitable for detecting differential splicing 
events within a cell population but not across two different populations. Expedition 
detects differential splicing events based on modality change, excluding splicing 
events that show no modality change across cell populations (19). Detection of 
differential splicing events based on modality change is further limited by assigning 
modality without considering biases in PCR amplification, leading to inaccurate 
modality assignment, such as false bimodal classification (25). Lastly, BRIE2 
differential splicing analysis is recommended for comparing PSI values across 
homogenous, but not, heterogenous cell populations (18). This is because, for a given 
cell type, BRIE2 imputes alternative splicing events for missing PSI values, using the 
mean PSI values across the cell population. Moreover, imputed PSI values may not 
represent actual biological phenomenon (19) and underappreciate the cell-to-cell 
heterogeneity present in the cell population. Therefore, we sought to apply alternative 
approaches to compare PSI values between two cell populations and distinguish 
splicing distributions with similar average PSI values but different PSI distributions, 
such as bimodal, middle, and multimodal distributions.  
 
To this end, we applied nonparametric tests, namely Kolmogorov-Smirnov (KS), 
Anderson-Darling (AD), D Test Statistics (DTS) (41), and Wilcoxon rank-sum test, to 
identify the number of differential splicing events during myoblast differentiation 
cultured and sequenced at 0- and 72-hours (15). These tests were implemented into 
MARVEL and identified 39 (KS), 69 (AD), 175 (DTS), and 65 (Wilcoxon rank-sum test) 
differentially spliced events. Using a comparable cut-off, DTS detected a much higher 
number of differentially spliced events than other tests, suggesting higher detection 
sensitivity. However, we observed that differentially spliced events detected by DTS 
were driven by outlier cells with extremely large or small PSI values relative to most of 
the cell population (Supplementary Figures 7A-D).  
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To mitigate differentially spliced events driven by these outlier cells, we applied 
MARVEL’s bimodal-adjusted modality assignment to identify the events that 
demonstrated only included to included or excluded to excluded modalities. We set a 
heuristic threshold of at least 10 cells with PSI values > 0 or < 100 in at least one of 
two of the cell populations for the differentially spliced events to be retained for 
downstream analysis (Supplementary Figures 7E-H). We implemented this outlier 
removal technique into MARVEL. MARVEL’s method removed outliers and retained a 
higher number of differentially spliced events detected by DTS than other 
nonparametric tests and BRIE2, which uses the Bayesian model selection method 
(18) (Supplementary Figure 7I). Because AD and DTS captured most differential 
splicing events (Supplementary Figure 7J), we combined AD and DTS tests followed 
by the outlier removal as the default method for MARVEL’s differential splicing 
analysis. Using a comparable cut-off, MARVEL identified 114 differentially spliced 
events compared to 73 by BRIE2 (Figure 2J). Next, we investigated whether 
differentially spliced events detected by MARVEL were biologically relevant to 
myoblast differentiation. As expected, muscle-related genes were differentially spliced 
(Supplementary Figures 7K-N). Gene ontology analysis of all differentially spliced 
genes showed the enrichment of muscle-related pathways when immature myoblasts 
were differentiated into mature cells (Figure 2K). Moreover, gene ontology analysis of 
differentially spliced genes detected exclusively by MARVEL additionally identified 
pathways related to protein translation and localization, and cell cycle pathways 
(Supplementary Figure 7O). 
 
To assess the generalizability of our method, we performed differentially splicing 
analysis on single-cell neurons derived from mice induced with multiple sclerosis 
compared to healthy mice (28). We compared differentially spliced events detected by 
MARVEL against BRIE2 (in mode 2-diff), which effectively identified differential 
alternative splicing events for this dataset (18). Using a comparable cut-off, MARVEL 
identified 248 differentially spliced events compared to 238 by BRIE2 (Figure 2L). Both 
MARVEL and BRIE2 identified a splicing event that was previously validated using 
qPCR (28) (Supplementary Figure 7P). Gene ontology analysis of differentially spliced 
genes detected by MARVEL identified RNA splicing and neuron-related pathways to 
be enriched, as expected when mice were induced to manifest an autoimmune 
disease that attacks the nervous system (Figure 2M). Moreover, gene ontology 
analysis of differentially spliced genes detected exclusively by MARVEL additionally 
identified lysosome and neurotransmission pathways (Supplementary Figure 7Q).  
 
Taken together, MARVEL identified biologically relevant pathways during muscle cell 
maturation and in a mouse model with multiple sclerosis. MARVEL complements 
existing single-cell alternative splicing tools by detecting additional differentially 
spliced genes and biological pathways. 
 
MARVEL application for analyzing a plate-based scRNA-seq dataset 
 
After benchmarking MARVEL, we showed the functional features provided by 
MARVEL to characterize the single-cell alternative splicing landscape in induced 
pluripotent stem cells (iPSCs) and iPSC-derived endoderm cells (26).  
 
MARVEL detected 13,125 and 5,308 splicing events in iPSCs and endoderm cells. 
The most prevalent splicing event in iPSCs and endoderm cells was SE, followed by 
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RI, AFE, A3SS, A5SS, ALE, and MXE (Supplementary Figures 8A-B). We investigated 
whether alternative splicing represented an underappreciated layer of complexity 
underlying gene expression profile by performing linear dimension reduction analysis 
using gene expression and PSI values of alternative splicing events. Differentially 
expressed genes and spliced events robustly distinguished the cell types (Figures 3A 
and B), whereas non-differentially expressed genes could not separate the cell types 
(Figure 3C). Interestingly, differential splicing events from non-differentially expressed 
genes could clearly delineate the two cell types (Figure 3D; Supplementary Figures 
8C-I), except for MXE, which was due to the low number of MXE events detected in 
this analysis (Supplementary Figure 8D). Lastly, all splicing events expressed in both 
cell types, regardless of whether the events were differentially spliced or not, were 
also able to separate the cell types (Supplementary Figures 8J). 
 
Similar to previous studies (19,26), we next explored PSI distributions (modalities) of 
individual alternative splicing events identified in iPSCs and endoderm cells. Modality 
assignment can inform whether a predominant isoform (included and excluded) or 
both isoforms (bimodal, middle, and multimodal) are expressed and contribute to 
cellular identity in a cell population. MARVEL assigned distinct modalities to alternative 
splicing events for each cell type (Figure 3E and Supplementary Figure 8K). Both cell 
types showed a high proportion of included and excluded modalities (~97% of all 
modality types), whereas other modalities (bimodal, middle, and multimodal) showed 
only ~ 3%.  This is consistent with previous empirical and simulated studies (42,52). 
In addition to the original modalities previously proposed (19,26), MARVEL could 
stratify the included and excluded modalities into primary and dispersed. In iPSCs 
(Figure 3E), we observed primary and dispersed modalities constituted 40.9% and 
59.1% of the included modality, whereas primary and dispersed modalities constituted 
44.5% and 55.5% of the excluded modality. Similar proportions were observed in 
endoderm cells (Supplementary Figure 8K). Further stratification of modality types by 
alternative splicing event types showed different proportions of modality types by 
alternative splicing events (Figure 3F and Supplementary Figure 8L). For example, 
excluded modality was most prevalent in RI events, constituting 73.6% and 75.2% of 
all modality types in this splicing event type in iPSCs and endoderm cells. This is 
consistent with the reported role of intron retention in gene regulation (53). 
 
We performed differential splicing analysis to detect differentially spliced events to 
understand the splicing dynamics when iPSCs were differentiated into endoderm cells. 
MARVEL identified 1,614 differential alternative splicing events comprising 816 genes 
(Figure 3G; Supplementary Tables 2 and 3). Top differentially spliced genes included 
DNAJC15, SNRPN, RPL26, RPS24, and RPS10. DNAJC15 regulates cellular 
metabolism (54), whereas SNRPN, RPL26, RPS24, and RPS10 are ribonuclear 
proteins involved in transcription and translation (55). We selected representative 
differential alternative splicing events from SE, MXE, RI, A5SS, and A3SS for visual 
validation using VALERIE (56) (Supplementary Figures 9A-E) (56). 
 
MARVEL further categorized differential alternative splicing events based on modality 
changes between iPSCs and endoderm cells. We defined modality changes as 
explicit, implicit, and restricted. Explicit is defined as clear changes within the five main 
modalities (included, excluded, bimodal, middle, and multimodal). Implicit is defined 
as changes involving the sub-modalities primary and dispersed. Restricted is defined 
as no modality changes across the two cell populations. During iPSCs to endoderm 
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cell differentiation, we observed 160, 300, and 1,154 explicit, implicit, and restricted 
modality changes, respectively, among the differential alternative splicing events 
(Figure 3H). Notably, most differential alternative splicing events, 1,454 (90%) events, 
would have been missed if differences in splicing patterns were detected based on 
explicit modality change alone as used in the previous study (19). Examples of genes 
that underwent explicit, implicit, and restricted modality change from iPSCs and 
endoderm cells were CNBP, SOX4, and DPPA4 (Figures 3I-K). CNBP is dysregulated 
in iPSC derived from patients with myotonic dystrophy (57), whereas SOX4 and 
DPPA4 are transcription factors shown to be dynamically regulated during endoderm 
induction from iPSCs (58).  
 
General scRNA-seq analysis pipelines perform either differential gene expression or 
alternative splicing analysis alone but do not integrate both analyses into a single 
framework. MARVEL allows the integration of differential alternative splicing and gene 
expression analysis. This enabled us to investigate the changes in alternative splicing 
relative to changes in gene expression when iPSCs were differentiated into endoderm 
cells. We identified 816 differentially spliced genes among the 1,614 differentially 
splicing events. of which, 479 (58%) genes were concurrently differentially expressed 
(Figure 3L). To explore the relationship between differential genes and alternative 
splicing changes, MARVEL categorized the changes in gene expression relative to 
changes in PSI values into coordinated, opposing, isoform switching, and complex 
(Figure 3M). Coordinated and opposing relationships are defined as changes in gene 
expression between two cell populations in the same or opposite direction to the 
change in average PSI values (Figures 3N-Q). For example, DHX9, involved in 
chromatin remodeling during stem cell differentiation (59), showed coordinated gene-
splicing changes, whereby the gene expression and PSI values were decreased from 
iPSCs to endoderm cells. On the other hand, BCLAF1 encodes for an anti-apoptotic 
protein that promotes maintenance and self-renewal of stem cells (60), showed 
opposing gene-splicing changes, whereby there was a decrease in gene expression 
from iPSCs to endoderm cells, but PSI values of an RI event were increased.  Isoform 
switching is defined as genes showing differential splicing but not differentially 
expressed (Figures 3R-S). CELF1, involved in regulating the stability and translation 
of mRNA during the differentiation process (61), showed no significant difference in 
gene expression, and mean PSI values in both cell populations were similar, but the 
overall PSI distribution for an A3SS event was changed from excluded dispersed in 
iPSCs to bimodal in endoderm cells (explicit modality change). Lastly, a complex 
relationship involves a combination of coordinated, opposing, and/or isoform switching 
relationships (Figures 3T-V). For instance, TERF1, involved in telomere elongation 
and maintenance of pluripotency in the iPSCs (62), showed a significant decrease in 
gene expression in endoderm cells, whereas a SE event of this gene showed a clear 
modality change from middle to bimodal with a slight increase in PSI values, while a 
separate AFE splicing event of this gene showed a decrease in PSI values in 
endoderm cells. Opposing, isoform switching, and complex gene-splicing relationship 
constituted the majority of the relationships, 632/816 (77%). Therefore, most PSI 
changes may not be inferred directly from gene expression changes alone. This 
highlights the value of differential splicing analysis in revealing additional differentially 
regulated genes.  
 
To assess whether functionally related genes or genes that belong to the same 
biological pathways are coordinatedly and differentially spliced, we performed gene 
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ontology analysis using 816 differentially spliced genes detected by MARVEL. 
MARVEL identified 141 significantly enriched pathways among the differentially 
spliced genes, including pathways related to RNA splicing, gene translation and 
regulation, and ribonucleoprotein complex formation (Figure 3W). Both RNA splicing 
and ribonucleoproteins have been shown to regulate stem cell self-renewal and 
differentiation by modulating protein translation (19,63). 
 
To understand the functional consequences of alternative splicing of differentially 
spliced genes, MARVEL predicted nonsense-mediated decay (NMD) for a given 
alternative splicing event and investigated the relationship between gene expression 
and alternative splicing-related NMD. We observed RI as alternative splicing events 
that affected protein-coding transcripts with the highest rate (86%) of introducing 
premature terminal codons (PTCs), followed by A5SS (46%), A3SS (41%), and SE 
(35%) (Figure 3X). Only RI-mediated NMD led to a significant decrease in gene 
expression when iPSCs were differentiated into endoderm cells (Figure 3Y). This is 
consistent with a previous study that showed a decrease in gene expression by RI-
mediated NMD but not NMD mediated by other splicing event types (64). Genes 
subjected to alternative splicing-related NMD and were concurrently down-regulated 
in endoderm cells included BUB3, HSPA4, EIF5, RPL22L1, DDX39B, SRRM1, and 
the splicing factor SRSF10 (Figure 3Z). BUB3 is essential for mitotic spindle 
checkpoint function during cellular proliferation and differentiation (65), whereas 
HSPA4 represents a class of heat-shock proteins (HSPs) targeting misfolded proteins 
for degradation (66). EIF5 and RPL22L1 are involved in transcription and translation 
(67,68). DDX39B, SRRM1, and SRSF10 regulate RNA splicing (69-71). Taken 
together, MARVEL links NMD-related splicing changes to gene expression changes 
to enable prioritization of candidate spliced genes for downstream functional studies 
(21). 
 
MARVEL application for analyzing 10x Genomics scRNA-seq dataset 
 
MARVEL also facilitates single-cell alternative splicing analysis for droplet-based 
scRNA-seq library preparation methods, such as 10x Genomics. To demonstrate the 
utility of MARVEL, we analyzed scRNA-seq data from the cell differentiation of iPSCs 
into 10-day-old cardiomyocytes (27). Differential splice junction analysis identified 575 
and 243 splice junctions, comprising 539 genes, significantly up or downregulated, in 
cardiomyocytes relative to iPSCs (Figure 4A; Supplementary Table 4). Differentially 
spliced genes were enriched in muscle and actin-myosin filament sliding, stem cell 
differentiation, energy production, and WNT signaling pathways (Figure 4B). 
Examples of differentially spliced genes included MYH10, ATP5F1C, and CBX 
(Figures 4C-F) (72). MYH10 is required for proper functioning of the epicardial and 
formation of coronary vessels (73). ATP5F1C encodes a subunit of mitochondrial ATP 
synthase required for energy production (74). CBX plays a role in chromatin 
remodeling and neuron development (75). 
 
Next, we investigated gene expression changes relative to splice junction usage 
changes. Of the 539 genes that were differentially spliced, 19% and 15% of these 
genes exhibited changes in the same (coordinated) or opposite (opposing) direction 
relative to splice junction usage, respectively (Supplementary Figure 10A). Genes with 
a coordinated or opposing relationship with splice junction usage were VIM and 
UQCRH (Supplementary Figures 10B-E). VIM plays an essential role in maintaining 
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muscle cytoarchitecture and is a reliable marker for muscle cell regeneration (76) while 
UQCRH participates in cardiac muscle contraction (77). More than half (59%) of 
differentially spliced genes exhibited isoform switching, i.e., differential splice junction 
usage in the absence of differential gene expression changes, such as the RBM39 
gene that was differentially spliced but not differentially expressed (Supplementary 
Figures 10F-H). RBM39 is an RNA-binding protein involved in alternative splicing and 
genetic mutations in RBM39 are associated with muscle myopathies (78). Last, 7% of 
genes exhibited a complex relationship with its splice junction usage. Examples of 
genes with a complex relationship with splice junction usage are TPM1 and TPM2 
(Supplementary Figures 10I-N). TPM1 and TPM2 gene expression were up-regulated 
in cardiomyocytes relative to iPSCs (Supplementary Figures 10I and L). While one of 
the splice junctions in both genes exhibited higher expression in cardiomyocytes 
(Supplementary Figures 10J and M), the other splice junctions exhibited higher 
expression in iPSCs (Supplementary Figures 10K and N). TPM1 and TPM2 are 
members of the tropomyosin family of highly conserved actin-binding proteins involved 
in striated and smooth muscle contraction. Genetic mutations in TPM1 are associated 
with cardiac hypertrophy, while genetic mutations in TPM2 were previously reported 
in patients with congenital myopathy (79,80). 
 
Most differentially spliced genes, 438 (82%), occurred in the absence (iso-switch) or 
opposite to splice junction usage changes (opposing relationship) or have a complex 
relationship with splice junction usage changes. Therefore, most splice junction usage 
changes cannot be inferred directly from gene expression changes alone.  
 
To further illustrate the intricate relationship between splicing and gene expression 
profile, we characterized the overall splice junction usage of TPM2 relative to its 
corresponding gene expression changes across the developmental stages of 
cardiomyocytes. We chose TPM2 for demonstration because its splice junction usage 
showed a complex relationship relative to its gene expression changes when 
comparing day-10 cardiomyocytes to iPSCs (Supplementary Figures 10M and N).  
TPM2 expression increased from iPSCs to more mature cardiomyocytes (Figure 4G). 
On the other hand, splice junction-1 (SJ-1; chr9:35682164-35684245) decreased from 
iPSCs relative to mature cardiomyocytes (Figure 4H), while SJ-2 (chr9:35684316-
35684487) usage was relatively consistent across all developmental stages (Figure 
4I). Similar to gene expression changes, SJ-3 (chr9:35684551-35684731) usage 
increased from iPSCs to mature cardiomyocytes (Figure 4J).  The overall splice 
junction usage across developmental stages decreased from SJ-1 to SJ-2 and SJ-3. 
We hypothesized that this is due to the 3’-bias inherent in scRNA-seq datasets 
generated from 3’-bias library preparation methods. To this end, we implemented a 
gene browser visualization function in MARVEL to inspect the specific location of 
splice junctions of interest relative to the transcripts. Indeed, SJ-1 was located on the 
most 3’-end of the transcripts, followed by SJ-2 and SJ-3 (Figure 4K). Therefore, the 
end-bias inherent in single-cell library preparation methods would be taken into 
account during single-cell alternative splicing analysis. 

 
DISCUSSION 
 
We have developed MARVEL to address key issues in single-cell alternative splicing 
analysis and enable transcriptome-wide characterization of the alternative splicing 
dynamics in scRNA-seq datasets. We benchmarked MARVEL against the existing 
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alternative splicing analysis tools and demonstrated the utility of MARVEL using for 
datasets generated from the plate- and droplet-based methods. We summarized the 
available features of MARVEL compared to other single-cell alternative splicing 
analysis tools shown in Supplementary Table 1. 
 
MARVEL employed a splice junction-based approach to estimate the PSI directly from 
splice junction reads that reflect true biological phenomena (19). PSI values estimated 
by using probabilistic frameworks, such as BRIE, have shown bias in PSI estimation 
and underestimated cell-to-cell heterogeneity at low coverage (17,81,82). We showed 
that MARVEL had a better cell-to-cell and cell-to-bulk correlation of PSI values in 
homogenous cell lines than other approaches.  
 
Most single-cell alternative splicing analysis tools constrained PSI quantification to 
only an exon-skipping splicing event. Nevertheless, other splicing event types also 
contribute to the cellular phenotype. For example, aberrant intron retention in cancer 
leads to abnormal proteins presented on the tumor surface as neoantigens, which may 
be amenable to immunotherapy (22). Alternative 3’ splice sites are preferentially mis-
spliced by mutant splicing factor SF3B1 (47,83).  Therefore, MARVEL has been 
developed to include PSI quantification for all main exon-level splicing event types, 
comprising SE, MXE, RI, A5SS, A3SS, AFE, and ALE. MARVEL also requires less 
processing time and lower memory usage than other tools. 
 
PSI values reflect the percentage of splice junction reads supporting the alternative 
exons and are therefore represented by any values between 0-100. Song et al. 
previously introduced the concept of “modality” to categorize the PSI distribution for a 
given alternative splicing event into discrete categories (19). The classes of modalities 
were included, excluded, bimodal, middle, and multimodal. MARVEL introduces 
primary and dispersed sub-modalities for included and excluded modalities. We 
showed that ~50% of included and excluded comprised of primary sub-modality, 
whereas another ~50% showed dispersed sub-modality, suggesting that MARVEL 
could increase the current repertoire of modality classes and provide a finer distinction 
between the different PSI distributions. 
 
A significant proportion of bimodality may have been misclassified (25). We tabulated 
a catalog of true and false bimodal alternative splicing events previously validated 
using qPCR, smFISH, and inferred mRNA counts (15,19,25,26). We identified key 
features that distinguished true from false bimodality. These features were 
incorporated into MARVEL to identify and adjust for the false bimodal class, leading 
to more accurate modality classification and modality change detection between 
different cell populations. 
 
Current approaches for differential alternative splicing analysis in single cells include 
a comparison of two cells at a time or detection of modality changes between cell 
populations. For the former approach, comparing all possible cell pairs is impractical 
when the number of cells becomes large (17). For the latter approach, changes in 
splicing patterns are defined on modality changes across different cell populations, 
such as included to excluded modality change (19). This approach may miss changes 
in splicing patterns that do not involve any modality change. MARVEL incorporated 
the statistical framework Anderson-Darling and D Test Statistic (41) combined with the 
bimodal-adjusted modality assignment to enable unbiased evaluation of the 
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differences in PSI distribution across different cell populations. We showed that 90% 
of differential alternative splicing events identified by MARVEL, when iPSCs were 
differentiated into endoderm cells, demonstrated no explicit change in PSI modality. 
These events would have been missed based on the original modalities proposed by 
Song et al. (19). 
 
Current single-cell analysis tools offer only gene or alternative splicing analysis 
exclusively (17,19,84).  Nevertheless, alternative splicing and gene expression 
changes may be intricately linked. MARVEL integrates alternative splicing and gene 
expression to study the relationship between alternative splicing and gene expression 
changes across different cell populations. For example, comparative analysis between 
iPSCs and endoderm cells demonstrated that only about 23% of differentially spliced 
genes showed gene expression changes that occurred in the same direction as the 
corresponding PSI changes. The remaining differentially spliced genes occurred in the 
opposite or the absence of gene expression changes. This reaffirms the complex 
relationship underlying gene expression and alternative splicing. 
 
Current single-cell alternative splicing analysis tools fall short in providing context to 
understand the functional consequence of alternative splicing. Alternative splicing 
represents one of many mechanisms by which gene expression is regulated. We 
incorporated nonsense-mediated decay prediction (NMD) as a functional annotation 
feature, in addition to gene ontology analysis, into MARVEL. MARVEL can predict 
whether the insertion of a given alternative exon subjects the corresponding isoforms 
to NMD or not. It compares gene expression levels between genes that are subjected 
to NMD. We showed that increased intron retention decreased gene expression levels 
when iPSCs were differentiated into endoderm cells. This is reminiscent of the 
complex, in this case opposing relationship between alternative splicing and gene 
expression changes. This finding is in line with a previous report demonstrating that 
only intron retention, but not other splicing event types, was associated with decreased 
gene expression levels using long-read RNA-sequencing in SF3B1-mutated chronic 
lymphocytic leukemia patients (64). 
 
We extended MARVEL’s framework to enable integrated gene and alternative splicing 
analysis in the dataset generated from a droplet-based platform. MARVEL was able 
to identify differential splice junction usage enriched in muscle-, neuron-, and heart-
related pathways in iPSCs differentiated to cardiomyocytes. Moreover, only 19% of 
differentially spliced genes demonstrated the same directional changes in splice 
junction usage and gene expression. This is consistent with the intricate relationship 
between alternative splicing changes and gene expression changes revealed by the 
plate-based analysis. Lastly, MARVEL enables single-cell visualization of splice 
junction usage on linear or non-linear dimensionality reduction to verify differential 
splicing junction usage across different cell populations.  
 
Our study provides a comprehensive computational framework to characterize 
alternative splicing dynamics at single-cell resolution. As far as we are aware, 
MARVEL is the only single-cell alternative splicing computational tool to enable 
alternative splicing analysis on scRNA-seq data generated from the plate- and droplet-
based library preparation methods. MARVEL supports the integration of gene-level 
expression and alternative splicing analysis. For alternative splicing analysis, 
MARVEL provides end-to-end features to characterize single-cell alternative splicing 
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landscape, starting from alternative splicing event validation, percent spliced-in 
quantification, modality assignment and correction, differential splicing analysis, to the 
functional annotation using gene ontology and nonsense-mediate decay prediction. 
We anticipate MARVEL to be prospectively applied to single-cell datasets generated 
from various settings (e.g., health and disease states) to reveal novel biological 
insights. 
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DATA AVAILABILITY 
 
MARVEL is available on GitHub: https://github.com/wenweixiong/MARVEL. The 
software tutorial containing the pre-processed data and codes to reproduce the figures 
related to the application of MARVEL on plate- and droplet-based RNA-sequencing 
data are available at https://wenweixiong.github.io/MARVEL_Plate.html and 
https://wenweixiong.github.io/MARVEL_Droplet.html, respectively. All data sources 
included in this study are publicly available. 
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FIGURE LEGENDS 
 
Figure 1. MARVEL workflow for single-cell alternative splicing analysis in RNA-
sequencing dataset generated from plate-based methods. (A-C) Workflow for pre-
processing of splicing and gene expression data by MARVEL. (A) Input files required 
by MARVEL include splice junction count and normalized gene expression matrix, 
alternative splicing events, and gene and sample metadata. (B) Only alternative 
splicing events supported by at least 10 splice junction reads are retained. (C) The 
PSI values of the confident alternative splicing events identified in (B) are computed 
for main exon-level alternative splicing event types. PSI values are calculated as the 
total number of reads supporting the alternative exons (pink) divided by the total 
number of reads supporting both alternative exons and constitutive exons (black). (D-
G) Downstream analyses using computed PSI and gene expression values. (D) 
Dimension reduction analysis using differentially expressed genes (left), PSI values 
(middle), and PSI values of non-differentially expressed genes (right). (E) The 
assignment of PSI distributions into seven modalities (as indicated by colors) and the 
bimodal classification adjustment to reduce false bimodal classification. (F) Differential 
splicing and gene expression analysis and characterization of the alternative splicing 
in different modality changes or relative to gene expression changes across different 
cell populations.  (G) Pathway enrichment analysis of differentially spliced genes and 
NMD prediction of alternative splicing events to understand the functional 
consequences of differential alternative splicing events. Genes subjected to NMD are 
visualized on the volcano plot generated from differential gene expression analysis. 
A3SS: alternative 3’ splice site; A5SS: alternative 5’ splice site; AFE: Alternative first 
exon; ALE: Alternative last exon; DE: Differentially expressed; FC: Fold change; iPSC: 
Induced pluripotent stem cell; MN: Motor neuron; MXE: mutually exclusive exons; 
NMD: Nonsense-mediated decay; NPC: Neural progenitor cell; PC: Principal 
component; PSI: percent spliced-in; PTC: Premature terminal codon; RI: retained-
intron; SE: skipped-exon 
 
Figure 2. Benchmarking MARVEL against existing computational tools for 
single-cell alternative splicing analysis. (A-B) Pearson correlation between 
sequence conservation (phastCons) scores of alternative exons and their 
corresponding average PSI values across all single cells for each splicing event type 
in (A) iPSCs and (B) across nine cell lines. (C) Pearson correlation of PSI values 
between all possible single-cell pairs in nine cell lines compared across available 
splicing analysis tools. (D) Pearson correlation of PSI values between single cells and 
matched bulk sample in seven cell lines with both single cell and matched bulk sample 
available. (E) Comparison of processing time used to compute PSI values for 1,000 
splicing events for each splicing event type in three datasets. (F) Representative false 
and true bimodal distributions from qPCR, smFISH, and mRNA count-based approach 
[15, 19, 26]. (G-H) Comparison of the (G) fold change (ratio) and (H) fold difference in 
the percentage of cells with PSI > 75 and PSI < 25 (and vice versa) between false and 
true bimodal distributions. (I) Evaluation metrics compared MARVEL versus 
Expedition for sensitivity, specificity, negative predictive value, and precision. The 
classification of false and true bimodal distributions predicted by MARVEL and 
Expedition was compared against the catalog of ground truths comprising 17,304 false 
and true bimodal distributions. (J) A Venn diagram showing the number of differentially 
spliced SE events detected between 72- vs. 0-hrs myoblast by BRIE and MARVEL. 
(K) MARVEL identified muscle-related pathways among differentially spliced genes 
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between 72- vs. 0-hrs myoblast. (L) A Venn diagram showing the number of 
differentially spliced SE events detected between EAE and control mice using BRIE 
and MARVEL. (M) MARVEL identified neuron-related pathways among differentially 
spliced genes between EAE and control mice. hrs: hours; iPSC: induced pluripotent 
stem cell; MN: Motor neuron; NPC: Neural progenitor cell. *** FDR<0.01 ** FDR<0.05 
* FDR<0.1. 
 
Figure 3. Application of MARVEL on plate-based scRNA-seq data from iPSCs 
differentiated to endoderm cells. (A-D) PCA plots using (A) differentially expressed 
genes, (B) differential alternative splicing events, (C) non-differentially expressed 
genes, and (D) all alternative splicing events from non-differentially expressed genes. 
(E) The proportion of each modality class in iPSCs (F) The proportion of each modality 
class by splicing event type in iPSCs. (G) Ranked list of differentially alternative 
splicing events identified using MARVEL, comparing PSI distributions between iPSCs 
and endoderm cells. (H) The proportion of each modality dynamic class, i.e., the type 
of changes in modality of alternative splicing events from iPSCs to endoderm cells. (I-
K) Representative alternative splicing events of each modality dynamic class (I) 
explicit, (J) implicit, and (K) restricted. (L) Differential expression of genes that were 
differentially spliced. Blue denotes down-regulated genes (log2FC<-0.5 and 
FDR<0.10), red denotes up-regulated genes (log2FC>0.5 and FDR<0.10), and grey 
denotes non-differentially expressed genes (-0.5<log2FC<0.5 or FDR>=0.10). (M) 
The proportion of each gene-splicing relationship class, i.e., the type of changes in 
average gene expression value relative to change in average PSI value for the 
corresponding alternative splicing event from iPSCs to endoderm cells. (N-V) A 
representative gene and corresponding alternative splicing event for each gene-
splicing relationship class, (N-O) coordinated, (P-Q) opposing, (R-S) isoform 
switching, and (T-V) complex. (W) Enrichment scores, FDR values, and gene set sizes 
of selected biological pathways enriched among differentially spliced genes. (X) The 
proportion of isoforms with PTC introduced by SE, RI, A5SS, and A3SS. (Y) Boxplots 
showing the comparison of log2FC between genes that were not predicted or 
predicted to be subjected to alternative splicing-mediated NMD. (Z) A volcano plot 
showing differential gene expression analysis between iPSCs and endoderm cells 
annotated with genes predicted to be subjected to alternative splicing-mediated NMD. 
FC: fold change; NMD: nonsense-mediated decay; PTC: premature stop codon. *** 
FDR<0.01 ** FDR<0.05 * FDR<0.1. 
 
Figure 4. Application of MARVEL on iPSCs differentiated to cardiomyocytes. (A) 
log2FC of splice junction usage in cardiomyocytes relative to iPSCs vs. average splice 
junction usage across cardiomyocytes and iPSCs. Blue denotes splice junctions 
down-regulated in cardiomyocytes relative to iPSCs (ΔPSI<-5 and p<0.05). Red 
denotes splice junctions up-regulated in cardiomyocytes relative to iPSCs (ΔPSI>5 
and p<0.05). Grey denotes splice junctions not differentially spliced between the two 
cell populations (-5<ΔPSI<5 or p>=0.05). (B) Enrichment scores, FDR values, and 
gene set sizes of pathways enriched among differentially spliced genes. (C-F) tSNE 
embeddings generated using 1,160 highly variable genes and consisting of 11,244 
iPSCs and 5,937 day-10 cardiomyocytes annotated with (C) cell types and muscle-
related genes, (D) MYH10, (E) ATP5F1C, and (F) CBX1. (G) TPM2 gene expression 
and splice junction usage across all cardiomyocyte developmental stages. Splice 
junctions were arranged in decreasing expression from left to right. (H-J) Changes in 
splice junction usage relative to changes in gene expression levels when comparing 
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more mature cardiomyocytes to less mature cardiomyocytes and iPSCs for the top 
three highly expressed splice junctions. (K) The gene browser shows the relative 
position of the top three highly expressed splice junctions on TPM2 protein-coding 
transcripts. 
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Supplementary Figure 1 
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Supplementary Figure 1. QC to identify high-quality cells for downstream analyses for plate-

based scRNA-seq datasets. (A-L) Sequencing QC using total reads mapped, alignment rate, and 

percentage of mitochondrial reads contribution to filter for high-quality cells in (A-F) Song et al., (G-

I) Trapnell et al., (J-L) Linker et al., and (M-O) Falcao et al. dataset. For total reads mapped and 

alignment rate, cells above the threshold denoted by the red dashed line were considered high-

quality. For the percentage of mitochondrial reads contribution, cells below the threshold denoted 

by the red dashed line were considered high-quality. Only cells meeting all three criteria were 

included for downstream analyses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 2 

 



Supplementary Figure 2. QC to identify high-quality cells for downstream analyses for the 

droplet-based scRNA-seq dataset. (A-D) QC of single cells based on the number of genes 

detected and number of UMIs for (A) iPSCs, and cardiomyocytes at days (B) 2, (C) 4, and (D) 10. 

The red cells were excluded from downstream analyses based on UMI counts and the number of 

detected genes. UMI: unique molecular identifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 3
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Supplementary Figure 3. Alternative splicing event validation and PSI formulas. (A) Validation 

of alternative splicing events using splice junction reads to select high-quality alternative splicing 

events for PSI estimation. (B-F) The formulas to estimate the PSI values for (B) SE, (C) MXE, (D) 

A5SS, (E) A3SS, (F) AFE, (G) ALE, and (H) RI. ! denotes the number of splice junction reads 

supporting the alternative exon(s) in pink. " denotes the number of splice junction reads supporting 

the constitutive exon(s) in black but skipping the alternative exon(s). # denotes the intron length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 4 
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Supplementary Figure 4. The simulation of PSI values in different PSI distributions for each 

modality class. (A-E) PSI distributions corresponding to (A) bimodal, (B) included, (C) excluded, 

(D) middle, and (E) multimodal. The PSI distributions were modeled using the beta distribution, and 

the corresponding α and β parameters were estimated using the maximum likelihood approach.  
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Supplementary Figure 5. MARVEL workflow for single-cell alternative splicing analysis in a 

droplet-based scRNA-seq dataset. (A-C) Pre-processing of splice junction and gene expression 

data. (A) Inputs for MARVEL include splice junction and gene count matrix, normalized gene 

expression matrix, and splice junction, gene and sample metadata, and dimension reduction 

coordinates. (B) Only splice junctions, in which both exons are mapped to the same unique gene 

are retained. (C) For a given cell population, the splice junction usage is computed for the high-

quality splice junctions identified in (B) as the total splice junction counts divided by the total 

corresponding gene counts. (D-E) Downstream analyses using the computed splice junction usage 

and gene expression values. (D) Splice junction and gene expression distributions across a given 

cell population. Red dotted lines correspond to the percentage of cells in which most splice junctions 

and genes are expressed and can be used as thresholds for sub-setting splice junctions and genes 

for differential analysis. (E) Integrative differential splice junction and gene expression analysis 

allows for investigating changes in splice junction usage relative to changes in gene expression 

across different cell populations. (F) Pathway enrichment analysis to identify gene sets that are 

coordinatedly spliced. iPSC: Induced pluripotent stem cells. 
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Supplementary Figure 6. Benchmarking MARVEL against existing computational tools for 

estimating PSI values and modality assignment. (A) The use of RAM in GB to compute PSI 

values for 1,000 splicing events for each splicing event type in three datasets. (B-C) In iPSCs, the 

(B) number or (C) percentage of genes for alternative splicing analysis at different mRNA count 

thresholds and the different minimum number of cells thresholds (sample size). (D) The average 

PSI values of false and true bimodal distributions. (E-F) The confusion matrix comparing the number 

of bimodal and non-bimodal classifications assigned by Expedition and MARVEL compared to that 

of the ground truth consisting of 17,304 false and true bimodal distributions. (G) The percentage of 

alternative splicing events assigned as bimodal distribution by Expedition, MARVEL, and high 

mRNA count approach.  (H) The PSI distribution for PKM alternative splicing event in iPSCs, NPCs, 

and MNs. (I) The mRNA count distribution for PKM in iPSCs, NPCs, and MNs. RAM: Random 

Access Memory; GB: Gigabyte. *** FDR < 0.01 ** FDR < 0.05 * FDR < 0.1. 
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Supplementary Figure 7.  Benchmarking MARVEL against existing computational tools for 

differential splicing analysis. (A-D) Representative examples of splicing events, identified as 

differentially spliced by DTS, driven by the small number of cells (outliers) with PSI values of (A-B) 

>0 or (C-D) <1 when the modality change is from excluded to excluded or included to included, 

respectively. (E-H) Representative examples of splicing events that were considered as differentially 

spliced when the number of cells with PSI values of (E-F) >0 or (G-H) <1 when in either cell group 

is above a user-defined threshold, in this study is 10, when the modality change is from included to 

included or excluded to excluded, respectively. (I) The number of differentially spliced events 

detected between 72- vs. 0-hrs myoblast before and after removing events driven by outlier cells. 

(J) The number of differentially spliced events detected by AD, DTS, KS, and Wilcoxon rank-sum 

tests between 72- vs. 0-hrs myoblast. (K-N) Representative examples of muscle-related 

differentially spliced genes detected by MARVEL. (O) Identified pathways enriched among 

differentially spliced genes between 72- vs. 0-hrs myoblast among differentially spliced events 

identified by “BRIE2” (all spliced genes identified by BRIE2), “MARVEL” (all spliced genes identified 

by MARVEL), “BRIE2-MARVEL overlap” (spliced genes detected by both BRIE2 and MARVEL), 

“BRIE2-only” (spliced genes identified by BRIE2 but not MARVEL), and “MARVEL-only” (spliced 

genes identified by MARVEL but not BRIE2). (P) The visual validation of Mbp exon 2 shows 

differentially spliced between EAE and control mice by MARVEL. This exon2 was also previously 

validated using qPCR by the original study. (Q) Identified pathways enriched among differentially 

spliced genes between EAE and control mice among differentially spliced events identified by 

“BRIE2” (all spliced genes identified by BRIE2), “MARVEL” (all spliced genes identified by 

MARVEL), “BRIE2-MARVEL overlap” (spliced genes detected by both BRIE2 and MARVEL), 

“BRIE2-only” (spliced genes identified by BRIE2 but not MARVEL), and “MARVEL-only” (spliced 

genes identified by MARVEL but not BRIE2). AD: Anderson-Darling; DTS: D Test Statistic; EAE: 

experimental autoimmune encephalomyelitis; KS: Kolmogorov-Smirnov; hrs: hours; PSI: percent 

spliced-in; qPCR: quantitative polymerase chain reaction. 
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Supplementary Figure 8. Application of MARVEL on iPSCs differentiated to endoderm cells. 

(A-B) The proportion of expressed alternative splicing event types in (A) iPSCs and (B) endoderm 

cells. (C-J) Dimension reduction analysis with PCA using (C) SE, (D) MXE, (E) RI, (F) A5SS, (G) 

A3SS, (H) ALE, and (I) AFE splicing events of non-differentially expressed genes, and (J) all splicing 

events regardless of if there were differentially spliced or not. (K) The proportion of each modality 

class in endoderm cells. (L) The proportion of each modality class by splicing event type in 

endoderm cells. A3SS: alternative 3’ splice site; A5SS: alternative 5’ splice site; AFE: alternative 

first exon; ALE: alternative last exon; MXE: mutually exclusive exons; RI: retained-intron; SE: 

skipped-exon. 
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Supplementary Figure 9: Visual validation of differential alternative splicing events detected 

by MARVEL using VALERIE. (A-E) Representative examples of genes for each splicing event, (A) 

SE, (B) MXE, (C) RI, (D) A5SS, and (E) A3SS visually inspected using VALERIE.  A3SS: alternative 

3’ splice site; A5SS: alternative 5’ splice site; MXE: mutually exclusive exons; RI: retained-intron; 

SE: skipped-exon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 10
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Supplementary Figure 10. Gene expression and splice junction usage relationship of 

differentially spliced genes identified from iPSCs differentiated to day-10 cardiomyocytes. 

(A) The proportion of each gene-splicing relationship class, i.e., change in average gene expression 

value relative to change in average splice junction usage value for the corresponding splice junction 

from iPSCs differentiated to cardiomyocytes. (B-K) Representative gene expression and 

corresponding splice junctions for each gene-splicing relationship class, (B-C) coordinated, (D-E) 

opposing, (F-H) isoform switching, and (I-N) complex. Gene expression levels are indicated by the 

log2 scale. The splicing rate is indicated by the PSI scale. The genomic coordinates are also 

indicated for the respective splice junctions. 

 


