
ARTICLE IN PRESS

Physica E ( ) –
www.elsevier.com/locate/physe

Marvellous things in marvellous rings: energy spectrum, spins
and persistent currents

T. Ihna ;∗, A. Fuhrera, T. Heinzela, K. Ensslina, W. Wegscheiderb;c, M. Bichlerc

aSolid State Physics Laboratory, ETH Z�urich, 8093 Z�urich, Switzerland
bAngew. und Expt. Physik, Universit�at Regensburg, 93040 Regensburg, Germany

cWalter Schottky Institut, Technische Universit�at M�unchen, 85748 Garching, Germany

Abstract

Magnetotransport experiments on a semiconductor quantum ring in the Coulomb blockade regime are described. The
measurements allow to extract the discrete energy levels of a realistic ring, which are found to agree well with theoretical
expectations. The interaction e-ects important for our ring structure are analysed in detail. The experimentally observed
charging energy can be quantitatively understood within the Hartree approximation including a strong screening contribution
due to the top gate. The strong screening e-ect is the reason for the frequent occurrence of spin-pairs in the addition spectra.
The relation of the observed addition spectra to persistent currents is established and the magnitude of the current is extracted
from experimental data.
? 2002 Published by Elsevier Science B.V.
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1. Introduction

Ring structures have become especially impor-
tant for mesoscopic physics in connection with the
Aharonov–Bohm e-ect [1] and related phenomena
[2]. On the experimental side, the Aharonov–Bohm
e-ect has been observed in metal rings [3,4] and in
semiconducting rings [5,6]. Recently, the phase co-
herence of transport through a quantum dot embedded
in one arm of an open ring has been demonstrated
[7,8]. Persistent currents [9] were experimentally de-
tected by measuring the magnetic response of 107

mesoscopic copper rings [10] and in a single isolated
gold loop [11]. The only measurements of persistent
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currents in a GaAs/AlGaAs heterostructure are
due to Mailly et al. [12]. The energy spectrum of
self-assembled closed rings has recently been analy-
sed by optical experiments [13,14].
The quantum ring samples for our experiments

have been fabricated on AlGaAs/GaAs heterostruc-
tures containing a two-dimensional electron gas
(2DEG) with density 5×1011 cm−2 and mobility
90 m2=V s at T = 4:2 K only 34 nm below the sam-
ple surface. The surface of the heterostructure has
been locally oxidized by applying a voltage between
the conductive tip of an atomic force microscope
(AFM) and the 2DEG [15,16]. The electron gas is
depleted below the oxidized regions, which was used
in other studies for deFning high-quality quantum
dots [17]. Fig. 1(a) shows an AFM image of the ox-
ide lines deFning the quantum ring. The width of the
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Fig. 1. Sample layout. (a) AFM image of the quantum ring taken
after writing the structure. The oxide lines (bright regions) separate
the sample into several conductive (dark) regions. (b) Schematic
sketch of the ring. The dark curves represent the oxide lines. We
estimate the depletion length to be about 50 nm which results in
an estimated channel width of Hr≈65 nm. The average radius of
the ring is r0 = 132 nm.

quantum point contacts connecting the ring to source
(drain) is controlled by voltages applied to the lateral
gate electrodes qpc1a and b (qpc2a and b). The num-
ber of electrons in the ring can be tuned via the lateral
plunger gates pg1 and 2. Shape deformations due to
applied in-plane gate voltages are known to be rela-
tively weak [16,17]. The schematic in Fig. 1(b) shows
the dimensions of the quantum ring. After the oxida-
tion step the sample has been covered with a metallic
top gate electrode. We will show below that with the
combination of in-plane and top gate electrodes the
quantum ring can be tuned into the Coulomb blockade
regime with the single-particle level spacing being
much larger than the thermal energy kT .
An upper limit for the number of radial subbands

in the dot can be estimated from the width Hr ≈ 65
nm of the ring and the Fermi-wavelength of the
electrons in the host material �F ≈ 35 nm to be
3–4. However, it is known that the electron den-
sity in strongly conFned quantum dots can be much
smaller than the two-dimensional electron density of
the host material and �F can be much larger. This
means that the number of radial modes is very likely
to be smaller than 3 and we estimate the number of
electrons in the ring to be less than 200.

2. Energy spectra of quantum rings

Fig. 2(b) presents a logarithmic greyscale plot of
the current through the quantum ring as a function of

a voltage applied to both plunger-gates and magnetic
FeldB (applied normal to the 2DEG plane). A constant
DC source-drain voltage VSD = 20 �V was applied at
a temperature of 100 mK in a dilution refrigerator.
In Fig. 2(a) the Coulomb-blockade oscillations have

been extracted along the horizontal dashed line in Fig.
2(b), i.e. at constant B = 92 mT. A series of current
peaks can be seen that vary strongly in height from
peak to peak. The highest peaks correspond to a con-
ductance of a few percent of the conductance quantum
e2=h. The full-width at half-maximum of most peaks
is of the order of 4kT (with T = 100 mK) indicating
thermal broadening of conductance resonances. In be-
tween the peaks the current is typically unmeasurably
small. All these observations indicate that the ring is
in the Coulomb blockade regime.
Extracting the conductance as a function of mag-

netic Feld along the dashed vertical line of constant
gate voltage leads to the trace in Fig. 2(c). It shows os-
cillatory behaviour with a period of HB=75 mT, i.e.
one Iux quantum h=e per area �r20 . This is exactly the
Aharonov–Bohm period of an open ring of the same
radius. It can be seen that the positions and amplitudes
of most peaks in Fig. 2(b) show this period as well.
This is the manifestation of Aharonov–Bohm-type ef-
fects in the quantum ring.
The greyscale plot in Fig. 2(d) shows the con-

ductance of the ring in the VSD-Vtg-plane measured
at zero magnetic Feld. Typical Coulomb-blockade
diamonds are observed separated by the conductance
peaks at VSD = 0. At larger VSD outside the white
Coulomb-blockade diamonds, conductance peaks of
excited dot states can be seen.
In the following we interpret our data using the

constant interaction model of the Coulomb-blockade
e-ect [18,19]. From measurements of the Coulomb-
blockade diamonds [for a typical example see Fig.
2(d)] in the VSD–Vtg plane and in the VSD–Vpg plane
we determine the lever arms of the top- and in-plane
gates allowing us to translate gate voltages into ener-
gies, and the charging energy Ec = e2=C�≈190 �eV
which is much larger than kT≈10 �eV. The observed
single-particle level spacings obtained from the con-
ductance peak separations after subtraction of Ec are
found to be as large as H≈180 �eV (see below). This
value agrees with the large separation of excited states
from the Coulomb-blockade diamond boundaries in
Fig. 2(d). We emphasize that such a large single-level
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Fig. 2. The addition spectrum. (a) Measurement of Coulomb blockade resonances at Fxed magnetic Feld. (b) The evolution of such sweeps
with magnetic Feld results in the addition spectrum shown in colour. The Aharonov–Bohm period expected from the ring geometry is
indicated by the thin white horizontal lines. (c) Magnetic Feld sweep for constant gate voltage Vpg = 218 mV (dashed line in the colour
plot). (d) Typical Coulomb-blockade diamonds measured at zero magnetic Feld.

spacing is usually not achieved for quantum dots of
comparable size. In the ring it is due to the exclu-
sion of electrons from the central region accomplished
by the presence of the antidot. Since H�kT we can
state that we are in the single-level transport regime
if we neglect occasional level degeneracies. Within
the constant interaction model the positions of the
Coulomb-blockade peaks in gate voltage are given by

U (N )
G (B) =

1
e�G

[
�N (B) + Ec

(
N − 1

2

)
− �S

]
: (1)

Here we have assumed that the lever arm �G, the
charging energy Ec and �S, the electrochemical po-
tential in source and drain contacts, are independent
of magnetic Feld. This assumption is reasonable at
small magnetic Felds where the orbital wave functions
in the ring are not signiFcantly changed compared to
B=0. Under this assumption the magnetic Feld disper-
sion of individual conductance peaks in the measured
addition spectrum in Fig. 2(b) directly reIects the
dispersion of individual single-particle levels.
The experimental conductance-peak positions are

obtained from measurements like the ones shown in
Fig. 2(b) by converting the gate-voltage axis into an
energy scale using the lever arm determined from
Coulomb-blockade diamonds [20] and subtracting
a constant charging energy of 190 �eV. The result-
ing energies are plotted in Fig. 3 as a function of

Fig. 3. Reconstruction of the energy spectrum of the ring from the
data shown in Fig. 2. The straight grey lines show the diamond-like
pattern expected from an ideal ring spectrum.

magnetic Feld. The orbital states move up and down in
magnetic Feld with the Aharonov–Bohm period HB.
Diamond-like patterns can be identiFed which are
characteristic for ring spectra [21]. In this respect our
experiments show the long-predicted energy spectrum
characteristic for quantum rings [2,22,23]. However,
the experimental spectrum shows features that are not
found in the spectra of ideal rings. For example, there
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are some states having a very weak magnetic Feld
dispersion. All the features of this ring spectrum can
be interpreted using a model with a small additional
potential, breaking the perfect circular symmetry of
the ring [21], which will always be present in the
experiment due to the presence of source and drain
contacts and residual disorder in the ring.

3. Interaction e�ects and spin-pairing

We continue with a discussion of interaction e-ects
in our ring. A quite general treatment of the electro-
statics of quantum dots in the Hartree-approximation
has been given by Hallam and co-workers [24]. The
Hartree energy contribution for the addition of an elec-
tron in state ’i(r) to an N -electron system is given by
[25,26]

EH = e
∫
d3r|’i(r)|2VH(r) with

VH(r) :=
∫
d3r′�(r′)G(r; r′):

Here �(r) is the charge density due to the N electrons
already residing on the dot and the Green’s function
G(r; r′) is the electrostatic potential at r created by a
unit charge at position r′. For our purposes we include
the image charge e-ect due to the top-gate electrode
located at a distance d≈40 nm from the electron gas.
In general, it is not possible to calculate the Hartree
energy analytically for arbitrary wave functions.
Usually, a three-dimensional numerical self-consistent
calculation is necessary for this purpose [27]. Here
we restrict ourselves to a simpliFed scheme for cal-
culating the Hartree energy. We assume that the N
electrons on the dot create a homogeneous strictly
two-dimensional electron density around the ring lo-
cated between the inner radius r1 and the outer radius
r2. We further assume that the electron to be added
goes into a state that can be approximated by a similar
homogeneous probability density distribution. For this
simpliFed case we were able to evaluate the Hartree
energy analytically. Fig. 4 shows a comparison of
the calculated charging energies with and without the
screening e-ect of the top gate. It can be seen that the
presence of the top gate reduces the charging energy
to about 40% of its unscreened value. In the ring
structure measured in these experiments, the ratio

Fig. 4. Quenching of the charging energy due to screening of the
Hartree contribution of the interaction by the top-gate electrode
with a separation d from the ring. The ring has an inner (outer)
diameter of r1 (r2). A value of 2d=r2 = 0:486 was used for
this calculation. The ratio r1=r2 ≈ 0:6 in our experiment. The
dash–dotted curve is the result of the Hartree calculation without
the screening e-ect, while the full curve contains screening by the
top gate. For comparison we show the charging energies obtained
from the constant interaction model using a self-capacitance model
(dashed) and a plate capacitor model (dotted).

r1=r2 ≈ 0:6. From the Fgure we read a charging en-
ergy of 500 �eV for this value. This charging energy
does not correspond to the measured total charging
energy of the dot, e2=C�, because C� is the sum of
many capacitances between dot and gate electrodes.
The dot top-gate capacitance Ctg¡C� is only one of
these contributions. From the experiment, using the
lever arm of the top gate �tg = Ctg=C�, we determine
e2=Ctg = 550 �eV in nice agreement with the calcula-
tion. This quantitative result is also relevant for mea-
surements in the Coulomb blockade regime on other
quantum dots fabricated with AFM-lithography [17].
In order to check the validity of the simplest capa-

citive models used for estimating the charging energy,
we compare to a naive model of the self-capacitance
of a ring with capacitance Cring = 8��0(r2 − r1) and
a ring shaped plate capacitor model with Cplate =
��0�(r22− r21)=d. Fig. 4 shows that the self-capacitance
model strongly overestimates the charging energy of
the ring. Even compared to the unscreened Hartree
result this model is only good in the limit r1 → 0.
The plate capacitor model does account for part of the
screening e-ects. However, for the parameters of our
dot the error of this model compared to the screened
Hartree result is more than 100%.
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Fig. 5. Energetic position (left) and amplitude (right) of conductance peaks as a function of magnetic Feld for three di-erent spin-pairs.
Data for the two corresponding neighbouring conductance peaks belonging to a pair are shown in black and grey, respectively. In the
graphs on the left the vertical energy axis has been obtained from the experimentally applied plunger gate voltage using the appropriate
lever arm. In each pair of curves a constant charging energy of 190 �eV has been subtracted for the energetically higher peak in order to
facilitate comparison. The strong correlation of energies between neighbouring peaks (left) and their respective amplitudes (right) are the
signatures of spin-pairs.

The strong reduction of electron–electron inter-
actions due to screening e-ects in our ring is also
important for other interaction contributions such as
exchange e-ects. It has been predicted by Blanter and
co-workers [28] that subsequent occupation of the
same orbital level by spin up and spin down electrons
should be observed in systems with small interaction
e-ects. In a Coulomb-blockade experiment this will
show up as paired neighbouring conductance peaks
with strongly correlated position and amplitude in
varying magnetic Feld, so-called spin-pairs [17]. This
is in strong contrast to the occupation of levels in real
atoms or in artiFcial semiconductor atoms [29], where
according to Hund’s rules the successive Flling of
parallel spins is favoured. In the experiment it turns
out that many spin-pairs can be observed in the quan-
tum ring. In Fig. 5 we show three examples. On the
left, the positions of conductance peaks as a function
of magnetic Feld are shown with the charging energy

subtracted. The curves of spin-pairs almost perfectly
collapse onto a single curve. On the right, the cor-
responding amplitudes of the conductance peaks are
shown. Although they are not perfectly identical for
the spin-pairs, strong correlations are evident. Loosely
speaking, the screening e-ect leads to a strong re-
duction of the interaction parameter rs which is the
ratio between the Coulomb interaction energy and
the Fermi-energy in a two-dimensional electron gas.

4. Relation of the ring spectra to persistent
currents

The existence of persistent currents in coherent
mesoscopic rings was brought to the attention of the
experimentalists by BNuttiker and Imry [9]. We will
brieIy sketch the main idea below, emphasizing the
relation to the single-particle energy spectrum of a
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ring. The basic expression for the persistent current
at zero temperature is

I =
M
A
=− 9Etot

9(B · A) =−9Etot9� =−∑
i

9Ei
9� =

∑
i
Ii:

Here,� is the total Iux piercing the ring structure. The
Frst equality stems from elementary magetostatics
relating the magnetic moment M to a circulating
current. The second (third) equality expresses the
magnetic moment in terms of the magnetic Feld
(Iux) derivative of the total energy of the sys-
tem. The total energy is then decomposed into
single-particle contributions neglecting interac-
tion e-ects like the charging energy. However,
a charging energy independent of magnetic Feld
can be added to Etot without a-ecting the Fnal
result for the persistent current. We wish to empha-
size that in this constant-interaction picture which
is—as we have shown above—appropriate for our
ring, the persistent current can be decomposed into
contributions of individual single-particle levels, i.e.
each state i contributes an amount to the persistent
current which is given by the derivative of its energy
with respect to magnetic Iux.
We can now determine the contribution to the

persistent current of particular states observed in the
Coulomb blockade regime of our ring. For a par-
ticular strongly oscillating state in Fig. 3 we have
a slope of about 300 �eV per Iux quantum corre-
sponding to I≈11 nA. States that are Iattened by a
symmetry breaking potential or by disorder contribute
signiFcantly less to the total persistent currents. If
we assume that currents of all the lower lying states
sum up to zero this current is also an estimate of
the total persistent current in the ring and the deter-
mined value is consistent with previous magnetization
measurements [10–12].

5. Summary

The detailed analysis of quantum rings demon-
strates that even in many-electron Coulomb-blockaded
systems a detailed understanding of the energy spec-
trum and interaction e-ects can be obtained. With
advanced fabrication techniques at hand this opens
the path to the understanding of more complex and
multiply connected structures on a quantum mechan-

ical level. Electron–electron interactions beyond the
constant interaction model have been shown to play a
minor role in our quantum ring leading to the frequent
observation of spin-pairs. Once ring structures with
only one radial mode occupied are available such
quantum rings could be used to investigate spin e-ects
[30] or even Luttinger liquid behaviour in a circular
1D system with periodic boundary conditions.
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