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Abstract—Sequence comparison tools based on the Smith-
Waterman (SW) algorithm provide the optimal result but have
high execution times when the sequences compared are long, since
a huge dynamic programming (DP) matrix is computed. Block
pruning is an optimization that does not compute some parts
of the DP matrix and can reduce considerably the execution
time when the sequences compared are similar. However, block
pruning’s resulting task graph is dynamic and irregular. Since
different pruning scenarios lead to different pruning shapes,
we advocate that no single scheduling policy will behave the
best for all scenarios. This paper proposes MASA-StarPU, a
sequence aligner that integrates the domain specific framework
MASA to the generic programming environment StarPU, creating
a tool which has the benefits of StarPU (i.e., multiple task
scheduling policies) and MASA (i.e., fast sequence alignment).
MASA-StarPU was executed in two different multicore platforms
and the results show that a bad choice of the scheduling policy
may have a great impact on the performance. For instance, using
24 cores, the 5M x 5M comparison took 1484s with the dmdas

policy whereas the same comparison took 3601s with lws. We also
show that no scheduling policy behaves the best for all scenarios.

Index Terms—Parallel sequence comparison, parallel program-
ming environment, dynamic programming

I. INTRODUCTION

In the last decades, we have observed an astonishing evo-

lution of the sequencing methods, which allowed the rapid

assembly of genetic sequences by a huge number of labora-

tories around the world. Even though this is clearly a great

benefit, it created the so-called data deluge and, thus, genetic

sequences are being produced in a rate that is much higher

than the rate of their analysis [1].

One of the first steps in biological sequence analysis is pair-

wise sequence comparison, where a newly obtained sequence

is compared to sequences which have been catalogued, in

search of similarities. Smith-Waterman (SW) [2] is a well-

known algorithm that provides the optimal result. It uses

dynamic programming and has quadratic time and space

complexities. This leads to high execution times when the

sequences compared are long (Megabase comparison).

In order to accelerate sequence comparison algorithms,

parallel platforms composed of multicores or multicores and

accelerators such as GPUs (Graphics Processing Units), Intel

Xeon Phis and FPGAs (Field Programmable Gate Arrays) have

been used. CUDAlign 4.0 [3] is a tool that uses a variant of the

SW algorithm to compare huge DNA sequences in GPUs. Its

code has been re-structured into the MASA [4] architecture

and now it runs in multicores, GPUs and Intel Xeon Phis

with various programming environments (CUDA, OpenCL,

OmpSs and OpenMP). In addition, MASA incorporates the

block pruning capability, which accelerates considerably the

execution when the sequences compared have a high degree of

similarity. One drawback of block pruning is that the pruning

behaviour is determined during execution and, for this reason,

scheduling issues may occur [5].

StarPU [6] is a general-purpose task-based parallel program-

ming environment which provides multiple task scheduling

policies and runs in several parallel platforms. In StarPU,

the programmer composes a graph of task dependencies and

StarPU keeps track of the tasks that become ready. Then,

the ready tasks are executed according to the selected task

scheduling policy. Currently, StarPU offers more than 10

different scheduling policies [7].

Related work in the area of Megabase DNA sequence com-

parison show that impressive performance can be attained with

accelerators [3] [8] [9]. The performance results for multicores

(CPUs) are less impressive but this is the platform used

at most Bioinformatics laboratories in developing countries

and, for this reason, this is the target platform used in this

paper. In the literature, very few CPU tools based on Smith-

Waterman are able to align Megabase sequences. The popular

Water tool (www.ebi.ac.uk/Tools/psa/emboss water) restricts

the sizes of the sequences to less than 1M. MASA-OpenMP

and MASA-OmpSs are part of the MASA framework [4]

and are able to align Megabase sequences, achieving the best

performance of about 4.80 and 5.88 GCUPS (Billions of Cells

Updated per Second), respectively, in a multicore platform

with 12 cores when comparing two Megabase DNA sequences.

ASW [10] is another tool able to align Megabase sequences,

which obtained 7.2 GCUPS in a platform containing an APU

(Accelerator Processing Unit) composed of 512 GPU cores

and 4 CPU cores. In the CPU-only execution, ASW attained

0.46 GCUPS [10]. As far as we know, there is no Megabase

DNA sequence comparison tool in the literature that supports

multiple allocation policies.

This paper proposes and evaluates MASA-StarPU, a bio-



logical sequence aligner that runs on top of StarPU and takes

advantage of its multiple scheduling policies. The contribu-

tions of the paper are twofold. First, we integrate a generic

parallel programming environment (StarPU) to a domain-

specific programming environment (MASA), creating a tool

which has the benefits of StarPU (i.e., multiple task scheduling

policies) and MASA (i.e., fast sequence alignment with the

SW algorithm). Second, we assess the behaviour of multiple

task scheduling policies for sequence comparisons under block

pruning and draw some directions about how to choose the

most appropriate policy for a particular alignment scenario.

MASA-StarPU was evaluated in two different multicore

platforms: (a) a notebook Acer with 4 cores; and (b) a node

(2 Intel Xeon E5-2680 - 24 cores) in the Miriel machine from

the PlaFRIM platform (www.plafrim.fr/en/home). Real DNA

sequences whose lengths ranged from 10 KBP (Thousands

of Base Pairs) to 5 MBP (Millions of Base Pairs) and 7

scheduling policies from StarPU were used in the tests.

MASA-StarPU was able to attain 18.41 GCUPS (24 cores)

when comparing 5 MBP x 5 MBP sequences with the dmdas

(dequeue modeling data aware sorted) task allocation policy

[7], with a total execution time of 24 minutes. If we compare

the same sequences but change the scheduling policy to lws

(local work stealing), the GCUPS drops to 7.68, with an

execution time of 59 minutes. We also show that there is no

scheduling policy which provides the best execution time for

all pruning scenarios and sequence lengths in both platforms.

The remainder of this paper is organized as follows. In

section II, we describe DNA sequence comparison algorithms,

their data dependencies and the block pruning strategy. MASA

and StarPU are explained in Section III. The design of MASA-

StarPU is presented in Section IV. Section V presents and

discusses experimental results. Finally, Section VI concludes

the paper.

II. DNA SEQUENCE COMPARISON

A DNA sequence is viewed as an ordered set of characters

that belong to the alphabet Σ = {A, T,G,C}. Pairwise

sequence comparison is a core operation in Bioinformatics that

determines the similarity between two sequences by producing

an alignment, which highlights regions of coincident and

distinct characters. Since the goal is to maximize the similarity

score, positive values are assigned to coincident characters

(match) and negative values are assigned to different characters

(mismatch) or to gaps included in one of the sequences.

An alignment may be (a) global, if it contains all characters

from the sequences; or (b) local, if it only contains a subset

of the characters from the sequences. The focus of this

paper is on local alignments and Figure 1 illustrates a local

alignment between two DNA sequences. The values assigned

for matches, mismatches and gaps are +1, −1 and −2.

The Smith-Waterman (SW) algorithm [2] computes opti-

mal local alignments with Dynamic Programming (DP) in

quadratic time and space (O(mn)), where m and n are the

lengths of the sequences. It executes in two phases: (1) obtain

the optimal score and (2) traceback.

S0 A C C − T G C C
S1 A C C T T G C C

+1 +1 +1 −2 +1 +1 +1 +1
︸ ︷︷ ︸

score = 5

Fig. 1. Example of local alignment between two DNA sequences.

In Phase 1, a DP matrix H is calculated using the recurrence

relation in Equation 1, where ma, mi and g are the values

assigned for matches, mismatches and gaps, respectively, and

S[i] is the i-th character of sequence S. When the whole matrix

is computed, this phase ends by returning the optimal score

(H[i, j] - similarity score) and its (i, j) position.

Hi,j = max







Hi−1,j−1 + (if S0[i] = S1[j] then ma else mi)

Hi,j−1+g

Hi−1,j+g

0

(1)

A C C T T G C C A T

0 0 0 0 0 0 0 0 0 0 0

A 0 1 0 0 0 0 0 0 0 1 0

C 0 0 2 1 0 0 0 1 1 0 0

C 0 0 1 3 1 0 0 1 2 0 0

T 0 0 0 1 4 2 0 0 0 1 1

G 0 0 0 0 2 3 3 1 0 0 0

C 0 0 1 1 0 1 2 4 2 0 0

C 0 0 1 2 0 0 0 3 5 3 1

G 0 0 0 0 1 0 1 1 3 4 2

A 0 1 0 0 0 0 0 0 1 4 3

G 0 0 0 0 0 0 1 0 0 2 3

Fig. 2. SW DP matrix. The aligment path is shown in bold.

Phase 2 (traceback) starts at position i, j and follows the

traceback path, retrieving the alignment from the end to the

beginning, until a zero-valued DP cell is attained. Figure 2

presents the DP matrix for the sequences shown in Figure 1.

SW computes alignments using the linear gap model (i.e.

each gap has the same value). However, the affine gap model

obtains more biologically relevant alignments and, thus, Gotoh

[11] proposed an algorithm that favours sub-sequences of gaps

to the detriment of isolated ones. In this algorithm, three DP

matrices are computed, instead of one.

The quadratic space complexity imposes a considerable

limitation on the lengths of the sequences. To overcome this, a

divide and conquer algorithm is proposed [12] that recursively

computes DP cells which belong to the optimal alignment

in linear space O(min{m,n}). Then, Myers-Miller (MM)

[13] combined [12] and [11] into an algorithm that retrieves

alignments according to the affine gap model in linear space.

It must be noted that, in SW and its variants, each cell (i, j)
depends on three previously calculated cells: (i − 1, j − 1),
(i, j− 1) and (i− 1, j) (Equation 1). So, each antidiagonal of

the DP matrix can be computed in parallel, using the wavefront

method (Figure 3(a)), which requires a synchronization barrier

at the end of the antidiagonal computation. This requirement



(a) Antidiagonal (b) Generic

Fig. 3. Antidiagonal and generic way to calculate the DP matrix [4].

may be relaxed if we use the task graph built from the data

dependencies, leading to a generic processing (Figure 3(b)).

When comparing long sequences, it is usual to have several

areas in the DP matrix with very low scores. Since the goal is

to maximize the score, there are some areas which will never

lead to a score higher than the maximum score calculated up

to the moment. Therefore, the calculation of these areas can be

skipped, accelerating the computation. This is the idea of the

block pruning optimization [14]. If the sequences are similar,

the current maximum score grows quickly, leading to a big

pruning area. On the other hand, dissimilar sequences have

small scores and, consequently, small pruning areas.

Block pruning was implemented MASA [4] for two types

of parallelization (Figure 3). It was observed that the generic

way (Figure 3 (b)) provides a better pruning area, since the

shape of the task graph may be adapted during execution to

a square shape, that leads to better pruning results. Also, the

values assigned to matches, mismatches and gaps have a great

impact on pruning. More details about block pruning analysis

can be found in [14].

Block pruning transforms a diamond-shaped task graph

into an irregular graph and this is challenging for the task

scheduling policies. Since the graph’s shape depends on the

pruning area, which is built at execution time, we claim that no

scheduling policy behaves better in several pruning scenarios.

As far as we know, there is no proposal in the literature that

provides multiple allocation policies for SW executions with

pruning and this is the challenge addressed in this paper.

III. MASA AND STARPU PROGRAMMING ENVIRONMENTS

One of MASA’s great virtues is the block pruning strategy

(Section II) which has a great impact on reducing the execution

time. In its most recent version [4], MASA does not use

block pruning in runs with more than one device because this

optimization prunes the DP matrix at runtime, introducing a

scheduling issue.

MASA [4] is freely available and it executes comparisons

in 5 stages, where stage 1 implements Phase 1 of the Gotoh

variant of the SW algorithm (Section II) and stages 2 to 5

implement Phase 2 (traceback) with a modified version of the

Myers-Miller algorithm (Section II).

The MASA architecture [4] has 6 modules (Figure 4).

The data management module stores data necessary to the

execution, such as the input sequences and user parameters.

The statistics module collects information about the execution,

including execution time, percentage of blocks pruned, etc.

The coordination of the execution is done by the stage manage-

ment module. Stages 1 to 3 execute in the device (multicore,

GPU or IntelPhi) and the stage management module divides

the DP matrix into partitions, which are subdivided into

blocks, and dispatches the computation of each partition to

the module that contains the platform-specific code. MASA

offers 2 types of block pruning in the Block Pruning module

and the programmer can choose one of them. The paralleliza-

tion strategy is also user-selectable. Finally, the DP matrix

computation is part of the platform-specific code, which is

entirely provided by the programmer.

Data

Management
Statistics

Stage Management

Block Pruning

Diagonal BP Generic BP

Parallelization Strategy

Diagonal Dataflow

Platform-Specific Code

Fig. 4. The MASA Architecture [4].

Currently, there are several MASA versions such as MASA-

CUDAlign (GPU), MASA-OpenMP (multicores and Intel Phi)

and MASA-OmpSs (multicores). Among the MASA versions,

the one which uses the OmpSs [15] parallel programming

environment implements the dataflow parallelization and has

achieved the best performance for CPUs [4].

In order to generate a MASA version, the programmer uses

the MASA-API. In this API, the IAligner class is the

interface between the platform-independent part of MASA and

the MASA versions (platform dependent). A MASA version

has an entry point, provided in the MASA::EntryPoint

call, which is inherited from the platform-independent part of

the MASA library.

Each MASA version follows a class hierarchy. The

class Aligner implements the IAligner methods

to do initializations, align a partition and finalize the

computation. The class AbstractAligner is a child class

of IAligner that initializes block pruning, receives the

first row and column of the partition and outputs the last

row and column computed, as well as the highest score.

There are two classes for block pruning: GenericBP and

DiagonalBP, which will be invoked depending on the

programmer’s choice. The class that actually computes the

cells of the DP matrix is AbstractBlockAligner, a

child class of AbstractAligner which will schedule the

blocks for execution. This parent class has two child classes:

AbstractDiagonalAligner, which will compute

blocks by diagonal, and AbstractBlockAligner,

which will compute blocks using the dataflow model.

The AbstractBlockAligner has methods to

ScheduleBlocks and AlignBlock. The whole class

diagram of MASA can be found in [4].



StarPU [6] is a freely available parallel programming envi-

ronment. A StarPU application is a set of tasks which depen-

dencies are expressed in a task graph. StarPU schedules tasks

to workers when they become ready, using one of its several

scheduling policies [7]. StarPU has two classes of scheduling

policies: regular and performance model based ones. The

performance model based polices use codelets representing

platform-specific code to enhance scheduling decisions. A

codelet is a piece of code that has a performance model

associated to it and is used to estimate the task’s duration

with regressions generated with execution histories [7]. In

the following paragraphs, we will describe shortly the StarPU

policies used in MASA-StarPU.

Five regular StarPU policies were integrated to MASA-

StarPU. The eager policy uses a central queue and workers

retrieve tasks from the unique queue in a self scheduling [16]

basis. The prio policy also uses a central queue but schedules

tasks using priorities provided by the programmer. In StarPU

1.2.9 used for this article, the priority range is [−5, 5] and 5
is the highest priority. In StarPU 1.3 and beyond, the range

is arbitrary. Random uses a local queue for each worker and

distributes tasks randomly. There are 2 work stealing [17]

based policies: (a) ws uses a local queue per worker and

assigns tasks to the worker which releases the task - if a worker

is idle, it steals tasks from the most loaded worker; and (b) lws

behaves as ws but steals tasks from neighbour workers first,

and then from workers running farther in the topology.

Two performance based policies were integrated to MASA-

StarPU. Dmda (dequeue modeling data aware) is a HEFT

(Heterogeneous Earliest Finish Time) [18] based policy that

aims to minimize the tasks termination time and schedules

tasks when they become available and taking into account data

transfer time. The policy dmdas (dequeue modeling data aware

sorted) sorts tasks by priority and uses dmda to schedule tasks

of the same priority. Unlike prio, there is no pre-defined range

of priority values.

IV. DESIGN OF MASA-STARPU

The main goal of MASA-StarPU is to provide multiple task

scheduling strategies which are appropriate to block pruning

executions. In other words, we propose the integration of the

frameworks MASA and StarPU, taking advantage of multiple

scheduling policies in block pruning executions.

The scope defined for MASA-StarPU is the execution of

MASA’s stage 1. This stage has the greatest performance

impact on sequence comparisons [9] [8] [4], also allowing

greater parallelization.

StarPU defines the application as a task graph and this

model is adequate for the dataflow parallelization shown in

Figure 4. In MASA-StarPU, the partition (DP matrix) is

divided into blocks and, due to data dependencies (Equation

1), it is not possible to calculate a block without previously

calculating its adjacent ones (up, left, diagonal). In order

to express the dependencies, we used the system of TAGs

provided by StarPU where each task has a TAG id and a pointer

to TAGs from other tasks indicating dependencies.

Respecting the data dependencies, there may be a great

number of blocks that are ready at a given time. Since some

StarPU task allocation policies (e.g., prio and dmdas) use

priorities, we set priorities to favour the square processing,

since this way leads to a better pruning area [14]. Our version

of StarPU allowed a small range of priorities for prio, so we

adjusted the priorities to the [−5, 5] interval. For dmdas, we set

the priorities for block (bx, by) as min(−bx,−by), using

the same scheme of MASA-OmpSs [4].

The general structure of MASA-StarPU is shown in Al-

gorithm 1. Each MASA implementation has an entry point.

In line 24, it receives args, which are the paths to the files

that contain the input sequences, and the procedure which will

execute the aligner (StarPUAligner).

Algorithm 1 MASA-StarPU

1: procedure STARPUALIGNER

2: initializeStructures()
3: scheduleBlocks(width, height)
4: end procedure

5: procedure SCHEDULEBLOCKS(width, height)
6: for jj := 0 ; jj < height or jj < width; jj := jj+maxThreads

do

7: for d := 0; d < jj + (2 ∗maxThreads− 1); d++ do

8: for k:=0; k < maxThreads and k <= d; k ++ do

9: i := d− k
10: j := jj + k
11: if i < width and j < height and i <= j then

12: alignBlock(i, j)
13: end if

14: if j < width and i < height and j > i then

15: alignBlock(j, i)
16: end if

17: end for

18: end for

19: end for

20: starpu task wait for all()
21: starpu shutdown()
22: end procedure

23: procedure MAIN(args)
24: EntryPoint(args , new StarPUAligner())
25: end procedure

Procedure StarPUAligner (Algorithm 1 line 1) first

initializes its structures and then does the computation.

InitializeStructures() (line 2) is a MASA pro-

cedure which was modified to initialize StarPU structures

and start its execution (Algorithm 2). Then the procedure

scheduleBlocks is called (Algorithm 1 line 3) and the

MASA-StarPU execution terminates in line 4.

In Algorithm 1 lines 5 to 22, the procedure

scheduleBlocks is presented. The loops in lines 6

to 8 implement the square shaped execution [4]. Parameters

width and height represent, respectively, the width and height

of the DP matrix in number of cells, and maxThreads

represents the number of threads used in the execution.

Procedure alignBlock (lines 12, 15) is responsible for

creating a task to align a block and uses i and j, which

are the position of the block in the DP matrix. The details

of alignBlock(i,j) are given in Algorithm 3. The call

starpu_task_wait_for_all() (Algorithm 1 line 20)

indicates that StarPU needs to wait for all tasks to finish and,



finally, the call starpu_shutdown() finalizes StarPU and

updates StarPU parameters, such as the performance model.

Algorithm 2 shows the pseudocode of procedure

initializeStructures. Line 3 indicates which callback

function StarPU should perform if a task is submitted to

the codelet initializes in line 2. As the focus of this work is

multicore execution, only the CPU function has been defined.

StarPU uses the C language, so the parameter cpu_func

from the codelet expects a C function. However, the

framework MASA was written in C++, where a static method

is considered a C function. Therefore, parameter cpu_func

is defined as a callBack method, whose function is to call

the MASA method processBlock (bx, by) which in

turn is responsible for actually computing the DP matrix in a

block.

Algorithm 2 MASA-StarPU - initializeStructures

1: procedure INITIALIZESTRUCTURES

2: starpu codelet init(cl)
3: cl.cpu func := callBack
4: cl.model := masa perf model
5: masa perf model.type := STARPU HISTORY BASED
6: masa perf model.symbol := ”masa perf model”
7: starpu init(NULL);
8: end procedure

Line 4 initializes the parameter model and line 5 indicates

that the model should be updated using the execution history.

If this file does not exist, it is created after the first call to

starpu_shutdown(), with the information from the last

execution.

Algorithm 3 presents the procedure alignBlock, which

is responsible for creating the parallel tasks. Variables i0,

i1, j0 and j1 define the upper left (i0, j0) and the bot-

tom right (i1, j1) corners of the block and are defined by

StarPUAlignerParameters [6]. Parameters bx and by

are the coordinates of the block in the matrix.

Line 2 defines the task’s priority. If the block is not

pruned, a task is created to perform its computation

(lines 3 to 13). Initially, the codelet parameters are ini-

tialized (line 4). Then, the task is created and its pa-

rameters are updated (lines 5 to 10). In line 9, func-

tion TAG returns a hexadecimal string which represents the

tag id in StarPU. Then the express_deps(bx, by)

(line 11) function is called to define the dependen-

cies. For a generic block, the dependencies are ex-

pressed as starpu tag declare deps(TAG(i, j), 2, TAG(i−
1, j), TAG(i, j−1)). Note that the dependency at the diagonal

(i−1, j−1) is covered by dependencies (i−1, j) and (i, j−1).
Finally, the task is submitted for execution (line 12). Figure 6

presents a flowchart that summarizes Algorithms 1, 2 and 3,

executed by MASA and StarPU in MASA-StarPU.

Figure 5 presents the placement of MASA-StarPU among

the other MASA versions. MASA-StarPU was developed for

CPUs, uses the dataflow parallelization and generic block

pruning.

Algorithm 3 MASA-StarPU - alignBlock

1: procedure STARPUALIGNER::ALIGNBLOCK(bx,by)
2: priority = min(−i0, −j0);
3: if not isBlockPruned(bx, by) then

4: initializeParameters(bx,by,i0,j0,i1,j1,this)
5: task = starpu task create()
6: task.cl = cl;
7: task.cl arg = params
8: task.use tag = 1
9: task.tag id = TAG(bx, by)

10: task.priority = priority
11: express deps(bx,by)
12: starpu task submit(task)
13: end if

14: end procedure

Fig. 5. MASA-StarPU extension in the MASA architecture
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V. EXPERIMENTAL RESULTS

MASA-StarPU was implemented in C/C++

using MASA-core release 1.3.9.1024 (available at

github.com/edanssandes/MASA-Core) and StarPU release

1.2.9 (available at gforge.inria.fr/projects/starpu/ ).

Two execution platforms were used: (a) PLaFRIM (Feder-

ative Platform for Research in Computer Science and Math-

ematics), a platform hosted at INRIA/France, composed of

several parallel computing environments - in this paper, we

used one multicore (24 cores) at the Miriel machine (2 x

12 core Haswell Intel¨ Xeon¨ E5-2680v3, 2.5 GHz, 64 GB

RAM, with Linux CentOS Release 7.1.1503); and (b) one

notebook Acer (4 cores) with Intel i7-7700HQ, 2.8 GHz,

16 GB RAM, with Linux Ubuntu 16.04. The machine in

(b) was chosen because many Bioinformatics laboratories in

developing countries use notebooks and we want to evaluate

MASA-StarPU in this adversary scenario.

We compared real DNA sequences (Table I) retrieved from

the National Center for Biotechnology Information (NCBI) at

www.ncbi.nlm.nih.gov. The sequence sizes vary from 10K to



TABLE I
SEQUENCES USED IN THE TESTS.

Comparison
Sequence 1 Sequence 2

Similarity Score
Accession Size Accession Size

10K AF133821.1 10K AY352275.1 10K 5091
50K NC 001715.1 57K AF494279.1 57K 52

150K NC 000898.1 162K NC 007605.1 172K 18
500K NC 003064.2 543K NC 000914.1 536K 48
1M CP000051.1 1M AE002160.2 1M 88353
3M BA000035.2 3M BX927147.1 3M 4226
5M AE016879.1 5M AE017225.1 5M 5220960

5M. The optimal local scores obtained with MASA-StarPU are

shown in Table I since they indicate the similarity between the

sequences and the potential for block pruning. For instance,

sequences 50K x 50K have low similarity whereas sequences

5M x 5M have high similarity.

The SW parameters used were: match: +1; mismatch −3;

first gap: −5; extension gap: −2 and the size of the block was

empirically set to 2048 x 2048. The seven policies explained

in Section III were used in the tests.

First, we evaluate the impact of the scheduling policies,

execution platform and block pruning rate in the execution

time/GCUPS for the seven comparisons shown in Table I.

GCUPS is computed by dividing the size of the DP matrix

(m ∗ n) by the execution time in seconds * 109. Since the

environments were dedicated to our experiments, the standard

deviation in the measurements was very low.

Figure 7 shows the GCUPS for MASA-StarPU in the

notebook (a) and PlaFRIM (b) platforms. Since MASA-StarPU

has quadratic time complexity, we would expect that the

GCUPS grow if the lengths of the sequences augment, until

the maximum parallelism provided by the device is attained

[19]. However, block pruning does not compute some blocks

in the DP matrix and, when the sequences are very similar,

more than 50% of the matrix may be pruned [14]. So, in Figure

7 (a) and (b) we can notice a small dip in the 3M region in

the graph. This happens because the 3M sequences have very

low similarity (Table I) whereas 1M sequences have medium

similarity and 5M sequences have high similarity. So, the dips

in both graphs show the block pruning effect.

Even though the shapes of the graphs in both platforms

are similar, the behaviour of the policies is different. In

Figure 7(a), we observe that, with the exception of the 5M

comparison, the policies have a close GCUPS. This happens

because the number of cores (4) is small. Even so, there is a

significant difference among the scheduling policies in the 5M

comparison. In this comparison, two factors were combined:

a big DP matrix (5M x 5M) and a big pruning rate. This led

to considerable differences: dmdas and prio have the highest

GCUPS whereas ws, lws and random have the lowest ones.

In Figure 7(b), the scheduling policy has a bigger impact

in the performance. For all comparisons, the difference in the

GCUPS is higher than 55%, if we consider the lower and

higher value for each execution. The 5M comparison presented

the highest GCPUS variation (139.7%) and the best GCUPS

(18.41) was obtained with the dmdas policy. Even though prio

had a very good performance in the notebook (Figure 7(a)),

(a) GCUPS Notebook (4 cores)

(b) GCUPS PlaFRIM (24 cores)

Fig. 7. GCUPS for several sequence comparisons. Higher is better.

it had an average performance in PlaFRIM (Figure 7(b)). As

expected, random had bad results in all comparisons.

Table II shows the GCUPS and pruning ranges (lowest-

highest) as well as the policy which obtained the best GCUPS

for platforms Notebook and PlaFRIM. The gray scale in the

rows indicate the pruning rate. Pruning rates lower than 10%

are white and the higher the pruning rate, the darker the color.

We can see that, with the exception of the 10K comparison,

there is no great variation on the pruning rate when we

change the computing platform (Notebook or PlaFRIM). A big

variation occurred in the 10K comparison because the length

of the sequences compared is close to the size of the block

(2K). So, a slight variation on the number of blocks pruned

led to a big percentage variation. In the comparison of longer

sequences, this big variation in the pruning range between

platforms did not occur.

Concerning the best policy, we can see that eager and

random did not achieve the best result for any comparison in

any platform. This was expected since these policies are very

simple and the tasks which compose our application produce

a complex task graph. When considering each platform alone

(Notebook or PlaFRIM), we can see that there is no policy

which provides the best result for all comparisons.



TABLE II
GCUPS, PRUNING RANGES AND BEST POLICY FOR 7 COMPARISONS IN

THE NOTEBOOK AND PLAFRIM PLATFORMS

Comp. Notebook PlaFRIM

(4cores) (24cores)

Pruning GCUPS Best Pruning GCUPS Best

range range policy range range policy

(%)

10K 13.8-20.8 0.7-1.1 prio 33.4-43.7 0.3-1.8 dmda

50K 0-0 0.9-1.3 ws 0-0 1.8-4.5 dmda

150K 0-0 1.2-1.4 ws 0-0 2.4-4.9 dmda

500K 0-0 1.3-1.4 ws 0-0 3.3-6.2 dmda

lws

1M 10.6-12.2 1.5-1.6 dmdas 10.9-12.1 4.0-7.1 dmda

prio

3M 0.1-0.1 1.3-1.4 dmda 0.1-0.1 3.9-6.3 dmda

ws

5M 50.1-66.4 2.8-4.1 dmdas 43.7-66.0 7.6-18.4 dmdas

For sequences smaller than 1M and with low pruning rate

(50K, 150K and 500K), the policy ws had high GCUPS in the

notebook. However, ws did not have good results in PlaFRIM

- e.g, for the 150K comparison, the ws GCUPS was 3.86 and

the best GCUPS was 4.93 (Table II).

In comparisons of sequences longer or equal to 1M with

pruning rate higher than 10% (1M and 5M), the dmdas policy

has a very good performance in both platforms. For long

sequences with low pruning rate (3M), the best policies for

smaller sequences (lws and ws, for the PlaFRIM and Notebook

platforms, respectively) still have very good performance.

When comparing 3M sequences in the notebook, the policy

dmdas also provide very good results.

Figure 8 presents the pruning rates and GCUPS in two plat-

forms for comparisons which have pruning rates higher than

1%. It can be seen that the scheduling policy has significant

impact on the pruning rate. With the exception of Figures 8(a)

and 8(d), the pruning results in both platforms are comparable.

In the 10K comparison using the notebook (Figure 8(d)), the

reduced number of cores had a negative impact on the pruning

rate, which dropped to half the rate obtained in the PlaFRIM

platform (Figure 8(a)). In both platforms, the best pruning rate

for the 10K comparison was achieved by prio.

Although there is a variation on the pruning rate for the

1M comparison in both platforms (Figures 8(b) and 8(e)), this

variation is small (less than 2%). For the 5M comparison,

the best pruning rates were achieved by dmdas and prio. Not

surprisingly, these are the policies which use priorities. Work

stealing policies (ws and lws) did not provide good pruning

results in either platform.

Looking at the results presented at this section, we can

make some general observations. When the pruning rate is

expected to be low, simple scheduling heuristics which do

not take priorities into account will be fine. The overhead of

taking priorities into account is not worth the little pruning

optimization that could be obtained. Nevertheless, when the

pruning rate is expected to be high, one really needs to

use a scheduling strategy which takes priorities into account.

Additionally, on platforms with a large number of cores such

as PlaFRIM, the prio and eager policies, which use a single

task queue, suffer from contention, so the dmdas policy should

be used instead since it employs one task queue per core and

TABLE III
COMPARISON BETWEEN MASA-STARPU, MASA-OPENMP AND

MASA-OMPSS (24 CORES)

Comp. MASA- MASA- MASA- Speedup GCUPS
StarPU OpenMP OmpSs MASA-

(s) (s) (s) StarPU

10K 0.05 0.07 0.08 1.40x 1.86
50K 0.71 1.37 1.28 1.80x 4.54

150K 5.65 9.87 9.20 1.62x 4.93
500K 46.80 76.73 77.17 1.63x 6.21
1M 156.91 247.16 258.23 1.57x 7.14
3M 1621.42 2472.80 2637.42 1.52x 6.37
5M 1484.08 2824.90 2147.63 1.44x 18.41

distributes work evenly thanks to the performance models.

Concerning the work-stealing-based lws and ws policies, they

seem to fail at distributing over many cores the very irregular

pattern of the task graph.

Finally, we compared the performance of MASA-StarPU

with the state-of-the-art (MASA-OpenMP and MASA-

OmpSs) in PlaFRIM. Table III shows the execution times

of the best MASA-StarPU policy and the execution times of

these two tools, as well as the speedup obtained by MASA-

StarPU. The speedup was calculated by dividing MASA-

StarPU execution time by the second best execution time

(bold in the figure). The execution times measured here are

the wallclock times. So, they include the initialization time

(MASA, StarPU and OmpSs), as well as reading the sequences

from files and writing the output.

MASA-StarPU attains the smallest execution time for all the

comparisons (Table III). The speedup over the second best tool

ranged from 1.4x to 1.8x. MASA-StarPU was able to achieve

18.41 GCUPS and, in the same comparison, MASA-OmpSs,

which also follows the square shape, attains 12.72 GCUPS.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed and evaluated MASA-StarPU, a

solution that uses parallel computing to compare long DNA

sequences with support for multiple task scheduling strategies.

StarPU was integrated to MASA, with the objective of effi-

ciently computing the optimal score and its coordinates in the

SW matrix. The main features of MASA, such as dataflow

processing and block pruning (BP) have been incorporated

into MASA-StarPU, contributing to very good performance.

MASA-StarPU was executed in two platforms, obtaining, in

general, varied performances according to the task scheduling

policy, the lengths of the sequences, the pruning rate and

the number of cores. The impact of the these factors in the

execution time/GCUPS for the 7 comparisons was evaluated.

In the notebook, with the exception of the 5M comparison, the

scheduling policies obtained a close GCUPS and dmdas and

prio had the highest GCUPS whereas ws, lws and random had

the lowest ones. In PlaFRIM, we observed that the scheduling

policy has a bigger impact on performance, and the central

queue design of prio and eager affected their performance

compared to the distributed dmdas and dmda policies. For all

comparisons, the difference in GCUPS was higher than 55%,

if we consider the lower and higher value. The 5M comparison



(a) 10k x 10k (PlaFRIM) (b) 1M x 1M (PlaFRIM) (c) 5M x 5M (PlaFRIM)

(d) 10k x 10k (Notebook) (e) 1M x 1M (Notebook) (f) 5M x 5M (Notebook)

Fig. 8. Pruning rate for the 10Kx10K, 1Mx1M and 5Mx5M comparisons. GCUPS are shown in the bottom between brackets.

presented the highest GCPUS variation (139.7%) and the best

GCUPS (18.41) was obtained with the dmdas policy.

As future work, we intend to retrieve also the optimal align-

ment between the two sequences. To achieve this objective, the

other MASA stages should be incorporated to MASA-StarPU.

We also intend to analyze the effect of the block size on the

behavior of the scheduling policies.

In this paper, we observed that it was not possible to

determine the best scheduling policy for all cases. However,

we think that it is possible to evaluate specific cases and then

determine the best policy for such cases. To achieve this, we

plan to create an intelligent mechanism that tries to learn the

correlation among platform, scheduling policy and pruning

rate and acts accordingly.
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