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Abstract—This paper presents a novel local audio fingerprint
called MASK (Masked Audio Spectral Keypoints) that can
effectively encode the acoustic information existent in audio
documents and discriminate between transformed versions of
the same acoustic documents and other unrelated documents.
The fingerprint has been designed to be resilient to strong
transformations of the original signal and to be usable for
generic audio, including music and speech. Its main char-
acteristics are its locality, binary encoding, robustness and
compactness. The proposed audio fingerprint encodes the
local spectral energies around salient points selected among
the main spectral peaks in a given signal. Such encoding is
done by centering on each point a carefully designed mask
defining regions of the spectrogram whose average energies are
compared with each other. From each comparison we obtain
a single bit depending on which region has more energy, and
group all bits into a final binary fingerprint. In addition, the
fingerprint also stores the frequency of each peak, quantized
using a Mel filterbank. The length of the fingerprint is solely
defined by the number of compared regions being used, and can
be adapted to the requirements of any particular application.
In addition, the number of salient points encoded per second
can be also easily modified. In the experimental section we show
the suitability of such fingerprint to find matching segments by
using the NIST-TRECVID benchmarking evaluation datasets
by comparing it with a well known fingerprint, obtaining up
to 26% relative improvement in NDCR score.

Keywords-Audio fingerprinting, audio indexing, copy detec-
tion

I. INTRODUCTION

In this paper we propose a novel audio fingerprint we
call MASK (which stands for Masked Audio Spectral Key-
points). Audio fingerprinting is understood as the method by
which we can compactly represent an audio signal so that it
is convenient for storage, indexing and comparison between
audio documents. It differs from watermarking techniques
[1] in that no external information/watermark needs to be a
priori encoded into the audio, as the audio itself acts as the
watermark.

A good fingerprint should capture and characterize the
essence of the audio content. More specifically, the quality
of a fingerprint can be measured in four main dimensions:
discriminability, robustness, compactness and efficiency. A
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fingerprint has a high discriminatory power if two fin-
gerprints extracted from the same location in two audio
segments coming from the same source are very similar,
and at the same time, fingerprints extracted from segments
coming from different sources, or different locations in the
same source, are very different. Another important quality
is robustness to acoustic transformations. We define as a
transformation any alteration of the original signal that
modifies the physical characteristics of the signal but still
allows a human to judge that such audio comes from the
original signal. Typical transformations include MP3 encod-
ing, sound equalization and mixing with external noises or
signals. Next, compactness is also important for reducing
the amount of information that needs to be compared when
using fingerprints for searching in large collections of au-
dio documents. Finally, efficiency refers to how fast the
fingerprint can be extracted from the original signal and,
equivalently, the efficiency of retrieval methods that can be
used with such fingerprint.

In recent years there have been many proposals for
different ways to construct acoustic fingerprints [2]–[6]. For
an early review of some alternatives see [7]. Some of them
are not robust enough to severe audio transformations, their
performance degrades when encoding content other than
music or are expensive to compute or to store. Three of
the most cited audio fingerprints are probably the Shazam
fingerprint presented in [2], the system proposed by Philips
in [3] and the waveprint, proposed by Google [4].

The Shazam fingerprint [2] encodes the relationship be-
tween two spectral maxima, where one of them is called
an anchor point. By encoding multiple maxima in a single
fingerprint they are prone to errors when either of the
maxima is missing. For this reason, in order to make the
system robust, for each selected anchor point they need
to store several tuple combinations within its target area,
creating an overhead of data to be stored for a given audio.
In addition, they encode the data inside the fingerprint in
3 different blocks (20 bits for the frequency locations of
the two peaks and 12 bits for their time difference). If the
comparison between fingerprints is allowed some error they
need to first apply a conversion from binary form to the
corresponding natural numbers and later differentiation to
find how far the spectral maxima are from each other. Given



that the fingerprint comparison step is the most repeated
step in any retrieval algorithm it would be much better if
such comparisons could be performed entirely in the binary
domain or lead by simple comparison table lookups (which
is unfeasible here due to the big number of bits used in the
frequency and time encoding).

The Philips fingerprint [3] encodes the signal sequentially
using a fixed step size, which reduces its flexibility to adapt
its storage requirements to different application scenarios
while still obtaining a compatible fingerprint. For example,
for a server-based solution without any storage problems it is
desirable to store as many fingerprints as available, while for
a solution embedded in a mobile device it would be better
to reduce the number of computed fingerprints to save on
computation and bandwidth when sending them to a server
for comparison with a database. In the Philips system one
can only achieve this by modifying the fingerprint extraction
step size, although this can severely change the resulting
fingerprints and thus the final performance. Furthermore,
in the encoding step, Philips solution relies on the energy
differences between pairs of band energies, and encodes
all bands in each time step. Taking hard binary decisions
in the comparison of the values of two adjacent bands
is prone to errors due to small fluctuation in the signal.
This can cause instability in certain bits and affect its
robustness. In addition, by encoding all the bands in the
spectral domain at every analysis step the system is more
prone to errors in regions where the SNR is low and where
differences in energy are due to very small energy noises
added to the signal, which change arbitrarily depending on
the transformations applied to the audio.

Finally, the Google waveprint fingerprint [4] proposes
an alternative encoding of the audio by using the wavelet
transformation. Such approach is indirectly encoding the
peaks in the spectra as indicated by the biggest coeffi-
cients in the wavelet domain. Even though their approach
seems more robust than the previous two approaches, it
is computationally very expensive and results in a high
number of bits per fingerprint, thus making its computation
in an embedded platform or its transmission through slow
channels (for example the mobile network) very impractical.

The proposed MASK fingerprint tries to address the
shortcomings of the previously cited algorithms. Like in
most cases, we also rely on the fact that spectral maxima
are usually resilient to transformations applied to the audio.
In MASK we first select salient point chosen from the
maxima in the Mel-filtered spectral representation of the
signal. By modifying parameters used in the salient point
selection criteria we can adapt the system to any given
application requirements (obtaining more or less density of
keypoints per second). Next, we encode the region around
each selected point by superimposing a mask centered on
it and comparing the energy of selected mask regions, as
defined by the mask designer. By encoding each salient

point (and its surroundings) independently we are more
localized that the Shazam fingerprint and we believe we
require less fingerprint vectors to encode the audio with
similar robustness. The final fingerprint encodes the binary
comparison of region energy differences together with the
Mel band where the peak is found. Given that the number of
Mel filters used is small (usually 16 or 32) it is later very fast
to compute the difference between two fingerprints using a
lookup table.

The rest of the paper is structured as follows: Section II
explains the process used to obtain the MASK fingerprint
from the audio data. Section III described how to index
and search for matching sequences of audio by using the
proposed fingerprint. Then, in Section IV we explain the
experiments we performed to test the fingerprint and com-
parisons with the Philips fingerprint, and we finally draw
some conclusions and point some possible future directions.

II. MASK FINGERPRINT

In the following sections we describe in detail the ex-
traction of the proposed MASK fingerprint from an audio
signal. The processed signal can either be a static file (where
we know a priori its start and end times) or streaming
audio as the fingerprint is extracted only considering local
information.

As seen in figure 1 the MASK fingerprint extraction
method is composed of 4 main blocks. First, the input signal
is transformed from the time domain to the spectral domain,
and transformed into Mel-scale. Then, spectral salient points
are selected. Next, for each one of the salient points we apply
a mask around it and perform the grouping of the different
spectrogram values into regions, as defined by such mask.
Finally, we compare the averaged energy values of each one
of these spectrogram regions and construct a fixed length
binary descriptor. This local descriptor forms the proposed
MASK fingerprint. Next sections describe in more detail
each one of these steps.

A. Time-to-Frequency Transformation

Given any input acoustic signal, we first down-sample it
to 4KHz and band-pass filter it to focus only on the range
between 0.3KHz and 3KHz, similarly to what is done in the
Philips fingerprint proposed in [3]. Then, in order to find the
spectral peaks we compute the short term-FFT (Fast Fourier
Transform) on the signal at fixed time intervals (10ms) and
using a short-term window (100ms). Such parameters were
defined experimentally and similarly to the values used in
[2]–[4]. Note that before we apply FFT we filter every
block by a Hamming filter in order to reduce discontinuities
at the edges. Then we apply a Human Auditory System
(HAS) filtering to equalize the frequency bins to values
that correspond to the human perception of audio, and to
reduce the number of total frequency bins. From all possible
alternatives, in this work we use the MEL filter-bank with



Figure 1. Block diagram of the steps involved in the MASK fingerprint
extraction.

18 bands. Note that bigger bandwidths and a higher number
of bands could be used without any necessary other change
to the algorithm.

B. Selection of Salient Spectral Points

Once the spectral representation of the signal has been
obtained, we need to select salient points in the spectral
domain where to center the computation of the proposed
MASK fingerprint. In our implementation we focus on the
local maxima which, like [2]–[4], we found to be resilient
to many audio transformations. In general, a local spectral
maxima or spectral peak can be defined as any point in
frequency whose energy is greater than the points adjacent
to it, either in frequency, time or in both.

In our current implementation the peaks selection method
is quite simple. A time-frequency position in the spectro-
gram is selected as a peak if its energy is strictly bigger than
all energies in immediately adjacent band-time locations.
Note that we never place a peak in the top or bottom-
most MEL bands, leaving only 16 possible frequency peak
positions when using 18 Mel bands (aside from slightly
reducing the bandwidth being used to obtain the information
from the file, this does not have any implications on the
way information is obtained from the audio signal). Our
observations indicate that a good coverage of the audio is
obtained by extracting between 70 to 100 peaks per second.
In order to limit the number of peaks selected as salient
points we apply a post-detection filtering to select only those
peaks whose energy stays above a given temporal masking
threshold, defined according to its distance to the previously
selected peak in the same MEL band. Equation 1 shows the
threshold we use in our implementation.

Thr[n] = α∆tE[n− 1] exp− (∆t)2

2 ∗ σ2
(1)

where ∆t is the distance (in frames) between the previous
peak and the considered peak, E[n− 1] is the energy of the
previously selected peak and α, σ are two parameters used
to set the threshold falling rate and its width, respectively.
In the proposed implementation we set them to 0.98 and
40 following a similar implementation used in the Shazam
fingerpring by Dan Ellis1.

C. Spectrogram Masking Around Salient Points

Once the salient points have been selected we apply a
mask centered at each of them. This defines regions of
interest around each point that are used for encoding the
resulting binary fingerprint. The encoding is carried out by
comparing differences in average energies between certain
defined region pairs. A region in the mask is defined as
either a single time-frequency value or a set of values that
are considered to contain similar characteristics (they are
usually contiguous in time and/or frequency). When a region
is composed of several values its energy is represented by
its arithmetic average. Note that the regions defined by the
mask are allowed to overlap with each other. The optimum
location and size of each region in the mask, as well as the
total number of regions, can vary depending on the kind of
audio that is being analyzed and the number of total bits we
desire for the fingerprint. How to automatically determine
these remains as future work at the time of writing this paper.
The particular mask we used is shown in Figure 2 (split into
three diagrams for a better visualization). This mask covers
5 MEL frequency bands around the peak (2 bands above
and 2 bands below) and extends for 190ms (90ms. before
and 90ms. after). Different regions grouping together several
spectral values are labeled using a numeric value followed
by a letter, used in the next section.

Note that when a salient peak is found either at band N-1
or at band 2 (i.e. with only one band above or below it)
the mask in Figure 2 will either have the first or last rows
falling outside of the spectrogram limits. In such case we
duplicate the values of the first/last available bands to cover
the inexistent values for the first/last mask rows. The way
we define the different regions allows for these cases not to
affect much the properties of the resulting fingerprints. Note
also that although the energy points in the first and last band
of the MEL spectrogram are not allowed as salient points,
they are used in the fingerprint encoding.

D. Fingerprint Construction

In this step we construct the fingerprint as follows: first,
a block of 4 bits is inserted encoding the location of the
salient peak within the 16 MEL-filtered spectral bands where
maxima can be located (excluding the first and last computed
bands). Next, we insert the binary values resulting from the
comparison of selected regions around the salient peak, as

1http://labrosa.ee.columbia.edu/matlab/fingerprint/



(a) Mask, layer 1

(b) Mask, layer 2

(c) Mask, layer 3
Figure 2. Frequency mask covering a region of 5 bands per 19 temporal
frames, split into 3 layers to better observe the overlapping regions

defined by the mask. Table I shows the region comparisons
we used in this paper, where we split the obtained bits into
5 different groups. The first and second groups encode the
horizontal and vertical evolution of the energy around the
salient peak. The third group compares the energy around
the most immediate region around the salient peak, while the
fourth and fifth groups encode how the energy is distributed
along the furthest corners in the mask. In total, in Table I we
define 22 bits. More bits can be easily obtained by defining
other region comparisons.

Note that in comparison to fingerprints obtained by encod-
ing the audio a regular intervals (e.g the Philips fingerprint)
we only encode those locations with certain spectral proper-
ties, defined by the spectral energy value and the proximity
to prior maxima in the same band. As a result we are flexible
in defining how many fingerprints we desire to obtain per
second and, by defining a proper mask, how accurately we
want to encode its surroundings.

III. FINGERPRINT INDEXING AND COMPARISON

The proposed fingerprint allows for using indexing tech-
niques common when using local features (e.g. [2]). For
every extracted fingerprint we can index it in a hash table
as the hash key. The corresponding hash value is then
composed of two terms: (i) the ID of the audio material
the fingerprint belongs to, and (ii) the time elapsed from
the beginning of the audio material in which the salient
peak has been found. Retrieval of acoustic copies can be
implemented in a standard way by defining an appropriate
distance between any pair of two fingerprints.

The particular matching algorithm we used is very similar
to the one we used in [8] on features similar to [3]. The
algorithm is composed of two steps, in a first step we retrieve
all the exact matches to every MASK fingerprint in a given
query. The time-difference between every matching query-
reference fingerprint is then used to find those segments
in the query that are aligned to segments in the reference
collection. We allow any matching segment to have up
to 5 seconds distance between two consecutive matching
keypoints (if the distance is higher they are treated as two
different matches). In a second step, we retrieve the segment
with most matching fingerprints and it is further processed to
obtain a more accurate similarity score. For each fingerprint
in the selected query segment we compute the hamming
distance with the corresponding fingerprint in the reference
segment. Those fingerprints with hamming distance smaller
than 4 (up to 3 erroneous bits) are encoded as 1, and the
rest as 0, in a temporary binary vector. The final score is
the average value over this binary vector for a window of
length 5 seconds. This returns a score bounded from 0 to 1.

IV. EXPERIMENTAL SECTION

In order to evaluate the suitability of the proposed MASK
fingerprint we performed tests using the NIST-TRECVID
benchmark evaluation [9] datasets from years 2010 and
2011. The task in these evaluations is, given a query video, to
detect whether any segment within appears in the reference
database. In order to make the task more realistic the
query videos have been tampered with several audio and
video transformations. In the audio domain there are 7
transformations possible, which are described in the Trecvid
website2. The reference database contain videos downloaded
from an online internet archive, simulating the general video
content that can be found online in websites like YouTube.
The reference database is composed of over 400 hours of
videos. Although for every evaluation year there are around
11K queries, in our experiments we only used the ones with
unique audio content, which are around 1.4K per year.

To evaluate the performance of the system we use the
The Normalized Detection Cost Rate (NDCR). The NDCR
score is the main performance metric used in the TRECVID
evaluations and is defined as a weighted cost function of
the probability to miss the detection of an existing copy
(Pmiss) versus the probability to falsely indicate that there
is a copy in the database for a given query (PFA). The
lower the NDCR value, the more effective the detection is.
In the Trecvid evaluations two different profiles of weights
are defined for the Pmiss and PFA. In our experiments we
considered only the balanced profile, where both probabili-
ties are considered more equally (although PFA still plays
an important role).

2www-nlpir.nist.gov/projects/tv2008/pastdata/copy.detection/gt/a.gt.details



Table I
REGION PAIRS COMPARISONS FOR THE EXAMPLE MASK

Bit number type Comparisons
1 to 7 Horizontal max 1a – 1b, 1b – 1c, 1c – 1d, 1d – 1e, 1e vs, 1f, 1f – 1g, 1g – 1h

8 to 10 Vertical max 2a – 2b, 2b – 2c, 2c – 2d
11 to 14 Immediate quadrants 3a – 3b, 3d – 3c, 3a – 3d, 3b – 3c
15 to 18 Extended quadrants 1 4a – 4b, 4c – 4d, 4e – 4f, 4g – 4h
19 to 22 Extended quadrants 2 4a+4b – 4c+4d, 4e+4f – 4g+4h, 4c+4d – 4e+4f, 4a+4b – 4g+4h

In order to compare results with the state of the art
we implemented the Fingerprint proposed in [3], which we
refer to as the Philips fingerprint. In our implementation we
computed 16 Mel Frequency bands over 25ms hamming-
filtered audio segments, obtained every 10ms. Then we
computed a 15-bit binary fingerprint by comparing the
energies in adjacent bands in the way proposed by the
authors. In order to make the MASK fingerprint as similar
as possible to the baseline, we also extracted 18 Mel bands
from which we obtained the spectral maxima and obtained a
22bit fingerprint from each one. Although the number of bits
per fingerprint is bigger in MASK, the density of fingerprints
per second tends to be smaller for MASK (80 to 100 versus
100 in Philips) which results in feature files of similar length
for each case. The indexing and search of Philips fingerprints
is implemented as described in [8], which is very similar to
the MASK implementation.

A. Experimental results

Tables II and III present the results for the proposed
fingerprint and the Philips fingerprint considering both the
minimum NDCR score (in II) and the actual NDCR (in
III). We include both tables because although the (official)
minimum NDCR can be used as a good metric of perfor-
mance, it is automatically computed by setting a different
optimum threshold for each transformation, which is not
realistic in a real-life scenario. The actual NDCR table was
computed by manually setting the same threshold for all
transformations, set to the average of the optimum threshold
in each transformation. In addition, both tables report on
results obtained when returning only the best match for every
query and when returning the best 20 matches. In the Trecvid
evaluation at maximum one copy is expected, thus returning
only the 1-best usually result in better scores. Returning 20-
best results makes more sense when performing a search
task, where more than one match is likely to occur. Note that
NDCR results deteriorate greatly between 1-best and 20-best
cases due to the high impact that false alarms have in the
NDCR metric, compared with the low impact of missing a
true copy.

Exploring the results in more detail, generally in all cases
the MASK fingerprint outperforms our implementation of
the Philips fingerprint. The relative percentage improvement
is shown in the last column of both tables, and are higher
for the 2010 dataset than for the 2011 dataset. We found no

Table II
COMPARISON OF MINIMUM NDCR SCORES

system # results dataset Min. NDCR % improve.

Philips 1 2010 0.55 –
MASK 0.43 21.8%
Philips 20 2010 1.03 –
MASK 0.79 23.3%
Philips 1 2011 0.53 –
MASK 0.48 9.4%
Philips 20 2011 0.96 –
MASK 0.82 14.5%

Table III
COMPARISON OF ACTUAL NDCR SCORES

system # results dataset Thr. std. Act. NDCR % improve.

Philips 1 2010 0.11 0.60 –
MASK 0.03 0.44 26.6%
Philips 20 2010 0.12 1.19 –
MASK 0.04 0.91 23.5%
Philips 1 2011 0.08 0.57 –
MASK 0.03 0.50 12.2%
Philips 20 2011 0.09 1.18 –
MASK 0.06 1.02 13.5%

explanation for this, as NIST claims that both sets of queries
are created in a similar manner. The best results using the
MASK fingerprint are around 0.4 which is close to state-of-
the-art performance on the TRECVID datasets, using only
the audio modality (results using multimodal inputs improve
quite a bit). Comparing the results from both tables we see
that the 1-best results for MASK are pretty stable, loosing
0.02 points in NDCR in the worst case. This is explained by
the low standard deviation values of the optimum thresholds
for each modality shown in the 4th column in table III, as
compared to the much higher values in the Philips descriptor.

Next, Figure 3 shows the Min NDCR scores for all 7 audio
transformations on the 2010 and 2011 TRECVID datasets
for the MASK and Philips fingerprints. As expected, trans-
formation 1 is the best in all cases (the query has not been
altered from the reference) and the last 3 transformations
(containing external overlapped speech) generally achieve
the worst results. In general, the MASK fingerprint obtains
better results than the Philips fingerprint, except for trans-
formation 6 (mix with speech and multi-band compression),
which obtains worse results in 2010 and similar in 2011. We
are still to understand why MASK obtains worse results in
this transformation.



Figure 3. Min NDCR score per transformation.

Finally, Figure 4 shows the score histograms for the
best matching reference segments given all queries, for
the MASK and Philips fingerprints, as computed on the
TRECVID 2011 dataset. All scores are bounded from 0 to 1,
being those close to 1 indicating better matches. According
to the ground truth approximately 70% of the queries contain
a match in the reference dataset. We can see how the Philips
fingerprint shows a much less discriminative histogram as
it is relatively flat throughout the whole range of scores.
Alternatively, the MASK fingerprint shows a clear bimodal
distribution, which can be attributed to queries with a clear
match versus queries with no clear match. The number
of queries with no-clear matches is currently around 50%,
which indicates that some queries can not find the real match
and return some low-score alternative. Finally, note that the
optimum average score used in Table III is 0.27 for MASK,
which coincides with the place where the low-scored mode
meets the high scores in Fig. 4.

Figure 4. Scores histograms for the 1-best results on MASK and Philips
fingerprints.

V. CONCLUSIONS

In this paper we have presented a novel local audio
fingerprint called MASK (Masked Audio Spectral keypoints)
that is able to encode with few bits the audio information of
any kind in an audio document. The fingerprint is designed
to address the problems we observed in popular audio fin-
gerprints we reviewed. In particular, we focused on locality,
binary encoding, robustness and compactness. MASK fin-
gerprints encode the local energy distribution around salient
spectral points by using a compact binary vector. Given
the salient point selection process, we can easily adapt the
number of descriptors per second to match any particular
application need. On each salient point, a mask is used
to define energy regions whose energy is compared and
encoded using one bit each. The final fingerprint encodes
these comparisons together with the frequency band where
the peak was found. Such fingerprint is resilient to several
transformations of the original audio and works on all sorts
of audio, including speech, music and general sounds. We
tested the fingerprint using TRECVID 2010 and 2011 video-
copy detection datasets, comparing our proposal with the
approach shown in [3], obtaining consistently better results.
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