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This paper gives a brief survey of the design of masks for Hadamard spectrometers and image scanners.

Three different criteria are described for judging a mask, as well as techniques for choosing masks that are

not too far from the optimum.

1. Introduction

The use of masks to improve the performance of
spectrometers and image scanners has been proposed
by a number of authors,1-8 and several papers exist
describing experiments performed with such instru-
ments.8 -'2

Briefly, such an instrument consists of four essen-
tial components: an optical separator, an encoding
mask, a detector, and a processor (Fig. 1).

The separator might be nothing more than a lens
that produces a focused image at the mask, thereby
separating light arriving from different spatial ele-
ments of a scene. It might equally well be a dispers-
ing system that separates different spectral compo-
nents of a beam and focuses them onto different loca-
tions on the mask.

A particular location on the mask either transmits
light to the detector, absorbs the light, or reflects it
toward a reference detector. In this way, the intensi-
ty of an element of the separated beam is modulated;
its intensity is, respectively, multiplied by +1, 0, or
-1, since the readings that are recorded are the dif-
ferences in the intensity of light reaching the main
detector and reference detector.

If there is only one detector, the modulation con-
sists of +1's and O's only, and the recorded intensity
is just the intensity of radiation transmitted by the
mask.

When m intensity values are to be determined, at
least m different detector readings corresponding to
m different mask arrays are required.
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Three important questions in designing such an in-
strument are: (a) How should the mask be chosen?
(b) How much does this improve the accuracy of the
measurements? (c) How close is this to the optimum
mask design?

Such questions have been studied for many years
in statistics under the name of weighting designs.
Up to now this seems to have escaped the notice of
workers in optics, but a considerable body of litera-
ture exists (see, for example, Raghavaraol3 or Baner-
jee'4).

Even so, the specific answers to (a), (b), and (c) are
not readily available in this literature, and so we shall
give here a short survey of what is presently known
about the answers. The expert in statistics will find
little that is new; however, we do give the first com-
plete proof we have seen that the average mean
square error for the best mask of O's and l's is about
four times that for the best mask of -l's, O's, and
+1's.

II. Weighing Designs and Masks

Yates'5 seems to have been the first to point out
that by weighing several objects together instead of
separately it may be possible to determine the indi-
vidual weights more accurately.

For example, suppose four objects are to be
weighed, using a balance that makes an error e each
time it is used. Assume that e is a random variable
with mean zero and variance a2.

First, suppose the objects are weighed separately.
If the unknown weights are xi, X2, X3, X4, the mea-
surements are Yi, YZ Y, 4, and the errors made by
the balance are el, e2, e3, e4, the four weighings give
four equations:

Yl = xi + el, 2 = x2 + e2 , y3 =x3 + e3,

Y4= X4 + e4.

The best estimates of the unknown weights are the
measurements themselves:
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Fig. 1. The prime components used in Hadamard transform
optics.

Xl= y = X + el, X2 = Y2 = X2 + e2 .

These are unbiased estimates:

Exl = x, Ex2 = x2, . . . (E denotes expected value),

with variance or mean square error

E(i - )2 = Ee 2 = 2,.

On the other hand, suppose the balance is a chemi-
cal balance with two pans, and the four weighings are
made as follows:

Y = X + X2 + X3 + X4 + el,

Y2 = x - X2 + X3 - X4 + e2, (1)

Y3 = X + X2 - - X4 + e3 ,

Y4 = X - X2- X3 + X4 + e 4 .

This means that in the first weighing all four objects
are placed in the left-hand pan, and in the other
weighings two objects are in the left pan and two in
the right. Since the coefficient matrix on the right is
a Hadamard matrix, it is easy to solve for X1, X2, X3,

X4. Thus the best estimate for x1 (see below for a
justification of this) is

l= ( + Y2 + 3 + 4)

= + (el + e2 + e3 + e4).

The variance of ce, where c is a constant, is c2 times
the variance of e, and the variance of a sum of inde-
pendent random variables is the sum of the individu-
al variances. Therefore the variance of x1i (and also
of X 2, X3, X4) is 4 a2/16 = 2 /4.

Weighing the objects together has reduced the
mean square error by a factor of 4.

Finally, suppose the balance is a spring balance
with only one pan, so only coefficients 0 and 1 can be
used. A good method of weighing the four objects is

Yl = x 2

Y2 = x + 2

Y3 = Xi

Y4 = Xi

+ X3 + X4 + el,
+ e 2,

+ X3 + e 2,

+ X4 + e 4 -

In this case the variances of x1, X2, X3, X4 are 4o-2/9,
7o.2/9 7 2 /9, 72/9, respectively, a smaller improve-
ment than in the previous case.

In general, if there are p unknowns x, ... , xp, and

N measurements yl, . . , YN are made, involving er-
rors el, . . , eN, we have

Yi = WijX1 + . . . + wipx + e, i = 1, . . ., N,

or in matrix form

y = Wx + e, (3)

where y = (Y,, . . , YN), x = (xi, * * , xp)T, e = (el,
... eN)T, and T denotes transpose. A particular
choice for the NXp coefficient matrix W = (wij) is
called a weighing design.

The connection with Hadamard transform optics is
straightforward. In this type of optical system the
xi's represent individual spatial and/or spectral ele-
ments whose intensities are to be determined. In
contrast to scanning instruments that would measure
the intensities one at a time, the Hadamard trans-
form optical system measures (i.e., weighs) the inten-
sities of several xi 's simultaneously.

The two types of weighing design-the chemical
balance design (with coefficients wil that may be -1,
0, or +1) and the spring balance design (in which the
coefficients must be 0 or 1)-are realized in optical
systems by masks W that use reflected, absorbed, or
transmitted light in the first case or simply open or
closed slots in the second case.4 In spite of the name
Hadamard transform optics, the example of Eq. (2)
shows that the matrices W should not be restricted to
those obtained from Hadamard matrices. (We shall
refer to W indiscriminantly as a mask, matrix, or
weighing design.)

Weighing designs are also applicable to other prob-
lems of measurements (such as lengths, voltages, re-
sistances, concentrations of chemicals, etc.) in which
the measure of several objects is the sum (or a linear
combination) of the individual measurements.14"16

In Secs. III and IV we shall discuss the best choice
for a weighing design, subject to the following as-
sumptions:

(1) The errors ei are uncorrelated (see Banerjee17
for the general case);

(2) The errors e are independent of the amount
being weighed. In the weighing problem this as-
sumes that the objects are light, and in the optical
scheme this is an assumption of linear behavior of the
photodetector. (Raghavarao et al.' 8 discuss a more
general case.)

(3) The number of measurements (N) is equal to
the number of unknowns (p), and the matrix W is in-
vertible. Then the best (linear, unbiased) estimate
for x from Eq. (3) is4,19

= W'y - x + Wle.

(In the general case, when W does not have an in-
verse, the best estimate is

= Why,

where W+ is the Moore-Penrose generalized inverse
of W.20,21 If the rank of W is less than p, this is
called a singular weighing design and may occur, for
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example, if an experiment is interrupted; e.g., sup-
pose that a Hadamard transform spectrometer is
used for an astronomical observation. Just before
the end of the planned run of N measurements a
patch of cloud passes over the dome. What informa-
tion can be salvaged from the measurements actually
made? Such questions are discussed by Raghavar-
ao22 and Banerjee.2 3 )

Finally we mention that Kiefer,24 Kiefer and Wol-
fowitz,25 and Fedorov'9 study more general problems
of the optimum design of experiments, including the
use of randomized weighing designs.

Ill. Matrices with Entries -1, 0, +1

From now on we assume that (1), (2), (3) hold.
Then how should one choose the matrix, or mask,
W? The mean square error of the estimate of the ith
unknown xi is

i E - X) 2.

Ideally one would like to minimize simultaneously E,
.. eN. The most important result is due to Hotell-
ing,2 6 who showed that for any choice of mask W

with Iwij l S 1, the E are bounded by ei ( 2/N), and
that it is possible to have Ei = (a 2 /N) for all i = 1,
.. ., N if and only if a Hadamard matrix HN of order
N exists (by taking W = HN).

So if a Hadamard matrix of order N exists, taking
W = HN gives the best possible weighing design.
This design reduces the mean square error by a factor
of N compared to the mean square error (a 2) of a sin-
gle weighing. This result to some extent justifies the
name Hadamard transform spectroscopy. Equation
(1) was constructed with W = H4.

We note that the intensity values to be determined
can correspond to any set of spatial elements.
Whether these elements are arrayed in a linear dis-
play such as in grating spectrometry, dr in a two-di-
mensional array, as in imaging, is unimportant. The
Hadamard matrix provides optimum encoding no
matter what shape the array may be.

A Hadamard matrix of order N is an N X N matrix
HN of +1's and -1's that satisfies

HNHNT = NIN, IN = N X N unit matrix.

These matrices are thought to exist if and only if N =
1, 2, or a multiple of 4. Numerous constructions are

known, and a plentiful supply of Hadamard matrices
are available.27-30 So if N is a multiple of 4 and
masks with entries h1 can 'be used, the problem of
the best choice of mask is solved.

What if N is not' a multiple of 4, or if only masks of
0's and 1's can be used? Then it is not possible to si-
multaneously minimize El, ... , EN, and some other
criterion must be used. Three different measure-
ments of efficiency have been proposed:

An A-optimal 3 ' weighing design is one that mini-
mizes the average mean square error, i.e., minimizes

= I (E + . . EN) = 4 Tr(WTW)l,

where Tr denotes the trace of a matrix.

A D -optimal3 2 design is one that maximizes the

magnitude of the determinant of W I det(W)I. This
is equivalent to minimizing the generalized variance
of the errors i - xi, which is 2 det(WTW)-l. A D-
optimal design minimizes the volume of the region in
which the estimate x is expected to lie.

An E-optimal33 design is one that maximizes the
smallest eigenvalue Xmin of WTW. To justify this,
suppose one needed to determine a linear combina-
tion of the xi's, say = clx+ . . . ± cNxN, where c12+
... +cN

2
= 1. An E-optimal design minimizes the

maximum mean square error of the best estimate 0

for all choices of the ci's.
These criteria do not always agree. Probably A-

optimality is the most important, provided the indi-
vidual ei's are roughly equal.

It is reassuring that a Hadamard design W = HN is
A-, D-, and E-optimal. In fact if W = HN, we have

cr
2

W = HN: = i =- detHj = NN",

and Xmin = N, (4)

while for any other W we have

> N. IdetWI < N
2
, and Xmin < N.

The rest of this section describes masks that can be
used when N is not a multiple of 4.

A. Masks from Conference Matrices

These are similar to Hadamard matrices but with a
slightly different defining equation. They also give
rise to good weighing designs. A conference matrix
CN of order N is an N X N matrix with diagonal
entries 0 and other entries +1 or -1, which satisfies

CNCN = (N - 1)IN.

The name arises from the use of such matrices in the
design of networks having the same attenuation be-
tween every pair of terminals (see Belevitch34-36).

N must be even for CN to exist. But if N is a mul-
tiple of 4 these are inferior to Hadamard matrices, so
we shall assume N has the form 4t + 2. In this case,
by suitably multiplying rows and columns by -1, CN
can be put in the form

-0 1 1.. .1-

CN = I BN-I

_i 

where BN-1 = (bij) is a symmetric matrix.37 Several
constructions for conference matrices are
known.29 30 37 38 The most useful for our purpose is
Paley's construction39: Let N = 4t + 2 = p + 1,
where p is an odd prime, and set bij = 0 if i = j, bij =
1 if j - i is a square (modulo p), and bij = -1 ifj - i
is not a square (modulo p). The resulting matrix (5)
is a conference matrix. For example, if p = 5, the
squares modulo 5 are 12 = 1,22 = 4, and we obtain
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0 1 1 1 1 1

1 0 1 - - 1

C6 = 1 1 0 1 - -, where - stands for-1.
1- 1 0 1-
1 - -I 0 1

11--~~I 0

Note that this 'construction gives a matrix BN-1 that
is a circulant.

The same construction works if p is replaced by
any odd prime power pm-; the rows and columns of
BN-1 are labeled with the elements of the Galois field
GF(pm); b = 1 if j- 1 is a square in GF(pm); etc.
Now BN-1 is not a circulant. Galois fields are finite
fields (see, e.g., Raghavarao1 3 ).

The construction gives symmetric, circulant, con-
ference matrices of orders 6, 14, 18, 30, 38, 42, 54, 62,
... , and symmetric conference matrices of orders 10,
26, 50, .... The matrices Cio, C14, C18 are given in
full by Raghavarao. 4 0

Choosing the mask W = CN we obtain a weighing
design40 that has the parameters

W = CN: = =- N 1' IdetCNI = (N -

Arni, = N- 1. (6)

These are only slightly inferior to the parameters of a
Hadamard matrix, Eq. (4). We mention in passing
that for N = 4t + 1 the mask W = BN + IN has e = i

= (2a 2 )/(N - 1).

B. Masks from Symmetric Block Designs

An (N, k, A) symmetric block design consists of a
collection of subsets (called blocks) of size k taken
from a set of N objects, such that any two blocks
have exactly X objects in common. [N, k, and X are
related by k(k - 1) = A(N - 1).]

For example, the blocks of a (7,3,1) design are

124, 235, 346, 457, 561, 672, 713.

From one symmetric block design we can always
get another by taking as blocks the complements of
the original blocks, that is, the objects not in the orig-
inal blocks. This is an (N, k' = N -k, X' = N-2k
+ A) symmetric design. The complement of the pre-
ceding example is a (7,4,2) design with blocks

3567, 4671, 5712, 6123, 7234, 1345, 2456.

Block designs are frequently used in statistics, and
many methods of construction are available.41 (The
statistical literature uses v instead of N for the num-
ber of objects.)

A symmetric block design is conveniently de-
scribed by its incidence matrix (which explains the
connection with masks). This is an N X N matrix
AN = (aij), where aij = 1 if the ith block contains the
jth object, = 0 if not. The incidence matrix of the
preceding (7,4,2) design is

12
1 F0 0

2 1 0

3 1 1

A 7 = S7 = 4 1 1
5 0 1

6 1 0

7 _o1

345 67
101 11]
010 11
001 01
100 10.
110 01
111 00
011 10

Generalizing this example, we can' obtain symmetric
block designs from Hadamard matrices as follows.
By suitably multiplying rows and columns by -1,
HN+ 1 can be put in the form

HN.1 =

If 's are replaced by 0's and -'s by 's, GN is
changed into the incidence matrix SN of an (N = 4t
- 1, k = 2t, X = t) symmetric block design. Equa-
tion (7) shows S7 .

Now suppose AN is the incidence matrix of any
(N,k,X) symmetric block design. AN satisfies the
equations

ANAN = ANTAN = (k - X) IN + JN,

ANJN = JAN = kJN-

We may use AN itself as a mask of 0's and 1's-see
Sec. IV. To get a mask of +1's and -'s, set DN =

JN - 2AN, or in other words change 0's to +1's and
I's to -'s. Then choosing the mask W = DN we ob-
tain a weighing design with the parameters

W = DN: E = (i =
'[N2- N - 4 (N - 2)n]

4n[N2 -4(N-I )n

IdetD, = (4n)(N-D/2 [N2 - 4(N - )n]l/2,

Xm = min[4n, N 2
- 4 (N - )n], (9)

where n = k- A. The complementary symmetric
design gives a mask with the same parameters.

To illustrate this, the (N = 4t - 1, 2t, t) symmetric
block design that we obtained from H4t gives a
weighing design with mask W = GN and parameters

W = G: E = Ei = N + detGN1 

rMin = 1. (10)

The mean square error E here is about twice that for
HN [Eq. (4)].

In some cases better masks exist. For example, as
found by Rao,42 when N = 4t-1 > 3, an [N = (d2 ±
3)/4, k = (N + d)/2, X = (N + 2d + 3)/4] symmetric
block design gives a mask W = QN (say), which has
parameters [from Eq. (9)]

W =QN:E= E (4N- 6) 2

(4N -3) (N -3)'

detQf = (N- 3)(N- )/2(4N- 3)1/2

Amin = N - 3. (1)
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These parameters are better than Eq. (10). Unfortu-
nately, at present the only known designs of this fam-
ily are Q7 and Q31. This is typical: the best sym-
metric block designs for our purposes have k roughly
equal to /2N and give masks with very good parame-
ters, but not many examples are known.

A similar situation holds for N = 4t + 1. In this
case as Raghavarao 4 0 has shown, an [N = (d2 + 1)/2,
k = (N + d)/2, X = (N + 2d + 1)/4] symmetric block
design gives a mask W = PN (say), which has param-
eters

W = Pn E. = i = 2N - '
| detP| = (N - 1)(Nl) 2(2N - 1)1/2, Xmin = N - 1. (12)

WN = [T ] = EN (say), (17)

where X and Y are (N/2) X (N/2) circulant matrices
chosen so that

EN TEN = [ ], Z = (I2 N 2)N/2 + 2JN2-

The parameters of this weighing design are

WN = EN: E = i= N- 

| detEN I = 2(N - 2) (N-2)/2 (N - 1), mi = N - 2. (18)

Again, at present only P5 , P13 , and P25 are known to
exist. The corresponding matrices are given in Ref.
40.

C. Masks with WWT = al + OJ

All the masks given so far [except for Eq. (2)] have
the property that the mean square errors of the un-
knowns, the E's, are equal. In much statistical liter-
ature it is assumed that the weighing design satisfies
the conditions

Ei = E(x - i)
2

= E (independent of i)

and (13)

E(i- xi) (j - x) = 1 (independent of ij, for i j).

This is equivalent to assuming that WN satisfies
WNWNT = aIN + flJN for suitable a and 3. With
these assumptions, Raghavaro1340 has shown that PN
is A-, D-, and E-optimal, that CN is A- and E-opti-
mal, and Rao42 has shown that QN is A- and E-opti-
mal for N > 3.

However, as the weighing designs (2), (17), and
(20) show, weighing designs that do not satisfy Eq.
(13) may have a lower average mean square error, or
a larger determinant or Amin, than those that do.

D. Masks with the Largest Determinant

Let us consider the problem of finding a D-optimal
mask WN, that is, an N X N matrix of -1's, 0's, and
+1's with the largest possible determinant. Let g(N)
denote this largest determinant. By expanding the
determinant about any column, it follows that the
largest determinant can always be attained by a ma-
trix containing only -1's and +1's (and no zero's).

The following bounds on g(N) are known43:

( NN/2 if N = 4t; (14)

g(N) (N - )(N-1)/2 (2N - 1)1/2 if N is odd; (15)

( 2(N - 2 ) (N-2)/2 (N- 1) if N = 4t + 2. (16)

We have already seen [Eq. (4)] that if N = 4t
we can achieve g(N) = NN/2 by a Hadamard
matrix. For many values of N = 4t + 2,
g(N) = 2(N - 2)(N-2)/2(N - 1) can be achieved by

double circulant matrices of the form

For example, a D-optimal mask with N = 6 is

11 1
1 1

1 1 1

E6 =-

- 1 -
.- -

-1 1

1- 1

11 -

11 1

11 1
1 1 1_

(19)

Ehlich4 4 and Yang4 5' 46 have given such matrices for
N = 2, 6, 10, 14, 18, 26, 30, 38, 42, 46, 50, 54, 62, 66.

It is interesting to compare Eqs. (18) with the param-
eters (6) of the CN matrices. They both appear to
exist for the same values of N. EN has the same
mean square error, slightly larger determinant (larger
by a factor of about 1.21 when N is large), but smaller
Xmin-

The matrices P5 , P13 , P2 5 achieve Eq. (15) and so
are also D-optimal. The exact value of g(N) is
known4 7 for N < 14.

For large N, a good method of obtaining a matrix
with a large determinant is to take the next largest
Hadamard matrix and prune it to size.48

E. Small Masks

To end this section we give three matrices found
by Mood,16 which show that the best weighing de-
signs can be complicated, even for small N, and need
not satisfy Eqs. (13). For N = 3, there are three ma-
trices with the largest determinant, 4, namely:

(20)

The corresponding parameters are

(E1, E2 , E3 )/&2

(a) ( 2' 3 3

(c) ( 2 2 2

E/U
2

5

12

1

det Xmin

4 2;

4 1;

4 1.

Mood also gives D-optimal designs for N = 5, 6, and
7.
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IV. Matrices with Entries 0 and 1

A matrix (or mask) W with entries 0 and 1 is usual-
ly less expensive to build than a mask with entries
-1, 0, and +1. However, the price that must be paid
for this is an increase by a factor of about 4 in the
mean square error . This result is derived in the
Appendix and can be observed by comparing the de-
signs of this section with those of Sec. III.

If WN+1 is an (N + 1) X (N + 1) matrix with
entries -1 and +1 only, there is a standard way to get
an N X N matrix XN of 0's and 's. By suitably
multiplying rows and columns of WN+1 by -1, make
the first row and column equal to +1. Then deleting
this first row and column and changing +1's to 0's
and -1's to 's we obtain XN. For example,

W3= [ 1 givesX2 = [o I]

The determinants of WN+1 and XN are related by

detWNi = ( -2)NdetXN. (21)

A. Masks with the Largest Determinant

Because of this transformation from WN+1 to XN,
the problem of finding the largest determinant of any
N X N matrix of 0's and 's is equivalent to the prob-
lem of finding the largest determinant of any (N + 1)
X (N + 1) matrix of -1's and +1's. A solution to one
problem gives a solution to the other.49 If f(N) de-
notes the value of the largest (0,1) determinant, Eq.
(21) implies

f(N) = (1/2N)g(N + 1).

Therefore all the results about g(N) given in Sec. III
apply to f (N). In particular,

5 2 N(N)(N + 1)/2 if N = 4t - 1, (22)

f(N) ' 2-NNN 2 (2N + 1)1/2 if N is even, (23)

(2-+'N(N - 1 )(N-)/ 2 if N - 4t + 1. (24)

The matrices EN+1 of Eq. (17) produce D-optimal
(0,1) matrices EN (say) for N = 4t + 1, with

I detEr I = 2-N+IN(N - 1) (N-1) /2 (25)

W = SN:E Ej = 4Nuy
2W = N: = (N + 1)2

detS,1 = 2N(N + 1 )(NI1)/2 xi = - (N + 1), (26)

and is D-optimal (and presumably also A- and E-
optimal 5 0 ).

C. Masks from Symmetric Block Designs
5 1

-
54

Now we may use the incidence matrix AN itself as
the mask. This has the parameters

W = AN: ( = = k(N - 2) + 1 2E = E k2 (N - ) 

I detAN| = k(k- X) (N-)/2; min = k - X. (27)

Example55: For N = 13 there are three symmetric
block designs, all with circulant incidence matrices.
The parameters of the corresponding masks are as
follows:

(N, k, ) 1st row of AN E/U
2

E/&2 Amin

(a) (13,4,1) 1101000001000 0.314 2916 3

(b) (13,9,6) 1111101110010 0.309 6561 3

(c) (13,12,11) 1111111111110 0.924 12 1.

Note that (a) and (b) are complementary symmetric
block designs. Thus in the (0,1) case complementing
can change the parameters. Design (b) is clearly the
best of the three, although it has a smaller determi-
nant than the D-optimal design E13, which has deter-
minant 9477.

D. Small Masks

Finally, we give the two D-optimal (0,1) matrices
for N = 4 (Mood16):

0o 1

(a) 1 1

1 1

1 1- 1

0 1 I (b) 1

1 0j L1

11 1
1 0 0

1 

o I

Matrix (b) was used in Eq. (2). The corresponding
parameters are

(There seems to be no simple formula for or Xmin.)
For example,

o o

E = I 1
1 o

Lo I

1 0 1

1 0 0 .

O 1 1

O 1 1_1

B. Masks from Hadamard Matrices

Similarly a Hadamard matrix HN+1 produces the
(0,1) matrix SN, where N = 4t - 1, as in the para-
graph following Eq. (8). This weighing design has
the parameters

E/U
2 det X in

0.778 3 3,

0.694 3 1.56.

E. Summary

Table I gives a summary of these results, giving the
name of the mask W and the equation where its pa-
rameters can be found. These parameters are the
average mean square error (the most important),
the determinant of the mask, and the smallest eigen-
value Xmin of WTW. The standards by which to
judge these parameters are those of the Hadamard
mask [Eq. (4)]. For masks of -'s, 0's, and +1's,
Hadamard masks HN are the best, while the binary
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(E I E2 IE3,E4) /U2

(a) 7 7 7 7 
( 9, -9, -9,

(b) 4 I 7I 7 I 7 
( 9 9 9



Table I. Summary of Masks, Giving Name, Size (N X N), Equation where
Parameters can be Found, and Values of N for which Defined

N = 4t N- 4t + 1 N = 4t + 2 N = 4t + 3

Masks of HN,Eq(4): DN,Eq(9): all N CN,Eq(6): many N DN,Eq(9): all N
-1's,0's,+1's all N(?) BN + IN: many N EN,Eq(l 8): many N GN,Eq(10): all N(?)

PN,Eq(12): N = 5,13,25 QNEq(11): N = 7,31

Masks of AN,Eq(27): EPEq(25): many N AN,Eq(27): all N SN,Eq(26): all N(?)
0's,1's all N

Hadamard masks SN are the best
l's.

masks of 0's and

V. Discussion

In Sec. II we briefly mentioned singular designs.
To date users of Hadamard optics have not made use
of instruments operating in this mode, but a whole
new area of optical development may open up in this
direction.

Suppose that the image of a scene is to be obtained
in the presence of natural or deliberate interference
that comes in the form of noise spikes that make in-
dividual intensity measurements completely useless.
These measurements can be clearly identified be-
cause they are much larger (noisier) than expected
and can therefore be eliminated; but the information
they were meant to gather is lost.

If we operated in a normal scanning mode in which
we studied the scene element by element, we would
irretrievably lose all information about some ele-
ments. But the use of Hadamard optics can permit
error corrections so that information about each pic-
torial element is obtained despite the noise.

We can, for example, make use of an N X p encod-
ing mask with N rows to encode a scene with p = N
- n elements, where n' is the number of measure-
ments expected to be compromised through noise.
The n noisy measurements can then be removed, and
the brightness distribution of the p picture elements
calculated on the basis of the p relatively noisefree
data points.

This type of procedure of course is reminiscent of,
and makes available to optics, much of the body of
knowledge that constitutes coding theory-the study
of the transmission of messages through a noisy me-
dium. This is effectively done by adding redundan-
cy to the message in such a way as to permit error
correction. In the same way, the redundancy built
into the Hadamard mask in the example given above
would be used for error correction. This entire topic
is too large to treat here in detail, but it provides a
natural future for Hadamard transform optics.

Similar considerations can also enter the design of
an optical system in which the number of unknowns
to be determined p does not correspond to the rank
of any Hadamard matrix. In that case the optimum
procedure may be the construction of a system that
could in principle solve for N unknowns, N > p,
where N is the rank of a known Hadamard matrix.

Thanks are due to L. A. Shepp for suggesting the
use of the arithmetic-mean geometric-mean inequali-
ty in the Appendix and to C. L. Mallows for helpful
discussions. The work of the second author has been
supported by NASA grant NGR 33-010-210 and
AFCRL contract F19628-74-C-0110.

Appendix

Theorem: For any (0,1) matrix WN, the average
mean square error e - 4o-2/N as N -O

Proof: Let XI, ... , XN be the eigenvalues of
(WNTWN)- 1. Then

E = N Tr(wNTwX1 = N

> u2
(Xi . . XN)IN by the arithmetic-mean geometric-

mean inequality,

= c2(detWTW, )1/N - 2(detWN)-2/N

- a2
4(N + 1 )-(N+1))/ by Eqs. (22), (23), (24)

- 4/N as N - oo Q. E. D.

All previous proofs of this result seem to assume ei-
ther that Eq. (13) holds, or else56 that there is one
object that is present in every weighing, i.e., that the
spring balance is biased.
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Request for Information:
Dedicated Synchrotron Radiation Source

NSF and ERDA are seeking to identify parties
interested in a dedicated source of synchrotron
radiation and capable of designing and constructing
such a facility. The facility would be designed for the
optimum production of synchrotron radiation as an
intense source of X-rays with wavelengths at 1 A or
less, as well as the longer wavelength regions of the
electromagnetic spectrum.

This request is not for proposals but for preliminary
information to be used for defining the scope and
format of the project. Such information should
include design concepts together with cost estimates
for the basic synchrotron radiation source, auxiliary
instrumentation, and support facilities including
buildings. For additional information, contact Howard
Etzel or W. T. Oosterhuis of the Division of Materials
Research, NSF, 1800 G St., N.W., Wash., D.C. 20550
(632-7334), or Mark C. Wittels, Division of Physical
Research, ERDA, Wash., D.C. 20545 (301-973-3427).
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