Masks for Hadamard transform optics, and weighing designs

Neil J. A. Sloane and Martin Harwit

Abstract

This paper gives a brief survey of the design of masks for Hadamard spectrometers and image scanners. Three different criteria are described for judging a mask, as well as techniques for choosing masks that are not too far from the optimum.

I. Introduction

The use of masks to improve the performance of spectrometers and image scanners has been proposed by a number of authors, ${ }^{1-8}$ and several papers exist describing experiments performed with such instruments. ${ }^{8-12}$

Briefly, such an instrument consists of four essential components: an optical separator, an encoding mask, a detector, and a processor (Fig. 1).

The separator might be nothing more than a lens that produces a focused image at the mask, thereby separating light arriving from different spatial elements of a scene. It might equally well be a dispersing system that separates different spectral components of a beam and focuses them onto different locations on the mask.

A particular location on the mask either transmits light to the detector, absorbs the light, or reflects it toward a reference detector. In this way, the intensity of an element of the separated beam is modulated; its intensity is, respectively, multiplied by $+1,0$, or -1 , since the readings that are recorded are the differences in the intensity of light reaching the main detector and reference detector.

If there is only one detector, the modulation consists of +1 's and 0 's only, and the recorded intensity is just the intensity of radiation transmitted by the mask.

When m intensity values are to be determined, at least m different detector readings corresponding to m different mask arrays are required.

[^0]Three important questions in designing such an instrument are: (a) How should the mask be chosen? (b) How much does this improve the accuracy of the measurements? (c) How close is this to the optimum mask design?

Such questions have been studied for many years in statistics under the name of weighting designs. Up to now this seems to have escaped the notice of workers in optics, but a considerable body of literature exists (see, for example, Raghavarao ${ }^{13}$ or Banerjee ${ }^{14}$).

Even so, the specific answers to (a), (b), and (c) are not readily available in this literature, and so we shall give here a short survey of what is presently known about the answers. The expert in statistics will find little that is new; however, we do give the first complete proof we have seen that the average mean square error for the best mask of 0 's and 1 's is about four times that for the best mask of -1 's, 0 's, and +1 's.

II. Weighing Designs and Masks

Yates ${ }^{15}$ seems to have been the first to point out that by weighing several objects together instead of separately it may be possible to determine the individual weights more accurately.

For example, suppose four objects are to be weighed, using a balance that makes an error e each time it is used. Assume that e is a random variable with mean zero and variance σ^{2}.

First, suppose the objects are weighed separately. If the unknown weights are $x_{1}, x_{2}, x_{3}, x_{4}$, the measurements are $y_{1}, y_{2}, y_{3}, y_{4}$, and the errors made by the balance are $e_{1}, e_{2}, e_{3}, e_{4}$, the four weighings give four equations:

$$
\begin{array}{r}
y_{1}=x_{1}+e_{1}, \quad y_{2}=x_{2}+e_{2}, \quad y_{3}=x_{3}+e_{3} \\
y_{4}=x_{4}+e_{4}
\end{array}
$$

The best estimates of the unknown weights are the measurements themselves:

Fig. 1. The prime components used in Hadamard transform optics.

$$
\hat{x}_{1}=y_{1}=x_{1}+e_{1}, \hat{x}_{2}=y_{2}=x_{2}+e_{2}, \ldots
$$

These are unbiased estimates:

$$
E \hat{x}_{1}=x_{1}, E \hat{x}_{2}=x_{2}, \ldots(E \text { denotes expected value })
$$

with variance or mean square error

$$
E\left(\hat{x}_{1}-x_{1}\right)^{2}=E e_{1}^{2}=\sigma^{2}, \ldots
$$

On the other hand, suppose the balance is a chemical balance with two pans, and the four weighings are made as follows:

$$
\begin{align*}
& y_{1}=x_{1}+x_{2}+x_{3}+x_{4}+e_{1}, \\
& y_{2}=x_{1}-x_{2}+x_{3}-x_{4}+e_{2}, \\
& y_{3}=x_{1}+x_{2}-x_{3}-x_{4}+e_{3}, \tag{1}\\
& y_{4}=x_{1}-x_{2}-x_{3}+x_{4}+e_{4} .
\end{align*}
$$

This means that in the first weighing all four objects are placed in the left-hand pan, and in the other weighings two objects are in the left pan and two in the right. Since the coefficient matrix on the right is a Hadamard matrix, it is easy to solve for x_{1}, x_{2}, x_{3}, x_{4}. Thus the best estimate for x_{1} (see below for a justification of this) is

$$
\begin{aligned}
\hat{x}_{1}=\frac{1}{4}\left(y_{1}+y_{2}+y_{3}+\right. & \left.y_{4}\right) \\
& =x_{1}+\frac{1}{4}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)
\end{aligned}
$$

The variance of $c e$, where c is a constant, is c^{2} times the variance of e, and the variance of a sum of independent random variables is the sum of the individual variances. Therefore the variance of \hat{x}_{1} (and also of $\hat{x}_{2}, \hat{x}_{3}, \hat{x}_{4}$) is $4 \sigma^{2} / 16=\sigma^{2} / 4$.

Weighing the objects together has reduced the mean square error by a factor of 4 .

Finally, suppose the balance is a spring balance with only one pan, so only coefficients 0 and 1 can be used. A good method of weighing the four objects is

$$
\begin{align*}
& y_{1}=\quad x_{2}+x_{3}+x_{4}+e_{1}, \\
& y_{2}=x_{1}+x_{2}+e_{2}, \tag{2}\\
& y_{3}=x_{1}+x_{3} \quad+e_{2}, \\
& y_{4}=x_{1} \quad+x_{4}+e_{4} \text {. }
\end{align*}
$$

In this case the variances of $\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}, \hat{x}_{4}$ are $4 \sigma^{2} / 9$, $7 \sigma^{2} / 9,7 \sigma^{2} / 9,7 \sigma^{2} / 9$, respectively, a smaller improvement than in the previous case.

In general, if there are p unknowns x_{1}, \ldots, x_{p}, and
N measurements y_{1}, \ldots, y_{N} are made, involving errors e_{1}, \ldots, e_{N}, we have

$$
y_{i}=w_{i 1} x_{1}+\ldots+w_{i p} x_{p}+e_{i}, \quad i=1, \ldots, N,
$$

or in matrix form

$$
\begin{equation*}
y=W x+e, \tag{3}
\end{equation*}
$$

where $y=\left(y_{1}, \ldots, y_{N}\right)^{T}, x=\left(x_{1}, \ldots, x_{p}\right)^{T}, e=\left(e_{1}\right.$, $\left.\ldots, e_{N}\right)^{T}$, and T denotes transpose. A particular choice for the $N \times p$ coefficient matrix $W=\left(w_{i j}\right)$ is called a weighing design.
The connection with Hadamard transform optics is straightforward. In this type of optical system the x_{i} 's represent individual spatial and/or spectral elements whose intensities are to be determined. In contrast to scanning instruments that would measure the intensities one at a time, the Hadamard transform optical system measures (i.e., weighs) the intensities of several x_{i} 's simultaneously.

The two types of weighing design-the chemical balance design (with coefficients $w_{i 1}$ that may be -1 , 0 , or +1) and the spring balance design (in which the coefficients must be 0 or 1)-are realized in optical systems by masks W that use reflected, absorbed, or transmitted light in the first case or simply open or closed slots in the second case. ${ }^{4}$ In spite of the name Hadamard transform optics, the example of Eq. (2) shows that the matrices W should not be restricted to those obtained from Hadamard matrices. (We shall refer to W indiscriminantly as a mask, matrix, or weighing design.)

Weighing designs are also applicable to other problems of measurements (such as lengths, voltages, resistances, concentrations of chemicals, etc.) in which the measure of several objects is the sum (or a linear combination) of the individual measurements. ${ }^{14,16}$

In Secs. III and IV we shall discuss the best choice for a weighing design, subject to the following assumptions:
(1) The errors e_{i} are uncorrelated (see Banerjee ${ }^{17}$ for the general case);
(2) The errors e_{i} are independent of the amount being weighed. In the weighing problem this assumes that the objects are light, and in the optical scheme this is an assumption of linear behavior of the photodetector. (Raghavarao et al. ${ }^{18}$ discuss a more general case.)
(3) The number of measurements (N) is equal to the number of unknowns (p), and the matrix W is invertible. Then the best (linear, unbiased) estimate for x from Eq. (3) is ${ }^{4,19}$

$$
\hat{x}=W^{-1} y=x+W^{-1} e
$$

(In the general case, when W does not have an inverse, the best estimate is

$$
\hat{x}=W^{+} y
$$

where W^{+}is the Moore-Penrose generalized inverse of $W . .^{20,21}$ If the rank of W is less than p, this is called a singular weighing design and may occur, for
example, if an experiment is interrupted; e.g., suppose that a Hadamard transform spectrometer is used for an astronomical observation. Just before the end of the planned run of N measurements a patch of cloud passes over the dome. What information can be salvaged from the measurements actually made? Such questions are discussed by Raghavarao^{22} and Banerjee. ${ }^{23}$)
Finally we mention that Kiefer, ${ }^{24}$ Kiefer and Wolfowitz, ${ }^{25}$ and Fedorov ${ }^{19}$ study more general problems of the optimum design of experiments, including the use of randomized weighing designs.

III. Matrices with Entries -1, 0, +1

From now on we assume that (1), (2), (3) hold. Then how should one choose the matrix, or mask, W ? The mean square error of the estimate of the i th unknown x_{i} is

$$
\epsilon_{i}=E\left(\hat{x}_{i}-x_{i}\right)^{2} .
$$

Ideally one would like to minimize simultaneously ϵ_{1}, \ldots, ϵ_{N}. The most important result is due to Hotelling, ${ }^{26}$ who showed that for any choice of mask W with $\left|w_{i j}\right| \leq 1$, the ϵ_{i} are bounded by $\epsilon_{i} \geq\left(\sigma^{2} / N\right)$, and that it is possible to have $\epsilon_{i}=\left(\sigma^{2} / N\right)$ for all $i=1$, \ldots, N if and only if a Hadamard matrix H_{N} of order N exists (by taking $W=H_{N}$).

So if a Hadamard matrix of order N exists, taking $W=H_{N}$ gives the best possible weighing design. This design reduces the mean square error by a factor of N compared to the mean square error $\left(\sigma^{2}\right)$ of a single weighing. This result to some extent justifies the name Hadamard transform spectroscopy. Equation (1) was constructed with $W=H_{4}$.

We note that the intensity values to be determined can correspond to any set of spatial elements. Whether these elements are arrayed in a linear display such as in grating spectrometry, or in a two-dimensional array, as in imaging, is unimportant. The Hadamard matrix provides optimum encoding no matter what shape the array may be.

A Hadamard matrix of order N is an $N \times N$ matrix H_{N} of +1 's and -1 's that satisfies

$$
H_{N} H_{N}{ }^{T}=N I_{N}, \quad I_{N}=N \times N \text { unit matrix. }
$$

These matrices are thought to exist if and only if $N=$ 1,2 , or a multiple of 4 . Numerous constructions are known, and a plentiful supply of Hadamard matrices are available. ${ }^{27-30}$ So if N is a multiple of 4 and masks with entries ± 1 can be used, the problem of the best choice of mask is solved.

What if N is not a multiple of 4 , or if only masks of 0 's and 1's can be used? Then it is not possible to simultaneously minimize $\epsilon_{1}, \ldots, \epsilon_{N}$, and some other criterion must be used. Three different measurements of efficiency have been proposed:

An A-optimal ${ }^{31}$ weighing design is one that minimizes the average mean square error, i.e., minimizes

$$
\epsilon=\frac{1}{N}\left(\epsilon_{1}+\ldots+\epsilon_{N}\right)=\frac{\sigma^{2}}{4} \operatorname{Tr}\left(W^{\top} W\right)^{-1},
$$

where Tr denotes the trace of a matrix.

A D-optimal ${ }^{32}$ design is one that maximizes the magnitude of the determinant of $W|\operatorname{det}(W)|$. This is equivalent to minimizing the generalized variance of the errors $\hat{x}_{i}-x_{i}$, which is $\sigma^{2} \operatorname{det}\left(W^{T} W\right)^{-1}$. A D optimal design minimizes the volume of the region in which the estimate \hat{x} is expected to lie.

An E-optimal ${ }^{33}$ design is one that maximizes the smallest eigenvalue $\lambda_{\min }$ of $W^{T} W$. To justify this, suppose one needed to determine a linear combination of the x_{i} 's, say $\phi=c_{1} x_{1}+\ldots+c_{N} x_{N}$, where $c_{1}{ }^{2}+$ $\ldots+c_{N}{ }^{2}=1$. An E-optimal design minimizes the maximum mean square error of the best estimate $\hat{\phi}$ for all choices of the c_{i} 's.
These criteria do not always agree. Probably A optimality is the most important, provided the individual ϵ_{i} 's are roughly equal.

It is reassuring that a Hadamard design $W=H_{N}$ is A-, D-, and E-optimal. In fact if $W=H_{N}$, we have

$$
\begin{align*}
W=H_{N}: \epsilon=\epsilon_{i}=\frac{\sigma^{2}}{N}, \quad\left|\operatorname{det} H_{N}\right|= & N^{N / 2}, \tag{4}\\
& \quad \text { and } \lambda_{\min }=N,
\end{align*}
$$

while for any other W we have

$$
\epsilon>\frac{\sigma^{2}}{N},|\operatorname{det} W|<N^{N / 2}, \text { and } \lambda_{\min }<N
$$

The rest of this section describes masks that can be used when N is not a multiple of 4 .

A. Masks from Conference Matrices

These are similar to Hadamard matrices but with a slightly different defining equation. They also give rise to good weighing designs. A conference matrix C_{N} of order N is an $N \times N$ matrix with diagonal entries 0 and other entries +1 or -1 , which satisfies

$$
C_{N} C_{N}{ }^{T}=(N-1) I_{N}
$$

The name arises from the use of such matrices in the design of networks having the same attenuation between every pair of terminals (see Belevitch ${ }^{34-36}$).
N must be even for C_{N} to exist. But if N is a multiple of 4 these are inferior to Hadamard matrices, so we shall assume N has the form $4 t+2$. In this case, by suitably multiplying rows and columns by $-1, C_{N}$ can be put in the form

$$
C_{N}=\left[\begin{array}{ccc}
0 & 1 & 1 \ldots \tag{5}\\
1 & \ldots \\
1 & & B_{N-1} \\
\vdots & & \\
1 & &
\end{array}\right]
$$

where $B_{N-1}=\left(b_{i j}\right)$ is a symmetric matrix. ${ }^{37}$ Several constructions for conference matrices are known. ${ }^{29,30,37,38}$ The most useful for our purpose is Paley's construction ${ }^{39}$: Let $N=4 t+2=p+1$, where p is an odd prime, and set $b_{i j}=0$ if $i=j, b_{i j}=$ 1 if $j-i$ is a square (modulo p), and $b_{i j}=-1$ if $j-i$ is not a square (modulo p). The resulting matrix (5) is a conference matrix. For example, if $p=5$, the squares modulo 5 are $1^{2}=1,2^{2}=4$, and we obtain

$$
C_{6}=\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & - & - & 1 \\
1 & 1 & 0 & 1 & - & - \\
1 & - & 1 & 0 & 1 & - \\
1 & - & - & 1 & 0 & 1 \\
1 & 1 & - & - & 1 & 0
\end{array}
$$

Note that this construction gives a matrix B_{N-1} that is a circulant.

The same construction works if p is replaced by any odd prime power p^{m}; the rows and columns of B_{N-1} are labeled with the elements of the Galois field $G F\left(p^{m}\right) ; b_{i j}=1$ if $j-1$ is a square in $G F\left(p^{m}\right)$; etc. Now B_{N-1} is not a circulant. Galois fields are finite fields (see, e.g., Raghavarao ${ }^{13}$).

The construction gives symmetric, circulant, conference matrices of orders $6,14,18,30,38,42,54,62$, \ldots, and symmetric conference matrices of orders 10 , $26,50, \ldots$ The matrices C_{10}, C_{14}, C_{18} are given in full by Raghavarao. ${ }^{40}$

Choosing the mask $W=C_{N}$ we obtain a weighing design ${ }^{40}$ that has the parameters

$$
\begin{array}{r}
W=C_{N}: \epsilon=\epsilon_{i}=\frac{\sigma^{2}}{N-1}, \quad\left|\operatorname{det} C_{N}\right|=(N-1)^{N / 2} \tag{6}\\
\\
\lambda_{\min }=N-1 .
\end{array}
$$

These are only slightly inferior to the parameters of a Hadamard matrix, Eq. (4). We mention in passing that for $N=4 t+1$ the mask $W=B_{N}+I_{N}$ has $\epsilon=\epsilon_{i}$ $=\left(2 \sigma^{2}\right) /(N-1)$.

B. Masks from Symmetric Block Designs

An (N, k, λ) symmetric block design consists of a collection of subsets (called blocks) of size k taken from a set of N objects, such that any two blocks have exactly λ objects in common. $[N, k$, and λ are related by $k(k-1)=\lambda(N-1)$.]

For example, the blocks of a $(7,3,1)$ design are

$$
124,235,346,457,561,672,713 .
$$

From one symmetric block design we can always get another by taking as blocks the complements of the original blocks, that is, the objects not in the original blocks. This is an ($N, k^{\prime}=N-k, \lambda^{\prime}=N-2 k$ $+\lambda)$ symmetric design. The complement of the preceding example is a $(7,4,2)$ design with blocks

```
3567, 4671, 5712, 6123, 7234, 1345, 2456.
```

Block designs are frequently used in statistics, and many methods of construction are available. ${ }^{41}$ (The statistical literature uses v instead of N for the number of objects.)

A symmetric block design is conveniently described by its incidence matrix (which explains the connection with masks). This is an $N \times N$ matrix $A_{N}=\left(a_{i j}\right)$, where $a_{i j}=1$ if the i th block contains the j th object, $=0$ if not. The incidence matrix of the preceding ($7,4,2$) design is

$$
A_{\eta}=S_{7}=\begin{gather*}
1 \tag{7}\\
2 \\
3 \\
4 \\
5 \\
6 \\
7
\end{gather*}\left[\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0
\end{array}\right] .
$$

Generalizing this example, we can obtain symmetric block designs from Hadamard matrices as follows. By suitably multiplying rows and columns by -1 , H_{N+1} can be put in the form

$$
H_{N+1}=\left[\begin{array}{c|cc}
1 & 1 & 1 \ldots 1 \tag{8}\\
\hline 1 & & \\
1 & & G_{N} \\
\vdots & &
\end{array}\right] .
$$

If 1 's are replaced by 0 's and -1 's by I's, G_{N} is changed into the incidence matrix S_{N} of an ($N=4 t$ $-1, k=2 t, \lambda=t$) symmetric block design. Equation (7) shows S_{7}.

Now suppose A_{N} is the incidence matrix of any (N, k, λ) symmetric block design. A_{N} satisfies the equations

$$
\begin{array}{r}
A_{N} A_{N}{ }^{T}=A_{N}{ }^{T} A_{N}=(k-\lambda) I_{N}+\lambda J_{N}, \\
\\
A_{N} J_{N}=J_{N} A_{N}=k J_{N} .
\end{array}
$$

We may use A_{N} itself as a mask of 0 's and 1 's-see Sec. IV. To get a mask of +1 's and -1 's, set $D_{N}=$ $J_{N}-2 A_{N}$, or in other words change 0 's to +1 's and 1's to -1 's. Then choosing the mask $W=D_{N}$ we obtain a weighing design with the parameters

$$
\begin{align*}
W=D_{N}: \epsilon=\epsilon_{i} & =\frac{\sigma^{2}\left[N^{2}-N-4(N-2) n\right]}{4 n\left[N^{2}-4(N-1) n\right.} \\
\left|\operatorname{det} D_{N}\right| & =(4 n)^{(N-1) / 2}\left[N^{2}-4(N-1) n\right]^{1 / 2} \\
& \lambda_{\min }=\min \left[4 n, N^{2}-4(N-1) n\right] \tag{9}
\end{align*}
$$

where $n=k-\lambda$. The complementary symmetric design gives a mask with the same parameters.

To illustrate this, the ($N=4 t-1,2 t, t$) symmetric block design that we obtained from $H_{4 t}$ gives a weighing design with mask $W=G_{N}$ and parameters

$$
\begin{array}{r}
W=G_{N}: \epsilon=\epsilon_{i}=\frac{2 \sigma^{2}}{N+1},\left|\operatorname{det} G_{N}\right|=(N+1)^{(N-1) / 2}, \\
\lambda_{\min }=1 \tag{10}
\end{array}
$$

The mean square error ϵ here is about twice that for H_{N} [Eq. (4)].

In some cases better masks exist. For example, as found by Rao, ${ }^{42}$ when $N=4 t-1>3$, an $\left[N=\left(d^{2}+\right.\right.$ $3) / 4, k=(N+d) / 2, \lambda=(N+2 d+3) / 4]$ symmetric block design gives a mask $W=Q_{N}$ (say), which has parameters [from Eq. (9)]

$$
\begin{align*}
& W=Q_{N}: \epsilon=\epsilon_{i}=\frac{(4 N-6) \sigma^{2}}{(4 N-3)(N-3)} \\
& \quad\left|\operatorname{det} Q_{N}\right|=(N-3)^{(N-1) / 2}(4 N-3)^{1 / 2} \\
& \quad \lambda_{\min }=N-3 . \tag{11}
\end{align*}
$$

These parameters are better than Eq. (10). Unfortunately, at present the only known designs of this family are Q_{7} and Q_{31}. This is typical: the best symmetric block designs for our purposes have k roughly equal to $1 / 2 \mathrm{~N}$ and give masks with very good parameters, but not many examples are known.

A similar situation holds for $N=4 t+1$. In this case as Raghavarao ${ }^{40}$ has shown, an $\left[N=\left(d^{2}+1\right) / 2\right.$, $k=(N+d) / 2, \lambda=(N+2 d+1) / 4]$ symmetric block design gives a mask $W=P_{N}$ (say), which has parameters

$$
\begin{align*}
& W=P_{n}: \epsilon=\epsilon_{i}=\frac{2 \sigma^{2}}{2 N-1}, \\
& \left|\operatorname{det} P_{N}\right|=(N-1)^{(N-1) / 2}(2 N-1)^{1 / 2}, \lambda_{\min }=N-1 . \tag{12}
\end{align*}
$$

Again, at present only P_{5}, P_{13}, and P_{25} are known to exist. The corresponding matrices are given in Ref. 40.

C. Masks with $W W^{\top}=\alpha l+\beta J$

All the masks given so far [except for Eq. (2)] have the property that the mean square errors of the unknowns, the ϵ_{i} 's, are equal. In much statistical literature it is assumed that the weighing design satisfies the conditions

$$
\begin{equation*}
\epsilon_{i}=E\left(\hat{x_{i}}-x_{i}\right)^{2}=\epsilon \text { (independent of } i \text {) } \tag{13}
\end{equation*}
$$

and
$E\left(\hat{x}_{i}-x_{i}\right)\left(\hat{x}_{j}-x_{j}\right)=\eta$ (independent of i, j, for $i \neq j$).
This is equivalent to assuming that W_{N} satisfies $W_{N} W_{N}{ }^{T}=\alpha I_{N}+\beta J_{N}$ for suitable α and β. With these assumptions, Raghavaro ${ }^{13,40}$ has shown that P_{N} is A-, D-, and E-optimal, that C_{N} is A - and E-optimal, and Rao^{42} has shown that Q_{N} is A - and E-optimal for $N>3$.

However, as the weighing designs (2), (17), and (20) show, weighing designs that do not satisfy Eq. (13) may have a lower average mean square error, or a larger determinant or $\lambda_{\text {min }}$, than those that do.

D. Masks with the Largest Determinant

Let us consider the problem of finding a D-optimal mask W_{N}, that is, an $N \times N$ matrix of -1 's, 0 's, and +1 's with the largest possible determinant. Let $g(N)$ denote this largest determinant. By expanding the determinant about any column, it follows that the largest determinant can always be attained by a matrix containing only -1 's and +1 's (and no zero's).

The following bounds on $g(N)$ are known ${ }^{43}$:

$$
g(N) \leq \begin{cases}N^{N / 2} & \text { if } N=4 t ; \tag{14}\\ (N-1)^{(N-1) / 2}(2 N-1)^{1 / 2} & \text { if } N \text { is odd; } \\ 2(N-2)^{(N-2) / 2}(N-1) & \text { if } N=4 t+2 .\end{cases}
$$

We have already seen [Eq. (4)] that if $N=4 t$ we can achieve $g(N)=N^{N / 2}$ by a Hadamard matrix. For many values of $N=4 t+2$, $g(N)=2(N-2)^{(N-2) / 2}(N-1)$ can be achieved by double circulant matrices of the form

$$
W_{N}=\left[\begin{array}{cc}
X & Y \tag{17}\\
-Y^{T} & X^{T}
\end{array}\right]=E_{N} \text { (say), }
$$

where X and Y are ($N / 2$) $\times(N / 2)$ circulant matrices chosen so that

$$
E_{N}{ }^{T} E_{N}=\left[\begin{array}{ll}
Z & 0 \\
0 & Z
\end{array}\right], \quad Z=\left(\frac{1}{2} N-2\right) I_{N / 2}+2 J_{N / 2} .
$$

The parameters of this weighing design are

$$
\begin{align*}
& W_{N}=E_{N}: \epsilon=\epsilon_{i}=\frac{\sigma^{2}}{N-1} \\
& \left|\operatorname{det} E_{N}\right|=2(N-2)^{(N-2) / 2}(N-1), \lambda_{\min }=N-2 \tag{18}
\end{align*}
$$

For example, a D-optimal mask with $N=6$ is

$$
E_{6}=\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & - & 1 & 1 \tag{19}\\
1 & 1 & 1 & 1 & - & 1 \\
1 & 1 & 1 & 1 & 1 & - \\
\hline 1 & - & - & 1 & 1 & 1 \\
- & 1 & - & 1 & 1 & 1 \\
- & - & 1 & 1 & 1 & 1
\end{array}\right]
$$

Ehlich ${ }^{44}$ and Yang ${ }^{45,46}$ have given such matrices for $N=2,6,10,14,18,26,30,38,42,46,50,54,62,66$. It is interesting to compare Eqs. (18) with the parameters (6) of the C_{N} matrices. They both appear to exist for the same values of $N . E_{N}$ has the same mean square error, slightly larger determinant (larger by a factor of about 1.21 when N is large), but smaller $\lambda_{\text {min }}$.

The matrices P_{5}, P_{13}, P_{25} achieve Eq. (15) and so are also D-optimal. The exact value of $g(N)$ is known ${ }^{47}$ for $N \leq 14$.

For large N, a good method of obtaining a matrix with a large determinant is to take the next largest Hadamard matrix and prune it to size. ${ }^{48}$

E. Small Masks

To end this section we give three matrices found by Mood, ${ }^{16}$ which show that the best weighing designs can be complicated, even for small N, and need not satisfy Eqs. (13). For $N=3$, there are three matrices with the largest determinant, 4 , namely:
(a) $\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & - & 1 \\ 1 & 1 & -\end{array}\right] ;$
(b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & - & 1 \\ 1 & 1 & -\end{array}\right]$;
(c) $\left[\begin{array}{ccc}- & 1 & 1 \\ 1 & - & 1 \\ 1 & 1 & -\end{array}\right]$.

The corresponding parameters are

	$\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right) / \sigma^{2}$	ϵ / σ^{2}	det
(a) $\left(\frac{1}{2}, \frac{3}{8}, \frac{3}{8}\right)$	$\frac{5}{12}$	4	$2 ;$
(b) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$\frac{1}{2}$	4	$1 ;$
(c) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$\frac{1}{2}$	4	1.

Mood also gives D-optimal designs for $N=5,6$, and 7.

IV. Matrices with Entries 0 and 1

A matrix (or mask) W with entries 0 and 1 is usually less expensive to build than a mask with entries $-1,0$, and +1 . However, the price that must be paid for this is an increase by a factor of about 4 in the mean square error ϵ. This result is derived in the Appendix and can be observed by comparing the designs of this section with those of Sec. III.

If W_{N+1} is an $(N+1) \times(N+1)$ matrix with entries -1 and +1 only, there is a standard way to get an $N \times N$ matrix X_{N} of 0 's and 1's. By suitably multiplying rows and columns of W_{N+1} by -1 , make the first row and column equal to +1 . Then deleting this first row and column and changing +1 's to 0 's and -1 's to I's we obtain X_{N}. For example,

$$
W_{3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & - & 1 \\
1 & 1 & -
\end{array}\right] \text { gives } X_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The determinants of W_{N+1} and X_{N} are related by

$$
\begin{equation*}
\operatorname{det} W_{N+1}=(-2)^{N} \operatorname{det} X_{N} . \tag{21}
\end{equation*}
$$

A. Masks with the Largest Determinant

Because of this transformation from W_{N+1} to X_{N}, the problem of finding the largest determinant of any $N \times N$ matrix of 0's and 1's is equivalent to the problem of finding the largest determinant of any $(N+1)$ $\times(N+1)$ matrix of -1 's and +1 's. A solution to one problem gives a solution to the other. ${ }^{49}$ If $f(N)$ denotes the value of the largest $(0,1)$ determinant, Eq. (21) implies

$$
f(N)=\left(1 / 2^{N}\right) g(N+1)
$$

Therefore all the results about $g(N)$ given in Sec. III apply to $f(N)$. In particular,

$$
f(N) \leq\left\{\begin{array}{lll}
2^{-N}(N+1) \\
2^{-N} N^{N / 2}(2 N+1) / 2 & \text { if } N=4 t-1, & (22) \\
2^{-N+1} N(N-1)^{(N-1)} / 2 & \text { if } N-4 t+1 . & \text { if } N \text { is even, }
\end{array}\right.
$$

The matrices E_{N+1} of Eq. (17) produce D-optimal $(0,1)$ matrices \bar{E}_{N} (say) for $N=4 t+1$, with

$$
\begin{equation*}
\left|\operatorname{det} \bar{E}_{N}\right|=2^{-N+1} N(N-1)^{(N-1) / 2} \tag{25}
\end{equation*}
$$

(There seems to be no simple formula for ϵ or $\lambda_{\min }$.) For example,

$$
\vec{E}_{5}=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

B. Masks from Hadamard Matrices

Similarly a Hadamard matrix H_{N+1} produces the $(0,1)$ matrix S_{N}, where $N=4 t-1$, as in the paragraph following Eq. (8). This weighing design has the parameters

$$
\begin{align*}
& W=S_{N}: \epsilon=\epsilon_{i}=\frac{4 N \sigma^{2}}{(N+1)^{2}} \\
& \left|\operatorname{det} S_{N}\right|=2^{-N(N+1)^{(N+1) / 2}, \lambda_{\min }=\frac{1}{4}(N+1)} \tag{26}
\end{align*}
$$

and is D-optimal (and presumably also A - and E optimal ${ }^{50}$).

C. Masks from Symmetric Block Designs ${ }^{51-54}$

Now we may use the incidence matrix A_{N} itself as the mask. This has the parameters

$$
\begin{align*}
& W=A_{N:} \epsilon=\epsilon_{i}=\frac{k(N-2)+1}{k^{2}(N-k)} \sigma^{2} ; \\
& \quad\left|\operatorname{det} A_{N}\right|=k(k-\lambda)^{(N-1) / 2} ; \lambda_{\min }=k-\lambda . \tag{27}
\end{align*}
$$

Example ${ }^{55}$: For $N=13$ there are three symmetric block designs, all with circulant incidence matrices. The parameters of the corresponding masks are as follows:

	(N, k, λ)	Ist row of A_{N}	ϵ / σ^{2}	ϵ / σ^{2}	$\lambda_{\min }$
(a)	$(13,4,1)$	1101000001000	0.314	2916	3
(b)	$(13,9,6)$	1111101110010	0.309	6561	3
(c)	$(13,12,11)$	1111111111110	0.924	12	1.

Note that (a) and (b) are complementary symmetric block designs. Thus in the (0,1) case complementing can change the parameters. Design (b) is clearly the best of the three, although it has a smaller determinant than the D-optimal design \bar{E}_{13}, which has determinant 9477.

D. Small Masks

Finally, we give the two D-optimal $(0,1)$ matrices for $N=4$ (Mood ${ }^{16}$):

$$
\text { (a) }\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \text {, (b) }\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Matrix (b) was used in Eq. (2). The corresponding parameters are

	$\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}\right) / \sigma^{2}$	ϵ / σ^{2}	det	$\lambda_{\text {min }}$
(a)	$\left(\frac{7}{9}, \frac{7}{9}, \frac{7}{9}, \frac{7}{9}\right)$	0.778	3	3,
(b)	$\left(\frac{4}{9}, \frac{7}{9}, \frac{7}{9}, \frac{7}{9}\right)$	0.694	3	1.56.

E. Summary

Table I gives a summary of these results, giving the name of the mask W and the equation where its parameters can be found. These parameters are the average mean square error ϵ (the most important), the determinant of the mask, and the smallest eigenvalue $\lambda_{\min }$ of $W^{T} W$. The standards by which to judge these parameters are those of the Hadamard mask [Eq. (4)]. For masks of -1 's, 0's, and +1 's, Hadamard masks H_{N} are the best, while the binary

	$N=4 t$	$N=4 t+1$	$N=4 t+2$	$N=4 t+3$
Masks of $-1 \text { 's,0's, }+1 \text { 's }$	$\begin{gathered} H_{N}, \text { Eq(4): } \\ \text { all } N(?) \end{gathered}$	$\begin{aligned} & D_{N}, \operatorname{Eq}(9): \text { all } N \\ & B_{N}+I_{N}: \operatorname{many} N \\ & P_{N}, \mathrm{Eq}(12): N=5,13,25 \end{aligned}$	$\begin{aligned} & C_{N}, \operatorname{Eq}(6): \operatorname{many} N \\ & E_{N}, \operatorname{Eq}(18): \operatorname{many} N \end{aligned}$	$\begin{aligned} & D_{N}, \mathrm{Eq}(9): \operatorname{all} N \\ & G_{N}, \mathrm{Eq}(10): \operatorname{all} N(?) \\ & Q_{N}, \operatorname{Eq}(11): N=7,31 \end{aligned}$
$\begin{aligned} & \text { Masks of } \\ & 0 \text { 's,1's } \end{aligned}$	$\begin{aligned} & A_{N}, \operatorname{Eq}(27): \\ & \quad \text { all } N \end{aligned}$	$\bar{E}_{N}, \mathrm{Eq}(25):$ many N	$A_{N}, \mathrm{Eq}(27):$ all N	$S_{N}, \mathrm{Eq}(26):$ all $\dot{N}(?)$

Hadamard masks S_{N} are the best masks of 0's and 1's.

v. Discussion

In Sec. II we briefly mentioned singular designs. To date users of Hadamard optics have not made use of instruments operating in this mode, but a whole new area of optical development may open up in this direction.

Suppose that the image of a scene is to be obtained in the presence of natural or deliberate interference that comes in the form of noise spikes that make individual intensity measurements completely useless. These measurements can be clearly identified because they are much larger (noisier) than expected and can therefore be eliminated; but the information they were meant to gather is lost.

If we operated in a normal scanning mode in which we studied the scene element by element, we would irretrievably lose all information about some elements. But the use of Hadamard optics can permit error corrections so that information about each pictorial element is obtained despite the noise.

We can, for example, make use of an $N \times p$ encoding mask with N rows to encode a scene with $p=N$ - n elements, where n^{\prime} is the number of measurements expected to be compromised through noise. The n noisy measurements can then be removed, and the brightness distribution of the p picture elements calculated on the basis of the p relatively noisefree data points.

This type of procedure of course is reminiscent of, and makes available to optics, much of the body of knowledge that constitutes coding theory-the study of the transmission of messages through a noisy medium. This is effectively done by adding redundancy to the message in such a way as to permit error correction. In the same way, the redundancy built into the Hadamard mask in the example given above would be used for error correction. This entire topic is too large to treat here in detail, but it provides a natural future for Hadamard transform optics.

Similar considerations can also enter the design of an optical system in which the number of unknowns to be determined p does not correspond to the rank of any Hadamard matrix. In that case the optimum procedure may be the construction of a system that could in principle solve for N unknowns, $N>p$, where N is the rank of a known Hadamard matrix.

Thanks are due to L. A. Shepp for suggesting the use of the arithmetic-mean geometric-mean inequality in the Appendix and to C. L. Mallows for helpful discussions. The work of the second author has been supported by NASA grant NGR 33-010-210 and AFCRL contract F19628-74-C-0110.

Appendix

Theorem: For any $(0,1)$ matrix W_{N}, the average mean square error $\epsilon \rightarrow 4 \sigma^{2} / N$ as $N \rightarrow \infty$.

Proof: Let $\lambda_{1}, \ldots, \lambda_{N}$ be the eigenvalues of $\left(W_{N}{ }^{T} W_{N}\right)^{-1}$. Then

$$
\begin{aligned}
& \epsilon=\frac{\sigma^{2}}{N} \operatorname{Tr}\left(W_{N} T_{W_{N}}\right)^{-1}=\frac{\sigma^{2}}{N} \sum_{i=1}^{N} \lambda_{i} \\
& \geq \sigma^{2}\left(\lambda_{1} \ldots \lambda_{N}\right)^{1 / N} \text { by the arithmetic-mean geometric- } \\
& \text { mean inequality, } \\
&=\sigma^{2}\left(\operatorname{det} W_{N} W_{N} W_{N}-1 / N=\sigma^{2}\left(\operatorname{det} W_{N}\right)^{-2 / N}\right. \\
& \geq \sigma^{2} 4(N+1)^{-(N+1) / / 2} \text { by Eqs. (22), (23), (24) } \\
&-4 \sigma^{2} / N \text { as } N \rightarrow \infty .
\end{aligned} \quad \text { Q.E.D. } \quad \text {. }
$$

All previous proofs of this result seem to assume either that Eq. (13) holds, or else ${ }^{56}$ that there is one object that is present in every weighing, i.e., that the spring balance is biased.

References

1. F. Gottlieb, IEEE Trans. Info. Theory 14, 428 (1968).
2. R. N. Ibbett, D. Aspinall, and J. F. Grainger, Appl. Opt. 7, 1089 (1968).
3. J. A. Decker, Jr., and M. O. Harwit, Appl. Opt. 7, 2205 (1968).
4. N. J. A. Sloane, T. Fine, P. G. Phillips, and M. Harwit, Appl. Opt. 8, 2130 (1969).
5. M. Harwit, P. G. Phillips, T. Fine, and N. J. A. Sloane, Appl. Opt. 9, 1149 (1970).
6. J. A. Decker, Jr., Appl. Opt. 9, 1392 (1970).
7. E. D. Nelson and M. L. Fredman, J. Opt. Soc. Am. 60, 1664 (1970).
8. M. Harwit, Appl. Opt. 10, 1415 (1971) and 12, 285 (1973).
9. J. A. Decker, Jr., Appl. Opt. 10, 510 (1971).
10. P. G. Phillips and M. Harwit, Appl. Opt. 10, 2780 (1971).
11. P. G. Phillips and D. A. Briotta, Jr., Appl. Opt. 13, 2233 (1974).
12. M. Harwit, P. G. Phillips, L. W. King, and D. A. Briotta, Jr., Appl. Opt. 13, 2669 (1974).
13. D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments (Wiley, New York, 1971), Chap. 17 and Appendix A.
14. K. S. Banerjee, Weighing Designs for Use in Chemistry, Medicine, Economies, Operations Research and Statistics (Dekker, New York, 1975).
15. F. Yates, J. R. Stat. Soc. Suppl. 2, 181 (1935) (see p. 211).
16. A. M. Mood, Ann. Math. Stat. 17, 432 (1946).
17. K. S. Banerjee, Ann. Math. Stat. 36, 1829 (1965).
18. D. Raghavarao, J. S. Sodhi, and R. singh, Calcutta Stat. Assoc. Bull. 20, 83 (1971).
19. V. V. Federov, Theory of Optimal Experiments (Academic, New York, 1972).
20. R. Penrose, Proc. Cambridge Philos. Soc. 51, 406 (1955); 52, 17 (1956) [see also A. Albert Regression and the Moore-Penrose Pseudoinverse (Academic, New York, 1972)].
21. C. M. Price, SLAM Rev. 6, 115 (1964).
22. Ref. 13, p. 321.
23. K. S. Banerjee, Ann. Math. Stat. 37, 1021 (1966); 40, 719 (1969); J. Am. Stat. Assoc. 67, 211 (1972); P. K. Hazra and K. S. Banerjee, J. Am. Stat. Assoc. 68, 392 (1973).
24. J. Kiefer, Ann. Math. Stat. 29, 675 (1958) and J. R. Stat. Soc., Ser. B. 21, 272 (1959).
25. J. Kiefer and J. Wolfowitz, Ann. Math. Stat. 30, 271 (1959).
26. H. Hotelling, Ann Math. Stat. 15, 297 (1944); rediscovered by Nelson and Fredman. ${ }^{7}$
27. L. D. Baumert, in Digital Communications with Space Applications, S. W. Golomb, Ed. (Prentice-Hall, Englewood Cliffs, N.J., 1964), pp. 47-64.
28. M. Hall, Jr., Combinatorial Theory (Blaisdell, Waltham, Mass., 1967), Chap. 14.
29. W. D. Wallis, A. P. Street, and J. S. Wallis, Combinatorics: Room Squares, Sum Free Sets, Hadamard Matrices, Lecture Notes in Math. 292 (Springer Verlag, New York, 1972), Part 4.
30. J. H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology, Lecture Notes in Math. 382 (Springer Verlag, New York, 1974), Chap. 14.
31. See K. Kishen, Ann. Math. Stat. 16, 294 (1945) and Ref. 13, p. 315.
32. See Mood ${ }^{16}$ and Ref. 13, p. 315.
33. See S. Ehrenfeld, Ann. Math. Stat. 26, 247 (1955) and Ref. 13, p. 315.
34. V. Belevitch, Elect. Commun. 27, 231 (1950).
35. V. Belevitch, in Proc. Symp. Modern Network Synthesis (Polytech. Inst. Brooklyn, New York, 1956), pp. 175-195.
36. V. Belevitch, Ann. Soc. Sci. Bruxelles 82 (I), 13 (1968).
37. P. Delsarte, J. M. Goethals, and J. J. Seidel, Can. J. Math 23, 816 (1971).
38. J. M. Goethals and J. J. Seidel, Can. J. Math 19, 1001 (1967).
39. R.E.A.C. Paley, J. Math Phys. 12, 311 (1933).
40. D. Raghavarao, Ann. Math. Stat. 30, 295 (1959); 31, 878 (1960).
41. See, for example, Ref. 13, Chap. 5; Ref. 28, Chaps. 10, 15, and Table I; Ref. 30, Chaps. 10, 15.
42. M. B. Rao, Ann. Math. Stat. 37, 1371 (1966).
43. J. Brenner and L. Cummings, Am. Math. Mon. 79, 626 (1972).
44. H. Ehlich, Math. Z. 83, 123 (1964).
45. C. H. Yang, Math. Comp. 20, 147 (1966); 22, 174 (1968); 23, 201 (1969).
46. C. H. Yang, "Maximal Binary Matrices and Sum of Two Squares," submitted to Math. Comp.
47. H. Ehlich and K. Zeller, Z. Angew. Math. Mech. 42, 20 (1962).
48. G. F. Clements and B. Lindström, Proc. Am. Math. Soc. 16, 548 (1965), show that in this way one can always obtain matrices of -1 's and +1 's with determinant at least $\mathrm{N}^{(\mathrm{N} / 2)}[1-\log (4 /$ 3) $/ \log N]$.
49. See, for example, J. H. E. Cohn, Proc. Am. Math. Soc. 14, 581 (1963).
50. Although this seems not to have been proved. The theorem in the Appendix shows that if N is large, S_{N} is close to A-optimal.
51. K. S. Banerjee, Ann. Math. Stat. 19, 394 (1948).
52. K. S. Banerjee, Biometrika 37, 50 (1950).
53. K. S. Banerjee, Calcutta Stat. Assoc. Bull, 4, 36 (1952).
54. Ref. 13, p. 319.
55. This example is discussed by Raghavarao, Ref. 13, p. 321. However, he incorrectly asserts that (c) is A-optimal. The symmetric block design (a) can be found, for example, on p . 291 of Ref. 28.
56. S. Moriguti, Rep. Stat. Appl. Res. 3, 75 (1954).

Request for Information:
 Dedicated Synchrotron Radiation Source

NSF and ERDA are seeking to identify parties interested in a dedicated source of synchrotron radiation and capable of designing and constructing such a facility. The facility would be designed for the optimum production of synchrotron radiation as an intense source of X-rays with wavelengths at $1 \AA$ or less, as well as the longer wavelength regions of the electromagnetic spectrum.

This request is not for proposals but for preliminary information to be used for defining the scope and format of the project. Such information should include design concepts together with cost estimates for the basic synchrotron radiation source, auxiliary instrumentation, and support facilities including buildings. For additional information, contact Howard Etzel or W. T. Oosterhuis of the Division of Materials Research, NSF, 1800 G St., N.W., Wash., D.C. 20550 (632-7334), or Mark C. Wittels, Division of Physical Research, ERDA, Wash., D.C. 20545 (301-973-3427).

[^0]: N. J. A. Sloane is with Beli Laboratories, Murray Hill, New Jersey 07974. M. Harwit is with Cornell University, Center for Radiophysics \& Space Research, Ithaca, New York 14853.
 Received 16 April 1975.

