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MASLOV I D E M P O T E N T PROBABILITY CALCULUS. II 1 ) 

Изучение процессов Беллмана-Маслова привело к новому пони
манию задач оптимального управления и их связи с изучением диф
ференциальных уравнений Гамильтона-Якоби. Цель настоящей 
работы — показать, что идемпотентный анализ дает естествен
ный и общий вероятностный круг идей для изучения таких урав
нений. Некоторые новые результаты, связанные с долговременным 
поведением решения одного класса дифференциальных уравнений 
Гамильтона-Якоби, могут рассматриваться как (max, -г-)-версия 
закона больших чисел и центральной предельной теоремы. Обсуж
даются также применения к эволюционным уравнениям, возника
ющим в математической морфологии. 

Ключевые слова и фразы: процессы Беллмана-Маслова, урав
нения Гамильтона-Якоби, идемпотентный анализ, математическая 
морфология. 

In t roduc t ion . Maslov Idempotent Probability Calculus gives a 
natural framework for formulating and studying non-linear optimal control 
problems and Hamilton-Jacobi equations. The evolution of this rapidly 
developing area of research can be seen quite directly through the following 
chain of papers [l]-[3], [12], [14]—[16]. The paper [24] also contains a useful 
survey on this subject. Using this framework we have shown in the first 
part of this paper that the Bellman optimality principle may be viewed as 
a basic definition of a class of processes like Markov's property rather than 
a conclusion. We will not repeat the basic concepts such as performance 
spaces or independence and conditioning. One can also find there a list of 
references. 

The study of Bellman-Maslov processes has lead to new advances in 
the understanding of non-linear optimal control problems and in the study 
of fixed points of non-expansive transformations. In [11] we proved that the 
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Hamiltonian operator can be regarded as the (max, +)-version of the classical 
Kolmogorov differential operator of Stochastic Calculus. Furthermore some 
new stability properties of Bellman-Maslov processes have been obtained 
using the (max, +)-version of the celebrated Dynkin's formula in stochastic 
process theory. 

Using this framework the fixed points of non-expansive transformations 
are the (max, +)-version of the invariant probability measures for discrete 
time Markov semi-groups. Applications to generalized simulated annealing 
and genetic type algorithms are given in [11] (see also [17] for a detailed 
study of the convergence of such stochastic algorithms). 

In the present work the idempotent probability calculus presented in the 
first part is applied to study a class of Hamilton-Jacobi equations arising in 
optimal control problems and in Mathematical Morphology. The paper has 
the following structure. 

In the first section we extend the analysis of Hamilton-Jacobi equa
tions presented in [22] and [23] to more general classes of Hamilton-Jacobi 
equations and we connect these new generalized solutions with the classical 
viscosity solutions (see [4], [8], [9] and references therein). What also makes 
our result interesting and new is that we propose a natural and general 
«probabilistic line of thought* to study these Hamilton-Jacobi equations. 
Using (max,+)-semigroup technics we will prove that the so-called Maslov 
generalized solution of a first order Hamilton-Jacobi differential equation co
incides with the known classical viscosity solution. We will give a complete 
proof of this statement and explain its relevance to obtain explicit solutions 
such as the Oleinik-Lax formula and to study evolution equations arising in 
Mathematical Morphology. 

In Section 2 we study the limiting behavior of a class of Hamilton-
Jacobi equations. The weak law of large numbers and the central limit 
theorem presented in this section are the time continuous version of those 
presented in [30] and [12]. 

In the last section we use the preceding framework to make sense out 
of the evolution equations arising in Mathematical Morphology. This new 
application of idempotent analysis provides an alternative approach to the 
Beucher's morphological gradient or the sup-inf derivative notions presented 
in [6], [31]. 

1. Generalized solution of Hami l ton-Jacobi equat ions. Using 
Maslov's optimization framework we discuss now the solution of first order 
Hamilton-Jacobi equations. This part of the paper essentially records works 
of Kolokoltsov and Maslov [22]. In [22] the authors make use of idempo
tent analysis to propose a generalized solution of a class of Hamilton-Jacobi 
equations. Our main contribution is to extend their result to more general 
classes of Hamilton-Jacobi equations and to connect these new generalized 



386 Del Moral P., Doisy M. 

solutions with the classical viscosity solutions (see [4], [8], [9] and references 
therein). As in [4] the main tools here are the so-called relaxed controls. 

The class of differential equations studied in this paper has already been 
studied in details in several works (see for instance [4]). What makes our 
result interesting and new is that we propose a natural and general «prob-
abilistic line of thought* to study these Hamilton-Jacobi equations. All 
the methods of proof we describe in this paper are built upon the applica
tion of the idempotent analysis framework developed in the first part of this 
study. This will provide a good illustration of the application of Maslov's 
optimization theory. A practical advantage of this approach is that it leads 
to a new understanding of such equations. For instance we will see that the 
Hamiltonian operator is the (max, +)-version of the Kolmogorov differential 
operator associated with a Markov diffusion process. On the other hand the 
viscosity solution of an Hamilton-Jacobi equation with discontinuous initial 
value coincides with the weak solution in idempotent analysis framework. 

Let U be a compact metric space. By Mi(?7) we denote the space of 
all probability measures on U furnished with the weak* topology. Let us 
assume that fi = £°°((0,1), Mi(f/)) is equipped with the weak* topology. 
We recall that цп converges weakly to ц as n —• oo if and only if for any 
continuous function ф: (0,1) x U —• R 

lim / 6(t, u)u?(du)dt = / 6(t, u) ut(du)dt. 

For this topology, X°°((0, l) ,Mi(£/)) is a compact space and the points of 
this set as usually are called relaxed controls. 

Let ^( (0 , l ) , R d ) , d > 1, be the space of all continuous mappings 
furnished with the uniform norm. For any x 6 R d we define Xх: ш e 
fi —* Xx(u) б Щ0,1), Rd) by setting 

X t » = x + f F(Xf(uj), ua)ds, F(x, /x) = / f(x, a ) / i (A0 , (1) 
Jo Ju 

where / : R d x U —• R r f is a bounded continuous function so that | / (x , u) — 
f(y, u)\ %C\x-y\. In this framework the path t e (0,1) —• Xf(w) € R d is 
called the relaxed path associated with и with initial condition x £ R d . One 
can check that Xх is continuous and therefore it can always be regarded as 
an optimization variable taking values in ^((0,1) , Rd). 

Now, let p x : fi —• RmaX be defined as 

P * ( w ) = / L(X?(u), ut)dt, X ( x , / x ) - / l(x,u)v(du), 
Jo Ju 

where /: R d x U —• Rmax is a bounded continuous function so that \l(x, u) — 
l(z,u)\ < С \x - z\. 
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We will always assume that the following condition holds 
(HO) for any x G R d , s < t, there exists a control w G ft such that 

/,* L(X?'x(u), ujr)dr = 0, where {X?'x{u): r G [s,t]} is the solution of (1) 
such that X'*x(u) = x and for any performance density ц on R d the mapping 

(x, U>) G R d X ft • Ц(х) + f L{X?{u), Ut) dt G Rmax 
Jo 

is a well-defined performance density on Rd X ft. Under our assumptions we 
have that: 

• For any x G R d there exists some ux G ft such that рх{^х) = 0 and 
therefore Р Г (П) = 1 

• For any x G R d ( f t ,^( f t ) , Px, Xх) is a well-defined Bellman-Maslov 
process and the conditional density of Xt given Xs, s < t, is given by 
the formula 

Рф(» I z) = sup { jf* w r )dr; ы G ft: = y} , 

where {X^z{ijj)\ r G [M]} is the solution of (1) such that X°'Z(LJ) = z. 

• For any performance density \i on R d the mapping 

x G R —> / p<|0(a: | -г) 0 /x(z) 0 dz G Rmax 

is a performance measure on R d . 

One clear consequence of Proposition 1 in the first part of this study is that 
the covariant measure Px — Px о {Xx~)~x of P^ under the optimization 
variable Xх is a performance measure with density 

p*(z) = sup { jf* Z ( X t » , ut)dt; w G Z°°((0, 1), M^E/)): X » = z } . 

By definition of the optimization process X we have that p^(z) = —oo = fil 
whenever ZQ ф XQ. We will denote by Е г ( - ) the (max, +)-expectations with 
respect to the performance measure P E . 

In order to carry our analysis to the next stage it is convenient to 
recall some classical results on relaxed controls. As usually we asso
ciate with each «classical» control u(-) G Z°°((0,1), U) a relaxed control 
t —* 6ищ G Z/°°((0,1), Mi(U)). Using this identification it is well known 
that i ° ° ( ( 0 , l ) , U) is a dense subset of ft = X°°((0,1), Mi(tf)). Then, us
ing the fact that the density p is continuous one concludes that Vx G R d , 
V i e 

Px(A) = Р в ( Л П £ ° ° ( ( 0 , 1 ) , U)) 

= sup j J l{Xf(u), ut)dt; uG АП I°° ( (0 ,1) , f / ) | . (2) 
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Note that the above result remains valid if the density p is only upper-
semi continuous on Cl. 

It is now convenient to introduce the Hamilton-Jacobi operator associ
ated with the time-homogeneous Bellman-Maslov process X . 

Definit ion-Proposit ion 1. For any x G R d and p G R d we have 

и т А - % , ( ( р , Х£-х)) = Н(х,р), 

where H: R d x R r f —> R m a x is the Hamiltonian function associated with I 
and given by 

H(x, p) = sup ((p, /(x, и)) + l{x, u)). 
ueu 

P r o o f . We first notice that 

Л - 1 Е г ( ( р , XХ-x}) = sup j (p , h~\XX - x)) + h'1 j \ ( X x ( u ) , 

= sup j / Г 1 £ [(p, f ( X X , щ)) + l(X*(u), ut)} d<! , 

where the supremum run over all «classical» controls и G -t°°((0,1), U) and 
the path {XХ(и) ; 0 < t ^ /г} is the solution of (1) associated with u(-) and 
such that XQ(U) = x. Taking a constant control u(-) = v G U and letting 
fe->0we clearly have 

lim h~l Ex ( (p , X£ - x)) 3* (p, / (x , v)) + l(x, v) Vt; G U. 
h—>u 

Hence, lim/i_»o ^ - 1Ea;((p, X Х — x)) ^ H(x,p). On the other hand, the 
Lipschitz assumptions on the mappings / and / yield 

(p, f ( X X , ««)) + W W , «t) < (p, / ( * , «.)) + f(*,«t) + const ||Xf (it) - x\\. 

This implies that 

£ {(P, Щ)) + l(X?(u), ut)} dt < H(x, p) + const ll/H h 

and therefore l i m ^ o ^_1Ea;({P) X£ - x)) ^ Я(х, p). 
Let us recall the notion of continuous super-solution and sub-solution 

of the Hamilton-Jacobi equation 

^ = H(x, DA). (3) 

The main difficulty in the study of these equations comes from the fact that 
their solution (t, x) —> (j>(t, x) may fail to be differentiable at each point (t, x). 
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It is therefore natural to introduce the notion of super-gradient 
D+(f>(to,xo) and sub-gradient D~(j)(to,x0) of a continuous function ф 
at (t0,x0): 

D+<£(fo,z 0) = {(p, q) G R x R d ; 

l i m s u P 7й—. |2 § I ШЪ < ° f > 
(t.«) — ( t 0 , * o ) (I* - *o | 2 + | i - x o l 2 ) 1 / 2 J 

Б-ф{Ц,хо) = j(p,g) G R x R d ; 

lim inf " ^ " ? : ( а ! " Я о ) > 0 } . 
(t,x) —.(t0l*o) (I* — *ol2

 + |Ж — Ж о ! 2 ) 1 ' 2 J 

D e f i n i t i o n 1. A continuous function ф such that 

V ( * o , z 0 ) V(p,q)e П+фЦ0,х0) H(x0,q)>p 

is called a super-solution of the Hamilton-Jacobi equation (3). We say that 
ф is a sub-solution of (3) when 

V ( * o , z 0 ) V(p,q) € Л-ф^Хо) H(x0,q)^p. 

ф is a solution of (3) if it is both a super-solution and a sub-solution. 
Theorem 1. For any tp £ Lip(R d ) the mapping ф^,х) — Pt<^(a:) = f 

E(<£>(Xf)) belongs to Lip((0,1) x R d ) and it is the unique bounded and uni
formly continuous solution of the Hamilton-Jacobi equation 

f ^ = H(x,D^), ( 4 ) 

I Ф(0,-) = <р(-). 

In addition {Ft; t > 0} is a monotone semi-group of (®,Q))-linear op
erators on Lip(R d ): 

l ) V 0 < e < i < l P ( o P , = P < + s , P 0 = Id; 
2) ч>х < <p2 = > P m < P ^ 2 Vt e [0,1]; 
3) for any a\,a2 G Rmax and <P\,<P2 £ Lip(R d ) and t G [0,1] 

Pt(oi 0 <pi 8 o 2 0 v»2) = « i 0 Pt(Vi) ® ° 2 © Pt(va)-

P r o o f . The proof of the theorem is essentially contained in [4]. Since 
the initial condition is Lipschitz one the uniqueness of the solution in the 
class of bounded and uniformly continuous functions is a well known result. 
We now show that the tools presented before induce a simple proof of this 
theorem. 
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To prove that ф £ Lip((0,1) x R d ) we use the fact that for any ш,и' £ ft 
and x,y £ R d 

|Xf (w) - X t V) l < const |z - . ( 5 ) 

The proof of this inequality is standard and it is a consequence of Gron-
wall's lemma. Using the above observation (2) and the classical inequality 
sup{(l)} - sup{(2)} < sup{(l) - (2)} one obtain easily for any s < t 

Pt(<p)(x)-P,(<p)(y) 

< sup j f\xx(u), ur) dr -J\x*(u), ur) dr + <p{X?(u)) -

where the supremum runs over all и £ L°°((0,1), U). Under our Lipschitz 
assumptions on I and (p this implies that 

Pt(<p)(x)-P.(V)(y) 

< const (jt - -I + jT \W(u) - ХУ(и)\\dr + \\Xx(u) - X*(tt)ll) . 

Combining the above inequality with ( 5 ) we conclude that 

Pt(ip) (x) - P,(<p) (y) < const (\t -s\ + \x- y\). 

This proves that ф £ Lip((0,1) x Rd). 
To prove that {P*; t ^ 0} is a monotone semi-group of (8,0)- l inear 

operators on Lip(R d) it suffices to note that 

p.+.(v)(x) = E(^(xf + S)) = E(E(^(xf + s) i xx)) 
= E(PT(XX)) = Ps(PMx)). 

To end the proof of the theorem it remains to check that ф^,х) = Pt(<p)(x) 
is solution of (4). First we note that 

(p, q) £ D+фЦ, x) => фЦ - h, Xji) - x) 
< -ph+q-(X*-x) + o(h), 

( У , <?') 6 0~ф{1, x) =» фЦ - h, Х£) ~ ФЦ, x) 

> -p>h + Q>.(XZ-x) + o(h). 

On the other hand we have 

ф(1, x) = E(E(<P(XX) I Xfi) = E(<Kt - h, X%)). 

Hence, E(<£(f — h,XX) — ф(1,х)) = 0. By definition of the super-gradient 
{p,q) £ Б+ф^,х) and sub-gradient (p',qr) £ Б~ф^,х) one gets 

A^E* ((q, Xx-x))>p + 0(h), h~XEX ({q1, XХ - x)) < p' + 0(h). 
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Letting h —> 0 and using Proposition 1 one concludes that H(x,q) ^ p, 
H(x,q') < p' and the proof of the theorem is completed. 

By Rademacher's theorem every Lipschitz function is differentiable at 
almost all points (t, x). In view of the proof of the theorem, if ф is differen
tiable at (t,x) then we have 

h-1^ ((D^(t, x), XI = (*, x) + 0(h). 

Letting h —• 0 it follows that (t, x) —• ф(1, x) = Pty>(a;) satisfies (3) for 
almost all (t, x). 

In order to point out the connections between these results and the 
classical viscosity solution we recall that the super-gradient and the sub-
gradient of a continuous function ф can also be defined as follows 

x) = {D1>(t, x); ф e ^ ( ( 0 , 1) X Rd): 

(t, ж) is a local maxima of ф — г/>|, 

x) = [Di/f(t, x)\ ф G ^ ( ( 0 , 1) x Kd): 

(t, x) is a local minima of ф — t/>}. 

As a clear consequence of the above observation,-^* is a super-solution of (3) 
if and only if for any (t, x) and ф £ Ч£х such that (t, x) is a local maxima of 
ф-ф 

H(x, Бхф(г, x))^^(t, x). 

If ф G 'й'1 and (t, x) is a local maximum of ф — ф then there exists an open 
ball B((t, x),r), r > 0, such that 

ф(а, у) - ф(а, у) < ф(г, х) - фЦ, х) V (а, у) G B({t, х), г). 

Since 

ф(з, у) = ф(1, х) + ^ («, i ) (я - 1 ) + ж) (у - х) + o(|i - s| + |у - х\) 

letting s = t - h and у = Xх(и), и G L°°, this implies that 

ф(1 - h, Xl(u)) - фЦ, z) < ^ (t, x) ( -Л) + D^(t, x) (Xx(u) -x) + o(h) 

for sufficiently small h > 0. Using the same line of arguments as before one 
concludes that 

H(x,D^(t,x))^^(t, x). 

If the initial value condition of an Hamilton-Jacobi equation is not 
sufficiently regular Theorem 1 is not applicable. More precisely solutions of 
Hamilton-Jacobi equations with discontinuous initial value are not always 
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continuous and so we should not be able to apply the approach presented 
above. 

In order to carry our analysis to the next stage we note that the tran
sition performance densities 

p j 0 ( z I x) = sup j jf* / (**(«) , uT)dr; и G L°°: Xx

t(u) = z j 

generate two optimization operations. The first one acting on Lipschitz 
continuous function ip and the second one acting on performance densities p: 

*MvO (*) = J Ф) ® P J O ( * I x ) © d z > 

(jiPt) (z) = J pfl0(z I x) 0 p{x) 0 dz. 

We have already proved that the first operation gives a complete answer to 
the Hamilton-Jacobi problem (4) with initial value <p. The second operation 
can also be rewritten using the duality relation 

(p,Ptip) = (riPt,ip) V</> G Lip(R d ) . 

Now let us assume that p G Lip(R r ) . In this situation we have 

/iPt(ar) = sup |/x(z) + j f l(X*(u), us)ds; и G X°°: Xf(v) = 

and therefore 

pPt(x) = sup { j f /(*.*(«), us)ds + p(X?(u)); и G Z ° ° | , 

where VO < s s£ t, XJ(u) = -f(Xf(u), us), Xg(u) = z. Theorem 1 clearly 
implies that m(t,x) = /xP t(z) is the unique bounded and uniformly contin
uous solution of the dual Hamilton-Jacobi equation 

j = J f w ( ' . M (6) 
m(0, •) = ,*(") 

where Hl*\x, p) = sup u 6 f / ( (p , -f(x, u)) + l(x, u)) = H(x, -p). 
D e f i n i t i o n 2. For any performance density p on R d a mapping 

(t, x)—>mt(x) G Rmax such that for any t G (0,1) m* is a performance 
density on R d and mo(x) = p(x) and 

Vv»€Lip(R r f) пц) = (M, Pt¥>) 

is called a weak solution of the dual Hamilton-Jacobi equation (6). 
The above definition and Theorem 1 and Kolokoltsov-Maslov Theo

rem 1 in the first part of this study lead to the following 
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Theorem 2. For any performance density p: Rd—•Rmax the map
ping m(t, x) = pPt is a performance density and it is the unique weak solu
tion of the dual Hamilton-Jacobi equation 

^ = я М ( х , Dxm), 
m(0,-) = p(-). 

(7) 

In addition [Pt; t > 0} is a monotone semi-group o/(®, Q)-linear operators 
on the set of performance densities: 

1) V0< з < i ^ 1 P ( o P s = P t + „ P 0 = Id; 
2) pi < p2 = > /*iPt < /*2Р« Vt € [0,1]; 
3) for any oi, a 2 G Rmax that a\ ф a 2 = Я and /хъ/^г a " d < £ [0,1] 

(oi 0 Mi © a 2 0 tz2) P< = a a 0 pt{Pt Ф a 2 0 д 2 Р 4 . 

Our next objective is to connect the notion of weak solution defined 
above with the classical viscosity solution of (7). We recall that a locally 
bounded upper-semicontinuous function m(t, x) is a viscosity solution of (7) 
whenever 

1) m is a super-solution of (7), i.e., for any (t,x) and ф G Чо1 such that 
(t, x) is a local maxima of m — ф 

2) m is a sub-solution of (7), i.e., for any (t,x) and ф G (ё1 such that 
(t, z) is a local minima of m — ф 

лЩх, D^(t,x))^^(t,x). 

We will use the following conditions on the Hamiltonian function. 
(H) Я is a convex function on R d x R d and a uniformly continuous 

function on R d X Я(0, R) for any R > 0 such that 

dH 
дх 0*. P) < C ( l + |p|), 

dH 
dp 

for some finite constant C. 
Under these assumptions for any bounded performance density p there 

exists a unique upper-semicontinuous solution of (7) with initial value p 
(see for instance Theorem 5.15 in [4]). Let us check that in this case 
(t, x) —> m(tf,i) = pPt(x) is the desired solution. 

Since p is a bounded performance density there exists a non-increasing 
sequence of uniformly bounded Lipschitz functions {p^; n > 1} such that 
p = infn^x p№• Letting m^n\t, x) = p(n)Pt(x) we clearly have 

m(t, x) = pPt(x) < inf mW(«, x). 
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Now, let {ton\ n > 1} be a sequence of relaxed controls such that 

mW(t, x)= / ' i ( X s > n ) , u>»)ds + ^\X?(ujn))-Jo 

Under our assumptions there exists a subsequence {а/1*; к > 1} such that 
u>nk converges to some relaxed control ш and Хх(шПк) converges to Xx(u>) 
and 

f L{Xx{u>nk), U?)ds-* l*L(Xf(u), ujs)ds 
Jo Jo 

as к —> oo. This yields 

infraW(i, i ) ^ / L(Xx(u), us)ds-r\imsuvrink(Xx(unk)). 
Jo Jfc->oo 

Using the fact that {цПк\ к ^ 1} is a non-increasing sequence of uniformly 
bounded and continuous functions and fi is upper-semicontinuous one con
cludes that 

inf mW(«, x) < f L(Xx(u), u3)ds + ц(Х?(ы)). 

Now it is not difficult to check that 

m{t, x) = iiPt(x) = inf mW(t, x) = inf P t (z ) ) . 

Since each m*n) is solution of the Hamilton-Jacobi equation (7), m is again 
solution of (7) (see for instance Theorems 5.13 and 5.15 in [4]). 

2. Limit theorems . Our aim is now to study some limit theorems re
lating to the limiting behavior of the solution of the Hamilton-Jacobi equa
tion (7) as t —» oo. We will only consider a very special class of equations, the 
extension to more general situations is still an open subject of investigation. 

The weak law of large numbers and the central limit theorem presented 
hereafter are the time continuous version of those presented in [30] and [12]. 

In a first stage we will show how the preceding results apply to obtain 
the so-called Oleinik-Lax explicit formula. Then we use this formula to 
study the limiting behavior of these explicit solutions as t —• oo. 

Let us suppose that the Lagrangian function l(x, u) does not depend on 
the first parameter and it is a convex function on U. For any x € R d let Xх 

be the Bellman-Maslov process defined by the equation 

Xx(u)t = x + [* ua ds, u£ X°°((0, 1); U), 
Jo 

where U is a compact subset of R d . We first note that in this simple example 
the Hamiltonian function H(x,p) does not depend on the first parameter and 
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it is the convex function given by 

H(P) = sup (fa U) + /(«)) = (-/)*CP), 

where (• )* stands for the Fenchel transform of a convex function. By the 
involutive property of the Fenchel transform we also have H* = (—/)** = — I. 
Then, for any (p £ Lip((0, 1) x R d ) the function ф(1,х) = Pt<p(x) can be 
rewritten in the form 

ф{и x) = sup { - j f H*(us) ds + <p{X?(u)); и £ £°°((0, 1); U)} 

and hence ф(Ь, x) = sup z e^d((^(z) + Рф(2 I г))> where 

p^ 0 (z I x) = sup { - j f Я*(«.) ds; и £ I°°((0, 1); U): X?(ti) = z } . 

If z £ x + tU we clearly have p^ 0 (z | ж) = -oo . Now let us suppose that 
z £ x + tU. Letting 

u(s) = VO < s < t 
t 

we obtain Xf(u) = z and therefore 

P $ , ( * | * ) > - < i r ( ^ p ) . (8) 

On the other hand, using the fact that Я* is convex 

jf * Я* W > f Я* Q jf * ti. ds) > * H* ( ^ ) 

as soon as u(-) is chosen in such a way that Xf(u) = г. This together with 
(8) gives 

x / \ \ J -< Я* ( ] if 2 £ x + < tf, 

{ — oo otherwise. 

One concludes that 

Ptip(x) = sup ((p(z) -tH*( -—- ) ) (Oleinik-Lax formula) 
zex+tu \ \ * // 

and for any performance density p on R d 

pPt(z)= SUp (,,(!) - * Я * ( ^ ) ) . 
i : z - x 6 < t / \ \ * / / 

Let us remark that we can replace in the above construction the time space 
(0,1) by the interval (0,T), T > 0. Moreover if we choose the initial value 
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x = 0 and we define Xt(u) = ua ds then the performance density pt of Xt 

is given by 

, , ( * ) = ( - ' Я * ( т ) i t l £ , t f ' (9) 
[ — oo otherwise. 

Proposi t ion 2 (Weak Law of Large Numbers). If H*: U —• R + is а 
convex function and has a unique minimum X* such that H*(X*) = 0 then 

x t w ~* 
t t—>oo 

X* 

in the sense that the performance measures of Xt/t converge weakly to Sx*, 
as t —> oo. 

P r o o f . Let mt be the performance density of the optimization vari
able Xt/t. In view of (9) we have that 

m ( x \ = S ~tH*(x) i f x € U, 
mt\x) \ _ 0 0 otherwise. 

For any bounded and continuous test function <p on R d we clearly have 

•ш (<p, mt) = sup (<p(x) - t H*(x)) • y>(X*) = {if, 6X*). 

Proposi t ion 3 (Central Limit Theorem). Suppose the assumptions of 
proposition 2 hold with X* = 0 and H* is a twice differentiable function on 
U such that 

(Я*)" (0)>0 and \\H*(u) - H*(v)\\ < С\u - v\a 

for some С < oo and a > 0. Then we have 

—n * Z-> 

y t t—»oo 

where Z is a quadratic optimization variable with performance density v(z) = 
4 * ' ( Я * ) » ( 0 ) * . 

P r o o f . Let mt be the performance density of the optimization vari
able Xt/Vi- In view of (9) we have that 

[ — oo otherwise. 

For any bounded and continuous test function <p with compact support К 
on R d we clearly have 

(ip, mt) = sup ^(i)-<F^Jj, 
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Under our assumptions for any x there exists a constant A G [0,1] such that 

This yields that (ip,mt) = suvxeK(<p(x) - 1х'Н*(\х/уД)х) and therefore 

\(<p, mt) - (ер, i/)I < sup ( - i i ' Я* (A - #* (0 ) ж) < const Га'\ 

the end of the proof is now straightforward. 

3. Applications to Mathemat ica l Morphology. Our aim is now to 
discuss the connections between Maslov's optimization theory and Mathe
matical Morphology. More precisely we will now show how the preceding 
framework provides a natural analytic basis for studying the evolution of 
the so-called morphological dilations. These transformations model the rate 
of change of a given signal under a continuous multiscale dilation (see [6], 
[19]). Mathematical Morphology is a particular discipline in Image Process
ing. In this framework the image is model as a function //: R d —> R. The 
multiscale morphological dilation of the signal ц is defined as a space-scale 
function which represents at each scale t £ R + the transformation of the 
signal by a given structuring function g: U -* R where U is a compact 
subset of R d . 

This transformation is defined as follows 

Dt(tt)(z)= sup L{z)-tg(^-)). (10) 
z: x-zEtU \ \ t J J 

When g(U) = {0} the structuring function is said to be flat and the dilation 
transformation takes the form Dt(fi)(x) = supzetu р{х ~ z)- ^n this partic
ular situation the transformation is called a multiscale dilation of the signal 
ц by the structuring element U. 

Let us assume that fi is a performance density on R d and g: U —> R+ 
is a convex structuring function. Using the preceding results one concludes 
that the mapping (t,x) —> Dt(fi)(x) = fiPt(x) is a generalized solution of 
the Hamilton-Jacobi equation 

dm A 

— = g (-Dxm), ( n ) 

m(0, •) = ц. 
Workers on image processing have attempted to make sense out of the 

scale evolution associated with the continuous-space multiscale morpholog
ical dilation (10). We note that the idempotent analysis framework is a 
rather natural way to think about such transformations and characterizes 
their time evolution in terms of Hamilton-Jacobi equations. 
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This new application of idempotent analysis also provides an alternative 
approach to the Beucher's morphological gradient or the sup-inf derivative 
notions presented in [6]. Moreover, in contrast with the classical works on 
the subject we do not need to assume that the compact set U has smooth 
boundaries or that the structuring function g is strictly convex and/or has 
an inverse gradient everywhere [31]. 

To make the above ideas firm let us present some structuring functions 
arising in this framework. 

E x a m p l e 1. If g(U) = {0} and U = {u £ Rd: \\u\\a < 1} for some 
a £ [1, oo] then using the classical formula 

we arrive at g*(q) = \\д\\р and therefore the equation (11) has the form 

For instance we have 
1) if a = 1, /3 = oo then (11) takes the form dm/dt = 0 1 ^ , ^ \dm/dxi\; 
2) if a -- oo, /3 = 1 then (11) takes the form dm/dt — J2i^i^d \dm/dxi\; 
3) if /3 > 1 then (11) takes the form {dm/dtf = Ei^d [dm/dx^. 
E x a m p l e 2. If the structuring function g is given by g: и £ 

U—+g(u) = 5 (0)(1 - | | i C ) 1 / a where g(0) > 0 and U = {u £ R d : | |« | | e < 1} 
for some a £ [1, oo] then in the same way as before we arrive at 

— = \\Dxm\y. 

9*(q) = 11(5(0), * = ( / ( 0 ) + 

and therefore the equation (11) has the form 

dm 
= \\(g(0),Dxm)\\f). 

For instance we have 
1) if a = 1, /3 = oo then (11) takes the form 

dm ^ dm 

2) if a = oo, /3 = 1 then (11) takes the form 
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3) if /3 > 1 then (11) takes the form 

dm 13 
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