
MASON: A Multi-Agent Simulation Environment

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait,
Keith Sullivan, and Gabriel Balan

Department of Computer Science and Center for Social Complexity

George Mason University

4400 University Drive, Fairfax VA 22030

http://cs.gmu.edu/∼eclab/projects/mason/

Abstract

We introduce MASON, a fast, easily extensible, discrete-event multi-agent simulation
toolkit in Java. MASON was designed to serve as the basis for a wide range of multi-
agent simulation tasks ranging from swarm robotics to machine learning to social
complexity environments. MASON carefully delineates between model and visual-
ization, allowing models to be dynamically detached from or attached to visualizers,
and to change platforms mid-run. We describe the MASON system, its motivation,
and its basic architectural design. We then compare MASON to related multi-agent li-
braries in the public domain, and discuss six applications of the system we have built
over the past year to suggest its breadth of utility.

1 Introduction

MASON is a single-process discrete-event simulation core and visualization library writ-
ten in Java, designed to be flexible enough to be used for a wide range of simple sim-
ulations, but with a special emphasis on swarm multi-agent simulations of many (up
to millions) of agents. We developed the MASON simulation toolkit to meet the needs
of computationally demanding “swarm”-style multi-agent systems (MAS) research. The
system is open-source and free, and is a joint effort of George Mason University’s Com-
puter Science Department and the George Mason University Center for Social Complex-
ity. MASON may be downloaded at http://cs.gmu.edu/∼eclab/projects/mason/

Multi-agent systems are receiving increasing research attention as affordable com-
puter brawn makes simulation of these environments more feasible. One source of in-
terest has come from social and biological models, notably ones in economics, land use,
politics, and population dynamics (for example, [1, 6, 10]). Another source stems from the
swarm robotics community, particularly as homeland security and defense interests have
bolstered investigations of large numbers of “U∗Vs” (Unmanned Aerial Vehicles, Un-
manned Underwater Vehicles, etc.) for collaborative target observation, reconnaissance,

mapping, etc. [3, 7, 18, 19]. Swarm multi-agent simulation is also a common technology
in the game and movie industries.

MASON was built from first principles to serve the needs of these research areas.
Our design philosophy was to build a fast, orthogonal, minimal model library to which
an experienced Java programmer could easily add features, rather than one with many
domain-specific, intertwined features which are difficult to remove or modify. To this
minimal model we have added those visualization and GUI facilities we have found use-
ful for various simulation tasks.

We began work on MASON because we needed a simulation toolkit which made it rel-
atively easy for us to create a very wide range of multi-agent and other simulation mod-
els, and to run many such models efficiently in parallel on back-end cluster machines.
Domains to which we intended to apply the simulator ran the gamut from robotics and
machine learning to multi-agent models of social systems (political science, historical de-
velopment, land use, economics, etc.). Our previous research in these areas had either
relied on a heavily modified robotics simulator (notably TeamBots [2]), a compiled so-
cial complexity toolkit such as SWARM [15], Ascape [20], or RePast [5], or an interpreted
rapid-development library such as StarLogo [22], NetLogo [24], or Breve [11].

We needed to run many (>100,000) simulation runs to optimize model parameters or
perform machine learning in a multi-agent problem domain. In such cases we had to
“cook” the simulations on multiple back-end servers (in Linux, Solaris, and MacOS X),
while occasionally viewing the results on a front-end MacOS X or Windows workstation.
This required speed, the ability to migrate a simulation run from platform to platform,
and (for our purposes) guaranteed platform-independence. Further, we needed to be able
to customize the simulator to different multi-agent simulation problems and applications.
The aforementioned systems did not meet these needs well, either because they tied the
model to the GUI too closely, could not guarantee platform-independent results, or being
written in an interpreted language, were slow. Additionally several such systems, and
in particular the robotics simulators, were by-and-large geared to a particular problem
domain. Rather than remove special-purpose code from an existing system (potentially
introducing bugs), we instead hoped to build on top of a more general-purpose simulator.

Given these research needs, MASON’s design goals were as follows:

• A small, fast, easily understood, and easily modified core.

• Separate, extensible visualization in 2D and 3D.

• Production of identical results independent of platform.

• Checkpointing any model to disk such that it can be resumed on any platform with
or without visualization.

• Efficient support for up to a million agents without visualization.

• Efficient support for as many agents as possible under visualization (limited by
memory).

2

• Easy embedding into larger existing libraries, including having multiple instantia-
tions of the system co-existing in memory.

There were three design goals we explicitly did not make for MASON. First, we did
not intend to include parallelization of a single simulation across multiple networked
processors. Such an architecture is radically different than a single-process architecture.
Second, we intended the MASON core to be simple and small, and so did not provide
built-in features special to social agents or robotics simulators. We felt such things were
more appropriately offered as optional domain-specific modules in the future. Third,
although we tried to be reasonably memory-efficient, this was not a priority.

We recognize that speed, model detachment, checkpointing and portability, and
strong visualization are all common in the simulation community at large. However
in the “swarm” style simulation community, MASON’s combination of architecture and
these features is essentially unique. In this paper we will discuss the architectural design
of the system, and then detail six applications of MASON presently under way.

2 Architecture

MASON is written in Java in order to take advantage of its portability, strict math and
type definitions (to guarantee duplicable results), and object serialization (to checkpoint
out simulations). Java has an undeserved reputation for slowness; and our past experi-
ence in developing the ECJ evolutionary computation toolkit [13] suggests that carefully-
written Java code can be surprisingly fast.

The toolkit is written in three layers: the utility layer, the model layer, and the visu-
alization layer. The utility layer consists of classes which may be used for any purpose.
These include a random number generator; data structures more efficient than those pro-
vided in the Java distribution; various GUI widgets; and movie and snapshot-generating
facilities. Next comes the model layer, a small collection of classes consisting of a discrete-
event schedule, schedule utilities, and a variety of fields which hold objects and associate
them with locations. This code alone is sufficient to write basic simulations running on
the command line.

The visualization layer permits GUI-based visualization and manipulation of the
model. Figure 1 shows a simplified diagram relating basic objects in the model and visu-
alization layers. For most elements in the model layer, down to individual fine-grained
objects in the model, there is an equivalent “proxy” element in the visualization layer
responsible for manipulating the model object, portraying it on-screen, and inspecting
its contents. A bright line separates the model layer from the visualization layer, which
allows us to treat the model as a self-contained entity. We may at any time separate the
model from the visualization, checkpoint the model to disk, move it to a different plat-
form and let it continue to run, or attach an entirely different visualization collection.
Figure 2 shows this procedure.

3

SimState

Mersenne
Twister [RNG]

Schedule

(Field)

1

0..*

Steppable
[“Agent”]

0..*

1

Schedules

(Any Object or
Value)

1..*

0..*

Associates with
a Location

Console

GUIState

Display2D

Display3D

(2D Field
Portrayal)

(3D Field
Portrayal)

(2D Simple
Portrayal)

(3D Simple
Portrayal)

(Inspector)

0..*

1..*

0..*

1..*

1..*

1..*

1..*

1..*

Displays
and

Edits the
Attributes

of

Controls

Visualizes

Visualizes
Field

Portrayal

Simple
Portrayal

1

0..*

1

0..*

Produces

Model

Layer

Visualization

Layer

Figure 1: Highly simplified UML diagram of the basic classes in the Model and Visualiza-
tion layers. Items in (parentheses) indicate sets from which numerous class are available.

4

Model Running
on Back-End

Platform
Disk

Checkpointed

Visualization Tools

Model Running
under Visualization
on User's Platform

Recovered

Checkpointed

Recovered

Figure 2: Checkpointing and recovering a MASON model to be run standalone or under
different kinds of visualization.

2.1 The Model Layer

MASON’s model layer has no dependencies on the visualization layer and can be sepa-
rated from it. A MASON model is entirely contained within a single instance of a user-
defined subclass of MASON’s model class (SimState). This instance contains a discrete-
event Schedule, a MersenneTwister random number generator, and zero or more fields.

Agents and the Schedule MASON employs a specific usage of the term agent: a com-
putational entity which may be scheduled to perform some action, and which can manip-
ulate the environment. Note that we do not explicitly state that the agent is physically in
the environment, though it may be; in this case we would refer to the agent as an embod-
ied agent. Agents are brains which may or not be embodied. MASON does not schedule
events to send to an agent; rather it schedules the agent itself to be stepped (pulsed or
called) at some time in the future. Hence MASON’s agents implement the Steppable in-
terface, as is shown in Figure 1. Scheduling an agent multiple times for different functions
is easily done with an anonymous wrapper class.

MASON can schedule Steppable objects to occur at any real-valued time in the future.
Further, the Schedule may be divided into multiple orderings which further subdivide
a given timestep: agents scheduled at a given time but in an earlier ordering will be
stepped prior to agents scheduled at the same time but in a later ordering. MASON
also provides various Steppable wrappers which can group agents together, iterate them,
perform them in parallel on separate threads, etc. Agents may be scheduled to run in their
own thread asynchronous with the schedule. This thread may run until completion, loop
indefinitely, or run until the Schedule reaches some later timestep.

Fields MASON’s fields relate arbitrary objects or values with locations in some notional
space. Some of these fields are little more than wrappers for simple 2D or 3D arrays. Oth-
ers provide sparse relationships. An object may exist in multiple fields at one time and,
in some fields, the same object may appear multiple times. The use of fields is entirely
optional, and the user may add additional fields of his own devising. MASON provides
fields for:

5

Figure 3: Examples of visualized fields in MASON, showing various forms of 2D and 3D
continuous and discrete space.

• 2D and 3D bounded arrays of objects, integers, or doubles which may be bounded
or toroidal; and with hexagonal, triangular, or square layouts.

• 2D and 3D sparsely populated object grids which are bounded, unbounded, or
toroidal; and with hexagonal, triangular, or square layouts.

• 2D and 3D sparse continuous (real-valued) space, which may be bounded, un-
bounded, or toroidal.

• Networks (graphs), whose edges may be directed or undirected; and optionally
weighted or labeled.

When running the model without visualization, MASON has an intentionally primi-
tive top-level simulation loop. MASON begins by either creating a new SimState or load-
ing one from a Java-serialized checkpoint file. MASON then enters the following loop.
First, it checks to see if the Schedule has any agents remaining to step. If not, or if some
maximum timestep has been exceeded, MASON exits the loop, finishes the SimState,
and quits. Else the Schedule advances the time to the minimum-scheduled agent, then
steps all agents scheduled at that time (sorted by ordering, and shuffled randomly within
an ordering). If a checkpoint is desired (typically every so many Schedule steps), it is
done so at this time: asynchronous agents are first requested to pause their threads, then
a checkpoint of the entire model is written out, then asynchronous agents resume their
threads, and the loop continues.

Agents have full access to the SimState and may manipulate its fields, Schedule, and
random number generator. MASON imposes few restrictions on the actions they may
perform, and provides no simplifying protocols for agent design. For example, MASON
does not provide a rule language for stipulating agent behaviors. We imagine such things
can be included in forthcoming MASON module extensions.

6

2.2 The Visualization Layer

Objects in the visualization layer may examine model-layer objects only with the permis-
sion of a gatekeeper wrapper around the SimState called a GUIState. When running with
a GUI, it is this class that is responsible for attaching the SimState to visualization (or de-
taching it), and for checkpointing the SimState to or from disk. As certain objects in the
visualization world need to be scheduled (notably, windows need to be refreshed to re-
flect changes in the model), such elements may “schedule” themselves with the GUIState

to be updated whenever the underlying Schedule is pulsed, but not be scheduled on the
Schedule itself. This allows the visualization layer to be separate from the model.

In addition to the SimState, the GUIState also maintains zero or more displays, GUI
windows which provide 2D and 3D views of underlying fields. Displays operate by hold-
ing zero or more field portrayals, associating each one with a different field in the model.
Each field portrayal is responsible for drawing the field on-screen and for responding to
user requests to inspect features of the field. Field portrayals do this by associating sim-
ple portrayals with individual objects or values stored in the fields. A field portrayal may
associate a simple portrayal with a specific object stored in the field; or with a class of
objects; or with all objects in the field; etc. The user may choose from a number of pro-
vided simple portrayals; or he may design the simple portrayal himself; or the object may
portray itself instead. Some examples of visualized fields are shown in Figure 3.

Simple portrayals can also, on request, call up inspectors (what SWARM would call
“probes”) of underlying model objects. Inspectors are GUI panels which allow the user to
inspect or modify object parameters. The user can provide custom inspectors for objects
or use the basic ones provided (which use Java’s Bean Properties facility). Models and
fields may also have inspectors. Drawing and inspection follow similar paths: when a
display is redrawn, it asks each of its field portrayals to redraw their fields, and in turn
the field portrayals call up simple portrayals to draw elements in the field. Likewise,
when a user clicks on a display to request inspection of objects, the display asks the field
portrayals to provide inspectors for these objects, and the field portrayals in turn call up
the relevant simple portrayals and ask them to provide the inspectors.

The GUIState also contains a top-level controller GUI window, usually the provided
Console. The Console’s primary function is to allow the user to start/stop/pause/step
the Schedule, but it also provides the GUI functionality to load and save checkpointed
models, to show and hide displays, to view inspectors, and to load additional simulations
(each with their own SimStates, GUIStates, and Consoles).

Running the model under visualization is a more involved process than without vi-
sualization; and not just because things must now be displayed. The underlying model
runs in its own thread separate from the GUI’s main thread. Since both the model thread
and the GUI thread must have access to underlying model data, they enter into a synchro-
nization procedure which guarantees that only one is operating on this data at any given
time. The general procedure is as follows. When a GUIState is constructed, it creates a
Console, various displays, and the underlying SimState. When user presses “play” in
the Console to start a simulation, the Console starts the SimState, then spawns the model

7

thread. The model thread enters into a loop which it exits only if asked to shut down by
the Console or if no further agents are scheduled. In this loop, the GUIState performs
any pre-schedule items, then the Schedule advances to the minimum agent-scheduled
time and steps any agents at that time, then post-schedule items are performed (typically
requests to redraw the displays), and finally the thread defers to the GUI thread to give
it access to the model before finishing the loop. While the model thread is waiting, the
GUI thread can finish redrawing the displays, complete any requests made by the user to
inspect the model, and checkpoint out the model (or read a new one in from checkpoint
to replace it). When the user presses “stop”, the thread is asked to shut down, and the
Console finishes the SimState. When the Console is closed, the GUIState, SimState, and
displays are destroyed.

2.3 MASON Usage and Extensions

Because of the separation of model from visualization, MASON models are usually cre-
ated in two stages (refer again to Figure 1). First, the author develops the model proper as
a self-contained subclass of SimState. After this code is completed, the MASON model
should be able to run on the command line as a GUI-less application. Next, the author
creates a GUIState to encapsulate the SimState, attaching portrayals and displays. At
this point, the simulation can be visualized. The author can create further GUIStates to
visualize the SimState in different ways. A GUIState can also be used in combination
with a special class, SimApplet, to generate online MASON applets. MASON comes with
a several tutorial and example applications to show how these are done.

The basic MASON distribution provides only those core tools common to most sim-
ulation and visualization needs. We have several extensions to MASON available or in
development, each of which is distributed as a separate module or online tutorial:

Social Network Analysis MASON provides only a rudimentary network field. We
have developed an extension to MASON which generates a number of useful graph statis-
tics aimed largely at the social network research community.

Physics Modeling We are actively working on a Java-based 2D physics engine built
on top of MASON. Additionally we are examining attaching MASON to a C++ 3D physics
engine such as ODE [23].

Charting MASON has no graphing, charting, or statistical facilities: there are much
better open-source facilities available than we can do ourselves, and what is available
changes rapidly. We have provided a tutorial showing how to connect MASON to
JFreeChart [9] and iText [12] to generate charts and graphs for display in real-time and
for publication-quality output.

Parameterization We provide a tutorial showing various approaches to loading
MASON simulations from parameter files.

As MASON development continues, we expect further extensions as well, depend-
ing on research needs. Possible future directions include OpenGL visualization (in ad-
dition to MASON’s presently-used Java3D), high-level interpreted agent development
tools, packet network simulation, and a GIS library.

8

3 Comparison to Other Simulation Environments

MASON’s original inspiration came from a desire to re-implement more cleanly some of
the problem domains we had constructed in the Teambots [2] simulator. Teambots is an
early Java-based lightweight robotics simulation environment which provides minimal
physics and robot sensor facilities, a graphic display, and a very simple schedule proce-
dure. Teambots is useful for behavior-based robotics experiments, though its lack of a real
physics model is a hindrance. Teambots also makes a hard distinction between the objects
in the world (including the robots) and the agents which drive some of them (such as the
robot software). MASON’s similar distinction was inspired by this. Teambots makes this
delineation because this design allows the experimenter to port software robot behaviors
to real robots using provided real-robot APIs. A more recent family of simulators, called
Player/Stage [8], has moved towards more realistic robots and environments.

The robotics simulators discussed above are capable but understandably geared to a
very specific problem set. We found that implementing non-robotics multi-agent simula-
tions in these simulators involved considerable modifications of the simulators to provide
extra-robot functionality or to remove unneeded functionality which would otherwise
slow the experiment. Such modifications had a strong likelihood of introducing bugs,
particularly given the size and complexity of these simulators.

Compiled Multi-agent Simulators Instead we chose to construct MASON to be usable
for a broad scope of lightweight simulation functions, with a general-purpose schedule
and fields. In this vein, MASON is most closely comparable to compiled multiagent simu-
lation libraries like SWARM [15], Ascape [20], and RePast [5]. SWARM is the earliest such
system, and originally required the user to write in Objective-C and Tcl/Tk. SWARM
applications may now be written in Java using special libraries which communicate with
Objective-C. Oddly, SWARM does not take advantage of by far the foremost Objective-
C system: the OpenStep GUI specification embodied in MacOS X and the open-source
GNUstep library. We believe the use of an unusual language but not its primary environ-
ment has proven a challenge to SWARM’s continued extensibility and maintainability.

To remedy this, RePast was envisioned to re-implement much of the SWARM philoso-
phy entirely in Java or .NET, and it has been the center of considerable community interest
in recent years. The RePast distribution has a large footprint: included in the package are
neural networks, genetic algorithms, social network modeling, dynamic systems model-
ing, logging, GIS, and graphs and charts.

Ascape is a multiagent simulation which grew out of inspiration from the Sugarscape
model [6]. Ascape tries to be as rule-oriented as possible within a Java framework: agents
have rule-based behaviors which fire based on specific environmental conditions, and
these agents are grouped into larger structures which have their own behaviors and fire
their subsidiary agents in a user-specified order. This framework simplifies model devel-
opment in some cases, but it also imposes considerable constraints on simulation design
as a whole, and particularly on simulations requiring arbitrary event handling.

9

Figure 4: Network Intrusion model: the physical (left) and logical (center) spaces, to-
gether with statistics on intrusions and compromised systems (right).

Like MASON, these three multiagent-systems toolkits all provide graphical visual-
ization, inspection of simulation objects, stochastic event ordering, and the generation
of various forms of media. But there are some important differences. Stemming from
its design goal as a general-purpose agent simulation environment, MASON provides
3D fields, visualization of both 2D and 3D fields in 3D, and somewhat more sophisticated
and flexible 2D visualization. MASON is also somewhat faster than the toolkits described
above both in underlying model and in visualization, and it is expressly designed to pro-
duce duplicable results if necessary.

But most importantly, MASON is capable of separating the model from visualization
dynamically. While some of the above frameworks can run “headless”, this is generally
an either/or proposition, and further, migration of a headless process from one machine
to another is generally not possible, much less visualization of the headless process mid-
run (except through analysis of its statistical output). These systems lack these features
largely because they were originally designed for single-shot models which the experi-
menter would construct, run once, and then analyze. MASON instead was designed to
be executed a very large number of times on different machines as part of a model opti-
mization procedure.

Interpreted Multi-agent Simulators Another approach is to build a simulation toolkit
in which the user manipulates the world through an interpreted, on-line programming
language such as Logo. By eliminating the compile-run cycle, the experimenter is free
to make small changes in the code, even at runtime, to experiment with its effects. This
is the design philosophy behind StarLogo [22] and later NetLogo [24]. These systems
provide basic functionality similar to SWARM, but impose a modified version of Logo as
the experimenter’s model-implementation language. A related simulator is Breve [11],
which provides 2D and 3D worlds with which the user may manipulate objects using the
ODE physics engine and a proprietary language called Steve.

These simulators offer many benefits for rapid-prototyping by enabling immediate
feedback on code changes, encouraging tweaking of the model mid-run, and (in Breve’s
case) wrapping a powerful physics environment with a simple, easy-to-learn library. Fur-

10

Figure 5: A small 16-intersection Urban Traffic Simulation. Gray squares are intersections,
and lines are two-way roads. Numbers indicate how many car are traveling on roads or
waiting to perform various actions at intersections.

ther, in theory an interpreted-language design can more easily be ported mid-run from
platform to platform, and to dynamically add and remove visualization tools. The pri-
mary downside of these simulators is that, for our purposes, they are slow. The language
features which make them so attractive for rapidly building a model also make them less
appropriate for complex simulations with long runtimes. Additionally, simulations built
with these tools tend to be bound by the constraints imposed by their respective graphi-
cal interfaces. For example, Breve generally assumes visualization of a single space, and
NetLogo constrains simulation tools to fit within a single window.

4 Applications

MASON has existed for two years at GMU; but we have already used it for a number
of simulation tasks ranging from micro-air vehicle coordination and virus propagation
to models of collective behavior in simple societies. Here we will mention a few of in-
terest. We describe these systems primarily to demonstrate the depth of applicability of
MASON. The models shown use a wide range of MASON features, including its square
and hexagonal grids, sparse discrete fields, continuous fields, network facilities, 2D and
3D environments, real-valued and discrete schedules, added charts and graphs, and ca-
pability to be embedded in a larger external toolkit.

11

Figure 6: Cooperative Target Observation model. Small doubly-circled dots are observers.
Outer circles are their observation ranges. Large dots are targets. Straight lines connect
observers with newly-chosen destinations.

Four of these simulations — cooperative target observation, ant foraging, urban traf-
fic, and “wetlands” — are computationally intensive and require many runs in batch. It
is for such tasks that MASON is particularly well-suited. Two simulations — network in-
trusion and anthrax propagation — were originally written in other simulation packages,
and were ported to MASON to take advantage of agent inspection features and as tests
of porting difficulty.

Network Intrusion and Countermeasures Network Intrusion is an agent-based model
designed to study computer network security issues, first developed in Ascape and then
ported to MASON by an inexperienced MASON developer to test the difficulty and speed
of porting to the new system (with, we felt, very positive results). The current version
models a network of 2500 computer systems connected via two overlaid grid topologies:
IP address space (or physical space), and remote login space. In these spaces live two
kinds of agents: computer systems and one or more hackers. Each computer system has
a set of security policies implemented when the system is believed to be compromised.
A computer may be classified as secure, threatened (in the sense that a nearby computer
has been compromised), compromised at a user-level, or compromised at the super-user
level. The parameters of the model allow one to understand the effects of changes in
security policies as well as the effects of changes in hacker behavior. Figure 4 shows a
snapshot of a simulation.

12

(a) (b) (c) (d)

Figure 7: Foraging sequence with two obstacles. Nest is in bottom right quadrant, and
food source is in top left quadrant. Left to right: (a) Ants leave the nest while deposit-
ing a pheromone. (b) Ants discover the food source, and begin return to nest along the
the pheromone while depositing a second pheromone. (c) Trail is established (d) Ants
perform trail optimization.

Urban Traffic Simulation We have developed a lightweight urban traffic simulation in
MASON to examine traffic flow from a multiagent perspective, and hope to apply derived
algorithms to other environments such as packet routing. A small simulation is shown
in Figure 5. The simulation uses a network field in MASON with intersections as nodes
and roads as graph edges. Cars and traffic lights are scheduled using MASON’s real-
valued time schedule. Cars beginning travel along a road are scheduled to appear at the
intersection at the end of the road at some time in the future, depending on road length
and car speed. When a car reaches an intersection, it is placed in another queue to wait
at the intersection’s stoplight. While a light is green,some N waiting cars are allowed
through the intersection at a given timestep.

Using this simulation we are investigating how to maximize both global and per-car
mean travel time, variance in wait time, and other factors. Of particular interest to us
is how the system can adapt to “smooth out” sudden unexpected floods of traffic (after
a sporting event ends, for example), in addition to handling regular “rush-hour” style
floods.

Cooperative Target Observation in Unmanned Aerial Vehicles In recent experiments
[14] we examined the effectiveness of various algorithms which direct mobile UAV agents
(called observers) to collectively stay within an “observation range” of as many randomly
moving targets as possible. Observers and targets live in a sparse continuous 2D or 3D
field in MASON. The cooperative target observation environment is shown in Figure 6.
We used this environment to examine “tunably decentralized” cooperative algorithms,
where by changing a parameter we could gradually shift the algorithm from one global
decision-making procedure to individual per-agent procedures. We examined two such
algorithms for controlling the observers based on K-means clustering and hill-climbing.

13

Figure 8: Panels from the Anthrax Propagation model: (left) original SWARM model and
(right) MASON replication.

Ant Foraging We have recently examined how to augment ant-like robot swarm behav-
iors with pheromones to perform “central place food foraging”, in which agents leave
a nest to search for food, then return to the nest laden with food. Figure 7 shows a
typical 100x100 cell environment with 1000 ants, a nest (bottom right), a food source
(top left), and two large elliptic obstacles. The ants cooperatively discover and opti-
mize a minimum-length trail. Our experiments in this environment [17] suggested that
pheromones bear a strong resemblance to utility value functions found in dynamic pro-
gramming and reinforcement learning.

This environment was implemented using 2D sparse grids and value grids in MA-
SON, and is notable in that in some cases MASON served as a subsidiary object within
the ECJ evolutionary computation system [13]. This allowed us to use ECJ to optimize ant
behaviors: ECJ would iteratively consider a candidate ant behavior, then fire up MASON
to test the behavior in simulation and assess its quality. More details on these experiments
are reported in [16].

Anthrax Propagation in the Human Body The interaction between pathogens and in-
fected hosts is usually investigated using laboratory and live studies. But for some dis-
eases, like inhalation anthrax, live studies are not possible due to their deadly effects.
After examining laboratory studies, the spread of anthrax in human organs was mod-
eled as a series of discrete events that map out a time course for infection in the human
body. Different systems in the human body which play a role in inhalation anthrax were
modeled as spatial entities to show how the anthrax disease flows through the body. The
dynamics of these interactions were implemented using 2D sparse grids, one per system.
The model also displayed statistics on the interactions of the systems and on the patient’s
health and disease state.

The Anthrax model was developed originally using SWARM in Objective-C, but was
rewritten in its entirety in MASON in order to take advantage of MASON’s speed and
its control and inspection features. The individual performing the port had no previous
knowledge of MASON at all, but reported that the port was fairly easy as MASON has a
similar scheduling mechanism to SWARM. Figure 8 shows before-and-after screenshots

14

(a) Composite

(b) Moisture (c) Food

(d) Shelter (e) Agents

Figure 9: Wetlands initial visualization and layers. Composite visualization (a) consisting
of moisture layer (b), food sites layer (c), shelter sites layer (d), and agents layer (e).

showing an Anthrax panel as displayed in SWARM and in MASON.

Wetlands: a Model of Memory and Primitive Social Behavior Using the MASON Wet-
lands model [21, 4], we investigated the effect of memory, forgetfulness, and simple hier-
archical group organization on the emergent patterns of agent interactions in a primitive
human society. Groups of agents look for food, which is generated by a moisture layer
in the simulated landscape, and seek shelter when they get too wet. In addition, groups
of the same culture share information about food and shelter location, in order to mimic
some minimal social in-group vs. out-group behaviors. The system was implemented
using MASON’s hexagonal grid facilities in multiple layers, as is shown in Figure 9.

5 Conclusion

In this paper we presented MASON, a multi-agent simulation library written in Java.
MASON is fast, portable, has a small core, and produces guaranteed duplicable results.
MASON is also designed to completely separate the model from the visualization dy-
namically, or to reattach it, to migrate the simulation to another platform in the middle

15

of a run, and to provide visualization in 2D or in 3D. We also showed six applications of
MASON highlighting the broad applicability of the toolkit. Two of the applications are
ports of previous simulation models from Ascape and SWARM.

We plan to position MASON as principled foundation for future multi-agent simula-
tion systems to build upon. MASON is free open source under a BSD-style license, and is
available at http://cs.gmu.edu/∼eclab/projects/mason/

Acknowledgments

Our thanks to Ken De Jong and Jayshree Sarma for their assistance in the development
of the paper. Thanks also to additional MASON developers: Christian Thompson is de-
veloping the physics engine, and Daniel Kuebrich wrote applications and Quicktime sup-
port. Thanks also to application writers for their assistance: the Network Intrusion model
was written by Elena Popovici, the Anthrax model was written by Jayshree Sarma and
Elena Popovici, and the Wetlands model was written by Sean Paus. Earlier versions of
this paper were presented at the SwarmFest04, Ann Arbor, MI, and at the RC33 Work-
shop of the International Sociological Association, Amsterdam. We thank Nick Gotts,
Nigel Gilbert, Gary Polhill, Klaus Troitzsch, and Scott Moss for their comments. Last,
we must blame John Grefenstette for coming up with the MASON name. It stands for
“Multi-Agent Simulation of Networks”... or “Neighborhoods”... or something like that.
N’s are hard.

References

[1] Robert Axtell. Social science as computation. Technical report, Center for Economic
and Social Dynamics, Brookings Institution, Washington, DC, 2001.

[2] Tucker Balch. TeamBots simulation and real robot execution environment, 1997.
http://www-2.cs.cmu.edu/∼trb/TeamBots/.

[3] Jeffrey K. Bassett and Kenneth A. De Jong. Evolving behaviors for cooperating
agents. In Z. Ras, editor, Proceedings from the Twelfth International Symposium on
Methodologies for Intelligent Systems, pages 157–165. Springer-Verlag, 2000.

[4] Claudio Cioffi-Revilla, Sean Paus, Sean Luke, James Olds, and Jason Thomas.
Mnemonic structure and sociality: A computational agent-based simulation model.
In Proceedings of the Agent 2004 Conference on Social Dynamics. Argonne National Lab-
oratory, 2004.

[5] Nick Collier. Repast: An agent based modelling toolkit for java, 2001.
http://repast.sourceforge.net.

16

[6] Joshua M. Epstein and Robert Axtell. Growing Artificial Societies: Social Science From
the Bottom Up. MIT Press, Cambridge, MA, 1996.

[7] F. Fernandez and Lynne Parker. Learning in large cooperative multi-robot domains.
International Journal of Robotics and Automation, 16(4):217–226, 2001.

[8] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. Player/Stage robotics sim-
ulator. http://playerstage.sourceforge.net, 2003.

[9] David Gilbert. JFreeChart, 2004. http://www.jfree.org/jfreechart/.

[10] Nigel Gilbert and Klaus G. Troitzsch. Simulation for the Social Scientist. Open Univer-
sity Press, Buckingham, UK, second edition edition, 2005.

[11] Jon Klein. BREVE: a 3D environment for the simulation of decentralized sys-
tems and artificial life. In Proceedings of Artificial Life VIII, The 8th Interna-
tional Conference on the Simulation and Synthesis of Living Systems. MIT Press, 2002.
http://www.spiderland.org/breve/.

[12] Bruno Lowagie and Paulo Soares. iText Java PDF generation library, 2004.
http://www.lowagie.com/iText/.

[13] Sean Luke. ECJ 11: A Java evolutionary computation library.
http://cs.gmu.edu/∼eclab/projects/ecj/, 2004.

[14] Sean Luke, Keith Sullivan, Gabriel Catalin Balan, and Liviu Panait. Tunably decen-
tralized algorithms for cooperative target observation. Technical Report GMU-CS-
TR-2004-1,Department of Computer Science, George Mason University, 2004.

[15] Nelson Minar, Roger Burkhart, Christopher Langton, and Manar Askenazi. The
swarm simulation system., 1996. http://www.swarm.org.

[16] Liviu Panait and Sean Luke. Evolving ant foraging behaviors. In Proceedings of the
Ninth International Conference on the Simulation and Synthesis of Living Systems (AL-
IFE9), 2004.

[17] Liviu Panait and Sean Luke. A pheromone-based utility model for collaborative
foraging. In Proceedings of the Third International Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS-2004), 2004.

[18] Lynne Parker. Distributed algorithms for multi-robot observation of multiple mov-
ing targets. Autonomous Robots, 12(3), 2002.

[19] Lynne E. Parker. The effect of heterogeneity in teams of 100+ mobile robots. In Multi-
Robot Systems Volume II: From Swarms to Intelligent Automata, pages 205–215. Kluwer,
2003.

17

[20] Miles Parker. Ascape, 1998. http://www.brook.edu/dybdocroot/es/dynamics/models/ascape/.

[21] Sean Paus. Floodland: A simple simulation environment for evolving agent behav-
ior. Technical report, Department of Computer Science, George Mason University,
Fairfax, 2003.

[22] Michael Resnick. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel
Microworlds. MIT Press, 1994. http://education.mit.edu/starlogo/.

[23] Russell Smith. The open dynamics engine, 2004. http://ode.org.

[24] Uri Wilensky. Netlogo, 1999. http://ccl.northwestern.edu/netlogo/.

18

