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Abstract: The great diffusion of masonry arch bridges, sometimes of historical interest, requires
the development of simple but effective methodologies for a preliminary but reliable evaluation of
their static and seismic capacity. In this paper, the behaviour under longitudinal seismic actions is
analysed by using the mechanism method. The masonry is supposed to have no tension strength
but a rigid–perfect plastic behaviour with finite strength in compression. The arch is subject to
permanent loads and to a horizontal acceleration acting in the longitudinal direction, which causes a
horizontal inertial loading acting on the arch. Three hypotheses about the effects of the inertial actions
of the backfill are considered, which correspond to three different real behaviours. A comprehensive
numerical investigation is performed, which allows us to point out the influence of the geometrical
and mechanical parameters on the seismic capacity of a masonry arch bridge. The results are given by
means of diagrams that can be easily used for a preliminary seismic check of a masonry arch bridge.
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1. Introduction

Following the well-known studies carried out by Heyman [1,2], the mechanism model
was widely used for the limit analysis of stone and masonry arches. Heyman particularized
the limit design, developed for steel structures, to masonry arches made of rigid voussoirs
that are laid dry without any mortar, with the assumption that the material has no ten-
sile strength, but infinite strength in compression, and that sliding failure cannot occur.
The model was developed based on the previous work performed by Kooharian [3] that
pointed out how stone arches fail by forming pin joints, as experimental studies also demon-
strated [4]. The collapse of a stone arch is a geometrical issue rather than a problem of the
strength of the material, as is already known from the studies of the eighteenth century
performed by eminent scientists, including Couplet, La Hire, Coulomb and Mascheroni.

The limit analysis of voussoir arches was widely applied for the evaluation of stone
arch bridges [5] and often preferred to a more sophisticated analysis [6–10] due to its
simplicity and speed. The plasticity theorems allowed for the investigation of the collapse
mechanisms and the influence of the geometrical and loading parameters on the limit
behaviour [11]. Experimental tests confirmed the expected behaviour [12,13].

The mechanism model was also used to analyse the dynamic behaviour of stone
arches under seismic actions. Oppenheim [14] discussed the failure conditions of a circular
arch under a horizontal longitudinal acceleration. Clemente [15] analysed the dynamic
behaviour of an arch without backfill under sinusoidal base acceleration and focused on the
influence of the frequency content and the amplitude of the input and the initial conditions.
Experimental studies conducted on shaking tables confirmed the hypothesis that masonry
arches fail by forming pin joints and allowed for the establishment of a correlation between
the input acceleration and the damage in the structure [16].
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Successive developments referred to the impact condition during oscillations for a
circular arch, in the hypotheses that the hinge locations in the four-link mechanism do not
vary, but they reflect when the motion is inverted [17]. This hypothesis was sometimes
considered only for the internal hinges, while two hinges at the springing sections were
fixed [18]. Recently, the dynamic identification of masonry arch bridges was proposed as
a support technique to finite element modelling [19]. Finally, the behaviour of single and
multi-span masonry arch bridges under seismic actions was also analysed [20–23], and
retrofit techniques were proposed [24–26].

The effects of an earthquake on an elastic structure are related to the correspondence
between the resonance frequencies of the structure and the frequency content of the seismic
acceleration at its base. Things are quite different for the model of an arch made of rigid
voussoirs. Because of its infinite rigidity, a stone arch does not show any relative motion
with respect to its springing points until the amplitude of the external load is sufficient to
turn it into a mechanism. When the mechanism is put in action, the arch could return to
its natural configuration after some oscillations. From a technical point of view, the ratio
between the minimum acceleration necessary to turn the structure into a mechanism and
the design peak ground acceleration at the site can be assumed as a safety index. In this
way, the safety check of a masonry arch under seismic actions becomes a static issue.

On the basis of these considerations and by using Heyman’s hypotheses, Clemente
and Raithel [27] carried out a detailed analysis of stone voussoir arches under horizontal
longitudinal loadings, determining the collapse mechanism and the related load factor. Both
the parabolic and circular shapes were considered, subject to their self-weight and backfill.

The most important criticism of Heyman’s model is undoubtedly related to the hy-
pothesis of the infinite compression strength of the material. To overcome this hypothesis,
Harvey [28] proposed the definition of the thrust zone that has a sufficient depth to sup-
port the internal forces at each cross-section. Based on empirical observations, Taylor and
Mallinder [29] used a parabolic stress–strain constitutive relationship to describe the local
crushing of the masonry at the hinges. Brencich and Di Francesco [30] developed an iterative
procedure for the elastoplastic analysis of a masonry arch with inelastic strains. Crisfield
and Packham [31] proposed a numerical procedure, based on the mechanism method, to
evaluate the collapse load of arch bridges with a finite compressive strength of the masonry.
Clemente and Saitta [32] proposed the model of the arch made of no-tension material and
with a rigid–perfect plastic behaviour with finite strength in compression. The model was
tested by analysing the limit behaviour under vertical and horizontal actions [33,34].

In this paper, the model of the arch made of no-tension material and with a rigid–
perfect plastic behaviour with finite strength in compression is used for a comprehensive
numerical investigation on the limit behaviour of single-span masonry arch bridges under
longitudinal seismic actions. The arch is subject to dead loads due to its self-weight and the
weight of the backfill, and to a horizontal acceleration acting in the longitudinal direction.
This acceleration causes a horizontal inertial loading that acts on the arch. Three different
hypotheses about the effects of the inertial actions of the backfill are considered, which
are suitable to model the most common situations in practice. The results are given by
means of diagrams that can be easily used for a preliminary seismic check of a masonry
arch bridge.

The analysis is focused on the onset of motion and the evaluation of the horizontal
acceleration necessary to turn the structure into a mechanism. The subsequent dynamic
phase is out of the scope of this paper. The influence of the various geometrical and loading
parameters is analysed for the case of a plane arch with a parabolic shape. The structural
contributions of the spandrel walls and the backfill are not considered in this model. This
is a limitation of the model, but it allows the model to operate with a safety advantage.

In order to obtain general results, a very high number of voussoirs is assumed, simu-
lating a continuous model, and disregarding the actual positions of the interface sections
and the size of the voussoirs. As a result, the number of possible collapse mechanisms is
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much higher and, for this reason, the collapse factors obtained are certainly not higher than
the actual ones.

2. Limit Domain of a Rectangular Cross-Section with Finite Compression Strength

Suppose that the material has no tensile strength but a rigid–perfect plastic behaviour
in compression, with a finite compression strength fu. As a result, on a yielded section
subject to an axial force N acting at a distance d from the edge, the stresses are uniformly
distributed along a distance 2d from the same edge (Figure 1).
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Figure 1. Stress distribution in a yielded section.

The yield domain of a rectangular cross-section of the thickness t and width b can be
obtained considering, for each value of 2d, the corresponding values of the non-dimensional
eccentricity ê = e/t and the axial force N̂ = N/Nu, where Nu = b·t· fu is the ultimate axial
force (Figure 2) as follows:

ê = ±1
2
(
1− N̂

)
(1)
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Figure 2. Limit domain in the hypothesis of finite compression strength (continuous line) and infinite
compression strength (dotted line).

The couples (N̂, ê) that define the limit domain correspond to the limit states in which
a portion of the cross-section is subject to a constant stress fu. The section collapses with the
formation of a hinge at point C (Figure 3). Therefore, the axial force N does not act at the
hinge, but at a distance d from it.
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In Figure 2, the limit domain for fu → ∞ is also plotted. In this limit case, the two
straight lines are parallel to N̂ axis (their equations become ê = ±1/2), and the section
collapses with the formation of a hinge at a free edge.

The hypothesis of perfect plasticity must not be deceiving. As will be seen later, the
entire compressed portion will have plasticized at the same time, and no large strain will be
required. On the other hand, very low (infinitesimal) rotations will be sufficient to define a
diagram of virtual displacements.

3. The Limit Analysis under Horizontal Longitudinal Loads

According to the safe theorem, an arch is safe if an equilibrium solution can be found,
in which the couples (N̂, ê) are always inside the limit domain. The failure of an arch occurs
when sufficient hinges form to turn it into a mechanism. Due to the hypotheses on the
material and the stress distribution, all the hinges form contemporary. The uniqueness
theorem states that the solution exists and is unique, and so is the load factor. On the point
of collapse, the internal forces acting at the hinge sections contribute to the stability of the
arch, while they do not influence the equilibrium in the case of fu → ∞.

The coordinates of the arch centre line are given in the non-dimensional form as a
ratio of the span L as follows:

ẑ = z/L , ŷ(ẑ) = y(z)/L (2)

The geometrical parameters are also given in the following non-dimensional forms:

• The ratio f̂ = f /L between the sag (or height) and the span;
• The ratio t̂(ẑ) = t(z)/L between the thickness and the span, where the variable

thickness is given as a function of its value at the crown tc: t(z) = tc·t′(z) (t′(z) = 1 at
the crown);

• The ratio between the depth of the fill above the crown and the span ĥ = h/L.

The material compression strength can be represented by the non-dimensional param-
eter as follows:

σ =
fu

γwL
(3)

where γw is the weight per unit volume of the structural material.
The arch is subject to the dead load w, which is given by the summation of the ring self-

weight ww and the weight wb of the backfill, whose weight per unit volume is γb = γ·γw.
The dead loads per unit span can be written as follows (α(ẑ) = angle between the tangent
to the arch centre line and the horizontal axis z):

ww(z) = γw bL·ŵw(ẑ) = γw bL· t̂(ẑ)
cos α(ẑ)

(4)

wb(z) = γwbL·ŵb(ẑ) = γwbL·γ
(

ĥ + f̂ +
t̂(ẑ)

2
− ŷ(ẑ)− t̂(ẑ)

2 cos α(ẑ)

)
(5)

The seismic action is represented by the product of the horizontal acceleration a,
which is expressed as a fraction of the gravity acceleration g, acting at the base of both
the abutments and the gravity load wE(z) associated with the distributed seismic masses
as follows:

pE(z) = a·wE(z) (6)

The load wE(z) certainly contains the ring self-weight and the contribution of the
backfill, for which different models can be assumed, as will be shown later. It can be written
in non-dimensional form as follows:

wE(z) = γwbL·ŵE(z) (7)
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Then, the distributed seismic load can be written as follows:

pE(z) = γwbL·a·ŵE(z) = γwbL· p̂E(z) (8)

All the loads, vertical and horizontal, are evaluated with reference to the centre line of
the arch and are supposed to act on it. The infill located over the maximum height of the
masonry arch has no effects on the arch in this model; this is acceptable for bridges where h
is usually low. Vertical accelerations are not considered; however, in this model, a vertical
component of the acceleration is equivalent to a different weight of the permanent load.

Consider the masonry arch in Figure 4 and suppose that an equilibrium solution
under dead loads exists. This means that the points representing the stress states at each
cross-section are always within the limit domain (|ê| ≤ (1− N̂)/2). When the seismic loads
are put in action and increase from zero to the collapse value, the line of thrust changes,
and at least four hinges form. On the point of collapse, the thrust line must pass through
the hinge points. The collapse mechanism and the corresponding acceleration can be found
using the same iteration procedure shown in the case of the vertical travelling load and
based on the principle of the virtual works.
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Consider a given mechanism and the corresponding diagrams of the virtual displace-
ment components (Figure 5). If η(ẑ) are the vertical components of the virtual displace-
ments, the virtual work of dead loads is:

Lw = γwbL3·
∫ 1

0
[ŵw(ẑ)η(ẑ) + ŵb(ẑ)η(ẑ)]dẑ = γwbL3·L̂w (9)
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Analogously, if ζ(ẑ) are the horizontal components of the virtual displacements, the
virtual work of the reference seismic load can be written as:

LE = γwbL3·
∫ 1

0
ŵE(z)ζ̂(ẑ)dẑ = γwbL3·L̂E (10)

If ∆ϕi are the relative rotations at the n hinges and d̂i = di/L, the internal work is:

Li = 2∑n
1 b fud2

i ∆ϕi = 2γwbL3∑n
1 σd̂2

i ∆ϕi = γwbL3·L̂i (11)

It is worth noting that d̂i decreases when σ increases. With 2σd̂i being a finite quantity
equal to the axial force, 2σd̂2

i → 0 when σ→ ∞ .
In the presence of a horizontal longitudinal seismic acceleration a, expressed as a fraction

of the gravity acceleration g, for an assigned mechanism, the equilibrium equation is

a·LE + Lw = Li (12)

and allows for the determination of a kinematic admissible seismic acceleration:

a =
Li − Lw

LE
=

2∑4
1 σd̂2

i ∆ϕi −
∫ 1

0 [ŵw(ẑ)η(ẑ) + ŵb(ẑ)η(ẑ)]dẑ∫ 1
0 ŵE(z)ξ̂(ẑ)dx̂

(13)

The upper bound theorem ensures that the collapse acceleration is the minimum of all
the kinematic admissible ones, while the lower bound theorem ensures that the collapse
acceleration is the maximum of all the statically admissible ones. Considering both these
theorems, an iteration procedure can be used, which can be started by assigning a first
mechanism and considering the corresponding diagrams of the virtual displacements
(Figure 5). From Equation (13), a kinematically admissible seismic acceleration can be
deduced and so the seismic load that corresponds to the assigned mechanism. With the
seismic loads being known, it is easy to find out the external reactions and then the line of
thrust passing through the yielded zones, i.e., the internal forces acting at each section. The
acceleration value is the collapse one only if, for all the sections, the points that represent
the stress state are not outside the cross-section limit domain, but they are on the limit
domain at a sufficient number of sections to turn the arch into a mechanism. If these
conditions are not satisfied, the procedure must be continued, and the hinges must be
moved to the sections where there are the maximum distances between the couples (N̂, ê)
and the limit domain, i.e., where the compression stresses are at a maximum, changing the
hinge cross-sections and axial force eccentricities.

In the investigation reported in the following, a high number of voussoirs were
considered. So, the obtained seismic accelerations that determines the onset of motion are
certainly not lower than the actual ones. The latter, in fact, are related to the actual number
and size of the voussoirs, which limit the possible mechanisms. Furthermore, by limiting
the analysis to a plane model, the width b = 1 was assumed.

4. Seismic Actions Modelling

If the arch is subject to the self-weight only, the horizontal forces are equal to the
product between the weight of each voussoir and the horizontal acceleration a, and are
applied at the gravity centre of each voussoir, i.e., at the same point of the vertical loads. The
structure is subject to a load acting along a direction determined by the value of acceleration
a, as the structure is rigidly rotated in the plane and the springing points are no longer at
the same height.

When the backfill is present, the problem is quite complex [35]. Consider that the arch
is subject to a horizontal negative acceleration. Each voussoir is subject to the inertial force
due to its own mass, acting at its gravity centre. Three models were considered to simulate
the dynamic interaction between the structure and the backfill.
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In the first one (M1, Figure 6), each voussoir of the left half arch (0 < ẑ < 0.5) is subject
to the inertial force due to a horizontal strip of the backfill, acting at its gravity centre. The
length of this strip is assumed to be equal to the distance between the arch centre line
and the vertical line passing through the left springing of the arch, where the abutment is
present. Instead, the backfill on the right half portion (0.5 < ẑ < 1), subject to its inertial
forces, tends to separate from the arch. As a result, the right half structure is subject only to
the inertial load due to its own mass. Then, the horizontal seismic loading is as follows:

pE(z) = γwbL·a
[
ŵw(ẑ) + γ tan α

(
ẑ− t̂/2 sin α

)]
for 0 < ẑ < 0.5 (14)

pE(z) = γwbL·a[ŵw(ẑ)] for 0.5 < ẑ < 1 (15)
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In the second model (M2, Figure 6), the left half arch is loaded as in model M1, but the
backfill on the right is supposed to be attached to the structure. As a result, the voussoirs of
the right half arch are subject to the inertial forces due to a horizontal strip of the backfill
and acting at its gravity centre. The length of this strip is assumed to be equal to the
distance between the centre line and the vertical line passing through the right springing.
In this case, the horizontal seismic loading is as follows:

pE(z) = γwbL·a
[
ŵw(ẑ) + γ tan α

(
ẑ− t̂/2 sin α

)]
for 0 < ẑ < 0.5 (16)

pE(z) = γwbL·a
[
ŵw(ẑ) + γ tan α

(
1− ẑ− t̂/2 sin α

)]
for 0.5 < ẑ < 1 (17)

In the third model (M3, Figure 6), each voussoir is subject to a horizontal force propor-
tional to the vertical load acting on it; so, the horizontal seismic loading is as follows:

pE(z) = γwbL·a[ŵw(ẑ) + ŵb(ẑ)] for 0 < ẑ < 1 (18)

The first model M1 is the most realistic in the case of a continuous backfill composed
of material with mechanical characteristics lower than those of the ring material. Model
M2 represents the opposite limit case with respect to M1. Model M3 can represent well
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the case in which a secondary superstructure, usually made of shorter arches, transfer the
vertical loads and also the horizontal ones to the main arch by means of a limited number
of vertical columns or walls.

It is worth noting that in M2 and M3, the seismic load pE(z) is antisymmetric with
respect to the vertical line passing through the crown. As is well known, this load condition
represents the most dangerous load for an arch. Instead, in M1, the seismic load pE(z) can
be seen as the combination of a symmetric load of intensity pE(z)/2 and an antisymmetric
load of intensity ±pE(z)/2. Therefore, one could expect that models M2 and M3 give
collapse acceleration values lower than M1.

5. Features of the Seismic Limit Behaviour of Masonry Arches

Consider a masonry with a parabolic shape and with the geometrical and weight
characteristics varying in the following ranges, respectively:

f̂ = 0.1÷ 0.4 t̂ = 0.03÷ 0.07 γ = 0.25÷ 1.0 (19)

The parameter σ defines the material characteristics. Its technical range is between 5
and 50; values of σ that are higher than 50 provide results very close to σ→ ∞ .

In order to analyse the influence of each parameter on the limit behaviour, an arch
characterized by their average values was first considered as follows: f̂ = 0.2, t̂ = 0.05
and γ = 0.5 (“Mi 0.2 0.05 0.50” in the figures, with i = 1, 2, 3). This is addressed as the
“reference arch” in the following. Then, the limit values of the defined technical ranges
were considered for each parameter.

For the reference arch, in Figure 7, the abscissas of the sections where the hinges Hi
(i = 1, . . . ,4) form are plotted versus σ, for the three models M1, M2 and M3. As one can
see, very similar values were obtained for all the models. In Figure 8, the variability of the
hinge locations is shown for different values of f̂ (Figure 8a), t̂ (Figure 8b) and γ (Figure 8c).
Very similar diagrams were obtained for M2 and M3. The locations of the hinges are almost
constant for the three structure–backfill interaction models and are influenced very few by
f̂ , t̂ and γ, as well as by σ. Furthermore, H1 and H4 almost always form at the springing.
Some exceptions can be seen for the limit cases of f̂ = 0.1 for H2 and H3, and f̂ = 0.4 for H4.
This occurrence suggests first looking for the hinge cross-sections relative to the simpler
case of infinite compression strength and then proceeding with the iteration procedure
modifying the positions of the rotation points at each hinge cross-section and, if necessary,
the hinge cross-sections. The knowledge of the hinge location is also important for the
design of a retrofit intervention, for example, by means of FRP [36].
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Figure 7. Hinge locations zHi versus σ for f̂ = 0.20, t̂ = 0.05, γ = 0.50, for the three models M1, M2
and M3.
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Figure 8. Hinge locations zHi versus σ for M1 (very similar diagrams were obtained for M2 and M3),
for different values of (a) f̂ , (b) t̂ and (c) γ (the curves are individualized by “Mi f̂ t̂ γ ” in the legend).

The horizontal longitudinal acceleration that brings the arch to the collapse increases
with σ up to an asymptotic value, corresponding to the hypothesis of infinite strength.
For low values of σ, the collapse acceleration values a are significantly lower than the
asymptotic ones, and this reduction is significant in the technical range of σ. In Figure 9, the
values of a are plotted, versus σ for the three models of the structure–backfill interaction,
M1, M2 and M3. As one can see, M1 gives values of the longitudinal acceleration higher
than M2 and M3, which give very similar values. In Figure 10, the influences of f̂ and
of t̂ and γ are shown for M1 (Figure 10a,b), M2 (Figure 10c,d) and M3 (Figure 10e,f),
respectively. The influence of γ is quite limited; a decreases by about 15% when γ varies
from its minimum (0.25) to its maximum (1.0) value. Much more significant is the variation
of a due to the change in t̂; a increases by about 65% when t̂ varies from its minimum
(0.03) to its maximum (0.07) value. Finally, a increases significantly when f̂ decreases;
furthermore, for f̂ = 0.1, the acceleration a increases very much with σ.
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Figure 9. Horizontal acceleration a versus σ for f̂ = 0.20, t̂ = 0.05, γ = 0.50, for the three models
M1, M2 and M3 (the curves are individualized by “Mi f̂ t̂ γ ” in the legend).

In Figure 11, the distance d of N from the edge at the yielded sections is plotted versus
σ for the reference arch for the three models M1, M2 and M3. It is seen that d decreases
when σ increases. The difference between the three models M1, M2 and M3 are negligible.
In Figure 12, with reference to M1, the values of d/t are plotted versus σ for different values
of f̂ (Figure 12a,b), t̂ (Figure 12c,d) and γ (Figure 12e,f). It is interesting to observe the
influence of f̂ and t̂ on the different hinges. At H1, d increases with f̂ ; at H2, it does not
seem to be influenced by f̂ ; at H3 and H4, d decreases when f̂ increases. At H4, the values
of d are much higher than those at the other hinges. Analogously, at H1 and H2, d decreases
when t̂ increases; at H3, it does not seem to be influenced by t̂; at H4, d increases with f̂ .
For all hinges, d/t increases with γ.
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Figure 10. Horizontal acceleration a versus σ for different values of f̂ and different values of t̂ and γ,
for (a,b) M1, (c,d) M2 and (e,f) M3 (the curves are individualized by “Mi f̂ t̂ γ ” in the legend).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 

Figure 11. Values d/t at the hinges H1, H2, H3 and H4 versus σ (a) for M1, M2 and M3 and (b) for 

different values of f̂  with ˆ ˆ0.20,  0.05, 0.50f t = = =  (the curves are individualized by “Mi” in the 

legend). 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. Values of d/t at the hinges versus σ for the extreme values of (a,b) f̂ , (c,d) t̂  and (e,f) 

 , respectively, for M1 (the curves are individualized by “Mi ˆ ˆ f t  ” in the legend). 

The position of the axial forces at the hinges and the position of the rotation points 

influence the contribution of the internal work to the equilibrium. In Figure 13, the non-

dimensional virtual works ( ˆ
EaL , ˆ

iL  and ˆ
wL ) are plotted for the reference arch for the 

three models. The differences between M1, M2 and M3 are not very significant. In Figures 

14–16, the influences of f̂  and of t̂  and   on the virtual works are shown for M1 (Fig-

ure 14a,b), M2 (Figure 15a,b) and M3 (Figure 16a,b). As is well known, the dead loads 

have a stabilizing effect with Lw being negative. The contribution of the internal load Li is 

0.0

0.1

0.2

5 50

d
/t



M3 0.2 0.05 0.50

M2 0.2 0.05 0.50

M1 0.2 0.05 0.50

H4

H3

H2

H1

0.0

0.1

0.2

0.3

5 50

d
/t



M1 0.1 0.05 0.50

M1 0.1 0.05 0.50

M1 0.1 0.05 0.50

M1 0.1 0.05 0.50

H4
H3
H1
H2

0.0

0.1

0.2

5 50

d
/t



M1 0.4 0.05 0.50

M1 0.4 0.05 0.50

M1 0.4 0.05 0.50

M1 0.4 0.05 0.50

H4
H3
H1
H2

0.0

0.1

0.2

5 50

d
/t



M1 0.2 0.03 0.50

M1 0.2 0.03 0.50

M1 0.2 0.03 0.50

M1 0.2 0.03 0.50

H4
H3
H1
H2

0.0

0.1

0.2

5 50

d
/t



M1 0.2 0.07 0.50

M1 0.2 0.07 0.50

M1 0.2 0.07 0.50

M1 0.2 0.07 0.50

H4
H3
H1
H2

0.0

0.1

0.2

5 50

d
/t



M1 0.2 0.05 0.25

M1 0.2 0.05 0.25

M1 0.2 0.05 0.25

M1 0.2 0.05 0.25

H4
H3
H1
H2

0.0

0.1

0.2

5 50

d
/t



M1 0.2 0.05 1.0

M1 0.2 0.05 1.0

M1 0.2 0.05 1.0

M1 0.2 0.05 1.0

H4
H3
H1
H2

Figure 11. Values d/t at the hinges H1, H2, H3 and H4 versus σ for M1, M2 and M3 and for different
values of f̂ with f̂ = 0.20, t̂ = 0.05, γ = 0.50 (the curves are individualized by “Mi” in the legend).

The position of the axial forces at the hinges and the position of the rotation points
influence the contribution of the internal work to the equilibrium. In Figure 13, the non-
dimensional virtual works (aL̂E, L̂i and L̂w) are plotted for the reference arch for the three
models. The differences between M1, M2 and M3 are not very significant. In Figures 14–16,
the influences of f̂ and of t̂ and γ on the virtual works are shown for M1 (Figure 14a,b), M2
(Figure 15a,b) and M3 (Figure 16a,b). As is well known, the dead loads have a stabilizing
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effect with Lw being negative. The contribution of the internal load Li is significant only for
a low value of σ. When σ increases, Li decreases and tends to be zero. The influence of γ on
the values of the virtual works is lower than those of f̂ and t̂.
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Figure 12. Values of d/t at the hinges versus σ for the extreme values of (a,b) f̂ , (c,d) t̂ and (e,f) γ,
respectively, for M1 (the curves are individualized by “Mi f̂ t̂ γ ” in the legend).
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Figure 13. Non-dimensional virtual works versus σ for M1, M2 and M3.
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Figure 14. Virtual works versus σ for (a) different values of f̂ and (b) different values of t̂ and γ for
M1 (the curves are individualized by “Mi f̂ t̂ γ ” in the legend).
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Figure 15. Virtual works versus σ for (a) different values of f̂ and (b) different values of t̂ and γ for M2.
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Figure 16. Virtual works versus σ for (a) different values of f̂ and (b) different values of t̂ and γ for M3.

6. Conclusions

The limit behaviour of the arch bridges made of no-tension material but rigid–perfect
plastic behaviour in compression, under seismic horizontal longitudinal action, was anal-
ysed in this paper. With this assumption, a relative rotation can occur around an internal
point at a hinge section, which coincides with the starting point of the constant stress
diagram. The internal work is present at the hinge sections and, with the work of the dead
loads, contributes to balance the motor work of the seismic actions.

A non-dimensional formulation was used for a comprehensive numerical investigation.
This allowed for the analysis of the arch behaviour for the different values of its material
and geometrical characteristics.

In the presence of a horizontal acceleration, each voussoir is subject to the inertial force
due to its own mass, acting at its gravity centre. Three models were considered to simulate
the dynamic interaction between the structure and the backfill. In the first one (M1), only
the voussoirs of the left half portion of the arch are subjected to the inertial force due to a
horizontal strip of the backfill. In the second one (M2), the right half arch is also loaded
by the inertial force due to a horizontal strip of the backfill, which is the same as the left
one. In the last model (M3), each voussoir is subject to a horizontal force proportional to
the vertical load acting on it.

The first model, M1, simulates well the case of backfill made of loose soil. M2 is rec-
ommended if the backfill material has better mechanical characteristics or is bound to the
arch. Finally, M3 represents well the situation of a secondary superstructure, usually made
of shorter arches, that transfer the vertical loads and the horizontal ones to the main arch by
means of a limited number of vertical columns or walls. M2 and M3 are both antisymmetric
loadings; therefore, they provide collapse acceleration values lower than M1.

The most important features of the limit behaviour of the masonry arch bridges under
seismic longitudinal actions are as follows:

• The locations of the four hinges H1, H2, H3 and H4, whose knowledge is also impor-
tant for the design of a retrofit intervention, are almost constant for the three models
of the structure–backfill interaction and are not very influenced by f̂ , t̂ and γ, as well
as by σ.
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• The horizontal longitudinal acceleration a that brings the arch to the collapse increases
with σ up to an asymptotic value, corresponding to the hypothesis of the infinite
compression strength. The values of the acceleration are significantly lower than the
asymptotic ones for low values of σ, and this reduction is significant in the technical
range of σ.

• The influence of γ on the value of a is quite limited; instead, the influence of t̂ and f̂
is much more significant. The collapse acceleration a increases with t̂ but decreases
when γ or f̂ increases.

• The distance d of N from the free edge at the yielded sections decreases when σ increases,
but it is influenced in different ways by f̂ and t̂ at the different hinge sections. The
influence of the structure–backfill interaction model on the distance d is negligible.
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