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The law of mass action does not force a series of chemical reactions to have the same current flow everywhere. 
Interruption of far-away current does not stop current everywhere in a series of chemical reactions (analyzed 

according to the law of mass action), and so does not obey Maxwell’s equations. An additional constraint and 
equation is needed to enforce global continuity of current. The additional constraint is introduced in this paper in 
the special case that the chemical reaction describes spatial movement through narrow channels. In that case, a 

fully consistent treatment is possible using different models of charge movement. The general case must be 
dealt with by variational methods that enforce consistency of all the physical laws involved. Violations of current 
continuity arise away from equilibrium, when current flows, and the law of mass action is applied to a non-

equilibrium situation, different from the systems considered when the law was originally derived. Device design 
in the chemical world is difficult because simple laws are not obeyed in that way. Rate constants of the law of 
mass action are found experimentally to change from one set of conditions to another. The law of mass action is 

not robust in most cases and cannot serve the same role that circuit models do in our electrical technology. 
Robust models and device designs in the chemical world will not be possible until continuity of current is 
embedded in a generalization of the law of mass action using a consistent variational model of energy and 

dissipation. 
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1. Introduction* 

The law of mass action is used widely, nearly 
universally, in chemistry to describe chemical reactions. 
The law of mass action does not automatically conserve 
current, as is clear from the mathematics of a simple 
case, chosen to illustrate the issues involved (Fig.1). If 
current is not conserved in a theory, charges accumulate 
that cannot accumulate in the real world. In the real 
world, tiny charge accumulation - much less than one 
percent - produces forces that change predictions of the 
theory a great deal. Indeed, in the real world tiny charge 
accumulation produces forces that destroy biological 
membranes and thus living systems, forces large enough 
to ionize atoms, creating the ionized plasma of 
electrons, we call a spark, or lightning, that can destroy 
laboratory apparatus, if not the laboratory itself. 

Turning to mathematics for proof. Readers 
should distrust a claim of conflict between long 
established laws and so I turn to mathematics for proof 
to show the conflict unambiguously, hopefully without 
argument. Consider the chemical reaction  
X! Y! Z: the currents in the two reactions X! Y 
and Y! Z are not the same, IXY ≠ IYZ. Rather, the 
difference in current is shown to be IXY - IYZ = zXkxyF[X] - 
                                                             

*Correspondence: beisenbe@rush.edu  

zYkyxF[Y] - zYkyzF[Y] + zZkzyF[Z]. The difference is not 
zero in general circumstances, nor robust. The 
difference can be zero only under special circumstances 

(details are in Eqs.(6–11) below). 
The Appendix shows that the current imbalance  

IXY - IYZ between the reactions quickly produces 
enormous forces. Enormous forces are not observed and 
we conclude that the law of mass action cannot be 
generally true, although it can be useful (and true) under 
special circumstances, as also shown in the Appendix, 
and of course in the special circumstance of 
equilibrium, when current does not flow. 

Law of mass action is an incomplete truth. The 
‘law’ of mass action seems to be an example of an 
“ … incomplete truth [that] may become ingrained and 
taken as the whole truth … [thereby confusing] … what 
is only sometimes true with what is always true…” 
(slight rewording of Richard Feynman, p. 15–61 of Ref. 
[1]). The ‘laws’ of science are usually learned early in 

 

Figure 1. Current flow is not the same in a series of 
classical reactions. 
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our careers before we have refereed grants and papers, 
before our critical skills are honed. These scientific laws 
are honored because of their historical role, as much as 
their logical importance. The laws are often residues of 
revolutions that once gave us new knowledge. Old ideas 
can have a life of their own, a momentum that is hard to 
change when knowledge expands. It is easy to continue 
to use old ideas uncritically even after they have been 
overtaken by new knowledge. 

Law of conservation of current is different: it is 

universal. Conservation of current is as universal as any 
law in science. It is a law that has not aged as the law of 
mass action has. Maxwell’s equations and conservation 
of current have a present role and validity at least as 
important as their historical one. They are said to be 
exact at any single time and over any distance scale that 
can be observed, from sub-atomic, and much smaller, to 
interstellar, from times much shorter than those of 
atomic motion to the years it takes light to travel from 
stars and nearby galaxies. Their daily use in high energy 
accelerators involving inconceivably small distances 
and brief times, their use in the microwave and faster 
devices of modern technology, and their use in 
interstellar astronomy are convincing practical proofs of 
the nearly universal validity of these equations of 
electrodynamics. 

The role of Maxwell’s equations depends on the 
subtle idea of displacement current in a vacuum, 

current not carried by the movement of mass, and this 
idea is easy to lose sight of in chemical applications 
where other forms of displacement current involving the 
properties of matter (usually called ‘polarization’ in the 
chemistry literature, along with quite different 
phenomena, e.g. charge distribution in a carbonyl bond 
or peptide linkage) receive more attention. The 
displacement current needs to be incorporated into 
chemical models, in my view, if it is to satisfy both 
conservation of mass and conservation of current. Both 
material displacement current accompanying 
polarization phenomena, and vacuum displacement 
current need to be incorporated. On the time-scale of 
atomic motions, 10-16 s, both displacement currents are 
substantial, and must be incorporated if conservation of 
current is to be enforced. 

An important question is how the law of mass 

action has produced such useful chemistry, over so 

many years, if it does not conserve current flow? The 
answer is that chemistry has not been interested in non-
equilibrium systems of molecules with current flow, as 
much as it has been interested in the molecules 
themselves. Chemists make molecules, not currents, 
with the notable exception of electrochemists, and there 
the difficulties in dealing with long-range electric fields 
have long been recognized [2–4]. 

In classical biochemistry, the law of mass action 
has been used in another context, more biological, with 
less attention to the virtues of consistency and invariant 
physical parameters [5]. A senior biochemist recently 
said, “The art of biochemistry is to study enzymes under 
conditions that give insights into biological function, 
even if the rate constants do not fit results over a range 

of conditions. The art is to choose experimental 
conditions in which biochemical reactions are well 
behaved and rate constants resemble those in real 
biological systems, so results are useful in 
understanding how living systems work.” 

The law of mass action was developed to deal with 

isolated systems, originally with perfect gases [6–10], 
and allowed chemists to deal with molecular and atomic 
reactions before physicists became convinced that atoms 
existed. But isolated chemical reactions must contact the 
outside world to pass signals and interact with it, just as 
electronic systems contact the outside world and pass 
signals through inputs and outputs. Biological systems 
contact surrounding solutions and cells through ion 
channels and transporters. The law of mass action was 
not designed to contact the outside world. It was 
designed to help chemists build and understand 
individual molecules. Signals and connections with the 
outside world almost always involve electricity because 
charge flows through the contacts that connect chemical 
reactions with the outside world. The contacts are 
usually the boundary conditions of mathematical 
models. 

Engineering deals with systems that are not 
isolated. Its devices contact the world through power 
supplies and inputs and outputs. Devices have outputs 
that follow inputs according to simple rules, for 
example, the output of an amplifier follows the input 
according to the gain. The input-output rules are derived 
from Kirchhoff’s current law, i.e. continuity of current 
in one dimension, and Kirchhoff’s voltage law. Biology 
deals with systems that are not isolated. Living systems 
usually have inputs and outputs and are driven by 
concentration gradients that are power supplies. 
Biological systems interact with surrounding solutions, 
cells, and tissues. The law of mass action must be 

extended to deal with inputs and outputs and flow of 

electrical current if theories and simulations of 
nanodevices (technological or biological) are to be 
useful under more than one set of conditions. 

Ionic solutions satisfy three conservation laws, 

conservation of mass, conservation of charge, and 

conservation of current. Chemistry uses mass 
conservation almost everywhere, in the form of the law 
of mass action [11–13] (see Eqs.(6–11) below). Physics 
uses conservation of charge and current whenever it 
deals with electricity [1, 14–21]. The flow of charge is 
continuous in Maxwell’s equations, without loss in 
series circuits, 

 ∇⋅ I = 0  (1) 

The current I is simple in a vacuum and in a 
vacuum that also contains particles, e.g. electrons in a 
vacuum tube. In the latter case, the total current is what 
I call the Maxwell current IMxw because this is the 
invariant introduced by Maxwell to allow the light 
waves of his equations to propagate forever through a 
vacuum. 
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 IMxw = Iparticles +ε
0

∂E

∂t
  (2) 

Current in matter is more complex than in a 
vacuum tube because it includes complex movements 
of charged particles (and charge inside particles) as 
well. The complex movement of particles must be 
described by coupled field equations because the 
movements are driven by many forces, e.g. 
mechanical, convectional, thermal, diffusional, as well 
as electrical. The issues involved are illustrated in 
Fig.2 [5] and the following extensive discussion. I 
then advocate using variational treatments of forces 
and movements because variational methods 
automatically enforce consistency with the field 
equations of all the forces. 

The material displacement current accompanying 
polarization IPol is customarily treated differently from 
the rest of the movement of particles in a tradition 
started by Faraday and reinforced by Maxwell who did 
not recognize the existence of permanent, i.e. fixed 
charge [26]. The polarization of matter is the distortion 
of the distribution of charge produced by the electric 
field (roughly analogous with the distortion of the 
oceans produced by the gravitational field of the 
moon, that produces tides on our beaches twice a day). 

Material displacement current IPol can be 
separated from the complex movements of particles in 
matter by two properties: 

(1) Material displacement current is transient. If 
an electric field is applied to matter, IPol flows 
as the spatial distribution of charge changes, 
i.e. as it polarizes, but eventually, flow ceases 
and IPol → 0, as t → ∞ even if the local 
electric field remains constant. 

(2) If an electric field is applied, and then turned 

off, the charge Q
Pol
= I

Pol
0

∞

∫ dt  that flows 

when the field is turned on is equal to the 
charge that flows when the field is turned off, 
when measured for long enough time periods. 

The total displacement current IDis is often 
isolated and identified by these features in experiments 
involving transients. In experiments involving 
sinusoidal applied fields, IDis is usually recognized by 
its ninety degree phase shift. 
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The vacuum displacement current is a large 
fraction (say half) of the displacement current on the 
time-scale of atomic motions, less than 10-15 s. 

All current produces a magnetic field, according 
to Maxwell’s extension of Ampere’s law 
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The divergence operator ∇⋅ f  evaluates the 
conservation of flow in the vector field f it acts on (as 
its derivation from integral relations shows nicely [27]) 

∇⋅ ∇×B( ) =∇⋅ µ0
I

particles
+µ

0
ε

0

∂E

∂t
+ ε

r
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0
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⎞

⎠
⎟ |

= µ
0
∇⋅ I

Mxw
+∇⋅ I

Pol( ) = 0   

so ∇⋅ I = 0

(5) 

where we use the vector identity that the divergence of a 
curl is always zero. B is the magnetic vector field; µ0 is 
the magnetic constant, the magnetic ‘permeability’ of a 
vacuum; and ε0 is the corresponding ‘electrostatic 
constant’, the permittivity of free space. Note that µ0 ε0 
= c-2, where c is the velocity of light. Magnetism only 
arises from current flow. It is mysterious that magnetic 
charges (monopoles) do not exist, i.e. ∇⋅B = 0 . 

Maxwell’s equations Eqs.(1) and (5) guarantee that 
current is exactly the same everywhere in a series of two 
terminal devices. If parameters or geometry are 
changed, electrical forces and potentials change 
automatically to ensure the same current flows 
everywhere (in a series system involving Maxwell’s 
equations). Interruption of current anywhere in a series 
circuit interrupts current flow everywhere, even signals 
carried by currents far away from the interruption. 

The law of mass action needs to be extended to 
deal with displacement current so it can enforce global 
continuity of current flow. If a particular chemical 
reaction is at equilibrium, and no current flows, 
conservation of charge can be enforced easily on the 
law of mass action. But current flow presents a different 
situation because the law of mass action must then be 
modified to deal with the global properties of the 
electric field. If we are dealing with technological or 
biological nanodevices, chemical reactions are 
connected to the outside world and the law of mass 
action must be extended to enforce continuity of current 
flow everywhere under all conditions. 

Biological systems involve both chemical 

reactions and charge. Biological systems are always 
embedded in ionic solutions, and nearly always involve 
chemical reactants and enzymes with electrical charge, 
even if (like water), their net charge is zero. Substrates 
of reactions catalyzed by enzymes are usually charged 
and are nearly always dissolved in complex solutions 
containing the ions Na+, K+, and Cl− and often Ca2+. 
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Trace concentrations of calcium are often used by 
biological systems as controls that turn biological 
function on or off. Reactants are almost always charged 
in biological systems. Reactants almost always flow and 
carry current in biological systems. Equilibrium and 
death are nearly synonymous in life. Biological systems 
must satisfy conservation of current along with 
conservation of matter. We face a problem when we try 
to apply both conservation laws together: The Law of 
Mass Action does not conserve current. 

‘The Law of Mass Action does not conserve 

current’ seems an unlikely statement and so 
mathematical proof is needed more than verbal 
argument. A simple sequence of chemical reactions was 
examined and the questions “Does the law of mass 
action conserve current? Is current the same everywhere 
in the series of reactions? Do the potentials change 
automatically so current is always the same everywhere 
in a series circuit?” were asked. 

The same questions can then be asked of whatever 
series of reactions are of interest. Sometimes the answer 
will be that current does not flow or does not matter and 
the law of mass action can be easily modified to 
conserve current. In some symmetrical reactions, the 
answer will be that current and mass are both conserved, 
as shown in the Appendix. More often, the answer will 
be that current and mass are not both conserved, as 
shown in more detail in the Appendix. In that case, the 
law of mass action must be extended to maintain 
continuity of current. 

Eq.(6) shows the reactions we use to illustrate the 
problem: 

 X
k
xy

k
yx

! ⇀!!!↽ !!!! Y
k
yz

k
zy

! ⇀!!!↽ !!!! Z  (6) 

The reactions of Eq.(6) were chosen to show the 
problem in the simplest case. We define ‘law of mass 
action’ for this paper as just Eqs.(6) and (9) with the 
symbols defined below. The rate constants in Eqs.(6) 
and (9) are taken as constants and thus of course are 
uncorrelated and independent of each other. If the law 
was robust, the rate constants found experimentally 
under one set of conditions would be found under 
another set of conditions. Such is sometimes the case, 
but not very often [5, 28]. 

Generalizations of rate constants are sometimes 
made but, as discussed below in the section ‘How to 

extend the law of mass action?’, generalizations in the 
literature [11, 13] deal with ‘chemical correlations’4 and 
the non-ideality of some types as opposed to current 
flow, to the best of my knowledge. They do not allow 
the law of mass action defined here by Eqs.(6) and (9) 
to globally satisfy the conservation of current Eq.(1). 
The generalizations are well designed to deal with 
systems close to equilibrium with some types of non-
ideality, but the generalizations do not discuss current 
flow, and include little3 or no4 discussion about the non-
idealities produced by the ionic atmosphere (in the 

equilibrium case [29]), and changes of shape of the 
ionic atmosphere (in the non-equilibrium case [30–37]). 

Current flow is important in most applications of 
the law of mass action. It is almost always present if the 
reaction is part of a device that communicates with the 
outside world. The global nature of the electric field 
(illustrated in Fig.1) allows remote devices and 
boundary conditions to change local atomic flows, an 
effect not necessarily present at equilibrium. In a non-
equilibrium system, electrical forces and potentials 
change everywhere - automatically as a result of the 
equations of the electric field - to ensure the same 
current flows in all places (in a series system). Indeed, 
interruption of current in a series of reactions stops 
current anywhere, even far away. 

Of course, there are special cases in which mass 
action can by itself conserve current flow exactly and 
those in fact may be the cases where it has proven most 
quantitatively useful, particularly when extended to deal 
with non-ideality [11, 13]. In addition, reactions may 
conserve current approximately. In other cases, like in 
Eq.(6), the reaction will not conserve current, even 
approximately. Each case needs to be studied 
separately. The Appendix provides more detail. 

The central fact - that applies to any chemical 
reaction, not just to Eqs.(6) and (9) - is that the global 
realities of the electric field need to be embedded in the 
atomic-scale treatment of the reaction, particularly when 
current flows. 

Proof 

The current flow in the reactions of Eq.(6) is easily 
shown to be: 

 
I
XY
= Fz

X
⋅ k
xy
X!"#
$
%&− FzY ⋅ k yx Y

!
"#
$
%&

I
YZ
= Fz

Y
⋅ k

yz
Y!"#
$
%&− FzZ ⋅ kzy Z

!
"#
$
%&

 (7) 

Units for net current [38] IXY are (C/dm3)/s =  
C dm-3 s-1 and (moles/dm3)/s = moles dm-3 s-1 for 
unidirectional flux Jxy. Double brackets like [[X]] 
indicate activities, i.e. the generalization of 
concentration (number density) needed in biological 
solutions, as discussed below. Units for rate constants 
are (moles/(dm3 s))/(moles/dm3) = 1/s. The valences, 
i.e. charges on one molecule of each reactant are zX or 
zY. F is Faraday’s constant. 

In general, the conservation of current law 
illustrated in Eq.(5) is violated 

 IXY ≠ IYZ,  (8) 

for a range of concentrations, rate constants, or charges.  
The main result of Eqs.(7) and (8) and the 

Appendix is simple: the law of mass action itself 

conserves current only under special symmetric 

circumstances. The law of mass action does not 
automatically change the electrical potentials to ensure 
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that the current flow in a series circuit is the same 
everywhere. 

Details of Proof. Rate equations equivalent to 
chemical reactions involve net flux like J

XY
. The 

chemical reactions in Eq.(6) define the net fluxes in  
units of moles/(dm3 s), 

 
J
XY
= k

xy
X!"#
$
%&− k yx Y

!
"#
$
%&

J
YZ
= k

yz
Y!"#
$
%& − kzy Z

!
"#
$
%&

 (9) 

with the definitions of rate constant kxy, for example 

 k
xy
=
J
xy

X!"#
$
%&

=
J
xy

−
d

dt
X!"#
$
%&
J
yx
= 0

 (10) 

Remark. Unidirectional fluxes like Jxy are 
conventionally measured by tracers - originally 
radioactive isotopes, now usually fluorescent probes - 
flowing into an acceptor solution in which the 
concentration of tracer is zero. The concentration in the 
acceptor solution of the substance is not zero in most 
cases, although the concentration of the tracer is 
(nearly) zero. Note that the activity [[X]] depends on the 
concentration of all of the other ions in a significant 
way in non-ideal solutions [5, 34, 39–65]. In non-ideal 
solutions, changes in the concentration of one substance 
[Y] change the activity of another substance [[X]] and 
also change its flow. 

The proof of Eq.(7) is completed by writing net 

fluxes like J
XY  = Jxy - Jyz as the difference of 

unidirectional fluxes. Net flux is converted into net 
current like IXY using the proportionality constant Fz 

(where z is the species in question) between flux and 
current: 

 

I
XY
= Fz

X
⋅ k
xy
X!"#
$
%&− FzY ⋅ k yx Y

!
"#
$
%&

I
YZ
= Fz

Y
⋅ k

yz
Y!"#
$
%&− FzZ ⋅ kzy Z

!
"#
$
%&

 (11) 

Obviously, IXY ≠ IYZ. This ends the proof. 
It seems unlikely that conservation of current and 

conservation of mass are in conflict in the law of mass 
action, so mathematics is needed to show that current is 
not conserved. I treat a simple but widely used case, 
hoping that this will be more convincing than words and 
easier to extend to other reaction schemes. The methods 

used can be applied to any series of reactions to see if 

they satisfy both conservation of current and 

conservation of mass. In general, an additional 
constraint and equation is needed to enforce the global 
continuity of current flow. The additional constraint is 
introduced in the special case where the chemical 
reaction describes spatial movement through narrow 
channels. In that case, a fully consistent treatment is 
possible using a variety of models for charge 
movement. The general case where chemical reactions 
describe covalent bond changes is not worked out in 
detail here. In my view, the general case must be dealt 
with by variational methods that enforce consistency of 
all the physical laws. Energetic variational methods 
appropriate for this purpose (in dissipative systems like 
ionic solutions) are described. 

The Appendix shows that charge imbalance 
predicted by the law of mass action would likely have 
noticeable effects. A small charge imbalance quickly 
produces potentials and forces that destroy membranes 
(~0.3 V), molecules in a liquid (~2 V, H2O, with 
Ag|AgCl electrode), molecules in a gas (~480 V for 
H2O gas), and atoms in a gas (~14 eV for N2). These 

 
Figure 2. A demonstration that current in one physical system being quite different from current in another. Charge flow 
is not simply the physical movement of particles of definite charge (and mass). Current in a vacuum capacitor, in an 
ionic solution, and in a wire are all quite different. Current is not just the movement of ions, electrons or protons. Note 
that the electric charge in different devices varies on very different scales from subatomic (in dielectrics) to atomic (in 
diodes, ionic conductors, etc.) to macroscopic. Thus, treatments of charge and current must be multi-scale (redrawn from 
Ref. [5]). 
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effects would destroy experiments and are not found in 
the laboratory, which would also soon be destroyed. We 
conclude that theories that predict charge imbalance 
because they do not conserve current flow are not 
acceptable approximations in the world of experiments 
or life. 

2. Current Flow in Complex Systems 

We now discuss current flow in some detail. As we 
discuss current flow through salt water, vacuum 
capacitors, dielectric capacitors, vacuum tube diodes, 
semiconductor diodes, resistors, wires and batteries we 
will see the bewildering number of ways in which the 
electric field changes to ensure that current flow is 
always continuous. 

Current is an abstraction that is conserved. 

Physicists teach that conservation of charge and current 
are universally true, exact from very small to very large 
scales and very small times to very large times [68]. 
What physicists often do not teach clearly is that charge 
and current are abstract ideas. Many students believe 
that current is always carried by particles and so 
conservation of mass (of charged particles) implies 
conservation of charge and current. This is not true. 
Current is carried between the plates of a vacuum 
capacitor as a displacement current that does not involve 
the movement of particles [1, 14–16]. Current flow in 
semiconductors is carried by mathematical fictions 
called quasi-particles that move according to classical 
physics [17–21], not involving solutions of 
Schrödinger’s equation. This is an important property of 
semiconductors [69–70], crucial to their use. 

An essential idea of electricity and magnetism as 
explained in textbooks [14–16] is that current is 

continuous (without loss in a series circuit) no matter 

what the physical nature of the current. Electrical 
potentials and forces change automatically to guarantee 
continuity of current flow under all conditions, in 
experiments and in the equations of electromagnetism. I 
found Saslow’s [14] treatment of continuity of current 
particularly clear and useful. 

Fig.2 tries to show this idea in a concrete way that 
is easy to build in a lab. ‘Completing the circuit’ implies 
that current in every device is the same. Continuity of 
current - the same as Kirchhoff’s current law in a one 
dimensional sequence of reactions - states that time-
varying currents are the same in any series of devices 
even if they exhibit very different physics and different 
constitutive laws, even if they involve chemical 
reactions (Fig.1 and Eq.(6)). 

Ionic Conductor. The ionic conductor in Fig.2 is 
a cylinder containing NaCl. Here, current flow (at a 
frequency say of 1 Hz in a 0.02 M solution) is almost 
entirely the physical movement of charged particles, of 
ions, say sodium and chloride ions, and follows simple 
constitutive laws (when concentrations are < 0.02 M 
and flows are not large enough and do not last long 
enough to change concentrations). These ions are hard 
spheres. The finite size of these spheres is significant in 

the ionic mixtures found everywhere in biology and in 
general at concentrations greater than say 0.02 M. The 
finite size makes constitutive equations (valid at all 
concentrations of mixtures of different types of ions) 
much more difficult than the classical constitutive 
equations for quasi-particles that are points. Finite size 
implies saturation effects - space cannot be filled more 
than once - and these imply that ‘everything interacts 
with everything else’. 

Numerical difficulties in dealing with spheres are 
substantial. Spheres must be computed in three 

dimensions because spheres do not exist in one and two 

dimensions. That is to say, objects with a single radius 
have very different surface to volume ratios in one, two 
and three dimensions and so fill space very differently. 
Phenomena in which spheres fill a significant fraction 
of three-dimensional space are not easily approximated 
in one or two dimensions. Computation of the forces 
that prevent overlap of spheres is difficult because those 
forces are strong and vary significantly in three 
dimensions. Bottom line: non-ideal solutions remain a 
challenge, as documented below. 

Vacuum capacitor. Let’s move on to a vacuum 

capacitor, in which the space between the two plates is 
completely empty of matter (as it would be in outer 
space, for example). The current flow through this 
capacitor is just as real as the movement of ions of NaCl 
in the cylinder even though no particles or spheres are 
present, and no mass moves at all. 

The displacement current between the plates of the 
vacuum capacitor is a property of the electric field itself, 
as explained in textbooks of electricity and magnetism 
[1, 14–16] and is described by the exact and simple 
constitutive equation for the vacuum idisplacement = 
C(∂V/∂t), where the displacement current idisplacement 
(amps) is strictly proportional to the capacitance C 
(farads) and the time rate of change ∂V/∂t of the voltage 
across the vacuum capacitor. Unlike other constitutive 
equations, the constitutive equation for vacuum current 
is exact, valid to some eighteen significant figures [15]. 

This displacement current induces a magnetic field 
just as current carried by ions produces a magnetic field. 
Indeed, without displacement current in a vacuum, 
Maxwell’s equations do not allow sunlight to propagate 
through the vacuum of space. With this exact expression 
for displacement current, light propagation is a solution 

of the Maxwell equations, and in fact the speed c of 
propagation of light can be computed from 
measurements of electrical and magnetic constants, 
entirely independent of measurements of light itself, by 
Maxwell’s remarkable formula c =1 µ0ε0 .  Light 

propagates according to Maxwell’s equations over 
astronomical distances, so we know that the constitutive 
equation that calculates that speed must be accurate to 
many significant figures. 

Dielectric capacitor. In the dielectric capacitor in 
Fig.2 (filled with for example the plastic 
polytetrafluoroethylene = PTFE = Teflon), current flow 
is more complex, and involves the effect of an applied 
electric field on the spatial distribution of the electric 
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charge intrinsic to the atoms, molecules, and substances 
of the dielectric. (‘Intrinsic’ here means the distribution 
of charge present when there is no applied electric 
field). Note that the electric charge in a dielectric, an 
ionic solution, a protein or nucleic acid, for that matter, 
varies significantly on all scales from subatomic to 
macroscopic. 

The properties of dielectrics cannot be described in 
detail here because they vary so much with material, 
voltage, and time. But some properties need to be 
emphasized. Intrinsic charges do not move from plate to 
plate in a real capacitor. The current that flows from 
plate to plate and within the dielectric is a dielectric 
displacement current not carried by the movement of 
mass (any substantial distance). The current in a real 
capacitor is an abstraction. It is the sum of the vacuum 
displacement current and the material displacement 
current IPol (in the dielectric) produced by the distortion 
of intrinsic charges. The material displacement current 
describes the movement of a charge on a non-linear 

time-dependent spring (with damping) that eventually 

stops moving after being perturbed by an external 
electric field for a finite time. Calculating this material 
displacement current involves solving a non-equilibrium 
time-dependent version of the Schrödinger equation, a 
difficult task, involving a macroscopic number of atoms 
and millisecond timescales in cases of biological 
interest. 

Ideal dielectrics do not approximate ionic 

solutions. Scientists have avoided the difficulties of 
solving the Schrödinger equation in a macroscopic 
system like a dielectric, or ionic solution, by using 
approximations. They discuss an ideal dielectric with 
properties independent of field strength and independent 
of time. The approximation over a wide range of electric 
field strengths is satisfactory in most materials. 

The approximation of a time-independent ideal 
dielectric is poor over a wide range of times. For 
example, most solutions of ions in water need effective 
dielectric coefficients to describe the polarization charge 
induced by permanent charges. This dielectric charge 
changes - after a step electric field is applied - from 
about 2 to about 80 as time progresses, from zero to 
10-15 sec to say 10-5 sec and the change in dielectric 
charge depends on the substance [71]. There is not a 
universal constitutive law or approximation for the time 
dependence of dielectric properties. A factor of 40 
change with time is not small. Multi-scale analysis must 
deal with this multi-scale problem because atomic 
motion has macroscopic consequences on all time-
scales. 

The time dependence of real dielectrics needs to be 
dealt with in biological applications: ideal dielectrics do 
not approximate the properties of ionic solutions in 
which biology occurs. The time dependence of 
polarization charge in proteins has been extensively 
studied [72–74] and varies over the whole time-scale 
from atomic to macroscopic. It often has slow 
components, 10-3 sec or slower. 

Biology is controlled by atomic structures that 
move significantly in 10-15 sec but have dramatic effects 

on biological functions between 10-5 sec and 10 sec 
later. The time dependence of these induced polarization 
charges appears in simulations (with atomic resolution) 
as changes in the orientation and induced polarization of 
water molecules, and in the distribution of ions, as well 
as in the distribution in proteins of permanent charges, 
permanent dipoles, and induced dipoles. 

Atomic-scale simulations must last a long time. 

Atomic-scale simulations seeking agreement with 
experimental data - available for a wide range of 
solutions [71], and proteins [72–74] - must last long 
enough to account for the discrete charge movements 
that produce an effective dielectric coefficient of 80, as 
measured experimentally. Otherwise, substantial 
changes in the electric field will not be seen in the 
simulation, even if those changes in the electric field 
have great biological significance. 

Electric fields in biology are strong. A nerve 
signal is a change in an electric field of the greatest 
biological significance. Information transfer in the 
nervous system, coordination of contraction in muscle, 
including the coordination of cardiac contraction that 
allows the heart to pump blood, are all directly 
controlled by the action potential, the biological name 
for the nerve signal. Electric fields during a biological 
action potential are slow (say 10-3 sec), and macroscopic 
in scale, transmitting 10-3 meters, propagating one meter 
(in humans), and they are remarkably multi-scale. 
Handfuls of atoms in a channel protein control the 
macroscopic propagation and the nerve signal itself is 
current carried by ions (that are single atoms) moving 
through those proteins. The electric field of the action 
potential is strong, typically some 0.1 V across a 2×10-9 
meter-thick membrane or a 3×10-10 meter-long 
selectivity filter (EEEE group in a calcium channel), 
5×107 to 3×108 V/m. These electric fields distort the 
intrinsic distribution of charge within the dielectric on 
many scales of time and distance, including electrons 
inside molecules and atoms. They reorient polar 
molecules that have an intrinsic asymmetric distribution 
of charge. Charges only move a small amount in 
dielectrics in response to the applied electric field - 
reminiscent of the sloshing of tides in an ocean and on 
beaches on earth created by the moon’s gravitational 
field - and they eventually return to their resting 

position when the field is turned off but those small 
movements of charge produce large effects because the 
electric field is so strong. 

Dielectric currents IPol share some of the properties 
of vacuum displacement currents but they do not follow 
a universal exact constitutive law, not even 
approximately. It is important not to confuse dielectric 
IPol and vacuum displacement currents ε0 ∂E/∂t. It is 
important to realize dielectric displacement currents can 
be large and produce large effects in biology, as they do 
in semiconductors. 

Non-linear components of dielectric current are 

important in biology. Non-linear components of 
dielectric displacement current have large effects 
important in biology (e.g. in muscle [75], where they 
were first discovered, and nerves [76]) where they 
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control the opening and closing of the channels that 
produce the action potential [77] and some enzyme 
functions [78], as well. These non-linear dielectric (i.e. 
displacement) currents can be recorded as ‘gating’ 
currents because of the Shockley-Ramo theorem [79], 
which is a restatement of continuity of current. The 
dielectric currents involve a tiny fraction of all the 
charges in and near to an ionic channel, far less than one 
percent (see Appendix “Size of Effects” near Eq.(28)), 
but continuity of current and the strength of the electric 
field make gating currents easily measurable in the 
hands of skilled experimentalists. 

Any electric field is extraordinarily strong 

compared to diffusion. Tiny displacement currents can 
be recorded routinely in many laboratories because the 
electric field is so strong. If it were not so strong, these 
tiny concerted movements of atoms would be lost 
amongst the Brownian thermal motion. Extraordinarily 
small changes in net charge are enough to guarantee that 
currents are the same in all elements of a series circuit 
because the capacitances (ratio of charge to potential) 
involved are often some 10-17 farads, see Appendix. 
Continuity of current flow is guaranteed by changes in 
electrical forces and potential resulting from very small 
amounts of charge. 

Concentration effects are very small. On the 
other hand, a one percent deviation in density of mass 
has a tiny effect on diffusion and chemical reactions, 
which is hardly noticeable. Diffusion forces are tiny 
perturbations in the electric force field and energies 
involved in diffusion are tiny perturbations in the total 
energy of charged systems. Electric forces and energies 
are not small parts of the total energy and it is not wise - 
to say the least - to treat them as perturbations of 
uncharged systems. Small changes in charge 
distribution produce large changes in flow because flow 
tends to be an exponential function of the spatial profile 
(even when the profile does not have a large, single, 
symmetrical peak [80] of potential energy) and the 
profile of energy is a sensitive function of permanent 
and dielectric charge, ionic conditions, etc. [81]. It is not 
wise [82] to neglect the effect of permanent charges of 
the channel protein on the shape and size of the electric 
field as is done in many continua [83–105] and rate 
models of gating and permeation of ion channels, and 
most treatments of enzyme function and catalysis. 

Current is indeed an abstraction. In each of the 
devices in Fig.2, charge follows different laws, because 
it has different physical properties, sometimes carried 
by charged particles, sometimes produced by the rate of 
change in electric field (displacement current), 
sometimes as a result of the ‘movement’ of quasi-
particles, and sometimes as a consequence of the 
‘movement’ of electrons in a macroscopically 
delocalized quantum state of a wire. 

Current always flows without loss in each 

device. This abstract property of current is always true, 
because the potentials change automatically to ensure 
continuity of current. However, the ‘laws’ describing 
current as a function(al) of time and potential (for 
example) depend on the physical nature of the charge 

and its movement. Different devices have different 
relationships between current, voltage, and time. These 
different ‘constitutive’ equations are described in 
engineering literature in great detail. 

The different constitutive equations combine with 
Kirchhoff’s current law to describe current flow from 
one place and one device to another. Together, the 
equations describe the universal fact that interrupting 
current flow in one chemical reaction (of a series of 
reactions) will interrupt current flow in every other 
reaction (in that series) even if the interruption is meters 
away from a chemical reaction being studied on the 
atomic scale (scale = 1 Å). Together the equations 
describe the experimental fact that electric fields, forces, 
and potentials automatically rearrange so that 
Kirchhoff’s current law and continuity of current flow 
are always present exactly on all scales no matter what 
is ‘carrying’ the current. Indeed, the physics of current 

flow changes to accommodate the continuity of current. 
One is reminded of the power of the electric field 

when one unplugs a computer. Interruption of a circuit 
meters away from the diodes of the computer’s power 
supply stops the flow of quasi-particles - holes and 
semi-electrons - across atomic-scale junctions of 
semiconductor diodes, often of the PN variety. The 
electric potential changes so strongly in response to the 
interruption (because the power input of the computer 
power supply stores a great deal of charge) that the 
electric field exceeds the dielectric strength of air. The 
automatic change in the electric field - needed to 

maintain continuity of current flow - is enough to 

‘change the physics’ of the system. Electrons are 
stripped off the atoms of air resulting in a plasma, a 
spark. We should be frightened of sparks and their 
electric fields. Sparks start fires, sometimes in 
upholstery or drapes. 

Vacuum tubes. We consider charge movement in 
a vacuum tube diode as the next device in Fig.2. 
Vacuum tubes control the flow of electron current by 
changes in their internal electric fields and were called 
‘valves’ in the UK for that reason. Vacuum tubes, 
semiconductors and even some open ion channels 
follow simple constitutive laws of rectifiers, as 
described in textbooks of electronic devices or ion 
channels. 

In vacuum tubes, current is indeed carried by a 
stream of isolated charged particles, electrons with a 
definite mass and charge, moving through a vacuum, 
interacting only through their electric fields. At 1 Hz, 
essentially all the current in a vacuum diode is carried 
this way. Current through a diode is not proportional to 
the voltage across the diode because the electric fields 
within the diode change shape, despite the simple 
physics of conduction. The fields change shape as the 
voltage across the diode is changed because of 
screening and shielding. The electric fields within the 
tube are different at small and large potentials. The 
different internal electric fields change current flow, 
creating rectification. The electric field creates a large 
barrier in one direction so current in that direction is 
small; the electric field creates a small barrier in the 
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other direction, and current in that other direction is 
large. 

Rectification is of historical interest because 
vacuum tubes allowed the early detection of radio 
waves in American homes in the 1920’s, as valves did 
in the UK. The demand for portable radios led to solid-
state diodes, then solid-state ‘triodes’, field effect 
transistors, integrated circuits, and our modern digital 
world [106]. Vacuum tube diodes had certain 
difficulties - they were big (10-2 m at their smallest), 
hot, greedy consumers of power, cost about $3 in the 
1950’s, and electrically unstable: they drifted 
continuously. They were quickly replaced with 
semiconductor diodes that cost less than $10-10 each, do 
not drift significantly, and can be as small as 10-8 meters 
nowadays. 

We turn now to the semiconductor diode that 
operates on a very different scale from the vacuum 
diode. The rectification of both diodes - that is their 
function - depends on essentially the same physics, 
namely the shape of the electric field and its change in 

shape with the direction of current flow. The electric 
field of charge must be respected on both the scale of 
vacuum diodes and that of semiconductor - 10-2 meters 
of vacuum tubes, 10-9 meters of semiconductor diodes - 
indeed on all scales because the electric field has such 
large effects on all scales. The immediate implication is 
that theory and simulation must calculate the electric 
field on all scales, using an explicitly multi-scale 
analysis, since it seems unlikely that any one type of 
simulation or theory can span atomic to biological to 
laboratory distances and times, let alone the interstellar 
scales on which the laws of electricity are known to be 
valid. 

Semiconductor diodes. Current in semiconductor 
diodes is carried by quasi-particles [70], called holes 
and ‘electrons’ (better named quasi-electrons, or semi-
electrons in my view). These quasi-electrons and holes 
are defined because they interact much more simply 
than the totality of real electrons and lattice of atoms in 
semiconductors [21, 70, 107–109]. They simplify 
the quantum mechanical many-body problem into the 
much simpler motion of imagined quasi-particles. 
Current is carried in semiconductors by rearrangements 
of charge in the entire lattice of atoms that make up the 
semiconductor. Fortunately in terms of our technology 
and daily life, current in germanium and silicon can be 
approximated by classical theories that deal with one 
quasi-electron or one quasi-hole at a time as they move 
in mean fields, without requiring a solution to the 
Schrödinger equation at all [17–21]. 

As a textbook puts it eloquently (p. 68 of Ref. 
[69]): “Electron is a quasi-particle consisting of a real 
electron and an exchange correlation hole … a cloud of 
effective charge of opposite sign due to exchange and 
correlation effects arising from interactions with all 
other electrons of the system. Hole is a quasi-particle, 
like the electron, but of opposite charge; it corresponds 
to the absence of an electron from a single particle state 
that lies just below the Fermi level”. The motion of 
these quasi-particles is described by mean field models, 

evaluated both by simulations [17, 21] and theories [17–
21], e.g. the Poisson drift-diffusion equations [110], 
often called PNP (for Poisson Nernst Planck) in 
biophysics and nanotechnology [56, 61, 111–117]. PNP 
is of particular importance because it is used widely, 
nearly universally, to design and understand the devices 
of our semiconductor technology, from transistors to 
computer chips. PNP is used rather widely in 
nanotechnology these days and increasingly in 
membrane biophysics, mathematical biology, and 
electrochemistry, including battery technology, as well 
as the technology of cement. 

Rectification in biological membranes. Early 
treatments of rectification in biological membranes, 
then called ionic conductances, ([83]; Appendix of 
[118]) in fact drew heavily on Mott’s (nearly) 
contemporaneous treatments of rectification in diodes 
[119], but none of these were consistent: they assumed 
the electric field, instead of computing it. The charge in 
the system did not produce the assumed electric field if 
substituted into Poisson’s equation. Goldman [83], then 
a graduate student of K.S. Cole, recognized the 
problem, but did not know how to remedy it, nor did 
these workers [83, 118] understand that electric fields in 
diodes or open channels were not constant in any sense, 
including space (numerous personal communications to 
me from K.S. Cole, 1960–1962, and A.L. Hodgkin, 
1960–1995). Mott soon realized [120] that the change in 
shape of electric fields was a crucial phenomenon in 
semiconductor diodes, updating the constant field 
assumption of his original paper [119]. Biophysicists 
were evidently not aware of the evolution of Mott’s 
understanding [121].  

Semiconductor physicists understood that 
consistent treatments produced electric fields that varied 
greatly with conditions, as the fields change to force 
continuity of current [122]. Indeed, transistor design 

would not be possible [21, 106, 123–124] if 

computational electronics had assumed constant fields 

the way some physicists did early on [119], but not for 
long [120]. In biophysics, the importance of computing 
the fields from the charges (so the fields and charges 
were consistent) was not realized (as far as I know) until 
much later [81, 111–112]. Until then, and even after, 
Nernst-Planck equations were used in biophysics 
without including the ionized acid and base groups of 

the channel protein, i.e. without including the 
permanent charge of the protein [85–105, 121]. These 
ionized groups render polymers into ion exchangers 
[125]. The equivalent doping profiles convert 
semiconductors into devices. Leaving out ionized 
groups “is like studying a galaxy without stars”, as a 
prominent physical chemist once told me. The 
distribution of permanent charge creates a baseline 
electric field. Changes in shape of the electric field with 
concentration, amino acid composition of the channel 
protein, etc. are responsible for many of the important 
properties of these systems. Unfortunately, the 
importance of changes of shape in the electric field, and 
of the fixed charges involved, were and still are often 
ignored. 
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Charge carriers in semiconductors can be really 

quite strange from a physical point of view. Charge 
carriers in silicon and germanium do not exist outside 
the lattice of the semiconductor as distinct entities. They 
do not exist in the same sense that Na+ and Cl− ions 
exist, but are mathematical representations, with 
lifetimes sometimes as short as milliseconds. Quasi-
particles are the second derivative of a Fermi surface of 
silicon and germanium semiconductors, under particular 
conditions. They are defined, as mentioned above, to 
allow easy classical analysis compared to the intractable 
quantum mechanical many-body problem of a 
macroscopic semiconductor. 

Much of the success of our semiconductor, digital, 
and video technology is due to the accuracy of the 
constitutive PNP equations describing holes and semi-
electrons. They robustly describe the characteristics of 
semiconductor devices of many different types, with 

very different input-output relations, as different as an 
exponentiator and a logarithmic convertor. PNP is so 
useful because almost all the devices of our digital 
technology work under a restricted set of conditions in 
which flows are crucial but are of the special type, well 
described by quasi-particles moving in a mean field. 
Treatment of distortions of the electric field of all the 
atoms in macroscopic devices is not needed. Almost all 
of the devices of electronics use power supplies to 
maintain different voltages at different locations far 
from the PN junctions of the device itself (and thus 
require a global treatment of the electric field). These 
voltages perturb the distribution of velocities of charged 
particles so the distribution exhibits net flow [80, 126]. 
The slight perturbation is enough to imply the PNP 

equations and those provide enough non-linearity to 
make amplifiers, switches, and the full set of logical 
circuits necessary to make a computer [21, 107–109]. In 
fact, in this case the PNP equations can be solved 
analytically and exactly to give intuitive, pleasingly 
simple formulae for current flow, once the shape of the 
electric field is known [80]. 

PNP equations describe a wide variety of 

current voltage relations and devices. The PNP 

equations are the constitutive laws used to describe 
semiconductor devices as their current voltage relations 
change drastically (with voltage, for example) from that 
of a linear amplifier, to a switch, exponentiator, 
multiplier or even logarithmic converter [21, 107–109]. 
Non-linear input-output relations, as varied as these, 
enable a rich variety of devices. 

Non-linear input-output relations as diverse as 
these are not described easily - or described at all for 
that matter - in most areas of physics and chemistry. All 
the non-linear devices in a computer are actually 
mathematical solutions of the PNP equations in a 
complex silicon structure built to have the particular 
spatial distribution of permanent charge (‘doping’) that 
produces the desired properties of the device, i.e. the 
input-output relations. 

The predictive power of PNP is very important in 
the design of robust semiconductor devices - that do not 
fail even when used many millions of times a second in 

computers that contain a trillion transistors. In fact, the 

intrinsic physical properties of semiconductors are 

adjusted by their designers so PNP remains a good 

description [127–130], even though the size of the 

device has been dramatically decreased. The 
concentrations of fixed charge dopants, geometries, and 
recently even dielectric coefficients are adjusted by 
semiconductor engineers in their successive iterations of 
Moore’s law [131–133], so PNP remained a good 
description as performance increased by factors of a 
billion or so, over 50 years.  

Evidently, reliable design is more important than 

raw performance. It seems more important for the 
designers (and marketplace) that an equation describes 
behavior robustly and accurately over a range of 
conditions than that the device be as fast or small as 
possible [127–130]. Evolutionary selection in biology 
also seems to choose robustness over efficiency in many 
cases. Devices of nanotechnology need to be similarly 
robust, I believe, before they will be used extensively. 

PNP is not enough, however, when ionic 

solutions are involved. A great deal of effort has been 
spent applying PNP equations to electrochemical 
systems [56, 61, 111–117] hoping they might serve as 
adequate robust constitutive equations, but that is not 
the case. The non-ideality of ionic solutions, arising in 
large measure from saturation effects produced by the 
finite size of ions, demands more powerful mathematics 
than the partial differential equations of PNP used in 
computational electronics. 

Resistor. The next device we discuss in Fig.2 is a 
resistor, which in some ways is the easiest to describe 
because current is proportional to voltage with a single 
proportionality constant over a wide range of voltages, 
times, and conditions. A resistor follows Ohm’s 
constitutive law with a resistance independent of 
potential over a wide range from 10-5 V to say 100 V, 
and for values of resistance from 10-1 Ω to 108 or  
109  Ω. The range of validity of Ohm’s law is an 
enormous help in circuit design. Circuit models 

involving resistors, capacitors, inductors, and 

operational amplifiers are transferrable. They behave 
as real devices behave without changes in parameters. 
Largely for that reason, designs are inexpensive and 
robust. 

Despite the simplicity of resistors, the actual 
current carrier in a carbon resistor is unclear, at least to 
me. No one cares very much I suspect because the 
device works nearly perfectly. The carrier of charge 
does not matter very much. What matters is the 
constitutive law that describes the relation between 
current, voltage, and time. The constitutive law should 
satisfy conservation of mass, charge, and current. 

It is instructive to write the constitutive law for a 
resistor Ohm’s law for only particle current, using a 
conservation of particle (mass) formulation, and then 
write it again for particle plus displacement current from 
one terminal to another. If you apply a step function of 
current (or potential for that matter) to the purely 
particle formulation, a paradox arises. The potential 
changes but the particle current flowing into the resistor 
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from the left is exactly equal to the particle current 
flowing out on the right at all times. Why does the 
potential change if there is no accumulation of charge? 

The paradox can be resolved in two (nearly) 
equivalent ways: 

(1) The constitutive equation of Ohm’s law can be 
used with the extended definition of current 
that includes the displacement current. In this 
case, there is continuity of generalized current, 
but there is NOT continuity of particle current 
at all times. The transient accumulation of 
particle current provides the charge that 
changes the potential. 

(2) Alternatively, the circuit model of the resistor 
in Fig.2 can be changed to have an explicit 
capacitor in parallel with it. In this case, the 
charge accumulates on the capacitor, and the 
resistor itself can have continuity of flux of 
particles at all times and follow Ohm’s law 
using the current/flux of particles (and not the 
displacement current). The charge 
accumulating on the capacitor creates and 
changes the electric field. 

Maxwell himself repeatedly used capacitors in this 
spirit to understand the role and significance of 
displacement current. Sections 102, 125, 199 and 
Chapter 8 are some examples in Ref. [134]. We 
(following the insight and advice of Wolfgang Nonner) 
have used capacitors as a low resolution, consistent way 
to connect permanent charges (specifically, ionized side 
chains in a channel protein away from the pore) and 
electrical potentials in the pore of a channel protein, e.g. 
the potassium channel [135]. 

Current flow in wires can also be strange. The 
current carriers in a wire are delocalized electrons in the 
simple case of a single solid conductor of metal, and 
follow the simplest constitutive law of all over long(ish) 
time-scales, say times longer than 10-5 sec. 
Nevertheless, most of the electronics in our digital 
technology operate over time-scales much shorter than 
that. 

Now we confront the importance of the time 
variable. The physical nature of current flow depends on 

time-scales, even in wires [14, 16]. The range of time-
scales in our technology is enormous, from more than 
one second to less than 10−9 sec. Over shorter time-
scales (< 10-4 s) the wires that must be used are often 
twisted pairs [136], each made itself of many very fine 
wires. Without twisting, these pairs of wires do not 
allow successful connections to the internet because 
rapidly changing signals are not carried reliably by 
single wires [137]. Over those short time-scales, 

currents flow outside wires, guided by the conductor, to 
be sure, but outside the conductor nonetheless [16, 137]. 
The twisting of wires is a necessity if they are to carry 
signals robustly and reliably so we can use them in our 
video devices and smartphones, even in old-fashioned 
hard-wired telephones [136] that only need to amplify 
audio signals heard by adult humans (< 10,000 Hz).  

The physical nature of current depends on 

time-scale. The physical nature of current in almost any 
system depends on the time-scale, and differs at 
different times as much as it differs in different devices. 
Constitutive equations depend on time. Different 
devices have different constitutive equations with 
different time dependences. Again, current is an 
abstraction, a different abstraction at different times in 
one device, as well as different in different devices. 

Charge movement in batteries. Batteries are 
present in Fig.2 both as an isolated device and as the 
Ag||AgCl interface between wires and NaCl solution in 
the conducting cylinder previously discussed. I hesitate 
to describe a constitutive equation for the flow of charge 
in batteries in general because the flow is so very 
complex, different in different devices, and important 
for the practical daily use of batteries [138–139], and its 
interaction with surface charges is also subtle and 
important [140]. It is enough to say here that current 
flow through electrochemical systems is carried by 
different electrochemical systems differ dramatically 
and change in dramatically with time, frequency, 
composition and concentration of ionic solutions, as 
well as electrical potential, and current flow. Over short 
time-scales, e.g. 10-6 sec - that are still long compared to 
the time-scales important in computers - current flow 
from the Ag wire and AgCl electrode material into the 
NaCl solution is entirely displacement current lagging 
behind voltage. However, over the longer time-scales 
characteristic of biological systems (greater than say 0.1 
sec), the current is carried by a complex combination of 
Ag+ and Cl− ions with negligible displacement current. 

We conclude that current is indeed an abstraction 
with different physical meanings in different systems 
and over different time-scales. No one can visualize and 
no one knows - at least I do not know anyone who 
knows - why or even how this abstraction can be so 
perfectly conserved under all conditions and over all 
scales, from Angstroms to meters, from femtoseconds to 
seconds. It is truly amazing to think of the changes in 
electric forces needed to accommodate and enforce 
continuity of current in salt water, vacuum capacitors, 
dielectric capacitors, vacuum tube diodes, 
semiconductor diodes, resistors, wires and batteries 
from atomic time-scale 10-16 sec and distances of 10-11 
meters to the biological scales of seconds and meters 
from inside atoms (pp. 8–9 of Ref. [1]) to 
intercontinental distances (in submarine cables) and 
interstellar space. 

3. General Remarks about Current Flow  

The discussion of Fig.2 leads to some general remarks 
about current flow. The interplay of conservation of 
matter and conservation of charge and current is 
different in each system, according to the constitutive 
law of the system. The idea of a current flow is an 
abstraction built to accommodate the physics of each 
system, while maintaining the main feature of 
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electrodynamics, the exact conservation of current, at 
any one time, on any scale. Conservation of mass is 
certainly also followed in these systems, but in a more 
relaxed way. Significant deviations are allowed for a 
time. Mass can accumulate for a time without 
catastrophic results. 

Accumulation of mass does not have dramatic 

effects. In the systems considered here, the 
accumulation of mass does not usually have dramatic 
effects. A one percent accumulation of mass has a small 
effect on chemical potentials, although of course 
exceptions can occur. There is no general law for the 
accumulation of matter. The effect depends on the 
constitutive law, and its interplay with conservation of 
matter, charge, and current. 

Accumulation of charge has dramatic effects. 
The accumulation of charge is different. A one percent 
accumulation of charge has a huge effect. As Feynman 
memorably mentions at the very beginning of his 
textbook [1], one percent excess of charge in a person 

at arm’s length produces a large enough force to lift the 

earth! 
The accumulation of charge follows an exact law: 

the displacement current is the sum of all the other 
charge flows and it changes the rate of change of the 
electric field in a precise way so total current is 
conserved precisely. Continuity of current is obeyed and 
so such enormous forces do not occur. If continuity of 
current were not obeyed exactly, enormous forces 
would soon develop (see Appendix). Such forces are of 
course incompatible with life or laboratory experiments. 
Fortunately, accumulated charge is easier to deal with in 
theory than accumulation of mass: the vacuum 
displacement current does not depend on constitutive 
laws, it simply depends on the time derivative of 
potential and so can be calculated. 

Accumulated charge is much simpler than 

accumulated mass. Accumulated charge has universal 
properties, independent of the physical nature of the 

charge. Particle and quasi-particle currents that 
accumulate at a junction change the time derivative of 
electric potential so the electrical potential carries away 
a displacement current. This displacement current is 
exactly equal to the sum of the other currents flowing 

into the junction without known error, to about one part 
in 1018. Continuity of current is exact independent of 

constitutive laws if current is re-defined to include 
displacement current. The displacement current (and 
equivalently ∂V/∂t ‘take up the slack’ so that 
Kirchhoff’s current law (using the extended definition 
of current) is exact in one dimensional systems like a 
sequence of chemical reactions. No charge accumulates 
at all beyond that defined by the integral of the 
displacement current. The electrical forces and ∂V/∂t 
change so the displacement current is exactly equal to 
the sum of the other currents, and continuity of 
generalized current is exact. 

Accumulation of charge is special because it is 

universal. The precise linkage between potential 
change, charge accumulation, and displacement current 
is a special feature of electromagnetism because it is 

universal. It is a property of a vacuum, the constitutive 
equation of a vacuum, if poetic license is allowed. In 
this sense charge is more fundamental and universal 
than mass, a fact which certainly came to me as a 
surprise [141]. Then I learned that charge is constant at 
all velocities according to the ‘Lorentz (relativistically) 
invariant’, whereas mass is not. Mass depends on 
velocity and charge does not. Special relativity seems to 
make charge a more fundamental physical property than 
mass. 

The reader may have difficulty visualizing the 
interactions that enforce conservation of the abstraction 
‘charge/current’ in all these devices with all these 
properties over the entire time-scale. I certainly do. 
However, current flow and charge are conserved on 

and between all scales under all conditions, even if we 
cannot visualize how that manages to be so. 
Experiments demonstrate that fact. Current does flow 
continuously without loss in a circuit. Consider a battery 
feeding a circuit. If a wire is cut far from the battery, 
current flow stops everywhere. The chemical reaction in 
the battery is disrupted on an atomic scale, by the (lack 
of) current flow meters away. Those of us living in 
colder climates have seen the effects of starting a car 
with another car’s battery. We have learned to be 
careful because even a twelve volt battery can produce 
dangerous sparks in air, even though air has nearly 
infinite resistance ( > 1011 Ω for dry air), and is in that 
way, nearly a vacuum. Abstract current is conserved 
‘exactly’ even if we cannot visualize how that happens. 

Science often contains mysteries that cannot be 

visualized - consider Maxwell’s attempts to visualize his 
equations as properties of an ether. Science often poses 
questions that cannot be answered. Why is there no 
magnetic charge? Why is the charge on an electron 1.6 
×10−19 C? Why is charge independent of velocity in 

special relativity when mass, distance, and even time 

are not? Why are physical laws invariant when 
locations S move at constant velocity ∂s/∂t - mass, 
distance, - or at constant acceleration ∂2s/∂t2 - general 
relativity - but not when other time derivatives of 
location are constant, like a constant third derivative 
∂3s/∂t3 or linear combinations of ∂ns/∂tn, perhaps even 
fractional derivatives? As practical people, scientists 
cannot afford to just wait while we wonder about such 
things. Scientists wonder a bit and then move on, 
hoping our successors can do better than we have. 

Biologists and engineers in particular cannot 
afford to linger on mysteries they do not understand. So 
many of those mysteries in biology have turned out to 
be caused by low resolution of our instruments, unable 
to resolve crucial structures. Think of Thomas Henry 
Huxley looking at the shortening of the striations of 
muscle [142] that were not understood until one of his 
grandsons (Andrew Huxley) studied them many years 
later working in Cambridge, UK [143]. Think of Lee de 
Forest using vacuum tubes without understanding how 
they work. Biologists and engineers cannot afford to 
wait to understand everything. They must isolate the 
mysteries and move on to study other things. Here, we 
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move on to discuss devices and the theories and 
simulations used to understand them. 

Biological implications of continuity of current. 
It is important to note that the continuity of current law 
has important biological implications in systems more 
general than a series of chemical reactions. The 
continuity of current law implies the cable equations 
(called the telegrapher’s equations in mathematics 
literature), see derivation from the three dimensional 
theory in [144–147] and pp. 218–238 of [148]. The 
cable equation [149] is the foundation of the Hodgkin-
Huxley model [150–154] of the action potential of 
nerve and muscle fibers. Kirchhoff’s current law links 
the atomic properties of ions, the molecular properties 
of ion channels, and the centimeter-scale spread of 
current and potential that create the propagating action 
potential in nerve fibers meters in length. 

In short or round(ish) cells, or in organelles like 
mitochondria, continuity of current forces coupling 
between multiple pathways of current crossing 
membranes, even if the currents are carried by different 

ions, or by electrons, through different structures 
nanometers apart in the membrane of the finite cells or 
organelles. 

The flux-coupling characteristic of active transport 
systems - including the coupled flows in chemiosmotic 
systems that perform oxidative phosphorylation or 
photosynthesis - might arise in this manner. Coupling of 

flows of charges, whether electrons or ions, is an 

unavoidable consequence of the GLOBAL conservation 

of charge and current, of Kirchhoff’s current law 
GLOBALLY enforced in three dimensions, and not a 
consequence of local chemical interactions, just as 
coupling of membrane currents with axial currents in a 
nerve fiber is an unavoidable consequence of 
Kirchhoff’s current law, not of local chemical reactions. 

It is interesting to compare the incorrect chemical 
theory of nerve propagation by Nobel Laureate A.V. 
Hill [155] with the correct electrical theory of the then 
undergraduate [156–157], later Nobel Laureate [150–
154], Alan Hodgkin. Kirchhoff’s current law in the 
form of the cable equation [149] was the key to 
Hodgkin’s understanding. The classical voltage clamp 
experiments were designed to remove difficult terms 
and isolate membrane terms in the cable equation - 
personal communication, A.L. Hodgkin, 1961 - that 
today we know describe ion channels, opening, closing 
and conducting [121, 158–159]. 

The cable equation links movement of atoms inside 

channel proteins to macroscopic current flow that 
produces nerve propagation of the macroscopic 
electrical potential, the nerve signal that spreads meters. 
Macroscopic potentials modify atomic movements 
involved in gating and conduction. Atomic movements 
create macroscopic electrical potentials. 

Equations of the electric field are true on all scales 
and so allow a unique linkage between models of 
atomic motion, protein behavior, and macroscopic 
propagation of electrical signals. I suspect linkage 
equations of this type - valid on all scales - will be 
needed to make any multi-scale analysis robust and 

transferrable, if it reaches from atoms to meters, from 
femtoseconds to minutes as models of nanodevices 
must. 

Models, devices, effective parameters, and 

transferrable theories. Parameters of models or 
devices can often be chosen so an incomplete theory or 
simulation describes a system under one set of 
conditions but not another. Experiments often show that 
rate constants must be adjusted dramatically as 
conditions change, and the adjustments can rarely be 
predicted ahead of time by theory. 

Chemistry and biology are filled with examples of 
non-transferable models. Chemical reactions follow rate 
equations, but the rates are not constant and not 
independent of one another as conditions change, even 
though traditional theory assumes they should be [5]. 
Biology describes enzymes with one set of parameters 
but finds those change when conditions change and 
attributes that, somewhat mysteriously, to ‘allosteric 
effects’ and conformation changes. 

Non-transferable theories have limited use. 
Biology and much of chemistry works under a wide 
range of conditions and so incomplete theories with 
effective parameters have limited use. Even if sensible 
or valid, theories (and simulations) with effective 
parameters like these are not accurate enough to design 
robust devices. By leaving out something important, 
those theories or simulations omit an energy term that 
almost certainly varies with conditions. The resulting 
effective parameters change in large and unpredictable 
ways. 

Incomplete theories and simulations are not very 
useful over a range of experiments and conditions. 
Incomplete theories are not likely to be transferable 
(from one set of conditions to another) in the language 
of the chemistry literature. Devices designed from 
incomplete theories or simulations are unlikely to be 
robust or work well under a range of conditions. 
Biological systems analyzed with non-transferable 
theories (or simulations) are unlikely to be realistic in 
general because biological systems usually work in a 
range of ionic concentrations different from those used 
in the laboratory. 

Simulations must deal with trace Ca2+. 

Biological systems usually work in mixtures with a 
range of Ca2+ concentrations, in which the Ca2+ 
concentration has important practical effects, often 
turning systems on or off or controlling their rate 
monotonically. Simulations and theories in biology have 
limited use until they are calibrated so we can be sure 
they actually are correct under the range of conditions 
and Ca2+ concentrations the biological systems use. 
Simulating Ca2+ activity in pure solutions is a 
challenging problem [160]. Simulating Ca2+ activity in 
biological mixtures within the 10-8 to 20 M 
concentration range that are physiological has not been 
attempted to date. 10-8 M concentrations of Ca2+ are 
found inside most cells, while 20 M concentrations of 
Ca2+ are found in and near ion channels, nucleic acids, 
and enzyme active sites, where the chemistry of life is 
catalyzed and controlled. 
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Biological and chemical sciences will benefit 
enormously if theories and simulations can be made 
transferable, using one set of parameters to describe 
systems under a range of conditions, as many physical 
and most engineering theories and simulations do. I 
believe the law of mass action must be extended to 
conserve current before theories and simulations can be 
made transferable from condition to condition and from 
physics to chemistry to biology using only mathematics. 

How to extend the law of mass action so it 

conserves current? An obvious way to extend the law 
of mass action is to include activities and electrical 
potential in the rate constant to ‘right the rates’ by 
making them (typically exponential) functions of 
potential [2–4, 11, 13]. This in fact has been done for a 
very long time in the study of reactions at the electrodes 
of electrochemical cells and recently in other ways in 
the treatment of the formation of concrete [161–163]. 
The Butler-Volmer and Tafel equations [2] include 
electrical potential in rate constants in an empirical way 
with limited [3–4] but real success. 

Success is limited I suspect because difficulties of 
embedding an electrical potential in rate constants are 
formidable if current flows. We must ‘fix the fields’ so 
they are global and depend on current flow everywhere. 
Otherwise, they cannot conserve charge flow and 
support continuity of current as required by Maxwell’s 
equations: The way to ‘right the rates’ is to fix the 

fields, everywhere. 

4. Additional Perspectives  

Some additional general remarks may be helpful: 
(1) A thermodynamic treatment is clearly impossible 

since the goal is to calculate large fluxes and 
currents that do not occur in a thermodynamic 
system at equilibrium by definition without flows.  

(2) A rate treatment of the frictional treatment of flux 
over a large potential barrier is needed. The 
classical Brownian motion problem of Kramers 
[164–165] is a necessary step forward, even if it is 
inconsistent because it does not compute the 
potential barrier from the charges in the system. 
Kramers’ treatment need not be restricted to large 
barriers. A simple expression for rates over any 
shape barrier is available [80] and needed [166] 
because so few barriers are both symmetrical and 
large as required in classical high barrier 
approximations.  

(3) The rate constants over one barrier must depend on 
the electrical potential in distant locations. 
Otherwise, interrupting current flow in a distant 
location cannot interrupt current locally. This 
requirement implies that the electrical potential 
must be determined by a global equation like 
Poisson’s equation, including boundary conditions 
far from the individual chemical reactions and 
barriers. The barriers of Kramers’ model are 
variable and not constant as conditions change, 
including conditions far from the barrier itself. The 

fields and energy landscapes change and it is 
indeed their change that allows continuity of 
current, as illustrated in Eq.(1), to be satisfied.  

(4) The rate constants over one barrier are likely to 
depend on concentrations in other places because 
the solutions containing the reactants are not ideal. 
A general characteristic of non-ideal solutions is 
that ‘everything depends on everything else’. More 
specifically, the activity of one reactant (the free 
energy per mole) depends on the concentrations of 
other species in practice, as well as in principle. 

(5) A general theory of all non-equilibrium processes 
is not likely to be useful: a general theory has to 
describe too much. A general theory must include 
hydrodynamic behavior of considerable 
complexity, since aqueous solutions are fluids 
satisfying the Navier-Stokes equations of fluid 
mechanics. A general theory would also include 
explosions since they occur with regrettable 
frequency at electrodes of electrochemical cells, 
when H2 gas is generated (inadvertently) by an 
overvoltage. 
 Fortunately, non-equilibrium processes in biology 
and much of technology occur in ionic solutions in 
which atomic motion is heavily damped. That 
damping ensures that the distribution of velocities 
is a displaced Maxwellian [126], as it is in 
semiconductor devices [21, 167–168]. The 
displaced Maxwellian exhibits non-zero mean 
velocity and so allows flux and current through the 
system from power supplies to outputs. That flux 
and current is enough to produce the very non-
linear devices of our digital (semiconductor) 
technology [17–21], and non-linear phenomena 
like the propagating signal of the nervous system, 
the action potential [152–154]. 
Boundary conditions are needed to extend the law 

of mass action to deal with the outside world. 
Equilibrium statistical mechanics and thermodynamics 
were designed to avoid the complexities of boundary 
conditions using the ‘thermodynamic limit’ to allow 
analysis. But when current flows, interactions with the 
outside world, are unavoidable the thermodynamic limit 
is not appropriate, and boundary conditions describing 
those interactions are needed. 

It is difficult if not impossible to deal in general 
with boundary conditions for the laws of mass action, 
and chemical reactions, because of the wide variety of 
chemical interactions and physical geometries captured 
in a phase space of very high dimension. Boundary 
conditions are easier to deal with in three dimensional 
physical space, where the law of mass action is widely, 
nearly universally, used to describe ion motion through 
narrow channels [80, 121, 169–170]. 

Current in channels. Current flow through a 
‘hole in a (insulating) wall’ is a subject of great 
significance because the hole in the wall allows for 
control of the current. Holes in proteins, membranes, 
and channels in field effect transistors are all nanovalves 
providing essential functions to a large fraction of 
biology and semiconductor technology, and of great 
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interest in electrochemistry. Indeed, biological channels 
are nearly picovalves allowing a handful of atoms to 
control macroscopic flow. It is hard to imagine a 
smaller valve that could control macroscopic flow. We 
consider models of current flow through such holes and 
show how boundary conditions can be applied to 
nanovalves and systems of this type. 

We do not consider simulations here because they 
do not deal with the essential features of these systems. 
Simulations have considerable difficulties in computing 
the actual currents through systems controlled by a 
handful of atoms. The currents are macroscopic 
phenomena, occurring in the world of milliseconds to 
minutes, and spatial dimensions from say 10-9 to 1 
meter. The currents are controlled by atomic-scale 
structures in biology and near atomic-scale (10-8 meter) 
structures in semiconductors and electrochemistry. 
Changing a few atoms changes macroscopic currents as 
is shown in biophysical experiments (usually involving 
site directed mutagenesis) every day. The macroscopic 
currents are driven by chemical and electrochemical 
potentials involving large numbers (>1015) atoms in 
most cases. Simulations must then compute 
macroscopic-scale inputs and outputs while preserving 
atomic-scale spatial resolution of the controlling atoms. 
These issues must be all dealt with at once, because they 
all exist at once in the systems of interest, and they must 
be dealt with accurately, because valves typically 
depend on the balance of nearly equal forces, e.g. 
electrostatic and diffusion. Each force must be quite 
accurately calculated because it is the difference that 
controls function. It will be some time before 
simulations can surmount these problems and be used to 
make practical devices [171–173]. Meanwhile, we use 
the mesoscopic approach, which has been so fruitful in 
computational electronics [18, 21, 122] where atomic-
scale simulations are rarely if ever used. The key to the 
mesoscopic approach is the choice and treatment of 
correlations. Not all correlations can be handled (see the 
infinite series in [174] which of course has not been 
shown to converge). 

We consider the Poisson equation and use the 
treatment in Barton [175] (p. 168) to illustrate the issues 
in connecting a nanovalve to the outside three 
dimensional world. 

 ∇
2φ(r) = −ρ(r)   (12) 

An integral (‘Kirchhoff’) representation of an 
equation inside the nanovalve is Kvol(r) + Ksurf(r), where 
Kvol(r) involves the usual free-space Green’s function 
G
free
(r̂ | r) =1 4π (r̂ − r).  
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Here we use Barton’s notation for the normal 

derivative ∂nφ(r̂)  of the potential (for example) as a 

function of the location of the source r̂ . Inside the 
nanovalve the volume Kvol(r) and surface terms Ksurf(r) 
are combined to give the solution φ(r) of Poisson’s 
equation as shown in Eq.(12) 

K
vol

(r)+ K
surf

(r) = φ(r)  r  is inside the nanovalve

K
vol

(r)+ K
surf

(r) = 0       r  is outside the nanovalve
  (15) 

The free-space Green’s function G
free
(r̂ | r)  is of 

course the average of the free-space potential in atomic-
scale simulations. The special properties of nanovalves 
depend a great deal on the properties of their surfaces 
because nanovalves are so small. Structural biology 
determines the surface of the protein nanovalve and the 
amino acids forming that surface. Physics determines 
the surface Green’s function ∂

n
Ĝ
free
(r̂ | r)  and thus the 

surface normal derivative ∂
n
φ(r̂ | r)  and the surface 

charge. 
Determining these properties is the goal of analysis 

of specific nanovalves and does not concern us here. It 
is enough to mention that these properties can be 
determined from experiments analyzed by the 
mathematical solution [176] of the appropriate inverse 
problem. The spatial distribution of structure and 
permanent structure can be determined from 
measurements of current-voltage relations under a wide 
range of ionic conditions, concentrations, and voltages ± 
6 kBT/e (150 mV). The large amount of accurate data 
allows for an accurate solution of the inverse problem. 

Connection of the nanovalve to the external 

world is what concerns us here. In mathematical 
language, the problem reduces to the Kirchhoff 
representation of the end of the channel, written from 
Eq.(14) by isolating the surface of the ends from the rest 
of the structure. 

 

K
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end
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In general, this problem can be complex involving 
interactions of all sorts between the interior of the 
nanovalve or channel and the external world. Indeed, in 
some biological channels (calcium channels) this may 
be important (although so far little studied). In general, 
however, nanovalves are devices designed to work 
reasonably robustly and independently of the world 
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around them. Robust devices need to be transferable 
from one place to another and so the complex 
interactions are minimized by the design and evolution 
of the systems. If we oversimplify to make the point 
clearly: nanovalves are exceedingly narrow where they 
allow control but widen dramatically outside that region 
so ‘resistance’ to flow is concentrated in the narrow 
region. Control is robust, available under a wide range 
of surrounding conditions. 

In the nanovalves of semiconductor technology, 
buffer regions isolate the nanovalve and allow it to have 
robust properties. The connection to the outside world is 
through a buffer region of a semiconductor separating 
the metallic contact from the nanovalve itself. In the 
nanovalves of biology, the buffer regions are the 
antechambers of the channel and the surrounding ionic 
baths between the Ag|AgCl wire (or salt bridge) and the 
ion channel. These regions are designed (or evolved) so 
the current in the buffer region is ‘Ohmic’ independent 
of time during the function of the nanovalve. These 
regions are designed to minimize the layers of charge of 
Eq.(16) that create undesirable complex behavior not 
easily controlled by the valve itself. 

The connection of the nanosystem to the outside 
world is the current flowing in and out of the channel, 
and of the potential at the ends of the channel. The 
charges flowing in and out of the channel is not equal 
because of transient-charge storage (‘capacitive’ 
properties, famously voltage-dependent and non-linear), 
which is large and significant in semiconductor valves 
[21, 107, 177–179]. In biological channels, voltage-
dependent charge storage phenomena are present as 
well, where they are called ‘gating currents’ [75–76, 
180]. These non-linear displacement currents flowing in 
channels and associated structures are small but they are 
controllers of biological function of great importance, 
and link the motions of handfuls of atoms to 
macroscopic function. These currents are small because 
they are produced by motions of a small number of 
charges compared to the total number of charges in the 
system. They can be measured because continuity of 
current guarantees that charge movements arising in 
conformation changes must also flow in the electrodes 
and circuits connected to them [181]. 

The currents flowing in and out of the nanovalves 
are the connections to the outside world and need to be 
included in the analysis of the nanovalve itself. These 
are the currents that are continuous. The currents are the 
same everywhere in a series-connected system like 
those described in Eq.(6). The rate constants of mass 
action models of particle movement can be connected to 
the external world using a theory that accounts for 
current flow everywhere, along with diffusion, and 
perhaps migration as well. 

Rate constants for nanovalves. Analytical 
expressions for the rate constants for movement of 
charged particles in channel structures can be derived in 
quite a general way, starting with Langevin equations 
for the thermal motion of ions [80, 126, 182–184]. It is 
necessary to use the full Langevin equation (including 
second derivatives with respect to location) if the 

treatment is to allow for two boundary conditions (i.e. 
electrochemical potential on the inside and also the 
outside of the channel) and macroscopic flux. (If one 
uses only the Smoluchowski, high-friction version of 
the Langevin equation, with only first order spatial 
derivatives, the distribution of velocities of particles has 
mean zero and no net flux). Trajectories can be doubly 
conditioned, allowing separate boundary conditions for 
the two sides of the channel, and the resulting multiple 
integrals can be performed analytically, somewhat 
surprisingly, to give the expressions simulated in Ref. 
[166], derived in Ref. [126], as shown in Ref. [80]. 
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The rate constants are conditional probabilities 
derived using the theory of stochastic processes from 
the properties of doubly conditioned Brownian 
trajectories [126, 182–184].  
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R is the gas constant, F is Faraday’s constant, T is the 
absolute temperature, and Vtrans is the electrical potential 
across the channel not including potential drops outside 
the channel. 

The coupling to the long-range fields and flows is 
through the expressions for the electrical potential φ(x) 
because the regions outside the channel are decently 
ohmic [185–189]. First order dependence on 
concentration in the bath can be described by changes in 
the concentrations on the left Ck(L) and the right Ck(R). 
The changes in concentration can often be described 
adequately this way because they are slow and small. 
The potential is computed in all space (channel and 
surrounding baths) by a consistent theory, of one flavor 
or another. PNP [20, 56, 81, 113–114] deals with the 
motion of point charged particles; EnVarA [190] deals 
with spherical particles that can diffuse, migrate or flow 
by convection, steric-PNP [191] is an approximate 
version much easier to compute, and PNP-Fermi [192–
194] deals with finite size by enforcing a Fermi 
distribution that prevents over filling and accounts for 
saturation of space (by spheres), and no doubt there are 
many other appropriate models in the vast literature 
(which includes semiconductor applications, ionic 
solutions, ion channels, and formation of concrete). 
These models produce potential profiles that 
automatically change with conditions so rate constants 
change and produce currents that are continuous and 
satisfy Maxwell equations. 

Nanovalves are obviously a small subset of the 
applications of the law of mass action, but it is some 
comfort to see how consistent analysis can be done in 
this case so the laws of mass action and continuity of 
current can both be satisfied. The general case is much 
harder. It is difficult to grasp all the dimensions of 
chemical reactions at this stage. One can reach in that 
direction by studying specific chemical reactions, where 
simple representations (involving one-dimensional 
reaction paths) are enough to describe important 
phenomena. 

Variational methods can extend the law of mass 

action. If the goal is to build transferable systems, so 
we can build robust devices, as in electronic technology, 
we must use mathematics that allows interactions 
between charges and fields, currents and fluxes and 
flows of solvent, extending from atomic to macroscopic 
scales. Variational methods are designed to deal with 
systems with multiple forces and flows in which 
interactions are unavoidable and complex. In these 
systems, interactions must be included in all analyses. 
Otherwise, theories have more adjustable parameters 
than can be determined experimentally and still cannot 
deal with a range of conditions because interactions 
change with conditions in ways too complex for 
ordinary theories. 

Theories of ionic solutions have difficulties. 

Sadly, theories of ionic solutions seem to have these 
difficulties Theories of ionic solutions need a large 
number of adjustable parameters and still cannot 
describe biological solutions, for example. The first step 
of analysis seems to be the identification of properties 

of single ions from measurements of solutions that 
always contain at least two types of ions, cation, and 
anion, because of electrical neutrality. The identification 
of properties of single ions remains ‘elusive’ even in 
Hünenberger and Reif’s [195] six hundred-page paper 
containing more than two thousand references. 
Hünenberger and Reif’s title itself characterizes single 
ion solvation as elusive even in the infinitely dilute 

solutions they consider. The ionic solutions needed to 
sustain life (and used in much of electrochemical 
technology) are much more concentrated and have 
many more and stronger interactions among solutes; 
interactions between solutes and water; and interactions 
with far-field boundary conditions. They do not 
resemble infinitely dilute solutions [39–45]. References 
[34, 39, 41–42, 50–51, 55, 62, 196–198] draw particular 
attention to the difficulties and remind readers that 
almost all biology and electrochemistry occurs in 
solutions more concentrated than 0.1 M, often in 
solutions much more concentrated. Solutions tend to be 
most concentrated where they are most important, near 
electrodes (in electrochemistry) and in and near nucleic 
acids, binding sites of proteins, enzyme active sites 
[199], ion transporters and ion channels [200–204]. 
Almost all of biology occurs in ionic mixtures and 
involves flow and so is described particularly poorly by 
existing theories and simulations [56, 65, 196–197, 
205–206]. The sad limitations of our understanding of 
ionic mixtures, like those in which all of biology occurs, 
are not widely known, and so embarrassing that many 
do not want to know of them, as I did not for many 
years. It is necessary then to document the frustration by 
quotations from leading workers in that field. The 
classical text of Robinson and Stokes [40] is still in 
print and widely used. It is a book not noted for emotion 
that still gives a glimpse of its authors’ feelings of 
frustration (p. 302). 

 “In regard to concentrated solutions, many workers 
 adopt a counsel of despair, confining their interest  
 to concentrations below about 0.02 M,... ” [207]. 

In a recent comprehensive treatment [51] of non-
ideal properties of solutions, the editor Werner Kunz 
says (p. 11 of [52]): 

 “It is still a fact that over the last decades,  
 it was easier to fly to the moon than to describe  
 the free energy of even the simplest salt solutions 
  beyond a concentration of 0.1 M or so.” 

New mathematical tools are needed to resolve a 

stalemate that has existing since the 1920’s. The 
powerful tools of variational calculus automatically deal 
with interactions that vary dramatically with conditions. 
If the mathematics does not deal with interactions, those 
interactions will not be computed correctly and will 
wreak havoc with theories that are based on algebraic 
descriptions of interactions or theories based on the law 
of mass action with constant rate constants. 
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Energy Variational Approach. The energy 
variational approach EnVarA is defined by the Euler-
Lagrange process [208] as generalized by Liu, and 
colleagues, into an energy/dissipation functional. The 
generalized functional combines two variations yielding 
a single set of Euler-Lagrange equations (in Eulerian 
coordinates of the laboratory) using push-back and pull-
forward changes of variables [190, 209–212]. In this 
way, EnVarA can deal with dissipation (friction) and 
ionic solutions. 

EnVarA describes conserved energy using the 
classical Hamiltonian variational principle of least 
action described in textbooks of mechanics. It deals 
with friction using the Rayleigh dissipation principle 
described in textbooks of irreversible thermodynamics. 
When combined, these principles allow energy to be 

degraded into entropy as matter and charge flow in 

frictional materials [213], like electrolyte solutions. 
Ionic solutions experience friction because an 

ionic solution is a condensed phase essentially without 
empty space. Ice floats on water, so liquid H2O has 
greater density than solid H2O and presumably less 
space between its atoms than the solid. Atoms and 
molecules in a condensed phase cannot move without 
colliding. Collisions randomize originally correlated 
motions and make them into the kind of randomized 
motion that we call heat [214]. The variance of the 
displacement is what we call temperature. The 
macroscopic names for the conversion of translational 
to randomized zero-mean (nearly) Brownian motion, are 
dissipation and friction. 

Energetic variational methods are particularly 

useful because they allow multi-scale derivation of 
partial differential equations (and far-field boundary 
conditions) from physical principles when multiple 
fields are involved, like convection, diffusion, steric 
exclusion, and migration in an electric field. Energetic 
variational principles have recently become available 
for systems involving friction [209, 211, 215], that is to 
say, for systems involving ionic solutions [117, 190, 
210, 216]. Energetic variational principles combine the 
full power of the Navier-Stokes equations (a) with 
either a Lennard-Jones representation of finite-size ions 
or (b) with a density functional theory of ionic solutions 
built from Rosenfeld’s density functional theory of 
liquids [190, 217]. 

Computations must be done in three dimensions 
because spheres do not exist in one and two dimensions. 
These theories and their simplifications [191, 218–219] 
are difficult to compute in three dimensions because of 
the steeply singular forces used to ensure that atoms do 
not overlap. Overlap must not be permitted because 
spheres cannot overfill space: space can be saturated 
with spheres. Saturation effects are a main cause of non-
ideality, particularly in the extremely crowded 
conditions in and near enzyme active sites, ionic 
channels, nucleic acids, and the working electrodes of 
electrochemical cells where twenty molar solutions are 
not uncommon [199]. (As a rule of thumb, ions are 
crowded and electric fields are largest [220–222] where 
they are most important in technology and biology). 

If saturation is described by a Fermi-like 
distribution - as recently derived for spheres of unequal 
sizes [211, 223] - some of these difficulties can be 
attacked [192–194]. A fourth order partial differential 
equation can be written [192] which is easily integrated 
in three dimensions, after it is reduced to a pair of 
second order partial differential equations (with 
carefully defined boundary conditions) and computed 
with appropriate numerical methods. But it is still not 
clear how best to apply any of these methods to 
chemical reactions (Fig.1) described by the law of mass 
action with rate constants extended to be functions or 
functionals and not constants. 

We now have the tools, and we now see the goal - 
a global treatment combining conservation of mass in 
chemical reactions described by the law of mass action 
with conservation of charge flow and current described 
by Kirchhoff’s current law everywhere.  

 Coda:  

 Our grasp must be sure,  
 but our reach should exceed our grasp,  
 as we do our science. 

We must grasp both charge/current conservation 
and mass action before we can produce robust theories 
(or simulations) of chemical reactions in ionic solutions 
that successfully use one set of parameters over a range 
of conditions, and include the global properties of 
electric fields.  

Correct calculations are needed because there is no 
engineering without numbers and accurate computations 
[171–173]. Calculations from theories and simulations - 
of electronic-, ionic-, or biologically inspired devices - 
must be checked and calibrated against known results. 
Otherwise devices built from those calculations will not 

work [56, 65, 196–197, 205–206]. If theories and 
simulations of electrical devices were not robust, if 
parameters had to be changed as conditions changed, 
our electronic technology would be severely limited, to 
say the least. 

Chemical reactions involving current flow must be 
within our theoretical grasp before we can develop 
transferable theories. Then we can build devices that 
perform as expected, as electronic devices usually do. 
Only then can we expect exponential growth in 
molecular engineering whether biological or 
technological. It seems no coincidence that exponential 
growth in electronic technology came after scientists 
had a secure grasp of global electrostatics and the PNP 
equations of electrodiffusion in semiconductors. Let us 
hope that energetic variational methods can grasp ions 
and chemical reactions in water as well and as 
successfully as PNP has grasped the useful properties of 
holes and (semi-)electrons in silicon and germanium. 

5. Conclusion  

The law of mass action is used widely, nearly 
universally, in chemistry to describe chemical reactions. 
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The law of mass action does not automatically conserve 
current, as is clear from the mathematics of a simple 
case, chosen to illustrate the issues involved. If current 
is not conserved in a theory, charges accumulate that 
cannot accumulate in the real world. In the real world, 
tiny charge accumulation - much less than one percent - 
produces forces that change predictions of the theory a 
great deal. Indeed, in the real world tiny charge 
accumulation produces forces large enough to destroy 
biological membranes and thus living systems, forces 
large enough to ionize atoms, create a plasma of 
electrons (like sparks or lightning) and thus make 
experiments impossible in normal laboratory settings. 

The mathematics in this paper shows that the law 
of mass action violates conservation of current when 
current flows if the rate constants depend only on the 
potential (chemical and electrical) in one location and 
its immediate vicinity. The same difficulty arises when 
rate models of the Markov type deal with the movement 
of charge. The implication is that such models cannot 
deal with current through an open channel, with the 
gating properties of channels if the gating mechanism is 
charged, or with the gating current produced by that 
mechanism, for example. 

The essential issue is that rate constants are 
LOCAL functions of potential (at one place or in a 
small region) so they cannot know about current flow 
far away or at boundary conditions. If current is 
interrupted far away, local chemical reactions obviously 
change, but rate constant models show no change. 
Consider, for example, what happens in a battery when 
current flow is interrupted far from the battery. 

These problems can be fixed by computing the 
potential (chemical and electrical φ(x)) GLOBALLY 
and using the neighborhood values of potential that are 
the result of the GLOBAL calculation. Rate constants in 
this case have simple physical interpretations and 
simple expressions involving only one integration, 
explained in Eq.(19). 
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Of course, the rate model and the global potentials 
interact and must be solved together so they are 
consistent. Variational methods guarantee such 
consistency. Energetic variational methods are needed if 
the systems are dissipative. Ions in water and channels 
are dissipative systems because they are condensed 
phases with little empty space. When ions move, they 

collide with atoms and dissipate energy in the form of 
heat. 
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APPENDIX 

When does mass action conserve current? 

What are the effects of discontinuity in current flow? 

Size of discontinuity of current flow. 

The difference in current in two sequential chemical reactions is shown in Eq.(22). The difference is the 

discontinuity of current, the violation of Kirchhoff’s law of continuity of current flow. The difference can be zero 

only in special circumstances. The difference is not zero in general circumstances, nor robustly. 
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When are both conservation laws satisfied? When IXY - IYZ = 0 in Eqs.(22–25), the law of mass action is 

consistent with Kirchhoff’s current law and conservation of mass and conservation of charge/current are all 

satisfied. 

Special cases. Units of current IXY - IYZ 
here are C s-1 dm-3. 

 

Special Case A: If all concentrations are set equal to one, the currents (in the special case with a tilde) equal 
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 (23) 

Special Case A*: If we also set all charges equal to one, along with concentrations equal to one, 
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In this special case of Eq.(24), labelled A*, asymmetry (net difference) in rate constants 

determines the discontinuity of current, the violation of Kirchhoff’s current law. 

 

Special Case B: Alternatively, we can set all rate constants and all concentrations equal to one, 
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In this special case of Eq.(25), labelled B, asymmetry (net difference) of charges (valences) 

determines the discontinuity of current, the violation of Kirchhoff’s current law. 

 

Asymmetry of parameters violates conservation of charge/current and produces discontinuity in current from 

device to device, i.e. it produces accumulation of charge, with sizable effects, as shown next and are to be expected, 

given the strength of the electric field as discussed in the text. 

Size of effects. To estimate the effect on electrical potential V, we need to know the size of the system. Imagine 

a spherical capacitor of radius R. Its capacitance to ground - or coefficient of the self-energy, if one prefers the 

phrase in the chemical literature, is C = Q/V = 4πεrε0R or numerically 4π×8.85×10-12 [farad/meter] εrR = 1.11×10-10 

εrR [farad], where εr is the relative dielectric coefficient, about 80 in water solutions over longish times (say greater 

than 10-5 s). Then, a 1 nm radius capacitor with dielectric coefficient 80 has a capacitance of 8.9 × 10-18 farads. 

Small charges produce large voltages in such a tiny capacitor. Even the charge on just one ion (1.6×10-19 C) 

would produce 18 mV, large enough (compared to the thermal potential of 25 mV) to have a noticeable (~50%) 

effect in theories and simulations, because exp (−18/25) = 0.49 (components of rates often vary exponentially 

according to exp(-V/kBT)). A unit discontinuity in current IXY - IYZ in Eqs.(23-25) lasting for a second would produce 

a voltage of V = Q/C = (1/F)/(8.9×10-18) = 1.14×1012 V. 
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Of course, 1 second is a long time for current to flow. If current flowed on a biological time-scale, for 1 ms in a 
structure 1 nm in radius, with dielectric coefficient 80, the electrical potential would be much less, ‘only’ 109/εr V, 
somewhat less than 107 V at low frequencies in water. Current flow of even a microsecond, would produce nearly 
ten thousand volts. 

Rate of change of potential. We can also look at the effect on the rate of change of potential. The discontinuity 
of current is connected to the rate of change of potential by a version of Coulomb’s law: 

 ∂V

∂t
=
1

C
I  (26) 

If we apply this formula to the discontinuity of current in the special case of Eq.(24) labelled A*, we can 
estimate how quickly that discontinuity of current would change the potential: 
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 (27) 

For a capacitor R = 1 nm with εr = 80 and capacitance of 8.9 ×10-18 farads (see above): 

 ∂V

∂t
=1.1×10

17
×F k

xy
− k

yx
− k
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zy( )  in V/s (28) 

In other words, the breakdown voltage (~ 0.2 V) of membranes and proteins would be reached in  
1.1×10-22/(kxy - kyx - kyz + kzy) seconds. The breakdown voltage for matter in general (say 106 V) would be reached 
very quickly. We conclude that failure of the law of mass action to conserve current is likely to have noticeable 

effects. 


