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Abstract

In the past years, black holes and the fate of their singularity have been heavily

studied within loop quantum gravity. Effective spacetime descriptions incor-

porating quantum geometry corrections are provided by the so-called polymer

models. Despite the technical differences, the main common feature shared by

these models is that the classical singularity is resolved by a black-to-white hole

transition. In a recent paper (Bodendorfer et al 2019 Class. Quantum Grav. 36

195015), we discussed the existence of two Dirac observables in the effective

quantum theory respectively corresponding to the black and white hole mass.

Physical requirements about the onset of quantum effects then �x the relation

between these observables after the bounce, which in turn corresponds to a

restriction on the admissible initial conditions for the model. In the present

paper, we discuss in detail the role of such observables in black hole poly-

mer models. First, we revisit previous models and analyse the existence of the

Dirac observables there. Observables for the horizons or the masses are explic-

itly constructed. In the classical theory, only one Dirac observable has physical

relevance. In the quantum theory, we �nd a relation between the existence of

two physically relevant observables and the scaling behaviour of the polymeri-

sation scales under �ducial cell rescaling.We present then a newmodel based on

polymerisation of new variables which allows to overcomeprevious restrictions
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on initial conditions. Quantum effects cause a bound of a unique Kretschmann

curvature scale, independently of the relation between the two masses.

Keywords: loop quantum gravity, black holes, Dirac observables, polymerisa-

tion

(Some �gures may appear in colour only in the online journal)

1. Introduction

Understanding the fate of classical gravitational singularities is one of the key questions that

any quantum theory of gravity needs to address. In this respect, symmetry reduced spacetimes

in which such singularities occur classically offer on the one hand a simpli�ed setting where

explicit calculations are possible and, on the other hand, they play a crucial role in the attempt

to identify possible observational signatures of quantum gravitational effects. The application

of quantisation techniques inspired by loop quantum gravity (LQG) in symmetry-reduced sit-

uations has proven very successful. In the cosmological setting, this has lead to the wide and

active �eld of loop quantum cosmology (LQC) [2–6] (see also [7, 8] for results in non-isotropic

cosmology). At the semi-classical level, some of the relevant quantum corrections are cap-

tured by a phase space regularisation called polymerisation according to which the canonical

momenta are replaced by (combinations of) their exponentiated versions (point holonomies).

These are the so-called holonomy corrections, and essentially they are the analogue of approx-

imating the �eld strength by holonomies of the gauge connection along plaquettes in lattice

gauge theory. The structure of such modi�cations is motivated by a mini-superspace polymer-

like quantisation [9–11] inspired by LQG, which in turn can be thought of as a diffeomorphism

invariant extension of lattice gauge theory where the dynamical lattice itself encodes the quan-

tum properties of spacetime geometry [12–15]. In the resulting effective quantum corrected

cosmological spacetime, quantumgeometry effects induce a natural cutoff for spacetime curva-

ture invariants and the initial big bang singularity is resolved by a quantumbounce interpolating

between a contracting and an expanding branch well approximated by classical geometries

far from the Planck regime [2, 5]. Remarkably, the effective dynamics can be derived from

the LQC quantum theory by considering expectation values on suitable semi-classical states

peaked on classical phase space points for large volumes [7, 16, 17], thus showing that the

polymerisation procedure is able to capture (some of) the relevant features of the quantum

theory.

The application of LQG techniques to other spacetime singularities such as those occur-

ring inside a black hole (BH) is however still limited. Despite of the large effort, no de�nite

consensus has been reached so far and several effective models have been proposed [18–33].

The starting point of these models is the observation that the interior region of Schwarzschild

black holes, foliated with respect to the radial time-like coordinate, can be modelled as a

Kantowski–Sachs cosmological spacetime so that techniques from homogeneous and non-

isotropic LQC can be applied to construct the effective quantum theory.Besides of the technical

differences, these polymer black hole effective models share common qualitative features such

as the resolution of the central singularity, which is then replaced by a black-to-white hole

quantum bounce. Undesirable outcomes concerning the onset of quantum effects and the cur-

vature upper bound can however emerge depending on the details of the model. Recently,

some advances in the attempt to overcome previous limitations were taken by the authors in

[1]. There, inspired by the construction of the variables successful for LQC, we introduced

canonical variables for Schwarzschild black holes adapted to physical considerations about
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the onset of quantum effects in such a way that the simplest polymerisation scheme can be

used to construct an effective model with satisfactory physical predictions. The main idea is

to construct canonical momenta which are related to spacetime curvature invariants so that the

resulting polymerisation induces a natural curvature bound in the Planck regime and quantum

effects become negligible in the low curvature regime. In particular, in analogy to the so-called

(b, v)-variables in LQC, where the canonical momentum b is the Hubble rate which in turn is

related to the Ricci scalar (R ∝ b2), the on-shell value of one of the momenta of the model is

constructed to be proportional to the square root of the Kretschmann scalar. The main novel

feature of our analysis was the observation that in the effective quantum theory there exist two

independentDirac observables corresponding to the black and white hole masses, respectively.

However, as shown by the detailed analysis of the Dirac observables [1], in order to achieve

physical reliable predictions such as a uniquemass independent curvature upper bound, certain

initial conditions and in turn certain relations between the black hole and white hole masses

have to be selected. The source of such limitation is rooted in the fact that the on-shell canonical

momentum is not exactly proportional to (the square root of) the Kretschmann scalar unless

the integration constant entering the proportionality factor is selected to be independent of the

mass. Thus, the canonical momentum comes to be proportional to the Kretschmann scalar only

after restricting to a certain subset of initial conditions.

Given the above situation, the purpose of the present paper is twofold. On the one hand, we

want to further investigate the role of the Dirac observables in effective LQGmodels for black-

to-white hole transition, on the other hand previous limitations to achieve physically reliable

effects need to be solved. Therefore, in the �rst part of the paper we focus on the question

of whether such previously unnoticed observables exist also in other models. We thus scan

the previous literature and show how the study of the mass and horizon Dirac observables

leads to similar restrictions on the initial conditions and re-analyse previous results in this new

light. The second part of the paper is devoted to introduce a new effective model for polymer

Schwarzschild black holes in which such limitations are resolved and all criteria of physical

viability (mass independent Planckian curvature upper bound, see [34]) can be achieved for

a large class of initial conditions independently of the relation between the black and white

hole masses. The key insight of the new model is the construction of canonical variables in

which one of the (on-shell) momenta is now directly related to the Kretschmann scalar with

no restrictions on the allowed initial conditions. In the resulting effective quantum corrected

spacetime, the central singularity is again resolved by a three-dimensional space-like transition

surface smoothly connecting a trapped (black hole) and an anti-trapped (white hole) interior

region. Quantum effects become relevant in the high curvature regime close to the Planck scale

and rapidly decay far from it so that classical Schwarzschild solution is recovered in the low

curvature regime. By analysing the onset of quantum effects, we also argue that, among all

possible relations between the masses, the symmetric bounce scenario is preferred as it would

correspond to the case in which both types of quantum corrections coming from the polymeri-

sation of the canonical momenta align, thus making them both appearing at high curvatures.

Moreover, the simple form of the effective Hamiltonian characterising our previous model

is remarkably unaffected by this canonical transformation and the model can still be solved

analytically. In particular, as already discussed in [1], the resulting quantum theory can be con-

structed by means of standard techniques and the kernel of the corresponding Hamiltonian

constraint operator can be explicitly computed.

Finally, we further explore the relation between the mass Dirac observables and the scal-

ing properties of the polymerisation scales under a rescaling of the �ducial cell. As a concrete

example, we discuss a class of canonical variables for which both canonical momenta (and

hence the corresponding polymerisation scales) are independent of �ducial cell rescaling,
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while keeping one of them to be the (square root of the) Kretchmann scalar. In this case, there

is no second �ducial cell independent Dirac observable which can be related with the white

hole mass and the relation between the masses is determined as an outcome of the effective

dynamics.

The paper is organised as follows. In section 2 we brie�y recall the Hamiltonian framework

for classical Schwarzschild black holes by focussing on how to �x the integration constants

in a coordinate-free way by means of Dirac observables. As already pointed out in [1], in the

classical theory there is only one �ducial cell independent Dirac observable corresponding to

the black hole mass. On the contrary, in the effective quantum theory it is possible to exhibit

two �ducial cell independent Dirac observables whose on-shell values can be interpreted as

the black and white hole masses, respectively. Therefore, in order to emphasise on the role of

such observables in properly �xing the integration constants for effective models, in section 3

we �rst review the construction of these Dirac observables in our previous model [1], and

then analyse in detail previous effective polymer black hole models in the LQG literature. In

particular, we show that the analysis of the mass observables leads to similar restrictions on the

admissible initial conditions of the model, thus reinterpreting previous results for the proposed

relation between the black and white hole masses accordingly. In section 4, we then introduce

our new model based on adapted canonical variables which allow us to overcome previous

limitations. The resulting quantum corrected effective spacetime and its causal structure is

studied in section 5. The relation of the new variableswith connection variables usually adopted

in LQG-based investigations and the corresponding polymerisation scheme is discussed in

section 6. Finally, in section 7 we focus on the abovementioned relation between the existence

of two independent Dirac observables and the scaling properties of the polymerisation scales.

A summary of the results and some future perspectives are reported in section 8.

2. Integration constants in the classical theory

Let us start by studying the integration constants appearing in the classical setting of black

holes, more precisely static and spherically symmetric solutions of Einstein equations. The

most general ansatz for the metric is given by [35, 36]

ds2 = −ā(r)dt2 + N(r)dr2 + 2B̄(r)dr dt + �(r)2 dΩ2
2, (2.1)

where dΩ2 denotes themetric on the r, t = const round two-sphere. The dynamics of the system

is then described by the source-less (in fact there is a matter source of the form ρ(r) ∝ Mδ(r))
Einstein–Hilbert action, leading to the Schwarzschild solution. For later use let us de�ne the

integrated quantities

√
a =

∫ Lo

0

√
ā dt = Lo

√
ā, B =

∫ Lo

0

B̄ dt = LoB̄, n = Na+ B2,

where Lo is the coordinate size of a �ducial cell in the non-compact t-direction, which is neces-

sary to regularise the otherwise divergent integrals in the canonical analysis. We further de�ne

L o=
∫ Lo
0

√
ā
∣

∣

r=rref
dt to be the physical size of the �ducial length at the reference point rref .

As it is well-known, in the interior of the black hole ā(r),N(r) < 0, i.e. the coordinate

r becomes time-like and t spacelike, thus leading to a homogeneous spherically symmetric

cosmological model, namely the Kantowski–Sachs cosmology of topologyR× R× S
2. Con-

cluding, the interior of a black hole is actually isometric to a cosmological spacetime which

is well-suited for the framework of LQC. In this case N(r) can be interpreted as the lapse of

time-evolution and B̄(r) as the shift. The Hamiltonian analysis shows (as known from the ADM
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formalism) that both are purely gauge. As done by several authors (see e.g. [18, 19, 22–28,

35]), the metric can also be rewritten in connection variables as

ds2 = −N2
T (T) dT

2
+

p2b(T)

L2o|pc(T)|
dx2 + |pc(T)| dΩ2

2, (2.2)

where pb, pc here correspond to the independent components of the triads Eaj in the symme-

try reduced setting conjugate to the independent components c, b of the Ashtekar–Barbero

connection A j
a. The latter is playing the role of con�guration space variables, i.e.

A j
aτ j dx

a
=

c

Lo
τ3 dx + bτ2 dθ − bτ1 sin θ dφ+ τ3 cos θ dφ, (2.3)

Eajτ
j∂a = pcτ3 sin θ∂x +

pb

Lo
τ2 sin θ∂θ −

pb

Lo
τ1∂φ, (2.4)

with τ j = −iσ j/2, j = 1, 2, 3, denoting the standard basis of the su(2) Lie algebra with σ j

being the Pauli matrices. The metric (2.2) describes the interior region of a black hole and is

of course identical to (2.1) by identifying

T = r, x = t, |pc| = �
2, p2b = −a�2, N = −N2

T (2.5)

and the gauge B̄ = 0. The dynamics of this metric is described in the Hamiltonian framework

within a phase space spanned by (b, pb), (c, pc), and equipped with the Possion brackets

{b, pb} = Gγ, {c, pc} = 2Gγ,

where γ is the Barbero–Immizri parameter, G is the gravitational constant. The Hamiltonian

constraint reads

H = NTH, H = − b

2Gγ2 sign(pc)
√

|pc|

(

2cpc +

(

b+
γ2

b

)

pb

)

≈ 0, (2.6)

which in the following we set G = 1 as well as we already assumed c = 1. Note that to arrive

at this result, a detailed discussion of Ashtekar–Barbero connection variables and �ducial cell

structures is necessary for which we refer to several papers in the literature, see e.g. [18, 22,

27, 28] and references within. A detailed discussion of the �ducial cell structures shows that

under a change of the �ducial length Lo �→ αLo the variables transform as

b �−→ b, c �−→ αc, pb �−→ αpb, pc �−→ pc. (2.7)

Obviously, physical quantities cannot depend on this �ducial structures and must be indepen-

dent of this rescaling.

Let us now discuss the classical solution and how the integration constants can be �xed by

physical input. By solving the equations of motion, the metric (2.2) is determined. Hereby, as

alreadymentioned, the Hamiltonian analysis shows thatNT is a Lagrangemultiplier and hence

is purely gauge. The remaining system has four kinematic degrees of freedom (c, pc), (b, pb),

where the Hamiltonian constraint determines two of them, leading to two remaining physical

degrees of freedom on the constraint surface. Therefore, solving the equations of motion, we

expect two integration constants which should be determined by two initial conditions, or in the

language of constrained systems, two Dirac observables. We can make this explicit by solving

the equations of motion for the lapse given by

5
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NT =
γ sign(pc)

√

|pc|
b

,

i.e.

ḃ = − 1

2b

(

b2 + γ2
)

, ċ = −2c, (2.8)

ṗb =
pb

2b2

(

b2 − γ2
)

, ṗc = 2pc, (2.9)

where the dot denotes derivatives w.r.t. T . We can now integrate the equations for c, pc and b

and solve the equation for pb by using the Hamiltonian constraint, thus yielding the solutions

b(T) = ±γ
√

Ae−T − 1, c(T) = coe
−2T (2.10)

pb(T) = − 2cpc

b+ γ2

b

= ∓2cop
o
c

γ

√

eT

A

(

1− eT

A

)

, pc(T) = poce
2T . (2.11)

From the solution we can read off that the integration constant A = e−To simply produces a

shift of To in the T coordinate, i.e. it is non-physical. This agrees with the above discussion of

only two physical degrees of freedom and can be made manifest by writing the solutions in a

coordinate free way, e.g. parametrised by pc. Without loss of generality we can then set A = 1.

Due to the scaling behaviour (2.7), the integration constants have to scale as

co �−→ αco, poc �−→ poc ,

under a rescaling of the �ducial length Lo. This indicates that co cannot be physical. We can

thus construct the metric (2.2) out of our solutions and

NT =
γ sign(pc)

√

|pc|
b

= ± sign(poc)
√

poce
T

√
e−T − 1

,

as

ds2 = − poce
2T

e−T − 1
dT2

+
4c2o|poc |
γ2L2o

(

e−T − 1
)

dx2 + |poc |e2T dΩ2
2. (2.12)

Rede�ning now the coordinates as

τ =

√

|poc |eT , y =
2co
√

|poc |
γLo

x, (2.13)

leads to

ds2 = − 1
√

|poc |
τ − 1

dτ 2 +

(

√

|poc |
τ

− 1

)

dy2 + τ 2 dΩ2
2, (2.14)

from which we see that by identifying
√

|poc | = 2M = Rhor, whereM is the ADM mass of the

black hole and Rhor the horizon radius, this metric is indeed the classical Schwarzschild interior

solution. Note that we need only one physical input parameter, namelyM (or equivalentlyRhor)

to �x uniquely the metric, i.e. the physical spacetime. The other integration constant co does

not appear in themetric (2.14) after a coordinate transformation, showing that it is purely gauge

6
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and has no physical relevance. This is in agreement with the fact that co scales under a �ducial

cell rescaling.

We can view this also in terms of Dirac observables. The phase space functions

Rhor =
√

|pc|
(

b2

γ2
+ 1

)

, D = cpc (2.15)

are both Dirac observables as they (weakly) commute with the Hamiltonian constraint. Giving

these two Dirac observables together with the Hamiltonian constraint, the system is completely

determined from a Hamiltonian point of view. Nonetheless, under a rescaling of the �ducial

cell Lo �→ αLo we �nd according to (2.7)

Rhor �−→ Rhor, D �−→ αD. (2.16)

Therefore, D can not be physical and hence not �xed by physical input, as it depends on the

non-physical �ducial cell. Due to this, D cannot appear in the �nal form of the metric, which

is veri�ed by (2.14). As the rescaling Lo �→ αLo is not a gauge transformation in the canonical

sense, i.e. in the canonical analysis of physical degrees of freedom, this transformation is not

taken into account. Moreover, as Rhor, D andH span the space of Dirac observables, it is easy

to see that there cannot exist another Dirac observable which is �ducial cell independent as

this new one needs to be a combination of Rhor, D andH, which always scales.

Also D/Lo does not solve the problem. Indeed, although this combination is invariant

under rescaling, it depends on the coordinate choice x as Lo is the coordinate size of the

�ducial cell. As proposed in [1], one could use instead the physical size of the �ducial cell

L o=
∫ Lo
0

√
gxx
∣

∣

T=Tref
dx at a reference point T ref . The combination D/L o is then indepen-

dent of �ducial cell rescaling and also independent of the coordinate x, but then the problem

is shifted into a T ref-dependence.

To sum up, the integration constants can be �xed in a gauge (i.e. coordinate) independent

way by specifying values of Dirac observables. In the classical Schwarzschild black hole set-

ting, there exists only one physical Dirac observable which represents the size of the horizon or

equivalently the mass of the black hole. The other Dirac observable depends on �ducial struc-

tures and furthermore can be removed from the �nalmetric by using a residual diffeomorphism.

Hence, it cannot be determined by physical input. As themetric is independent of it, the speci�c

value of this Dirac observable does not affect the physics, as it should. Let us stress here that

these features are not visible at the Hamiltonian level. There only one constraint, the Hamilto-

nian constraint generating time evolution is left. As the quantities occurring in the Hamiltonian

picture are all integrated over the �ducial cell and hence independent of the x-coordinate, the

canonical transformation corresponding to a rescaling x �→ y =
2co

√

|poc |
γ

x (cfr equation (2.13))

corresponds to the identity transformation on the phase space level and therefore there exists no

non-trivial �rst class constraint generating it. Consistently from theHamiltonian perspective, in

fact, we �nd twoDirac observables as we have one �rst class constraint for four degrees of free-

dom thus yielding two physical d.o.f. on the reduced phase space. We can remove one of these

Dirac observables only by going back to the non-canonical components of the metric, which

are x-coordinate dependent. In turn, this is possible as the spacetime metric and the metric

entering the Hamiltonian differ by an arbitrary compacti�cation of the t-direction. Therefore,

at the Hamiltonian level, all quantities differing only by a �ducial cell rescaling have to be

viewed as equivalent, which adds another ‘constraint’ (not in the sense of Dirac) to the system.

The true solution space is therefore the space spanned by the values of Rhor and D, modulo

the equivalence classes of �ducial cell rescaling. This space is again one-dimensional and �ts

7
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the observation that the spacetime metric has only one free parameter, the size of the hori-

zon. Due to this identi�cation, �xing a value ofD, there exists always a �ducial cell rescaling

such that D = 1. The second observable is therefore not removed by a canonical transforma-

tion/diffeomorphism from the Hamiltonian framework, but rather by modding out equivalence

classes of �ducial cell rescaling.

The fact that this is possible highly depends on theHamiltonian and the solutions. Aswewill

see, for many effective polymer Hamiltonians the second Dirac observable cannot be removed

from the �nal metric. In the following, we will discuss in detail how the situation looks in

recent effective polymer models of black holes.

3. Integration constants in effective polymer models

In this section we discuss different polymermodels of black holes and how the integration con-

stants can be �xed gauge independently by de�ning Dirac observables and assigning physical

input to them.

Hereby, we refer to effective polymer models as models where part of the phase space

variables are replaced by their complex exponentials (point holonomies) in the Hamiltonian,

allowing a polymer quantisation inspired by full LQG1. For black holemodels, the replacement

c �−→ sin (δcc)

δc
, b −→ sin (δbb)

δb
, (3.1)

is usually done, where δc, δb are the polymerisation scales controlling the onset of quantum

effects2. These scales should be thought as generic phase space functions remaining of order

Planck scale in a suitable classical limit. In a regime where δcc, δbb is small, we get back the

classical equations due to sin(δcc)/δc ≃ c, sin(δbb)/δb ≃ b. The choice of the polymerisation

scales classi�es the corresponding scheme. The commonly adapted schemes available in the

literature are classi�ed as follows:

(a) The simplest one is the so-called μo-scheme where the polymerisation scales are chosen

to be constant so they are not phase space dependent at all. A selection of μo-models is

[18, 19, 23, 35, 40].

(b) More generic, one can allow δc, δb to be any phase space function of pb and pc which is then
called μ̄-scheme as in [24, 25] (see also [41, 42] for the cosmological Kantowski–Sachs

setting).

(c) A more recent development is provided by the so-called generalised μo schemes where

δc, δb are phase space dependent only through Dirac observables [22, 26–28].

How to precisely �x the polymerisation scales is a delicate procedure based on different

arguments in different works. These arguments usually depend on the dynamical trajecto-

ries and how the integration constants are �xed. In the following, we show that in contrast

1Let us recall that this effective prescription is motivated by the quantum theory where weak discontinuity of the

polymer representation implies that only the exponentiated version rather than bare momenta do exist as well-de�ned

operators on the polymer Hilbert space [9–11]. At the semi-classical level, this translates into expressing the depen-

dence on the momenta in any phase space function as a linear combination of their point holonomies of which the sin

function is a simple choice commonly adopted in the literature [2, 11].
2Note that there are many proposals of polymerisation which include choosing different functions or polymerising

only parts of the phase space or different choices for the polymerisation scales [23, 30, 37–39]. Such different models

can be motivated by physical inputs or full theory based results and arguments like general covariance and anomaly-

free realisations of the constraint algebra at the quantum level. However, here we do not consider such alternative

choices for simplicity.

8
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to the classical case, two physically relevant Dirac observables can exist. We carefully �x the

integration constants by means of horizon or mass Dirac observables and discuss how physi-

cal requirements on the polymerisation scales due to curvature or plaquette arguments induce

relations between the Dirac observables.

3.1. In (v1,P1),(v2,P2) variables

Let us begin with a model recently proposed by the authors [1], where the strategy of �xing

the integration constants by using Dirac observables was �rst introduced. The authors intro-

duced new variables (v1,P1), (v2,P2), which are (in the interior of the black hole) related to

connection variables via

(pb)
2
= −8v2, |pc| = (24v1)

2
3 , (3.2)

b = sign(pb)
γ

4

√

−8v2P2, c = − sign(pc)
γ

8
(24v1)

1
3P1. (3.3)

with the Poisson brackets

{vi, v j} = 0, {Pi,P j} = 0, {vi,P j} = δi j.

In these variables, the classical Hamiltonian equation (2.6) becomes

Hcl =
√
nHcl, Hcl = 3v1P1P2 + v2P

2
2 − 2 ≈ 0, (3.4)

where n = Na+ B2 is a Lagrange multiplier, as de�ned before.

The metric components can be reconstructed by the relations3

a =
v2
2

(

2

3v1

) 2
3

, � =

(

3v1
2

) 1
3

. (3.5)

Quantum effects are taken care of by means of the following polymerisation scheme

P1 �−→
sin (λ1P1)

λ1

, P2 −→
sin (λ2P2)

λ2

, (3.6)

where λ1, λ2 are the polymerisation scales and should be thought of being of Planck size and

constant. Translating the variables back to (c, b) and requiring

λ1P1 = δcc, λ2P2 = δbb, (3.7)

leads to a relation of the polymerisation scales

δc = ± 8

γ

λ1
√

|pc|
, (3.8)

δb = ± 4λ2

γ|pb|
, (3.9)

3Note that this relation matches with (3.2), (3.3) and (2.5) only up to a constant factor. This is due to a factor 1/4 in

front of the action which was neglected in [1] and could be re-translated into G =
1
4
instead ofG = 1. In the following

we keep notation and results of [1] and do not translate them according to this factor.

9
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according to which the polymerisation scheme (3.6) with constant λ1, λ2 corresponds to

a speci�c μ̄-scheme in connection variables, given by the above phase space dependent

polymerisation scales.

The effective Hamiltonian for this setting reads

Heff =
√
nHeff, Heff = 3v1

sin (λ1P1)

λ1

sin (λ2P2)

λ2

+ v2
sin (λ2P2)

2

λ2
2

− 2 ≈ 0. (3.10)

The resulting equations of motion can be solved analytically for n = L
2
o (see [1] for details),

leading to the following solutions for the effective dynamics

v1(r) =
2C2λ2

1

√
n
3

λ3
2

D

λ6
2

16C2λ2
1
n3

(

√
nr

λ2
+

√

1+ nr2

λ2
2

)6

+ 1

(

√
nr

λ2
+

√

1+ nr2

λ2
2

)3 , (3.11)

v2(r) = 2n

(

λ2√
n

)2 (

1+
nr2

λ2
2

)

⎛

⎜

⎜

⎝

1− 3CD

2λ2

1
√

1+ nr2

λ2
2

⎞

⎟

⎟

⎠

, (3.12)

P1(r) =
2

λ1

cot−1

⎛

⎝

λ3
2

4Cλ1

√
n
3

(√
nr

λ2

+

√

1+
nr2

λ2
2

)3
⎞

⎠ , (3.13)

P2(r) =
1

λ2

cot−1

(√
nr

λ2

)

+
π

λ2

θ

(

−
√
nr

λ2

)

, (3.14)

which translates to the metric components as

� =

(

3v1
2

) 1
3

=
L o

λ2

(

3DC2λ2
1

)
1
3

(

λ6
2

16C2λ2
1
L

6
o

(

L or
λ2

+

√

1+
L

2
or

2

λ2
2

)6

+ 1

) 1
3

(

L or
λ2

+

√

1+
L

2
or

2

λ2
2

) , (3.15)

ā =
v2
2L2o

(

2

3v1

) 2
3

=
L

2
o

L2o

(

λ2

L o

)4 (

1+
L

2
or

2

λ2
2

)

⎛

⎜

⎜

⎝

1− 3CD

2λ2

1
√

1+
L

2
or

2

λ2
2

⎞

⎟

⎟

⎠

×

(

1

3DC2λ2
1

) 2
3
(

L or
λ2

+

√

1+
L

2
or

2

λ2
2

)2

(

λ6
2

16C2λ2
1
L

6
o

(

L or
λ2

+

√

1+
L

2
or

2

λ2
2

)6

+ 1

) 2
3

, (3.16)

10
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whereC,D are integration constants. The gauge and hence the r-coordinate is chosen such that

N =
L

2
o

L2oā
, B̄ = 0.

As discussed in the previous section, there are two integration constants C, D, which we �x

by means of physical input, i.e. Dirac observables. As was done in [1], we can take the limits

r→±∞ and re-express the physically meaningless coordinate r in terms of the areal radius

�± :=�(r→±∞) so that by suitably rescaling the time coordinate t→ τ by a constant factor

we get the asymptotic metrics

ds2+ ≃−
(

1−
(

3

2
D

) 4
3 C

L o

1

�

)

dτ 2 +
1

1−
(

3
2
D
) 4

3 C
L o

1
�

d�2
+ �

2 dΩ2
2,

(3.17)

ds2− ≃−

⎛

⎝1− 3CDL o

λ2
2

(

3DC2λ2
1

) 1
3

�

⎞

⎠ dτ 2

+
1

1− 3CDL o

λ2
2

(

3DC2λ2
1

)
1
3

�

d�2
+ �

2 dΩ2
2. (3.18)

Obviously, the asymptotic regions are described by Schwarzschild spacetimes with masses

2MBH =

(

3

2
D

) 4
3 C

L o

, 2MWH =
3CDL o

λ2
2

(

3DC2λ2
1

)
1
3 , (3.19)

where we call the masses in the r→+∞ and r→−∞ regions respectively black hole and

white hole mass and refer to black hole and white hole regions correspondingly. Note that

these names have no deeper meaning as they can be exchanged arbitrarily without affecting

the physics, and are hence just for convenience. Equation (3.19) now relates the integration

constants C,D to the physical quantities of the black hole and white hole mass. Further-

more, as in the classical theory, we can write down off-shell expressions for Dirac observables

corresponding on-shell to the two masses given by

2MBH = 3v1
sin (λ1P1)

λ1

(

3
2
v1 cos

2
(

λ1P1
2

)) 1
3

λ2 cot
(

λ2P2
2

) , (3.20)

2MWH = 3v1
sin (λ1P1)

λ1

(

3

2
v1 sin

2

(

λ1P1

2

)) 1
3 cot

(

λ2P2
2

)

λ2

. (3.21)

11
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Figure 1. Penrose diagram for the Kruskal extension of the full quantum corrected
polymer Schwarzschild spacetime.

Computing the classical limit (i.e. λ1,λ2 → 0) gives 2MBH → (3v1/2)
(4/3)P1P2, which is (up

to a factor as discussed above) exactly the classical horizon Dirac observable of (2.15). For

MWH this limit does not exist and depends on how exactly the double limit λ1,λ2 → 0 is per-

formed. This re�ects the fact that this observable does not exist classically. Of course, we could

simply multiply by suitable powers of λ1 and λ2 to reach a well de�ned limit. This introduces

then �ducial cell dependencies and, combining with MBH, the classical Dirac observable for

D (cfr (2.15)) can be reproduced.

Let us at this point recall some of the main features of the quantum corrected spacetime

described by themetric coef�cients (3.15), (3.16). The Penrose diagram is given in �gure 1. It is

an in�nite tower of asymptotically Schwarzschild spacetimes of (alternating) massesMBH and

MWH. The would be Schwarzschild singularity is replaced by the spacelike transition surface

of topology R× S
2, where the areal radius reaches its minimal value given by

�T = 21/12(λ1λ2)
1/4(MBHMWH)

1/8.

This surface represents the transition between trapped and anti-trapped regions and hence the

transition from black to white hole interior regions and vice versa. There are two horizons

characterised by a(r±) = 0 whose area is given by A±
H = 4π�(r±)2. It is important to notice

that the two masses are not �xed up to this point. The model allows in principle to choose

both masses independently from each other. The masses alternate going though the Penrose

diagram as the roles of MBH and MWH become exchanged going from one asymptotic region

to another one.

A relation between the two masses can be found by adding a quantum condition. These

arguments are usually heuristic and refer to conditions for plaquettes or curvature. For the pre-

sented model the authors chose the requirement of a mass independent unique upper curvature

12
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Figure 2. The colour scale encodes the value of the logarithm of the Kretschmann scalar
at the transition surface as a function of the black hole MBH and white hole mass MWH

for L oλ1 = λ2/L o = 1. Both axis are logarithmically. Finite non-zero curvatures for
large masses can only be achieved by following a level line asymptotically given by
equation (3.22) for β = 5

3
and β = 3

5
. Different values of m̄ correspond to different

choices of the level line. The yellow line corresponds to β = 5
3
and the red dashed line

to β = 3
5
.

bound. The Kretschmann scalar reaches its maximal value close to the transition surface. A

plot of the Kretschmann scalar at the transition surface as a function of the two masses is given

in �gure 2.Toachieve a unique mass independent curvature scale at which quantum effects

become relevant, we need to �x a relation between the two masses, which for large masses

approximately is a level line of K(rT ). This �xes the relation4 to be

MWH ∼ M
β
BH, β =

5

3
,
3

5
. (3.22)

This additional condition then �xes a relation between the masses, i.e. selects a relation among

the initial conditions.

In principle, we can rewrite the set of Dirac observables (MBH,MWH) in terms of the

horizons (RBH,RWH). Abstractly, this simply amounts to

RBH = b(r+;MBH,MWH), RWH = b(r−;MBH,MWH),

on-shell, where the additional arguments denote that all C and D are replaced by MBH and

MWH according to (3.19). As b(r±) is an involved expression (cfr [1]), we do not report it

here explicitly. Re-expressing then (MBH,MWH) by their off-shell Dirac observables gives the

off-shell expressions for (RBH,RWH).

4Note that also β = −1 is a solution to this problem as analytic computations con�rm and also can be seen in �gure 2

close to the axes. As this requires Planck size black hole and white hole masses and we expect effective polymer

models not to be valid for such small masses, we excluded this solutions in [1].

13
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3.2. Connection variables based models

As discussed also in the classical setting, in the LQG community connection variables are

mostly used. Different models were worked out by using different polymerisation schemes,

as discussed above. In what follows, we focus on a selection of previous models taken as

representatives of the different polymerisation schemes. We discuss how horizon and mass

Dirac observables can be constructed in these models as well as the subsequent restrictions on

the initial conditions.

3.2.1. (Generalised) μo-schemes. In this section we focus on the work of [22, 27] and the

notation therein. In contrast to them,we treat the polymerisation scales as purely constant at the

beginning. This is the starting point of the originalμo-schemes of [18, 19, 35, 40]. The effective

quantisations is achieved by replacing the connection variables (c, b) by the sin-function, i.e.

c �−→ sin (δcc)

δc
, b −→ sin (δbb)

δb
, (3.23)

where δc, δb are the polymerisation scales and should be thought of Planck size. Note that as c

scales with the �ducial cell (cfr (2.7)), the L o-independent physical polymerisation scales are

δb and L oδc, where L o is the physical size of the �ducial cell (cfr section 2). The effective

model is then described by the effective Hamiltonian (G = 1)

H = NTH, H = − sin(δbb)

2γ2 sign(pc)
√

|pc|δb

(

2
sin(δcc)

δc
pc+

(

sin(δbb)

δb
+

γ2δb
sin(δbb)

)

pb

)

≈ 0.

(3.24)

With the choice

NT =
γ sign(pc)

√

|pc|δb
sin(δbb)

,

the equations of motions are5

ḃ = −1

2

(

sin(δbb)

δb
+

γ2δb
sin(δbb)

)

, ċ = −2
sin(δcc)

δc
, (3.25)

ṗb =
pb

2
cos(δbb)

(

1− γ2δ2b
sin (δbb)2

)

, ṗc = 2pc cos(δcc). (3.26)

These equations are analytically solved by

c =
2

δc
tan−1

(

Ce−2T
)

, (3.27)

pc = D
(

C2e−2T
+ e2T

)

, (3.28)

b =
1

δb
cos−1

(

bo tanh

(

1

2
boT + A

))

, (3.29)

5The works of [22, 26–28] are not a μo-scheme as the polymerisation schemes depend on the phase space through

Dirac observables. However, as discussed in [43], the above equations of motion follow only for purely constant δb,
δc from the Hamiltonian (3.24).
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with bo =

√

1+ γ2δ2b and

pb = −2
sin(δcc)

δc

sin(δbb)

δb

pc
(

sin (δbb)
2

δ2
b

+ γ2

) , (3.30)

where we used the Hamiltonian constraint (3.24).6 As in the classical part, there are three

integration constants A,C,D, whereA simply induces a shift in the T coordinate7. Without loss

of generality, we can set A = 0. Note that, T ∈ [−Tmax, Tmax] with Tmax = 2 tanh−1(1/bo)/bo
describes the interior region.

We can relate the integration constantsC,D to the physical quantities of the black and white

hole horizon. The horizons are located at the point TBH/WH where gxx vanishes. As neither pc
nor sin(δcc)/δc become zero, the horizon condition is

gxx(TBH/WH) = 0 ⇔ pb(TBH/WH) = 0 ⇔ sin(δbb(TBH/WH)) = 0. (3.31)

This is the case at the boundaries of the T interval, namely at TBH/WH =

±Tmax = ±2 tanh−1(1/bo)/bo, where we call TBH = +Tmax the black hole horizon and

TWH = −Tmax the white hole horizon. The areal radii of the horizons are then given by

RBH =
√

|pc|
∣

∣

∣

T=TBH

=

√

D

(

C2

B2
o

+ B2
o

)

RWH =
√

|pc|
∣

∣

∣

T=TWH

=

√

D

(

C2B2
o +

1

B2
o

)

, (3.32)

with Bo = exp(2 tanh−1(1/bo)/bo). Inverting these equations gives the integration constants in
terms of the horizon radii

C2
=

R2
WHB

2
o −

R2
BH

B2o

R2
BHB

2
o −

R2
WH

B2o

, D =

R2
BHB

2
o −

R2
WH

B2o

B4
o − 1

B4o

. (3.33)

Note that C becomes imaginary for

R2
WHB

2
o −

R2
BH

B2o

R2
BHB

2
o −

R2
WH

B2o

< 0.

As long as RBH/WH remains real-valued and furthermore the metric is real-valued, this causes

no problems. It is also possible to prove that the metric, i.e. pc and pb are symmetric under the

exchange of RBH ↔ RWH (i.e C2 �→ 1/C2, D �→ DC2) and T �−→ −T.

6At this point the results are again the same for the μo and the generalised μo-scheme of [22, 26–28]. The subtle point

is that [22, 26–28] assume the equation of motions (3.25), (3.26) but they do not follow from the Hamiltonian (3.24)

(cfr [43]). Nonetheless, in [28] it is shown that there exists a constrained Hamiltonian system leading to (3.25), (3.26)

and H ≈ 0
7Rede�ning T ′

= T − 2A/bo absorbs A in a coordinate transformation which does not affect the physics.
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Solving the solutions for the integration constants C, D and expressing T as a function of c

from equation (3.27) gives phase-space expressions for them. Speci�cally, we have

pc sin (δcc) = 2CD, e−2T
=

tan
(

δcc
2

)

C
, (3.34)

and inserting this into equation (3.29) yields

C = tan

(

δcc

2

)(

bo + cos (δbb)

bo − cos (δbb)

) 2
bo

(3.35)

Rearranging these according to (3.32) gives the Dirac observables for the horizons

RBH =

[

pc sin(δcc)

2

(

tan
(

δcc
2

)

B2
o

(

bo + cos(δbb)

bo − cos(δbb)

) 2
bo

+
B2
o

tan
(

δcc
2

)

(

bo − cos(δbb)

bo + cos(δbb)

) 2
bo

)]

1
2

,

(3.36)

RWH =

[

pc sin(δcc)

2

(

B2
o tan

(

δcc

2

)(

bo + cos(δbb)

bo − cos(δbb)

) 2
bo

+
1

B2
o tan

(

δcc
2

)

(

bo − cos(δbb)

bo + cos(δbb)

) 2
bo

)]

1
2

. (3.37)

Note that we cannot simply take the limit δb, δc → 0. This will not give back the classical solu-

tions. The reason for this is that the equations ofmotion (3.25), (3.26) converge only point-wise

and not uniformly to the classical equations. As such integrating the equations and taking the

limit does not commute. Nonetheless, there is no problem as the solutions need to be well

approximated by the classical solutions at the horizons (or in general in the classical regime),

which is a different limit. The advantage of writing down these observables is the full control

over the integration constants and their physical content. Being Dirac observables, these quan-

tities are fully gauge independent and free of any coordinate choice. Furthermore, in contrast to

the classical situation, both observables are independent of �ducial cell structures, i.e. both of

them have physical meaning. Giving the Dirac observables speci�c values �xes all integration

constants and makes the solutions unique.

Furthermore, note that RBH/WH �= 2MBH/WH
8 opposite to what is stated in [22, 27, 28] (and

also other references as e.g. [24]). To really speak about the mass of the black hole, it is neces-

sary to construct the exterior spacetime and check the asymptotic behaviour. Only if the metric

is asymptotically a Schwarzschild spacetime, the black hole mass can be read off. As we saw

in section 3.1 (and [1]), the relation between black hole horizon radius and black hole mass can

be non-trivial. Of course, even if the asymptotic spacetime is not Schwarzschild, but asymp-

totically �at, in principle the ADM mass can be constructed. But also here a detailed analysis

8To be precise RBH/WH �= 2MBH/WH for MBH/WH the ADM mass. This is usually meant by talking about ‘the mass

of a black hole’ as the ADM mass is the gravitational mass experienced by a distant observer. What still hold true

by de�nition is RBH/WH = 2MMisner–Sharp(RBH/WH), where MMisner–Sharp(b) is the Misner–Sharp mass (cfr p 40 in [44]

and references therein or section 4), which is a quasi-local measure of energy enclosed in a sphere of areal radius b.

Depending on the asymptotic behaviour of the spacetime at spatial in�nity the Misner–Sharp mass (at in�nity) and

the AMD mass might be a priory completely different objects.
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of the exterior spacetime is necessary and the interpretation as black hole is a priori not guar-

anteed. In [22] this analysis of the exterior spacetime has not been performed. In [27, 28], the

exterior spacetime was analysed, but it is not asymptotically Schwarzschild as noted in [45].

Indeed, in [23] it has been studied which polymerisation and μo-scheme yields asymptotically

Schwarzschild spacetime as will be discussed in section 3.2.2.

In contrast to the classical case, also in these models, we have two physical quantities to �x

the two integration constants. Fixing the integration constants simply in coordinates to match

the classical metric at the black hole horizon transfers the classical non-physical ambiguity in

the effective quantum theory where it has physical effect. Concluding, in effective quantum

models the �xing of integration constants needs a careful analysis.

The most recent polymer black hole models based on the μo-solutions discussed in this

section are the generalised μo-models of [27, 28]. In these works the polymerisation scales are

related to full LQG parameters by means of quantum geometry arguments based on rewriting

the curvature in terms of the holonomies of the gravitational connection along suitably chosen

plaquettes enclosing the minimal area at the transition surface. This introduces a mass depen-

dence of the polymerisation scales. As in previous papers, although a detailed analysis of the

integration constants in terms of Dirac observables as it is presented here was not carried out,

a relation between black hole and white hole horizon was implicitly �xed (see below). In the

light of the above discussion, we see that actually there are two free input parameters, which

can be speci�ed at will. This gives an additional degree of freedom and we can study if the

plaquette argument can be satis�ed even with constant polymerisation scales. After a detailed

discussion which was given in [27], the mathematical requirement is

2πδcδb|pb|T = ∆, 4πδ2b|pc|T = ∆, (3.38)

where subscript T means evaluation at the transition surface and∆ is the area gap predicted by

the full theory of LQG. The spacelike transition surface is identi�ed by the time T = ln(C)/2
as ṗc(T ) = 0. Evaluating the solutions (3.27)–(3.30) at the transition surface, the conditions

(3.38) then give

8πCDδ2b
b2o

√

1− b2o tanh

(

1

4
bo ln(C)

)2

cosh

(

1

4
bo ln(C)

)2

= ∆, (3.39)

8πCDδ2b = ∆. (3.40)

These equations should be seen as conditions for δb and δc as C may also contain δc. We can

simplify the equations by dividing the �rst one by the second yielding

1

b2o

√

1− b2o tanh

(

1

4
bo ln(C)

)2

cosh

(

1

4
bo ln(C)

)2

= 1, (3.41)

which now is an equation for δb in terms of C only (recall that bo =

√

1+ γ2δ2b). The solution

is complicated and not necessarily unique. In any case, a solution gives δb as a function of C
only. This means that we have the possibility to obtain a horizon (mass) independent δb (as it
was initially assumed for a proper μo-scheme) only if C is independent of the horizons. For

RWH = αRBH, (3.42)

with α a dimensionless constant, equation (3.33) yields
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Figure 3. The colour scale encodes the value of the logarithm of the Kretschmann scalar
at the transition surface as a function of the black hole RBH and white hole horizon RWH

for Lo = 1, δb = 1, δc = 1 and γ = 0.2375 (cfr [46, 47]). Both axis are logarithmically.

C2
=

α2B2
o − 1

B2o

B2
o − α2

B2o

, D = R2
BH

B2
o − α2

B2o

B4
o − 1

B4o

, (3.43)

i.e. C is horizon independent9, while D goes as R2
BH. Although this yields a constant δb

according to (3.41), it is in con�ict with (3.40) as this gives

δ2b =
∆

8πCD
,

which can only be satis�ed if δb ∝ R−1
BH as D is horizon dependent. This is a contradiction and

shows that no solutions to the plaquette equations (3.39) and (3.40) with horizon independent

δb and δc exist. This further shows that if (3.39) and (3.40) are imposed, the polymerisation

can not be a pure μo-scheme and hence a construction as in [27] is necessary, which on the

other hand loses the connection to the initial Hamiltonian (3.24) (cfr [43]).

As an alternative strategy, we could follow the argument of [1] and �x the polymerisation

scales to be constant, but �x a relation between the horizons in such a way that the curvature

is bounded by a unique mass independent scale. For this, we report the Kretschmann scalar at

the transition surface as a function of RBH and RWH in �gure 3. To achieve a mass independent

upper bound for the curvature, the relation between the black hole andwhite hole horizon needs

to be a level line of �gure 3. As can be seen from the plot this, induces a maximal value for the

black hole and white hole horizon depending on which level line is picked.

As a last point, let us recall how the integration constants in the generalisedμo-schemes [22,

27, 28] are actually chosen. There, the integration constants are �xed directly by expressing

them in terms of only one free parameter m using an argument coming from the classical

solution. After rescaling T �→ T ′ = T + 2 tanh−1(1/bo)/bo of the solutions of [22, 27, 28] the

9Note that the condition ∂
∂RBH

C2(RWH(RBH),RBH) has only solutions of the form (3.42).
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Figure 4. Relation between RBH and RWH in [22] (CS) and [27, 28] (AOS). The
plots show equation (3.45) for δb =

√
∆/2m, δc =

√
∆/Lo for [22] and δb =

(√
∆/(

√
2πγ2 m)

)1/3
, δc =

(

γ∆2/(4π2m)
)1/3

/(2Lo) for [27, 28]. The parameters are

Lo = 1, δb = 1, δc = 1, ∆ = 1 and γ = 0.2375 (cfr [46, 47]).

integration constants are in the language used in the present paper given by

C = ∓γLoδc
8m

B2
o, D =

4m2

Bo
. (3.44)

Note that in these papers, it is claimed that 2m is the black hole horizon or in fact that m is the

black hole mass. As discussed above, this can only be justi�ed if there is an exterior metric

which is asymptotically Schwarzschild, which is not true in all three papers (cfr [45]). Also,

the horizons are �xed in both cases at the moment where C and D are �xed. They are given by

RBH = 2m

√

1+
δ2cγ

2L2o
64m2

, RWH = 2m

√

1

B4
o

+
δ2cγ

2L2oB
4
o

64m2
, (3.45)

which shows that 2m is the black hole horizon only up to quantum corrections. Note that RBH

and RWH are related to each other as there is only one free parameterm left. The only difference

between the approach of [22, 27, 28] is how the polymerisation scales δc and δb are chosen and
how they depend on the parameterm. This gives different behaviours RWH(RBH) (see �gure 4).

3.2.2. Modesto approach. Another similar but slightly different approach was presented

by Modesto [23, 48]. After doing a holonomy argument Modesto arrives at the effective

Hamiltonian constraint

H = NTH, H = − sin(σ(δ)δb)

2Gγ2 sign(pc)
√

|pc|δ

(

2
sin(δc)

δ
pc

+

(

sin(σ(δ)δb)

δ
+

γ2δ

sin(σ(δ)δb)

)

pb

)

≈ 0, (3.46)

with only one polymerisation scale δ and the function σ(δ), which is initially not speci-

�ed. The effective Hamiltonian is very similar to the one discussed in the previous section
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(cfr (3.24)), only the constant polymerisation scales have different forms. This leads to for-

mally similar equations. Due to this, we can follow the previous construction and �nd for

NT = (γ sign(pc)
√

|pc|δ)/ sin(σ(δ)δb)

ḃ = −1

2

(

sin(σ(δ)δb)

δ
+

γ2δ

sin(σ(δ)δb)

)

, ċ = −2
sin(δc)

δ
, (3.47)

ṗb =
pb

2
σ(δ) cos(δb)

(

1− γ2δ2

sin (σ(δ)δb)2

)

, ṗc = 2pc cos(δc), (3.48)

as equations of motion, which are solved by

c =
2

δ
tan−1

(

Ce−2T
)

, (3.49)

pc = D
(

C2e−2T
+ e2T

)

, (3.50)

b =
1

σ(δ)δ
cos−1

(

bo tanh

(

1

2
boσ(δ)T + A

))

, (3.51)

pb = −2
sin(δc)

δ

sin(σ(δ)δb)

δ

pc
(

sin (σ(δ)δb)2

δ2
+ γ2

) , (3.52)

with bo =
√

1+ γ2δ2. Obviously, as in the previous setting, there are three integration con-

stants A, C, D, where A is simply a shift in the T-coordinate which we can set to zero without

loss of generality. The two remaining integration constantsC,D can now be related to the black

and white hole horizon radius by

RBH =
√

|pc|
∣

∣

∣

T=TBH

=

√

D

(

C2

B2
o

+ B2
o

)

RWH =
√

|pc|
∣

∣

∣

T=TWH

=

√

D

(

C2B2
o +

1

B2
o

)

, (3.53)

where

pb(TBH/WH) = 0, TBH/WH = ±Tmax = ± 2

σ(δ)bo
tanh−1

(

1

bo

)

,

Bo = exp

(

2

σ(δ)bo
tanh−1

(

1

bo

))

.

Note that the de�nitions of Tmax, bo, Bo are different with respect to the previous section, but

the construction works exactly along the same steps.

As discussed in [23], we can reconstruct the metric coef�cients ā and � via (2.5), leading to

ā = − 16C2 D
(

1− b2o tanh
2
(

1
2
boTσ(δ)

))

L2o
(

C2e−2T + e2T
) (

b2o tanh
2
(

1
2
boTσ(δ)

)

− δ2γ2 − 1
)2 , (3.54)

� =

√

D
(

C2e−2T + e2T
)

, (3.55)

N2
T =

δ2γ2
(

D
(

C2e−2T + e2T
))

1 − b2o tanh
2
(

1
2
boTσ(δ)

) . (3.56)
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These expressions are extendible beyond TBH/WH, thus providing us with the exterior solution

as the analytic extension of the interior metric. As such, we can study the asymptotic regions

T →±∞, �→∞. In the T →∞ limit, we �nd

�+ := �(T →+∞) ≃
√
DeT ,

and

tanh2
(

boσ(δ)

2
T

)

=

(

eboσ(δ)T − 1

eboσ(δ)T + 1

)2

≃
(

1− 2e−boσ(δ)T
)2 ≃ 1− 4

(

�+√
D

)−boσ(δ)
.

Asymptotically, the metric is then described by

ds2+ ≃ −N2
T dT

2 − ā dx2 + �
2
+ dΩ2

2 (3.57)

with

N2
T ≃ − δ2γ2

�
2
+

δ2γ2 − 4b2o

(

�+√
D

)−boσ(δ) , (3.58)

ā ≃ C2D2−boσ(δ)γ2δ2

L2ob
4
o

(

�
2boσ(δ)−2
+ − 4b2oD

boσ(δ)
2

δ2γ2

1

�
2−boσ(δ)
+

)

. (3.59)

From this expression, we conclude that the only possibility for asymptotically Minkowski

spacetime is

σ(δ) =
1

bo
=

1
√

1+ γ2δ2
, (3.60)

which is exactly the result of [23]. Changing the coordinates according to T �→ �+ =
√
DeT

and x �→ τ := 2C
√
Dγδ/(Lob

2
o)x gives the asymptotic line element

ds2+ ≃ −
(

1− 4b2o
√
D

δ2γ2�+

)

dτ 2 +
1

1− 4b2o
√
D

γ2δ2�+

d�2
+ + �

2
+ dΩ2

2, (3.61)

which is a Schwarzschild metric with mass

MBH =
2b2o

√
D

γ2δ2
. (3.62)

Note that the choice (3.60) was crucial here to identify the mass. The (ADM) mass is only

asymptotically de�ned and hence it is crucial to have the right asymptotic behaviour. Again,

as discussed in the previous section, having only the interior metric as in [22] or not asymp-

totic Schwarzschild spacetime as in [27, 28] different possibly inequivalent notions of mass

do appear and what is meant by ‘black hole mass’ needs to be speci�ed. In this approach, on

the other hand, the exterior metric exists and the corresponding spacetime is asymptotically

isometric to the Schwarzschild solution, henceMBH is a well-de�ned quantity.
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We can repeat the last steps for the other asymptotic region, i.e. T →−∞, yielding

�− :=�(T →−∞) ≃
√
DCe−T ,

and

tanh2
(

boσ(δ)

2
T

)

=

(

eboσ(δ)T − 1

eboσ(δ)T + 1

)2

≃
(

−1+ 2eboσ(δ)T
)2 ≃ 1− 4

(

�−√
DC

)−boσ(δ)
.

Asymptotically we �nd then

N2
T ≃ − δ2γ2

�
2
−

δ2γ2 − 4b2o

(

�−√
DC

)−boσ(δ) , (3.63)

ā ≃ C2−2boσ(δ)D2−boσ(δ)γ2δ2

L2ob
4
o

(

�
2boσ(δ)−2
− − 4b2o(DC

2)
boσ(δ)

2

δ2γ2

1

�
2−boσ(δ)
−

)

. (3.64)

Consistently with the other asymptotic region, for equation (3.60) being satis�ed, the

spacetime becomes asymptotically Schwarzschild spacetime. Changing the coordinates to

T �→ �− =
√
DCe−T and x �→ τ :=

√
Dγδ/(Lob

2
o)x gives the asymptotic metric

ds2− ≃ −
(

1− 4b2o
√
DC

δ2γ2�−

)

dτ 2 +
1

1− 4b2o
√
DC

γ2δ2�−

d�2
− + �

2
− dΩ2

2, (3.65)

which is a Schwarzschild spacetime of mass

MWH =
2b2o

√
DC

δ2γ2
. (3.66)

Note that, as in the previous section, in the limit δ → 0 the solutions (3.49)–(3.52) do not

reduce to the classical result. As discussed before, this is on the one hand due to possible

hidden δ in the integration constants C and D as well as the non-uniform convergence of the

equations of motion to the classical ones. Nevertheless, the relevant requirement is quantum

effects to be negligible in the ‘classical regime’. This is the case in the region far away from the

transition surface, where the spacetime geometry is well approximated by the classical solution

asymptotically. As the exterior metric exists in this case, we can check this explicitly and �nd

the consistency condition (3.60). Although δ still appears in the approximate spacetime (3.61),

(3.65), it is classical as it should.

Mass Dirac observables can be constructed by inverting the solutions (3.49)–(3.52) for the

integration constants and replacing the resulting expressions in (3.62) and (3.66). To this aim,

let us �rst invert equation (3.49) to get

e−2T
=

tan
(

δc
2

)

C
. (3.67)

Inserting then equation (3.67) into equation (3.51) gives (with (3.60))

cos

(

δb

bo

)

= bo
1− e−T

1+ e−T
= bo

1−
√

tan(δc)
C

1+

√

tan(δc)
C

,

which solving for C yields
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C = tan

(

δc

2

)

⎛

⎝

bo + cos
(

δb
bo

)

bo − cos
(

δb
bo

)

⎞

⎠

2

. (3.68)

By noticing that

pc sin (δc) = 2CD, (3.69)

the phase space expression forD can be easily constructed from the above result forC. Nowwe

have phase space expressions for the integration constantsC,D, which we can use to construct

the phase space functions for the masses

MBH =
2b2o
γ2δ2

√
pc cos

(

δc

2

)

⎛

⎝

bo − cos
(

δb
bo

)

bo + cos
(

δb
bo

)

⎞

⎠ , (3.70)

MWH =
2b2o
γ2δ2

√
pc sin

(

δc

2

)

⎛

⎝

bo + cos
(

δb
bo

)

bo − cos
(

δb
bo

)

⎞

⎠ . (3.71)

Again, we see that the masses are in principle independent from each other and the integra-

tion constants can be �xed by �xing the physically relevant black hole and white hole masses

instead. In a similar way we could now also compute the Dirac observables corresponding to

the horizon. This leads to similar expressions as those of equations (3.36) and (3.37).

Let us compare with the original paper [23]. There, the polymerised equations are solved

and the integration constants are �xed (see equation (20) in [23]10) by

C = ∓γδp0b
8m

P(δ)−
2

σ(δ)δ , D = ±4m2P(δ)
2

σ(δ)δ ,

where m is claimed to be the Schwarzschild mass, p0b is not �xed, P(δ) = bo−1
bo+1

and we per-

formed a coordinate transformation T ′ = T − ln(2m)− ln(P(δ))/σ(δ)bo as A is not chosen to

be zero in [23]. We further notice that Bo = P(δ)−
1

σ(δ)bo . In [23] the condition σ(δ)bo = 1 is

chosen to ensure asymptotic �atness, which also simpli�es the computations. We can now

compute the black and white hole horizons as

RBH = 2m

√

1+

(

γδp0b
8m

)2

, RWH = 2m

√

P(δ)4 +

(

γδp0b
8mP(δ)2

)2

, (3.72)

and similarly the masses

MBH = 4m
b2oP(δ)

γ2δ2
, MWH = MBH

γδp0b
8mP(δ)2

=
b2op

0
b

2γδP(δ)
, (3.73)

fromwhichwe see thatm is not the Schwarzschildmass of the black hole and only proportional

to it. Furthermore, the not yet �xed integration constant p0b controls the white hole massMWH.

In [23], a minimal area argument motivated by full LQG is used to �x

p0b =
∆

4πδγm
,

10Equation (17) in arXiv:0811.2196 [gr-qc].
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Figure 5. The colour scale encodes the value of the logarithm of the Kretschmann scalar
at the transition surface as a function of the black hole MBH and white hole mass MWH

for δ = 1 and γ = 0.2375 (cfr [46, 47]). The black dashed line corresponds to MWH ∝
1/MBH. Both axis are logarithmically.

where∆ is the area gap in LQG. This relates the two masses as

MWH =
∆b4o

2πγ4δ4
1

MBH

. (3.74)

This strategy is similar to what was done in [1] as the quantum argument selects the initial

data. We could further ask if there is a relation between the two masses, which satis�es the

transition surface plaquette argument of [27, 28] or the maximal curvature argument of [1].

Studying the Kretschmann scalar at the transition surface in terms of the black hole and

white holemass leads to �gure 5. If wewant to impose the conditionof a unique upper curvature

scale we have to �x a relation between MBH and MWH. As the plot shows, this is exactly true

for the relation (3.74).

3.3. Other approaches

At this point, it shall be noted that there are numerous other approaches, which have not been

discussed here. For instance, we did not discuss any μ̄-schemes [24, 25] (see also [41, 42] for

the cosmological Kantowski–Sachs setting). As the results in these approaches are mainly of

numerical nature, it is much harder to analyse the Dirac observables of the system. Interesting

to point out is the work [24], where the authorsmention a dependence of the white hole horizon

from the initial value p0b. A detailed analysis of this dependence was not performed, but it was

already noticed that in principle RWH can be tuned by changing p0b even if RBH is �xed.

Other approaches as [30] include considerations about the anomaly-freedom of the hyper-

surface deformation algebra, i.e. polymerisation functions which are not necessarily the sin-

function. In the work [30], Dirac observables are not discussed, although their �xing of inte-

gration constants is consistent with the above discussions and furthermore one of them is

redundant similar to the classical setting.

A discussion of integration constants and Dirac observables in further approaches to non-

singular black holes as e.g. limiting curvature mimetic gravity [49] or other approaches not
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mentioned here is shifted elsewhere. It is important to stress that �xing the integration con-

stants is a subtle point. In many approaches, they are �xed in a chart w.r.t. certain coordinates

by means of asymptotic behaviour. This works in the classical setting where only one Dirac

observable contains physical information and the other one is redundant. In the effective quan-

tum theory, this is a priori not guaranteed and the situation changes, as discussed above. Fixing

the integration constants in a given chart and demanding classicality might lead to the missing

of the second, now not redundant, Dirac observable. Hence, we want to stress the necessity of

a detailed analysis of the integration constants, which is an important issue in many polymer

models and also other approaches as e.g. [49] and continuously upcoming models as e.g. [37].

In the next section we present a polymer model which satis�es the condition on a unique

upper bound of the Kretschmann curvaturewithout superselecting certain integration constants

and a further class of models where only one physical Dirac observable exits.

4. New variables for polymer black holes: curvature variables

Let us now come back to the model previously proposed by the authors in [1]. As discussed

in section 3.1, the selection of speci�c relations between black hole and white hole masses

was necessary to ensure a unique mass independent curvature upper bound in the effective

quantum theory. The heart of the problem is rooted in the fact thatP1 is not exactly proportional

to (the square root of) the Kretschmann scalar unless the integration constant entering the

proportionality factor is selected to be independentof themass. Thus, the canonicalmomentum

P1 comes to be proportional to the Kretschmann scalar only after restricting to a certain subset

of initial conditions.

A possible way out might be to introduce new canonical variables in which one of the

momenta is exactly the square root of the Kretschmann scalar. To this aim, let us look at the

expression of the Kretschmann scalar in (v1,P1, v2,P2)-variables
11:

K(v1,P1, v2,P2) = 12

(

3

2
v1

) 2
3

P2
1P

2
2. (4.1)

Let us then introduce the following new variables

vk =

(

3

2
v1

) 2
3 1

P2

, v j = v2 −
3v1P1

2P2

, k =

(

3

2
v1

) 1
3

P1P2, j = P2. (4.2)

As can be easily checked by direct computation, the map (v1, v2,P1,P2) �→ (vk, v j, k, j) de�ned
by (4.2) is a canonical transformation, i.e. the variables (4.2) satisfy the following canonical

Poisson brackets

{vk, k} = 1, {v j, j} = 1

{k, j} = {vk, v j} = {k, v j} = { j, vk} = 0.
(4.3)

11This can be obtained as follows. Starting from metric variables (a, pa,�, p�), the Kretschmann scalar K =

RμναβR
μναβ can be explicitly computed as a function of the metric coef�cients a,� and their �rst and second r-

derivatives, namely K = K(a, a′, a′′,�,�
′
,�

′′
). Using then the expressions of a′,�

′
and a′′,�

′′
as functions respec-

tively of P1,P2 and P
′
1,P

′
2 given by the equations of motion together with the de�nitions of v1 and v2 in terms of a, b

(i.e. v1 =
2
3
�

3
and v2 = 2a�

2
) and the Hamiltonian constraint, the Kretschmann scalar can be expressed in terms of

the variables (v1,P1, v2,P2) as in (4.1).
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Note that the canonical momentum k conjugate to vk is in fact the square root of the

Kretschmann scalar (4.1) up to a numerical factor12. From an off-shell point of view, let us

notice that

k
H≈0≈ Rμναβǫ

μνǫαβ = b

(

1− b′2

N

)

=
2MMisnerSharp(�)

�
3 , (4.4)

where ǫμν = gμαgνβǫαβ with ǫαβ dx
α ∧ dxβ = �

2 sin θ dθ ∧ dφ is the volume two-form of the

r, t = const two-sphere and MMisner–Sharp is the Misner–Sharp mass (see e.g. p 40 in [44] and

references therein). MMisnerSharp(�) measures the gravitational mass enclosed in the constant

t-sphere of areal radius �. This provides us with an off-shell interpretation for the variable

k which is then related to the Riemann curvature tensor via equation (4.4). Consistently, the

above interpretation of k as proportional to the square root of the Kretschmann scalar is recov-

ered on-shell from equation (4.4). As the momentum j = P2 is not modi�ed by the canonical

transformation (4.2), its on-shell interpretation in terms of the angular components of the

extrinsic curvature still holds [1]. Thus, we have now a new set of canonical variables whose

canonical momenta are directly related to the Kretschmann scalar and the extrinsic curvature,

respectively. As we will discuss in the following, a polymerisation scheme based on these

variables turns out to be well suited for achieving a unique curvature upper bound at which

quantum effects become dominant without any further restriction on the initial conditions for

the effective dynamics of the model.

4.1. Classical theory

Let us then rewrite the Hamiltonian constraint (3.4) in the new variables. Inverting the relations

(4.2) to express (v1,P1, v2,P2) in terms of (vk, k, v j, j), we have

Hcl =
√
nHcl, Hcl = 3vkk j+ v j j

2 − 2 ≈ 0. (4.5)

Note that the remarkably simple structure (functional dependence) of the Hamiltonian con-

straint remains exactly the same in the new canonical variables (compare equations (4.5) and

(3.4)). The corresponding equations of motion are given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v′k = 3
√
nvk j

v′j = 3
√
nvkk + 2

√
nv j j

j′ = −
√
n j2

k′ = −3
√
nk j

. (4.6)

According to the transformation properties of the variables (v1,P1, v2,P2) under �ducial cell

rescaling Lo �→ αLo (cfr [1])

v1 �−→ v1, P1 �−→ αP1, v2 �−→ α2v2, P2 �−→ α−1P2, (4.7)

12This was actually our starting point for the introduction of the new variables. Requiring that one of the momenta

(k) is directly proportional to the Kretschmann scalar and keeping the other momentum unchanged ( j = P2), the

corresponding canonical con�guration variables can be determined via the generating function approach. In principle,

we could have considered a transformation affecting also the canonical momentum P2. Let us remark that P2 is well

suited for the model as its polymerisation is sensitive to small volume corrections (∼ 1/b). No better choice for the

second momentum with a clear on-shell interpretation is known so far, so we focussed on the simplest choice j = P2.

Moreover, this choice keeps the simple form of the Hamiltonian unchanged and hence the corresponding quantum

theory can still be analytically solved along the same steps of [1].
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the variables (4.2) transform as

vk �−→ αvk, k �−→ k, v j �−→ α2v j, j �−→ α−1 j, (4.8)

i.e. as expected, the product of the con�guration variables and their canonically conjugate

momenta (and hence their Poisson bracket) is a density weight 1 object in t-direction, and the

equations of motion are invariant under rescaling of the �ducial cell. Physical quantities can

thus only depend on the combinations vk/Lo, k, v j/L
2
o, Lo j in t-chart or the coordinate indepen-

dent quantities vk/L o, k, v j/L
2
o,L o j. Note that k does not depend on any �ducial structure

compatible with its interpretation as a spacetime curvature scalar.

As in the new variables the Hamiltonian and hence the corresponding equations of motion

have the same form as in the previous variables, the solution strategy is the same as in [1] (see

also section 3.1) thus yielding the solutions

j(r) =
1√
nr

, (4.9)

k(r) =
C

r3
, (4.10)

vk(r) = Dr3, (4.11)

v j(r) = nr2
(

2− 3CD√
nr

)

, (4.12)

where
√
n = const = L o, and only two of the four integration constants are left as the one

encoding a shift in the r-coordinate has been set to zero and we get rid off the other one by

using theHamiltonian constraint. The two remaining integration constantsC andD can be �xed

in a gauge invariant way by means of Dirac observables. As already discussed in section 2, in

the classical case, there is only one �ducial cell independent Dirac observable which on-shell

can be identi�ed with the horizon radius and hence it is uniquely speci�ed by the black hole

mass. In the new variables it reads (cfr equation (2.15))

2MBH = RBH = k(vk j)
3
2 , (4.13)

whose on-shell expression yields

2MBH = RBH = C

(

D√
n

) 3
2

. (4.14)

Therefore, specifying the mass of the black hole provides us with one condition for a combi-

nation of both the integration constants C and D. The metric coef�cients can then be written

as

�(r) =
√

vk j =

√

D√
n
r, (4.15)

a(r) =
jv j + kvk
2vk j2

=
n
√
n

D

(

1− CD√
nr

)

, (4.16)

which can be recast into a coordinate independent form by expressing a in terms of � as

a(�) =
L

3
o

D

(

1−
(

D

L o

) 3
2 C

�

)

=
L

3
o

D

(

1− 2MBH

�

)

, (4.17)
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where we used
√
n = L o. For N(�) =

(

1− 2MBH
�

)−1
, i.e. B2 = Na − n = 0, the line element

then reads

ds2 = −L
3
o

DL2o

(

1− 2MBH

�

)

dt2 +
D

L o

(

1− 2MBH
�

) dr2 +
D

L o

r2 dΩ2
2, (4.18)

so that, by means of the coordinate rede�nition13 t �→ τ =

√

L
3
o

DL2o
t and r �→ � =

√

D
L o

r, the

classical Schwarzschild solution

ds2 = −
(

1− 2MBH

�

)

dτ 2 +

(

1− 2MBH

�

)−1

d�2
+ �

2 dΩ2
2 (4.19)

is recovered. This also provides us with an on-shell interpretation for the canonical momenta.

Indeed, substituting the above expressions for the metric coef�cients into the de�nitions of k

and j, we get

k(�) =

(

D

L o

) 3
2 C

�
3

(4.14)
=

2MBH

�
3 , L o j(�) =

(

D

L o

) 1
2 1

�
(4.20)

fromwhichwe see that the on-shell value of k is related to (the square root of) the Kretschmann

scalar byK = 12k2, while L o j is related to the angular components of the extrinsic curvature
1
�
=

√
N(�)Kθ

θ =
√
N(�)K

φ
φ . Therefore, as discussed in the next section, the polymerisation

of the model would involve two scales controlling the onset of quantum effects which can be

distinguished into Planck curvature quantum effects (k-sector) and small area quantum effects

( j-sector), respectively.

4.2. Effective polymer model

As in the previousmodels, effective quantum effects obtained by classical polymerisationwith

the sin-function, i.e.

k �−→ sin(λkk)

λk
, (4.21)

j �−→ sin(λ j j)

λ j

, (4.22)

where we keep λ j and λk constant. As we will discuss later in section 6, this polymerisation

choice does not correspond to a μo-scheme in connection variables as the polymerisation scales

turn out to be phase space dependent in those variables. The classical behaviour is recovered

in the λkk ≪ 1, λ j j≪ 1 regime for which we have sin(λkk)/λk ≃ k and sin(λ j j)/λ j ≃ j. On

the other hand, as k is related to the square root of the Kretschmann scalar, the polymerisation

(4.21) leads to corrections in the Planck curvature regime. Moreover, as we will discuss in

the next section, the fact that k is directly proportional to the Kretschmann scalar with no pre-

factors involving the integration constants (cfr equation (4.20)) allows us to achieve a universal

mass-independent curvature upper bound with purely constant polymerisation scales for all

initial conditions. In turn, according to the on-shell interpretation of j (cfr second equation

13As expected from the discussion of section 2, coherently with having only one �ducial cell independent Dirac

observable, in the classical theory we can get rid off one integration constant by absorbing it into a coordinate

rede�nition.
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in (4.20)), the polymerisation (4.22) will give corrections in the regime in which the angular

components of the extrinsic curvature become large. As expected from the 1/� factor in (4.20),

this is the case for small radii of the r, t = const two-sphere which allows us to interpret the

polymerisation of the j-sector as giving small length quantum effects.

The above interpretation is compatible with dimensional considerations. Indeed, according

to the behaviour (4.8) of j and k under �ducial cell rescaling L o �→ αL o, the polymerisation

scales λk and λ j have to transform accordingly as

λk �−→ λk, λ j �−→ αλ j (4.23)

so that the scale invariant physical quantities are respectively given byλk andλ j/L o. Recalling

then the de�nitions (4.2), k and j have dimensions

[k] = [�P1P2] = L−2, [ j] = [P2] = L−2, (4.24)

where L denotes the dimension of length. Therefore, due to the products λkk and λ j j being

dimensionless, the physical scales have the following dimensions

[λk] =

[

1

k

]

= L2,

[

λ j

L o

]

=

[

1

L o j

]

= L (4.25)

which are compatible with them controlling Planck curvature and Planck length quantum

corrections, respectively.

The polymerised effective Hamiltonian then reads as

Heff =
√
nHeff, Heff = 3vk

sin(λkk)

λk

sin(λ j j)

λ j

+ v j
sin2(λ j j)

λ2
j

− 2 ≈ 0, (4.26)

and the corresponding equations of motion are given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v′k = 3
√
nvk cos(λkk)

sin(λ j j)

λ j

v′j = 3
√
nvk

sin(λkk)

λk
cos(λ j j)+ 2v j

√
n
sin(λ j j)

λ j

cos(λ j j)

k′ = −3
√
n
sin(λkk)

λk

sin(λ j j)

λ j

j′ = −
√
n
sin2(λ j j)

λ2
j

. (4.27)

Note that the equations of motion for the effective dynamics in the new variables have the same

form of the ones in (v1,P1, v2,P2)-variables with the replacements v1 ↔ vk, v2 ↔ v j, P1 ↔ k,

and P2 ↔ j (cfr equations (3.5)–(3.8) in [1]). Therefore, the solutions will have the same form

given by (cfr equations (3.26)–(3.29) in [1])

vk(r) =
2DC2λ2

k

√
n
3

λ3
j

λ6
j

16C2λ2
k
n3

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)6

+ 1

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)3 , (4.28)
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v j(r) = 2n

(

λ j√
n

)2
(

1+
nr2

λ2
j

)

⎛

⎜

⎜

⎝

1− 3CD

2λ j

1
√

1+ nr2

λ2
j

⎞

⎟

⎟

⎠

, (4.29)

k(r) =
2

λk
cot−1

⎛

⎝

λ3
j

4Cλk
√
n
3

(√
nr

λ j

+

√

1+
nr2

λ2
j

)3
⎞

⎠ , (4.30)

j(r) =
1

λ j

cot−1

(√
nr

λ j

)

+
π

λ j

θ

(

−
√
nr

λ j

)

, (4.31)

where C, D are the integration constants which, according to the scaling behaviours (4.23),

transform as C �→ C and D �→ αD under a �ducial cell rescaling, and we use the same gauge√
n = const = L o as in the classical case.

Given the solutions of the effective dynamics, we can now reconstruct the metric compo-

nents a and � as phase space functions by means of analogous relations to equations (4.15),

(4.16) with polymerised momenta14. Speci�cally, we get

�
2(r) = vk(r)

sin(λ j j(r))

λ j

=
2DC2λ2

k

√
n
3

λ4
j

1
√

1+ nr2

λ2
j

λ6
j

16C2λ2
k
n3

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)6

+ 1

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)3 ,

(4.32)

a(r) =
1

2vk(r)

λ2
j

sin2(λ j j(r))

(

v j(r)
sin(λ j j(r))

λ j

+ vk(r)
sin(λkk(r))

λk

)

=
λ6
j

2DC2λ2
k

√
n
3

(

1+
nr2

λ2
j

) 3
2

⎛

⎜

⎜

⎝

1− CD

λ j

√

1+ nr2

λ2
j

⎞

⎟

⎟

⎠

×

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)3

λ6
j

16C2λ2
k
n3

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)6

+ 1

, (4.33)

and the line element reads

ds2 = −a(r)

L2o
dt2 +

L
2
o

a(r)
dr2 + �

2(r)
(

dθ2 + sin2 θ dφ2
)

, (4.34)

14 For this, we use the same polymerisation as we used in the Hamiltonian (4.26) as this is the most natural and a con-

sistent choice. Nevertheless, there might be room for arguments to choose different polymerisations at this point. One

consequence of this choice is the fact that {a, b} = O(λ2
j )+O(λ2

k), in contrast to {a, b} = 0, classically. Although not

reported here, there exist other possible polymerisation choices, which preserve the classical Poisson-commutativity.
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where, as stated before,
√
n= L o and we used the expression of the metric coef�cient ā =

a/L2o. Note that all solutions (4.28)–(4.31) as well as the metric coef�cients (4.32) and (4.33)

are smoothly well-de�ned in the whole r domain r ∈ (−∞,+∞), which describes both the

interior and exterior regions.

As already discussed throughout the paper, the remaining integration constants (C and D)

in the solutions of the effective dynamics can be �xed in a gauge independent way by means

of Dirac observables. The latter can be determined as follows. First, we consider the effective

quantum corrected metric in the two asymptotic regions r→±∞, express the metric coef�-

cient a in terms of the areal radius �, and rescale the coordinates so that Schwarzschild solution

is recovered asymptotically. This allows us to read off the corresponding on-shell expression

for the �ducial cell independent mass Dirac observables by looking at the metric coef�cients

in the two asymptotic regions. These on-shell quantities will of course depend only on the

two integration constants and on the polymerisation scales. Finally, the off-shell expressions

of the Dirac observables can be determined by solving the solutions of the effective dynamics

in terms of the integration constants.

In the r→+∞ limit, the metric coef�cients in equations (4.32) and (4.33) then yield

�
2
+ := �

2(r→+∞) =
D√
n
r2, a+ := a(r→+∞) =

n
√
n

D

(

1− CD√
nr

)

(4.35)

from which it follows that

a(�(r→+∞)) =
n
√
n

D

(

1−
(

D√
n

) 3
2 C

�

)

. (4.36)

Thus, similarly to the classical case, by means of the coordinates rescaling r �→ � =

√

D
L o

r

and t �→ τ =

√

L
3
o

DL2o
t for

√
n = L o the metric (4.34) reduces to the classical Schwarzschild

solution in the �(r→+∞) asymptotic region. Hence, the on-shell expression for the black

hole mass Dirac observables is given by

2MBH = C

(

D√
n

) 3
2

. (4.37)

On the other hand, in the limit r→−∞, we have

�
2
− :=�

2(r→−∞) =
16DC2λ2

k√
n

(√
n

λ j

)6

|r|2, (4.38)

a− := a(r→−∞) =
n
√
n

16DC2λ2
k

(

λ j√
n

)6 (

1− CD√
n|r|

)

, (4.39)

from which it follows that

a(�(r→−∞)) =
n
√
n

16DC2λ2
k

(

λ j√
n

)6
(

1− 4nDC2λk
λ3
j

√

D√
n

1

�

)

. (4.40)
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By means of the coordinate rescaling r �→ � = 4Cλk

(

L o
λ j

)3√
D

L o
(−r) and t �→ τ =

√

L
3
o

DL2o

λ3
j

4CλkL
3
o

t for
√
n = L o, the metric (4.34) reduces to the classical Schwarzschild solu-

tion in the �(r→−∞) asymptotic region. The on-shell expression for the white hole mass

Dirac observable is thus given by

2MWH =
4λkC

2
√
n
3

λ3
j

(

D√
n

) 3
2

= 8Cλk

(√
n

λ j

)3

MBH. (4.41)

Therefore, the two asymptotic regions �(r→±∞) are described by Schwarzschild space-

times with asymptotic masses MBH and MWH, respectively. Specifying these two quantities

completely determines the two integration constants as can be seen by inverting the relations

(4.37) and (4.41), namely

C =
λ3
j

4λk
√
n
3

MWH

MBH

, D =
√
n

(

8λk
√
n
3

λ3
j

M2
BH

MWH

) 2
3

. (4.42)

Using then the solutions (4.28)–(4.31) of the effective dynamics to determine the expressions

of C and D in terms of the phase space variables, and substituting them into equations (4.37)

and (4.41) yields the following off-shell expressions for the Dirac observables

2MBH =
sin(λkk)

λk
cos

(

λkk

2

)

⎛

⎝

2vk

λ j cot
(

λ j j

2

)

⎞

⎠

3
2

, (4.43)

2MWH =
sin(λkk)

λk
sin

(

λkk

2

)(

2vk
λ j

cot

(

λ j j

2

)) 3
2

, (4.44)

which are �ducial cell independent as can be easily checked by means of the transformation

behaviours (4.8) and (4.23) under �ducial cell rescalings. Moreover, in the limit λ j,λk → 0,

MBH reduces to the classical Dirac observable (4.13) while MWH is not well-de�ned in this

limit coherently with it not being present at the classical level where there is only one �ducial

cell independent Dirac observable identi�ed on-shell with the black hole mass.

As before, the physical phase space is two-dimensional. The kinematical phase space has

dimension four, and the �rst class Hamiltonian constraint removes two degrees of freedom.

The solution space, i.e. the physical phase space can then be parametrised by the observables

MBH and MWH (or equivalently C and D), which provide a global set of coordinates. The

same holds true for all previously discussed models. In this respect, we notice that the above

mass observables have non-trivial Poisson brackets, i.e.

{MBH,MWH} =
3

2λ j

(

λkM2
BHM2

WH

)
1
3 . (4.45)

Therefore, M1/3
BH and M1/3

WH are canonically conjugate (up to a constant factor that can be

reabsorbed) as

{

M
1
3
BH,M

1
3
WH

}

=
λ

1
3
k

6λ j

. (4.46)
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Having the relation of the integration constants C, D to the two masses we can rewrite the

metric as

ds2 = −a(x)

λ2
j

dτ 2 +
λ2
j

a(x)
dx2 + �(x)2 dΩ2

2, (4.47)

where we rescaled the coordinates x = L or/λ j, τ = λ jt/Lo and

�
2(x) =

1

2

(

λk
MBHMWH

) 2
3 1√

1+ x2

M2
BH

(

x +
√
1+ x2

)6

+M2
WH

(

x +
√
1+ x2

)3 , (4.48)

a(x)

λ2
j

= 2

(

MBHMWH

λk

) 2
3

(

1−
(

MBHMWH

λk

) 1
3 1√

1+ x2

)
(

1+ x2
) 3

2

(

x +
√
1+ x2

)3

M2
BH

(

x +
√
1+ x2

)6

+M2
WH

.

(4.49)

Note that in the �nal line element λ j does not appear any more and hence its precise value

can not have any physical meaning. Consistently, it will not appear in later computation in any

physical expressions.

As in [1], we can check what happens with initial conditions given in the black hole asymp-

totic region evolved to the white hole asymptotic region. At a given value of � on the black hole

side, which is considered large and in the classical regime, initial conditions can be speci�ed

by

v j(�), vk(�), k(�) ≃ 0, j(�) ≃ 0, (4.50)

and a speci�c value of MBH and MWH. Following the spacetime evolution towards the white

hole classical regime up to the same value of � gives

v j �→ v j, vk �→ vk, k �→ π

λk
− k, j �→ π

λ j

− j. (4.51)

This furthermore transforms the Dirac observables for the masses according to

2MBH �−→ 2MWH, 2MWH �−→ 2MBH. (4.52)

An observer starting at the black hole side who speci�ed a value forMBH andMWH travelling

on to the white hole side would observe that his MBH coincides with the value of MWH of an

observer living on the white hole side and vice versa.

4.3. Onset of quantum effects

In the classical regime, the polymerisation functions (sin functions) can be approximated by

their arguments. By looking at the solution (4.30) for k(r) for positive and large r, we see that

the approximation sin(λkk) ≃ λkk and sin(λ j j) ≃ λ j j holds true for

L or

λ j

≫ 1,
2r3

Cλk
≫ 1 (4.53)
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or equivalently, using then equation (4.35) for the areal radius �+ in the r→+∞ limit, the

classical regime for positive and large r is given by the coordinate-free conditions

L o

λ j

√

L o

D
�+ ≫ 1,

2

Cλk

(

L o

D

) 3
2

�
3
+ ≫ 1. (4.54)

In particular, recalling the on-shell expression for the black hole mass Dirac observable (4.37),

we �nd that the classical regime corresponds to

�+ ≫
(

8λk
(MBH)

2

MWH

)

1
3

,
MBH

�
3
+

≪ 1

λk
. (4.55)

Of special interest is the second condition, which rewritten in terms of the classical

Kretschmann scalar of the black hole side gives

KBH
cl =

48M2
BH

�
6
+

≪ 48

λ2
k

, (4.56)

thus providing us with a unique mass independent scale of onset of curvature effects without

restricting any integration constants (as it was needed in [1] or [23]).

Similarly, for large and negative r, the asymptotic classical Schwarzschild spacetime is

reached for

L o|r|
λ j

≫ 1,
32CλkL

6
o|r|3

λ6
j

≫ 1. (4.57)

Using then the expressions (4.38) for �− and (4.41) for the on-shell white hole mass Dirac

observable, we get that the classical regime in the negative r branch is given by

�− ≫
(

8λk
M2

BH

MWH

)
1
3 MWH

MBH

=

(

8λk
M2

WH

MBH

)
1
3

,
MWH

�
3
−

≪ 1

λk
. (4.58)

Again, the second equation re-expressed in terms of the classical Kretschmann scalar of the

white hole side gives

KWH
cl =

48M2
WH

�
6
−

≪ 48

λ2
k

, (4.59)

which also on the white hole side de�nes a unique curvature scale at which quantum effects

become relevant. Therefore, according to the second expressions in equations (4.55) and (4.58),

the polymerisation scale λk is related to the inverse Planck curvature and quantum effects

become negligible in the low curvature regime. On the other hand, we interpret the �rst

conditions in equations (4.55) and (4.58) as small volume effects.

We can now check whether there is a possibility that the quantum effects reach the horizons.

As discussed below, for large masses the horizons are approximately located at �+ ≃ 2MBH

and �− ≃ 2MWH, respectively. For the black hole side we conclude from equation (4.55)

2MBH ≫
(

8λk
M2

BH

MWH

)
1
3

, 2MBHλk ≪ 8(MBH)
3, (4.60)
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which is always satis�ed for large black hole and white hole masses. Similar results can be

found for the white hole side. Hence, for astrophysical black holes the horizon is always

classical and quantum effects are suppressed.

An important question remaining is: are there choices ofMBH andMWH for which the small

volume effects become relevant earlier than the high curvature effects? On the black hole side,

we can deduce from equation (4.55) that quantum effects become relevant at the length scales

�+ ≫
(

8λk
M2

BH

MWH

)
1
3

, �+ ≫ (MBHλk)
1
3 . (4.61)

We can ask when the left length scale is actually larger than the second one, i.e.

(

8λk
M2

BH

MWH

)
1
3

> (MBHλk)
1
3 ,

which leads to the condition

MWH

MBH

< 8. (4.62)

Similar considerations taking into account equation (4.58) leads to

MWH

MBH

>
1

8
. (4.63)

Therefore, in the regime 1/8 < MWH
MBH

< 8 the �nite two-sphere area effects become relevant

earlier than the high curvature effects.

The discussion so far focussed on the the classical regime andwhen it fails to hold.As in [1],

we can check what happens to the Kretschmann scalar in the deep quantum regime, i.e. at the

transition surface. In �gure 6 the maximal value of the Kretschmann scalar is shown. In accor-

dance with the second equation of equations (4.55) and (4.58) for a wide choice of masses, the

value of the Kretschmann scalar at the transition surface remains unchanged. The same argu-

ment can be made for other curvature invariants as R2, RμνR
μν or CμναβC

μναβ (Weyl scalar),

which leads to the same conclusion (see �gure 7). For large masses, we �nd the expressions

K = Kcl +O(λ2
k ),

RμνR
μν

= O(λ4
k ),

R2
= O(λ4

k ),

CμναβC
μναβ

= K − 2RμνR
μν

+
1

3
R2

= Kcl +O(λ2
k),

and therefore the result remains analogous. The discussion also extends to the effective stress

energy tensor (T (eff.)
μν :=Gμν/8π), which is just composed of Ricci scalar and Ricci tensor terms.

Both arguments lead to the conclusion that the relation between the two masses can be left

unspeci�ed still leading to an unique upper curvature bound.Nevertheless, there are interesting

speci�c choices.

A particular interesting class of relations between the masses is

MWH = mMBH, (4.64)
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Figure 6. Logarithm of the maximal value of the Kretschmann scalar (a) and the devi-
ation of the Kretschmann scalar from its mean value (mean over all masses in the black
dashed box) (b) as a function of MBH and MWH in logarithmic axis. The maximal value
of the Kretschmann scalar remains largely independent of the masses. The two colour
lines represent the boundaries of equations (4.62) and (4.63). For the plot the maximal
value of the Kretschmann scalar is computed numerically. The parameters are settled to
λ j = λk = L o = 1.

Figure 7. Other curvature invariants as Ric2 = RμνR
μν in (a) and the Ricci-scalarR show

the same behaviour as K at the transition surface and remain bounded. Within the large
mass expansion it is K = Kcl +O(λ2

k), RμνR
μν = O(λ4

k), R
2 = O(λ4

k), and the Weyl

scalar becomes CμναβC
μναβ = K− 2RμνR

μν + 1
3
R2 = Kcl +O(λ2

k ). Therefore all cur-
vature scalars admit the same behaviour at the transition surface and reduce to the clas-
sical expression in the classical regime. In the limit λk → 0 the R2 and RμνR

μν vanish in
agreement with the Schwarzschild case. The parameters are set to λ j = λk = L o = 1.

for a dimensionless numberm. For this relation,we �nd that the �rst equation in equation (4.55)

becomes a curvature scale as

�+ ≫
(

8λk
m
MBH

) 1
3

⇐⇒ 48M2
BH

�
6
+

≪ 3m2

4λ2
k

, (4.65)
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Figure 8. sin (λ j j)
3/λ3

j compared to sin(λkk)/λk for m = 8 (a) and m = 1/8 (b). The

parameters are λ j = λk = L o = 1.

The same hold true for the white hole side and equation (4.58) for which we �nd

�− ≫ (8λkmMWH)
1
3 ⇐⇒ 48M2

WH

�
6
+

≪ 3

4λ2
km

2
, (4.66)

Checking furthermore the classical limit for

L
3
o

sin (λ j j)
3

λ3
j

≃ 4λkL
3
o

λ3
j

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

m

2MBH

b3+
, r→+∞

m
2MWH

b3−
, r→−∞,

we �nd that it is actually up to an m-dependent numerical factor proportional to sin(λkk)/λk,
i.e. the square root of the Kretschmann scalar. In agreement with the above computation for

m = 8 the new curvature scale at the black hole side (4.65) agrees with the curvature scale

of the k-sector (4.56). While for this value the curvature scale (4.66) is smaller than (4.59),

i.e. coming from the white hole side, quantum effects of the j-sector are relevant �rst. The

same result can be found form = 1/8 where the quantum effects match on the white hole side.

Figure 8 shows this graphically. Ofparticular interest in then the case m = 1, which means the

value of the masses is the same. In this case, there are coming from both sides quantum effects

of the j-sector become �rst relevant at the Kretschmann curvature scale 3/4λ2
k , while effects

of the k-sector become relevant at higher curvatures (48/λ2
k). Figure 9 shows that from both

sides quantum effects become relevant due to the j-sector at the same curvature and k always

plays a sub dominant role.

Note that we can generically interpret the �rst equations in (4.55, 4.58) as curvature scales,

depending on the asymmetry of the two sides. This can be seen by rewriting the �rst equations

in (4.55, 4.58) as

KBH
cl =

48M2
BH

�
6
+

≪ 3

4λ2
k

(

MBH

MWH

)2

,

KWH
cl =

48M2
WH

�
6
−

≪ 3

4λ2
k

(

MWH

MBH

)2

. (4.67)
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Figure 9. sin (λ j j)
3/λ3

j compared to sin(λkk)/λk for m = 1. The curve of j encloses
completely k, i.e. the dominant contribution for quantum effects comes from j. Coming
from both sides the onset of quantum effects is at theKretschmann curvature scale 3/4λ2

k .
Parameters are λ j = λk = L o = 1

For equal masses this gives a unique scale.

A second possibility is

MWH =
M2

BH

m
, (4.68)

where m is a constant of dimension mass, and the corresponding inverse relation

MBH =
M2

WH

m
. (4.69)

For the �rst case (4.68), we see that the �rst condition of (4.55) becomes

�+ ≫ (8λkm)
1
3 , (4.70)

and hence is a proper length scale. Hence, for large black hole masses, coming from the black

hole side, one would observe �rst quantum effects coming from the k-polymerisation at the

Kretschmann curvature scale 48/λ2
k and afterwards effects coming from small two-sphere area

effects ( j-polymerisation) at the length scale (8mλk)
1
3 . For equation (4.69) the same is true for

(4.58) as coming from the white hole side.

Both possibilities equation (4.64) for m = 1 and equations (4.68) and (4.69) seem to be

physically special. The �rst option produces a symmetric bounce with a unique onset of quan-

tum effects on both sides, while the second options lead to sensible �nite two-sphere area

effects. In principle the presented model allows to not relate the two masses at all and still

leading to sensible curvature effects, but if one wants to specify a relation these options seems

to be physically special.
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5. Effective quantum corrected spacetime structure

The presented model provides the usual qualitative features. The classical singularity is

replaced by a transition surface which connects a trapped and anti-trapped region whose past

and future boundaries identify two horizons corresponding to black and white hole horizons,

respectively. In this section, we discuss these features more precisely and construct the Penrose

diagram of the effective quantum corrected spacetime.

Let us start by recalling the asymptotic behaviour.As the solutions for themetric coef�cients

(4.32) and (4.33) and hence the metric itself are analytic for all r ∈ (−∞,∞) they provide us

also with a solution for the exterior of the black hole as the analytic continuation of the interior

metric. As such we can study the asymptotic behaviour, which was done in section 4.2. The

asymptotic spacetime geometries for r→±∞ are described by

ds2+ ≃ −
(

1− 2MBH

�

)

dτ 2 +
1

1− 2MBH
�

d�2
+ �

2 dΩ2
2 (5.1)

ds2− ≃ −
(

1− 2MWH

�

)

dτ 2 +
1

1− 2MWH
�

d�2
+ �

2 dΩ2
2, (5.2)

which correspond to two Schwarzschild spacetimes of masses MBH andMWH, respectively.

Next, we can determine the horizons. The Killing horizons are given by the condition

a(r(±)
s )

!
= 0 ⇔

λ6
j

2DC2λ2
k

√
n
3

(

1+
nr2

λ2
j

) 3
2

⎛

⎜

⎜

⎝

1− CD

λ j

√

1+ nr2

λ2
j

⎞

⎟

⎟

⎠

×

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)3

λ6
j

16C2λ2
k
n3

(

√
nr

λ j
+

√

1+ nr2

λ2
j

)6

+ 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r=r
(±)
s

!
= 0.

(5.3)

The only term that can vanish is

1− CD

λ j

√

1+ nr2

λ2
j

= 0,

which leads to

r(±)
s = ±

√

C2D2

L
2
o

− λ2
j

L
2
o

=
λ j

L o

√

(

MBHMWH

λk

) 1
3

− 1, (5.4)

i.e. there are exactly two horizons with areal radius �(r(±)
s ). Evaluating the areal radius � at

these points gives

�
(

r(±)
s

)2
=

MBH

2MWH

(

(MBHMWH)
1
3 ±

√

(MBHMWH)
2
3 − λ

2
3
k

)3

+
MWH

2MBH

λ2
k

(

(MBHMWH)
1
3 ±

√

(MBHMWH)
2
3 − λ

2
3
k

)3 . (5.5)
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Indeed forMBHMWH ≫ λk, we �nd

�(r(+)
s )2 ≃ 4M2

BH

(

1− 3

4

(

λk
MBHMWH

) 2
3

−O
(

λ2
k

M2
BHM

2
WH

)

)

, (5.6)

�(r(−)
s )2 ≃ 4M2

WH

(

1− 3

4

(

λk
MBHMWH

) 2
3

−O
(

λ2
k

M2
BHM

2
WH

)

)

. (5.7)

From this, we see that for large black hole and white hole masses, the classical result is well

approximated. Leading corrections are suppressed by powers of λk independently of howMBH

andMWH are chosen. The �rst order correction is negative.

Furthermore, the model predicts a transition surface where the minimal areal radius is

reached and the interior region undergoes a transition from trapped to anti-trapped regions.

The minimal value of � is reached when �′
= 0. As � �= 0 everywhere, this is also the case for

(�2)′ = 0, which simpli�es the computations. Introducing the new coordinate

z =
L or

λ j

+

√

1+
L

2
or

2

λ2
j

, z ∈ (0,∞), (5.8)

gives for equation (4.32)

�
2(z) =

2C2λ2
kL

3
oD

λ4
j

2z

z2 + 1

λ6
j

16C2λ2
k
L

6
o

z6 + 1

z3
.

As furthermore dz/dr �= 0, the condition for the transition surface becomes d(�2)/dz = 0.

After some computations, we �nd

d�2

dz
= 0 ⇔ −2z4 + z2

z4 + z2

(

λ6
jz
6

L
6
o

+ 16C2λ2
k

)

+
3λ6

jz
6

L
6
o

= 0. (5.9)

For y = z2 and y > 0 this equation simpli�es to (recall equation (4.42))

y4 + 2y3 =
16C2λ2

kL
6
o

λ6
j

(2y+ 1) =
M2

WH

M2
BH

(2y+ 1) , (5.10)

which is a fourth order polynomial equation in y for y > 0. Important at this point is that this

equation has in y > 0 always one and only one solution, as one can easily convince oneself

graphically (cfr �gure 10). Concluding, there exists always one unique minimal value of �.

This solution is given by

yT = −1

2
+

1

2

√

1+ 22/3
(

−B+ B2
)1/3

+
1

2

√

√

√

√
2− 22/3

(

−B+ B2
)1/3

+
−8+ 16B

4

√

1+ 22/3
(

−B+ B2
)1/3

, (5.11)

with B =
16C2λ2

k
L

6
o

λ6
j

= M2
WH/M

2
BH. From this we can compute the value of the transition surface

�T = �(rT ). As this expression is complicated and not very insightful, we do not report it here.
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Figure 10. Graphical solutions of equation (5.10). The black line corresponds to the
left-hand side of equation (5.10), the coloured lines to the right-hand side for different
values of B = M2

WH/M
2
BH. It is obvious, that there exists for y > 0 always exactly one

solution.

Thisminimal value is then indeed a transition from trapped to anti-trapped regions. This can

be easily checked by evaluating the expansions θ± (cfr e.g. [50]) for r = const and t = const

surfaces for r(−)
s < r < r(+)

s . For the future pointing unit null normals

u± = ua±
∂

∂xa
=

1√
−2N

∂

∂r
± 1√

−2a

∂

∂t
, (5.12)

this leads to

θ± = Sab∇au
±
b = −

√

− 2

N

�
′

�
, (5.13)

where Sab = gab + ua+u
b
− + ua−u

b
+ is the projector on the metric two-spheres (cfr [1]). Hence,

in the interior both expansions are either negative or positive depending on the sign of �′. As
at the transition surface �̇ vanishes and changes from positive values on the black hole side to

negative values on the white hole side, the minimal value of � characterises indeed a transition

from trapped to anti-trapped regions, i.e. a transition from black hole to white hole interior.

Having done all this analysis we can now construct the Penrose diagram. For that we

can redo all the steps explained in detail in [1]. To be sure that this construction works, we

need to check (1) that the asymptotic behaviour is Schwarzschild and (2) a′(r(±)
s ) �= 0 and

sign
(

a′(r(±)
s )= ±1. The �rst one was already discussed in section 4.2 and the beginning of

this section. The second one can be veri�ed easily by direct computation. As (1) and (2) are

both true, we can draw the Penrose diagram which looks exactly as the one reported already

in �gure 1.
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6. Relation to connection variables

We can relate these new curvature variables to the commonly used connection variables in the

interior of the black hole. As discussed in section 4, we have the relations (cfr equation (4.2))

vk =

(

3

2
v1

) 2
3 1

P2

, v j = v2 −
3v1P1

2P2

, k =

(

3

2
v1

) 1
3

P1P2, j = P2. (6.1)

Inverting these relations yields

v1 =
2

3
(vk j)

3
2 , v2 =

v j j+ vkk

j
, P1 =

k

j
√
vk j

, P2 = j. (6.2)

Using now the already known relations between (v1,P1), (v2,P2) with (b, pb), (c, pc) of

equations (3.2), (3.3), we get

p2b = −8
(

vkk + v j j
)

j
, |pc| = 42

2
3 vk j, (6.3)

b = sign(pb)
γ

4

√

−8
(

vkk + v j j
)

j, c = − sign(pc)
γ

4
2

1
3
k

j
. (6.4)

Having these relations it is possible to relate the polymerisation scales by demanding

λ j j
!
= λ2P2, λkk

!
= λ1P1, (6.5)

thus yielding

λ2 = λ j, λ1 =

(

3v1
2

) 1
3

P2λk. (6.6)

Using furthermore the relations between the polymerisation scales λ1, λ2 and δb, δc of

equations (3.8), (3.9), we �nd

δb = ± 4λ j

γ|pb|
, δc = ±642

1
3

γ2

b

pb
λk. (6.7)

From this we can read off that the scheme with constant λ j, λk is not of the common type. This

scheme rather corresponds to a generalisation of a μ̄-scheme, where the polymerisation scales

do not only depend on the triad components pc, pb but also on the connection c, b itself.
15

Having this relation we are in the position to ask if the plaquette argument of [28] (cfr

equation (3.38)) can be satis�ed for mass independent λk and λ j. Our computations show that

this is not true.

7. Other possibilities: non-scaling momenta

For the sake of completeness, in this last section we would like to comment on some other

possibilities in de�ning canonical phase space variables for Schwarzschild black holes. In par-

ticular, we will focus on the possibility of making also the canonical momentum j independent

15Moreover, inserting the above transformations (6.3) and (6.4) into the Hamiltonian (4.26) does actually not lead to

a ‘polymerised Hamiltonian’ in connection variables. The reason for this are connection-dependent terms in the v j
transformation (6.1) (or (4.2)), leading to bare b and c in the �nal Hamiltonian.
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of �ducial cell rescaling, while keeping the other momentum (k) to be the (square root of the)

Kretchmann scalar. As we will see, in this case there is no second �ducial cell independent

Dirac observable which can be related with the white hole mass and the relation between the

masses is determined as an outcome of the effective dynamics.

Starting from the classical variables (vk, k, v j, j) de�ned in section 4, let us then consider

the following transformation

k �−→ K := k , vk �−→ VK := vk +
(v j j

2 − 2)

jk

(

1+ k
f ′(k)

f (k)

)

,

j �−→ J := − k

(v j j2 − 2)
f (k) , v j �−→ VJ :=

(v j j
2 − 2)2

jk

1

f (k)
, (7.1)

where f is a smooth function of k only and f ′ denotes its derivative w.r.t. k. As can be checked

by direct computation, the transformation (7.1) is canonical. In the gauge
√
n =

VJJ
2

K f (K)
, the

Hamiltonian (4.5) reads in terms of the new variables

Hcl = 3VKK + VJJ

(

3
f ′(K)

f (K)
K + 2

)

. (7.2)

Moreover, according to the behaviour (4.8), the above variables behave under rescaling of the

�ducial cell as

K �−→ K, VK �−→ αVK , J �−→ J, VJ �−→ αVJ , (7.3)

so that nowboth canonicalmomenta do not scale and their conjugate variables scale compatibly

with having density weight 1 products VKK, VJJ. The function f(k) can be speci�ed by means

of the following argument. Looking at the de�nition of J and recalling the on-shell values of the

(vk, k, v j, j) variables (cfr section 4), we see that J ∼ f(k)/b2 with k = 2M
b3

on-shell. Therefore,

if the function f is chosen in such a way that quantum effects due to polymerisation of k are

suppressed by inverse powers of b, then the quantum effects resulting from polymerisation of

J will always be subdominant w.r.t. those of the k-sector. A simple choice, which also make

the resulting effective dynamics still analytically solvable, is provided by a power law of the

kind f(k) = kǫ with ǫ � 0. With this choice, the Hamiltonian (7.2) simpli�es to

Hcl = 3VKK + (3ǫ+ 2)VJJ, (7.4)

which is nothing but the generator of (anisotropic) dilatations in phase space. After polymeri-

sation of the canonical momenta, the effective Hamiltonian is thus given by

Heff = 3VK
sin(λKK)

λK
+ (3ǫ+ 2)VJ

sin(λJJ)

λJ
, (7.5)

where both polymerisation scales λK and λJ now do not scale under rescaling of the �ducial

cell, and they have dimension L2 and L2ǫ+2, respectively. The equations of motion associated

with the effective Hamiltonian (7.5) are given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K′
= −3

sin(λKK)

λK
V ′
K = 3VK cos(λKK)

J′ = −(3ǫ+ 2)
sin(λJJ)

λJ
V ′
J = (3ǫ+ 2)VJ cos(λJJ)

, (7.6)
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which, by performing similar steps to those discussed in the previous sections, yield the

solutions

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

K(r) =
2

λK
tan−1

(

Ce−3r
)

J(r) =
2

λJ
tan−1

(

e−(3ǫ+2)r
)

VJ(r) = D cosh ((3ǫ+ 2)r)

VK(r) = − DλK
6CλJ

(3ǫ+ 2)
(

e3r + C2e−3r
)

(7.7)

where we get rid of one integration constant by using the Hamiltonian constraint for VK , we

use the gauge freedom in choosing the offset of the r-coordinate to set the integration constant

entering the solution for J to be 1, and we denote by C and D the remaining two integration

constants.

Rephrasing now the classical expressions for the metric coef�cients in terms of the new

variables, we get

�
2(r) =

f (K)

J

(

1+
f ′(K)

f (K)
K +

VKK

VJJ

)

=
Kǫ

J

(

1+ ǫ+
VKK

VJJ

)

, (7.8)

and

a(r) =
VJJ

2

2�2 f (K)K

(

VKK + VJJ

(

K
f ′(K)

f (K)
+

2J

K f (K)

))

=
1

2�2

VJJ
2

Kǫ+1

(

VKK + VJJ

(

ǫ+
2J

Kǫ+1

))

. (7.9)

Taking the expression (7.8) for �2 and polymerising the occurring momenta yield

�
2(r) = − λJ

sin(λJJ)

(

sin(λKK)

λK

)ǫ(

1+ ǫ+
VK

VJ

λJ
sin(λJJ)

sin(λKK)

λK

)

on-shell
=

λJ
3

(

2C

λK(e−3r + C2e3r)

)ǫ

cosh ((3ǫ+ 2)r) , (7.10)

from which we see that � is bounded from below and the bounce occurs when it reaches the

minimal value. Similarly, the quantum-correctedexpression for the coef�cient a(r) of the effec-

tive metric can be derived by polymerising the classical expression (7.9) and plugging in the

solutions (7.7). A straightforward calculation shows that the solutions (7.7) of the effective

dynamics reproduce the correct classical behaviour in the r→±∞ limit, for which the met-

ric coef�cients correspondingly yield two asymptotic Schwarzschild spacetimes. We further

observe that the integration constant D appears only as a global factor in front of a. Hence, as

in previous models it can be reabsorbed in a coordinate transformation t �→ τ , showing that

only C has physical relevance, and only one �ducial cell independent Dirac observable can

exist. In particular, looking at the asymptotic expressions for the areal radius (7.10), we have

�
2
+ := �

2(r→+∞) =
λJ
6

(

2

λKC

)ǫ

e2r, (7.11)

�
2
− := �

2(r→−∞) =
λJ
6

(

2C

λK

)ǫ

e−2r. (7.12)
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Therefore, by requiring the on-shell value of the polymerised momentum sin(λKK)
λK

to reduce in

the r→±∞ limit to the classical value given by the square root of the Kretschmann scalar,

we get the following conditions

sin(λKK)

λK

(7.7)
=

2C

λK(e3r + C2e−3r)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r→+∞−−−−→ 2C

λKe3r
(7.11)
=

2C

λK

[

λJ
6

(

2

CλK

)ǫ] 3
2

1

�
3
+

!
=

2MBH

�
3
+

r→−∞−−−−→ 2

CλK
e3r

(7.12)
=

2

CλK

[

λJ
6

(

2C

λK

)ǫ] 3
2

1

�
3
−

!
=

2MWH

�
3
−

, (7.13)

from which it follows that the on-shell expressions for the mass Dirac observables are given

by

2MBH =
2C

λK

[

λJ
6

(

2

CλK

)ǫ] 3
2

, 2MWH =
2

CλK

[

λJ
6

(

2C

λK

)ǫ] 3
2

. (7.14)

Note that, as anticipated at the beginning of this section, for the one-parameter family ofmodels

considered here in which both momenta (and hence polymerisation scales) do not scale under

�ducial cell rescaling, there is only one relevant integration constant which appears in the

expression for the masses. This means that for such class of models the freedom in �xing the

initial conditions is completely encoded in specifying only one of the mass observables, while

the relation between the two masses is determined by the effective dynamics itself. Indeed,

using the above expressions (7.14), we see that

MBH ·MWH =
1

λ2
K

(

λJ
6

)3(
2

λK

)3ǫ

= const, (7.15)

i.e.MWH ∼ 1/MBH. Therefore, although for large black hole masses this would corresponds to

a Planck mass regime on the white hole side which is then beyond the regime of applicability

of a polymer-type effective description, this class of models can be considered as an explicit

example to illustrate the relation between the scaling properties of the polymerisation scales

and the Dirac observables.

In this respect, let us note that in the case of non-scaling momenta additional restrictions

on the possible functional relation between the masses allowed by the dynamics come from

symmetry arguments. Speci�cally, due to the invariance of the effective Hamiltonian under the

replacement K �→ π
λK

− K and J �→ π
λJ

− J, which corresponds to a ‘time’ reversal symmetry

in following the spacetime evolution from the black hole classical regime to the white hole

classical regime up to the same value of � in the Penrose diagram and consequently toMBH �→
MWH,MWH �→ MBH, the allowed functional relationMWH = F(MBH) between the masses can

only be of the kind F = F
−1. This selects two possibilities, namelyMWH = MBH orMWH =

1/MBH. Which of such possibilities is determined by the dynamics depends on the details of the

models. For the speci�c class of variables discussed in this section, a reciprocal mass relation

is found. However, this does not exclude the possibility of uniquely selecting a symmetric

bounce scenario by introducing suitable canonical variables and thus quantum corrections. The
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physical viability of the resulting model, which may or may not ful�l physical requirements

on curvature upper bounds and onset of quantum effects, needs of course to be discussed on a

case by case study. Note that this situation is similar to what was found in the Bianchi I setting

[51].

8. Conclusions and outlook

In this paper, we discussed the appearance and role of Dirac observables in the static and

spherically symmetric setting of black holes, whose interior region is modelled as a Kan-

towski–Sachs cosmological spacetime. As already mentioned in [1], classically there exist

two Dirac observables, but only one of them is physically relevant. As discussed in the present

paper, the appearance of two Dirac observables is immediate from the canonical analysis. At

the classical level, we observed that one of them always has to be dependent on the �ducial

length Lo (or L o, respectively) and does not appear in the �nal solution for the metric. Hence,

only one of them can be of physical relevance. The fact that only one of the canonical Dirac

observables has physical relevance, can be explained by residual diffeomorphisms, which can

not be treated within the symmetry reduced Hamiltonian framework. Precisely these allow to

rescale the second observable away.

The situation changes in the effective quantum theory, where two �ducial cell independent

Dirac observables can be constructed. We carefully discussed these observables in the case of

already known polymermodels of black holes [1, 22, 23, 28] and found that in all of these mod-

els, two Dirac observables with physical relevance can be explicitly constructed. For models

where the exterior spacetime is not available [22, 28], these are the size of the black hole and

white hole horizon, respectively. If the exterior region of the effective spacetime is also avail-

able and it is asymptotically �at, then it is possible to construct observables corresponding to

the ADMmasses. This provides us with important insights as initial conditions have to be �xed

more carefully and can not simply compared to the classical setup, where one of the observ-

ables has no physical meaning. The appearance of two physically relevant observables can

be explained by polymerisation scales scaling under �ducial cell changes. A Dirac observable

which scales with the �ducial cell can then bemultiplied by a suitable power of this also scaling

polymerisation scale to arrive at a �ducial cell independent quantity. Both Dirac observables

appear in the �nal metric and can not be removed by using residual diffeomorphisms. These

models have in common that a relation between black hole and white hole horizon/masses has

to be �xed to meet criteria for physical viability based for instance on plaquette or Planckian

curvature upper bound arguments.

We further introduced a class of models where both polymerisation scales λK , λJ are inde-
pendent of the �ducial cell. In agreement with the above argument, we found that for this

model only one physically relevant observable exist. A relation of the masses is then �xed as

an outcome of the effective dynamics without restricting the initial conditions. By symmetry

arguments, we further conclude that in these models the only possible relations between the

masses are the symmetric bounce (MBH = MWH) or a reciprocalmass relationMWH ∝ 1/MBH.

This result in similar to the appearance of Kasner-transitions in anisotropic LQC [51]. The lat-

ter one is true for the presented class of variables. As this relation maps astrophysical black

holes into sub-Planck size white holes, where the effective description can not be trusted any

more, we do not give this model physical credibility.

In the second part of the paper, we focussed instead on the possibility of surpassing previous

limitations of initial conditions by constructing adapted canonical variables directly related to

curvature invariants. To this aim, we discussed in details a new model recently introduced by

the authors in a companion paper [34] where one of the canonical momenta can off-shell be
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interpreted as 2MMisner–Sharp/b
3 so that the corresponding on-shell value is exactly the square

root of the Kretschmann scalar without any restriction on the initial conditions. In agreement

with the general discussion of the �rst part of the paper, also for this new model the polymeri-

sation scale λ j scales under a �ducial cell rescaling and we �nd two Dirac observables for the

black hole and white hole masses. The main novel feature of this model is that the curvature

is bounded from above without �xing a relation between the masses. We �nd a preference for

masses which are symmetric and within the range 1/8 < MBH/MWH < 8, as then the overall

dominant curvature scale is given by 3/(4λ2
k) and both types of quantum corrections occur at

large curvatures.

A further interesting property is that the �nal metric can be expressed in terms of the two

masses and the polymerisation scale λk, which is related to the curvature, only. Thus, the �du-
cial cell dependent polymerisation scale λ j has no physical meaning, as the metric does not

depend on it. The structure of the resulting quantum corrected effective spacetime of this model

is qualitatively the same as in previous models [1, 23].

The Hamiltonian is formally the same as in [1] and remarkably simple. It was shown that

the quantum theory for [1] can be constructed explicitly and analytically solved. As the Hamil-

tonians are formally equal, this is also true for the presented model. A detailed discussion of

the quantum theory is left for future work. Of particular interest is then to understand the role

of the Dirac observables in the quantum theory.

In future work, further variables and polymerisation schemes should be explored. This

includes more complicated schemes with different regularisation functions. The above dis-

cussed variable k has a nice interpretation in terms of the Kretschmann scalar and leads to

sensible curvature effects. Instead more suitable choices for the variable jmight be found. The

analysis of Dirac observables and their physical role should be performed also for these new

models, as well as for already existing ones.

An important remaining problem is then furthermore the relation of these symmetry reduced

models to full LQG which, due to the similarity of the newly introduced variables with the

adapted (b, v)-variables for LQC, we expect to be possible along the line of [52].
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