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Abstract 

The ranging instrument aboard the Hayabusa spacecraft measured the surface 

topography of asteroid 25143 Itokawa and its mass. A typical rough area is similar in 

roughness to debris located on the interior wall of a large crater on asteroid 433 Eros 

suggesting a surface structure on Itokawa similar to crater ejecta on Eros. The mass of 

Itokawa was estimated as (3.58±0.18) x 1010 kg, implying a bulk density of (1.95±0.14) 

g/cm3 for a volume of (1.84±0.09) x 107 m3 and a bulk porosity of ~ 40%, which is 

similar to angular sands, when assuming an LL-type chondrite. Combined with surface 

observations, these data indicate that Itokawa is the first sub-km-sized small asteroid 

showing a rubble-pile body rather than a solid monolithic asteroid. 
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The LIght Detection And Ranging instrument (LIDAR) aboard the Hayabusa spacecraft, 

described in (1, 2, 3, 4), provided information on the shape and surface topography of 

the near-Earth asteroid 25143 Itokawa and on its mass. The LIDAR measures distance 

by determining the time of flight for laser light to travel from the spacecraft to the 

asteroid and return. The stop time measured by the LIDAR is obtained by filtering a 

pulse received from the surface, and measuring its time of peak intensity. In this manner, 

the LIDAR averages the topography within the LIDAR footprint on the surface of the 

asteroid, which approximates 5 x 12 m at a 7 km altitude for normal incidence. It was 

found that this pulse detection technique permits identifying features smaller than the 

LIDAR footprint. 

 

The LIDAR operated from September 10, 2005 at a distance of 49 km from the target 

through November 25, a total of 4,107,104 shots were fired and 1,665,548 returns were 

detected. The numbers of returns reduced significantly after October 2 when spacecraft 

pointing was less accurate due to failures in two of the three on-board reaction wheels. 

 

Upon arrival at Itokawa, two methods confirm the accuracy of LIDAR ranging obtained 

from ground calibration of the LIDAR instrument (3): ±1 m from a distance of 50 m and 

±10 m from 50 km. In one approach, the size of the spacecraft shadow that was cast on 

the asteroid surface at the center of opposition point in a navigation image equaled that 

expected given the LIDAR-measured range measured by the spacecraft. In another 

approach, the height of the largest boulder on Itokawa, namely Yoshinodai, was found 

to be ~ 20m when using independent measurements obtained from the LIDAR and the 

narrow angle imager (Asteroid Multi-band Imaging CAmera; AMICA).  

 

The LIDAR beamwidth is 0.04o x 0.097o, and the boresight is co-aligned with that of 

the near-infrared spectrometer (NIRS) with its 0.1o x 0.1o field of view. The NIRS 

alignments relative to the Hayabusa spacecraft, to AMICA, and to the wide-angle 
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optical navigation camera (ONC-W) used for determination of the spacecraft position 

relative to the asteroid (2), were determined from in-flight star field calibrations. The 

co-alignment between the LIDAR and NIRS was confirmed when NIRS detected the 

reflected 1064 nm Nd:YAG laser light from LIDAR (see Fig. 1), and when changes in 

LIDAR ranges were found to correspond with expected changes in topography seen in 

AMICA data. 

 

To measure the mass of Itokawa and its surface topography, the position of the 

Hayabusa spacecraft relative to Itokawa must be determined. We developed a new 

method (Fig. 2) to estimate this spacecraft position by combining a shape model (5) of 

the asteroid determined primarily from images, ONC-W information on the direction to 

the center-of-light from the asteroid, and LIDAR ranging data. With these data, a first 

guess at the spacecraft trajectory is made. Often significant discontinuities are observed 

that cannot be explained by thrusting. By least squares fitting of a smooth function to 

the initial spacecraft trajectory, a more realistic smooth approximation is obtained, from 

which a cloud of LIDAR points sitting on the Itokawa surface can be determined. 

Checks with the actual location of the LIDAR spot in simultaneous AMICA images 

show that this method provides accurate spacecraft locations as well as good surface 

topography.  

 

An example of the detailed surface topography that can be obtained from the LIDAR 

using this methodology is shown (Fig. 3) for data obtained from approximately 7 km 

range. In this Tsukuba area (5), located on the eastern side of Itokawa and representative 

of the rough regions on the asteroid, blocks from 3 to 10 m elevation are visible. These 

data contrast significantly with results obtained from the Muses Sea, that is 

representative of smooth regions on Itokawa (see (6)), where small-scale fluctuations in 

the elevation are observed that are comparable to the digitization of the LIDAR. 
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From such topographic data, the fractal roughness of the surface can be measured (7, 8) 

as the rms deviation σ of the height differences along a given baseline. For a 20 m 
baseline, which exceeds the LIDAR footprint, the Tsukuba region is characterized by a 

σ value of 2.2 m. This in contrast to Muses Sea where σ equals 0.6 m. Comparison of σ 
on Itokawa and Eros indicates that the rough Tsukuba region of Itokawa has similar 

roughness on 20 m baselines to that measured in the interior, near the rim, of the large 

crater Psyche on Eros (8). This region in Psyche primarily consists of disrupted 

materials, strewn boulders and coarse talus typical of crater ejecta. The similarity in 

roughness suggests that the near-surface of Itokawa resembles a rubble pile, which 

AMICA confirms (1, 6). 

 

To investigate the interior structure of Itokawa, we also measure the mass of Itokawa in 

order to determine its density. We use the best data available to us that the LIDAR 

acquired during the rehearsal descent phase on November 11, 2005. 

 

The Hayabusa was designed as a simple spacecraft, with fixed antennas on the upper 

panel perpendicular to +Z direction and fixed instruments on the base panel faced to -Z 

direction (to the asteroid during in-situ observations). On November 11, 2005, the 

Hayabusa spacecraft made a descent for the asteroid Itokawa along a 

Earth-Hayabusa-Itokawa line so as to do both a high rate communication with Earth and 

in-situ observations of the asteroid. The solar phase angle, defined as a 

Sun-Itokawa-Hayabusa angle, was about 8 degrees during the descent. 

 

We estimated the acceleration term F of the spacecraft motion by using the descent data 

from 17:51:17 - 19:35:49 UT on November 11 (see Fig. 4A), at distances from the 

center of Itokawa, 1427 - 825 m. We have to subtract the effects of solar radiation 

pressure and thruster forces from the acceleration to estimate asteroid gravity. The 

thruster forces depend on injector temperature, and this contribution is presented as a 
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function of thruster injection rate when the maneuver uses only ± Z thrusters. The 

following relationship was derived from maneuver data obtained in mid-October about 

10 km from Itokawa: F10 (cm/s2) = 0.1603 x (thruster ratio) + 1.5695 x 10-5, where 

thruster ratio is defined as a ratio of an integrated time of thruster burn to the total time 

of interest, and the acceleration due to solar radiation is calculated as 1.3303 x 10-5 

cm/s2. 

 

During the above period of the descent, the thrusters were operated in only ± Z 

directions with a constant temperature of 35 oC, and the total number of thruster’s 

injections was 136. Since the duration time of each thruster is 19.53 msec, the thruster 

ratio becomes 4.2348 x 10-4, and the resulting F10 value is 8.3594 x 10-5 cm/s2. We 

assumed that the acceleration caused by solar radiation force and thruster's effect is 

constant during the descent. As an initial condition, we subtract the above F10 value 

from the total acceleration term. Then, to investigate the gravity potential, we adopted a 

polyhedron method which was well suited to evaluate the gravitational field of an 

irregularly shaped body such as Itokawa (9), where we assumed a constant-density 

interior of the asteroid. 

 

By fitting through least squares the spacecraft orbit during descent with calculated 

orbits obtained with the Itokawa’s polyhedron model, we estimate the gravitational 

potential GM of Itokawa, where G is the gravitational constant and M denotes the mass 

of the asteroid (see Fig. 4B). The resulting value of GM leads to the gravitational 

acceleration at 10 km altitude, which is then also subtracted from the initial F10 to obtain 

an improved estimate of the solar radiation and thruster force. We then iterated the 

trajectory fit to the descent data to derive a revised value of GM using the modified F10 

value and find a best estimate of GM equals to (2.39±0.12) x 10-9 km3/s2. The 

gravitational acceleration at the distance of 10 km from Itokawa is ~ 0.2392 x 10-5 cm/s2 

and it is about 3% of the acceleration term there. 
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Our GM value provides the mass of Itokawa of 3.58 x 1010 kg with an uncertainty of 

5%. The shape model of Itokawa constructed using AMICA images indicates that the 

volume is 1.84 x 107 m3 within 5% uncertainty (1). Consequently, the bulk density of 

asteroid Itokawa measures 1.95 g/cm3 with 7% uncertainty. Our error in mass estimation 

is significantly larger than that obtained by the laser rangefinder aboard the Near Earth 

Asteroid Rendezvous mission (10), because Hayabusa did not orbit the asteroid, and 

Eros is 190,000 times more massive than Itokawa, producing greater uncertainty in the 

determination of spacecraft position. 

 

Hayabusa NIRS reported that the Itokawa spectrum near the 1-micron absorption band 

is similar to those of LL chondrites (11). Considering the bulk density of LL ordinary 

chondrites of 3.19 g/cm3 (12), our bulk density of asteroid Itokawa indicates a high 

porosity of about 40% similar to that found for freshly formed coarse angular sands. 

Such a high porosity of Itokawa is noted in (1). It is known (12) that the porosity of five 

S-type asteroids studied to date does not exceed about 20%, whereas two M-type 

asteroids have larger porosity of about 70%, and the average porosity of four C-type 

asteroids is about 28%. Our porosity for Itokawa is consistent with identification as a 

"loosely consolidated (rubble-pile) asteroid" (13). Itokawa is the first S-type asteroid 

showing such high porosity, and the first sub-km-sized small asteroid showing a 

rubble-pile rather than a solid monolithic structure. 

 

Two distinct types of terrain are found on Itokawa, rough terrain with numerous 

boulders and smooth terrain covered with regolith layer (6) which suggest a complex 

history, but do not predicate a heterogeneous composition. In addition, no clear regional 

difference in the normalized X-ray intensity ratios of Mg/Si and Al/Si has been found on 

the surface of asteroid Itokawa (14), indicating homogeneous composition. NIRS 

reported olivine-rich mineral assemblages similar to LL5 and LL6 chondrites, with 

variations in albedo and absorption band depth more than 10%, but this diversity may 

be consistent with differences in freshness and/or particle size (11), and it does not 

suggest the presence of unusual inhomogeneous materials. 
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As noted in (15, 16), the size of asteroid, 150 - 1000 m in radius, may be a transition 

size between monolithic structure and rubble pile structure. The large porosity of ~ 40% 

and the roughness of the surface found on Itokawa strongly suggest a rubble pile 

structure. The 12.1324 hours spin period of Itokawa (1) is far above the critical value of 

2 hours, where a rubble pile structure cannot be withstand centrifugal forces [e.g. (17)], 

and is also consistent with a rubble pile structure. 

 

The internal structure of the asteroid Itokawa gives us a hint of its origin. It is predicted 

based on the numerical simulation of orbital evolution of asteroid Itokawa that the most 

probable source region of asteroid Itokawa is the inner part of the main belt (18). High 

porosity in asteroid Itokawa may be the result of gravitational aggregation of the 

collision fragments. 
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Figure captions 

Fig. 1. LIDAR spectrum observed by NIRS. The 0.1o x 0.1o square shaped field of view 

of NIRS was co-aligned with that of LIDAR (a 0.04o x 0.097o ellipse). LIDAR spectra 

reflected by Itokawa were detected by NIRS during the decent. Figure shows a LIDAR 

spectrum obtained by NIRS from an altitude of 900 m at 01:02:22 UT on November 12, 

2005. Dotted line indicates observed LIDAR spectrum after subtracting a spectrum of 

the asteroid Itokawa. A pre-flight spectrum of LIDAR measured by NIRS is shown as a 

solid line for comparison with the one measured in flight. NIRS has a 64-channel 

InGaAs photodiode array detector corresponding to 764 - 2248 nm which includes the 

reflected 1064 nm Nd:YAG laser light from LIDAR. The LIDAR signal detected by 

NIRS confirmed that LIDAR and NIRS instruments were co-alignment within the field 

of view accuracy, i.e., 1.7 m at a distance of 1 km. 
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Fig. 2. Conceptual drawings of the method to estimate the position of the spacecraft 

(S/C). (a) ONC-W takes images of the asteroid every 128 seconds, and the onboard 

computer calculates the center of light (COL) of the asteroid image. The pixel 

coordination of COL in the camera detector is included in the telemetry. (b) With a 

shape model of the asteroid determined primarily from images (although any 

approximate shape model can be used), an artificial camera image of the asteroid is 

simulated. Even though this image is non-scaled, two vectors from the S/C to COL and 

to the shape/mass center (COM) of the asteroid are obtained. (c) From COM 

information and the simulated image, the location of the asteroid relative to the S/C is 

estimated with one degree of freedom on a line along the S/C-COM vector. Finally, the 

distance to the asteroid is obtained from an actual ranging data of LIDAR and the shape 

model. Through iterations, a very accurate spacecraft location can be found. This 

procedure was carried out on all pairs of the LIDAR ranging data and COL telemetry. 
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Fig. 3. Location and elevation of LIDAR spot near Tsukuba region. (a) AMICA image 

ST_2420994934 showing 17 predicted locations of LIDAR spot; (b) simple cylindrical 

projection of the transect in meters North and East; (c) relative elevation (m) along the 

LIDAR profile where the distance along the path is measured along the transect as if it 

were completely unwound. This elevation e is computed relative to a reference geoid as 

done in (7, 8): a ball would roll downhill from a high e to low e. The digitization error 

in these data is about ±1.5 m. Data points in (b) are color-coded by relative elevation 

according to (c). The letters in the lower two panels correspond to the circles seen in (a) 

going right to left. Panels (a) and (b) show how the location of the LIDAR spot 

fluctuates with time due to spacecraft pointing oscillations discussed in the text. Blocks 

with about 3-4m elevation and the horizontal size of the order of the LIDAR spot are 

shown as sudden increases in elevation at locations D and G in panel (c). A jump at 

point J seen in elevation of about 5 m and 10-15 m horizontally, corresponds to the 

central Tsukuba feature in (a). 
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Fig. 4. (A) LIDAR range and thruster ratio during the rehearsal decent of November 11, 

2005. LIDAR missed the surface during 2:20 - 4:17 UT. The period of 105 minutes for 

the mass estimation shows no abrupt changes and is very smooth relative to the other 

periods, and moreover the effect of thrusters in the direction of ± Z could be accurately 

estimated. (B) The position of the Hayabusa spacecraft relative to its computed 

trajectory. The position of Hayabusa in body-fixed frame(thick sky-blue curve) was 

determined by LIDAR ranging data with images of the wide-angle optical navigation 

camera (ONC-W) as described in the text. This approach phase has a good opportunity 

to measure the gravitational field because the gravitational acceleration of Itokawa is 

about 18 times stronger than the acceleration due to solar radiation pressure at the 

distance of 1 km from Itokawa. The red curve on the thick sky-blue curve shows the 

computed trajectory of the Hayabusa spacecraft for the best fitted GM of 2.39 x 10-9 

km3/s2. The adopted shape model (5) for this computation is shown, which ellipsoidal 

diameters are 535(X) x 294(Y) x 209(Z) m, respectively. 
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