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An analytical expression relating mass and position of a particle attached on a cantilever to the
resulting change in cantilever resonant frequency is derived. Theoretically, the position and mass of
the attached particle can be deduced by combining measured resonant frequencies of several
bending modes. This finding is verified experimentally using a microscale cantilever with and
without an attached gold bead. The resonant frequencies of several bending modes are measured as
a function of the bead position. The bead mass and position calculated from the measured resonant
frequencies are in good agreement with the expected mass and the position measured.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2804074�

In the recent years a wealth of nanoelectromechanical
systems has emerged, and one of the obvious applications of
these is in mass sensing.1 Since the method was proposed in
1995,2,3 cantilever based mass sensors have developed into
promising candidates for ultrasensitive mass sensing, and re-
cently systems capable of detecting masses in the atto- and
zeptogram �10−18–10−21 g� ranges have been reported.4,5 The
ultimate goal of single molecule detection capabilities of
cantilever based mass sensors thereby seems to be within
reach.6

Previous models for cantilever mass sensors are evalu-
ated assuming either that the added molecules are distributed
in a homogeneous layer covering all of the cantilever5 or that
they are positioned as a point mass at the tip of the
cantilever.7 The mass response of the cantilever, however,
will change with the actual position of the added mass since
the vibration velocity of the cantilever surface varies with
position;8 thus the position of the added mass must be known
in order to fulfill the vision of single molecule sensitivity.

It follows that a method that allows simultaneous detec-
tion of the mass and position of the added mass is needed.
Such a method could also prove very useful in the emerging
field of hollow cantilevers9 in which target molecules flow
through the cantilever and, in some approaches, adsorb on
the inner surface at a random position. The hollow cantilever
will not allow for visual detection of the position of the
molecules, thus a method for revealing both position and
mass of the adsorbates would be beneficial.

Here, we derive relations between the resonant frequen-
cies of a mass loaded cantilever and position and mass of the
added molecules. These relations allow the mass and posi-
tion of the added mass to be determined even without a
priori knowledge about the position. The method relies on
measurements of the native as well as the mass loaded can-
tilever resonant frequencies for several vibration modes. The

method is verified using experimental data8 and proves to
resolve both position and mass with high accuracy.

Consider a cantilever with the mass m0 loaded by a point
mass �m positioned at z�m �Fig. 1�. The displacement func-
tion of the vibrating beam is Wn�z , t�=anUn�z�e−i�nt, where n
denotes the modal number, �n is the resonant frequency,
Un�z� is the time independent mode shape, and an is the
modal amplitude at mode n. The mode shape for a clamped-
free beam �cantilever� takes the form10

Un�z� = An�cos �nz − cosh �nz� + Bn�sin �nz − sinh �nz� ,

�1�

where the modal wavenumbers �n are solutions to
cos��nL�cosh��nL�=−1, and the mode coefficients fulfill
An /Bn= �cos �nL+cosh �nL� / �sin �nL−sinh �nL�. Numerical
values of the first modal wavenumbers and corresponding
mode coefficients are �nL=1.875,4.694,7.855,10.996, . . .
and An /Bn=−1.362,−0.982,−1.001,−1.000, . . .. Below, nor-
malized mode shapes, �0

LUn
2�z�dx=L, are assumed.

If the mass load is much less than the cantilever mass,
�m�m0, the cantilever mode shape will not change signifi-
cantly; thus the resonant frequency of such a system can be
accurately estimated using an energy approach and the
Rayleigh-Ritz theorem. According to the Rayleigh-Ritz theo-
rem the time average kinetic energy Ekin equals the time
average strain energy Estrain at resonance.11 Thus, for a can-
tilever with an attached point mass, Estrain=Ekin+Ekin,�m,
where Ekin,�m is the kinetic energy due to the point mass. The
kinetic energy of the cantilever is

Ekin = �
V

1

2
��n,�m

2 an
2Un

2�z�dV

=
1

2
wh�an

2�n,�m
2 �

0

L

Un
2�z�dx =

1

2
m0an

2�n,�m
2 , �2�

where � is the average mass density of the cantilever. The
kinetic energy due to the added point mass at z�m isa�Electronic mail: sd@mic.dtu.dk
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Ekin,�m = 1
2�m�n,�m

2 an
2Un

2�z�m� . �3�

Since the mode shape is assumed unchanged by the attached
point mass, the strain energy is approximately equal to the
kinetic energy of the unloaded cantilever,

Estrain � 1
2m0an

2�n
2. �4�

From the Rayleigh-Ritz theorem and Eqs. �2�–�4�, the
resonant frequency of the mass loaded cantilever is approxi-
mately

�n,�m
2 = �n

2�1 +
�m

m0
Un

2�z�m�	−1

. �5�

Using Eq. �5� it is thus possible to calculate the change in
resonant frequency of each individual bending mode based
on knowledge of the position z�m and mass �m of the at-
tached particle �cell or molecule�, the cantilever mass m0,
and native resonant frequencies �n.

It is also possible to use the analytical expression in Eq.
�5� to determine the mass �m and position z�m of a single
attached particle by measuring the resonant frequencies
�n,�m of the loaded cantilever. The requirement is that the
cantilever mass m0 and native resonant frequencies �n of
several bending modes of the unloaded cantilever are known.
In order to illustrate that mass and position can be uniquely
determined in this manner, it is useful to solve Eq. �5� for the
mass ratio and find

�m

m0
=

1

Un
2�z�m�

� �n
2

�n,�m
2 − 1	 . �6�

Now, for a given attached particle, the left hand side of Eq.
�6�, �m /m0, is constant. Likewise in the right hand side of
Eq. �6�, the position z�m is constant regardless of the bending
mode but the values are not known a priori. The frequency
ratios �n /�n,�m are measured and the values change with the
bending mode. If the right hand side of Eq. �6� is evaluated
for all possible positions of the particle load for each mode
given the known values of the frequency ratios �n /�n,�m, the
curves for the first four bending modes shown in Fig. 2 re-
sult. In Fig. 2, the y axis shows for each of the four modes
and assumed position the required mass load to give the
measured frequency ratio. Obviously, in the single point
where all four curves intersect, the correct unique values of
the mass load and position are found. The curves in Fig. 2
are calculated using synthetic data, �n /�n,�m, calculated
from Eq. �5� using �m /m0=1/100 and z�m /L=0.8.

The procedure demonstrated above is only useful to
show uniqueness, and in a practical measurement analysis, a
robust fitting procedure is needed. Solving Eq. �5� for the
measured resonant frequencies, we obtain the model for the
measured data,

�n,�m

�n
=

1


1 + ��m/m0�Un
2�z�m�

, �7�

with the unknown mass and position as parameters, and from
which they can be determined by iteration. Thus, if N modes,
n=1,2 , . . . ,N, are measured and the measurement errors are
assumed to have a normal distribution, we minimize

�2 = �
n=1

N
1

�n
2��n,�m

�n
−

1


1 + ��m/m0�Un
2�z�m�

	2

, �8�

where �n
2 is the variance of the measured frequency ratio

�n,�m /�n. The error estimates for the extracted mass ratio
�m /m0 and position z�m are calculated using the algorithm.12

The mass of the cantilever must be known in order to
estimate the mass of the attached particle. The cantilever
mass can be calculated from parameters of the materials used
in fabrication and the designed or measured geometrical di-
mensions with an uncertainty of a few percent or less. This
error on the actual cantilever mass directly affects the accu-
racy of the calculated mass of the attached particle and could
well be the dominant contribution to the total mass error, but
the error is small enough to be acceptable in most cases.

To verify the theoretical findings, data from previously
reported experiments on a micrometer sized cantilever have
been used.8 The cantilever length, width, and thickness were
approximately 153, 11, and 1.05 �m, respectively; the can-
tilever was fabricated in SiO2 with a Au/Ti �100 nm/10 nm�
coating on the topside; thus the estimated total mass of the
cantilever is m0�7 ng. In the experiments a single gold bead
with a radius of 0.9 �m, corresponding to a mass of approxi-
mately 60 pg, is positioned and manipulated on the cantile-
ver. The position of the gold bead is determined from optical
images with an estimated accuracy of ±1 �m. For each po-
sition of the gold bead, the change in resonant frequency was
recorded for the first four bending modes while the cantilever
was resonating in a low ambient pressure of 0.5 mbar to
ensure a high quality factor for the resonator and good reso-
nant frequency resolution.

The measured unloaded resonant frequencies for the first
four bending modes of the cantilever were �n / �2	�
=30.7,192.5,539.1,1056.5 kHz. Figure 3 shows measured
relative changes in resonant frequency as a function of the
optically measured position of the gold bead; the relative
frequency changes calculated from Eq. �5� are shown for
comparison. Obviously, theory and experiments are in good
agreement.

FIG. 1. Schematic of a cantilever with a single bead of mass �m positioned
at z�m.

FIG. 2. Calculated mass ratio �m /m0 for the first four modes as a function
of all possible position, z /L. All curves intersect at a single point only
�z�m /L=0.8, marked with an arrow� thereby giving the real position and
mass of the attached particle.
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The extracted gold-bead mass ratio �m /m0 and position
zfreq obtained using the fitting procedure and the measured
resonant frequencies are shown in Fig. 4 as a function of the
visually determined bead position zopt. The extracted posi-
tions are seen to agree very well with the visually determined
positions almost within the estimated errors on these, except
for the single point close to the cantilever base where a sig-
nificant disagreement is seen. At this point the fit returns a
false position �and mass� probably due to the very small
frequency changes measured at this position and due to in-
herent shortcomings in the model. First, near the base, the
assumption of zero lateral stress becomes invalid. Second,
any deviation from a perfectly clamped condition of the
beam base will affect the region closer to the base the most.
Finally, close to the base of the cantilever, Un

2�z��An
2�n

4z4

+O�z5�; thus extracted values of �m /m0 and z are correlated
according to z4
�m /m0=const independent of the actual
fitting procedure used, and the resulting equations used to
extract the two parameters become linearly dependent. This
problem persists until the bead is placed close to the first
antinode of the highest mode measured �here mode 4 at
z /L�0.2�. Actually, the �2 surface for this measurement
point has a local minimum near the correct position and
mass, but due to the correlation and the particular distribu-

tion of measurement errors, there is a global minimum at the
reported erroneous position and mass. Apparently, except for
this single point, the accuracy of the extracted positions
seems to exceed the accuracy of the visually determined
positions.

The average extracted mass ratio is �m /m0
=0.0084±0.0001 when the point closest to the cantilever
base is omitted. Thus, the calculated mass of the gold bead is

mbead = �m = 7 ng 
 �0.0084 ± 0.0001� � 59 ± 1 pg, �9�
which is in perfect agreement with the expected value.

The almost perfect agreement between the extracted
mass and the expected value when the mass is positioned on
the outer 4 /5 of the cantilever clearly demonstrates the pos-
sibility to do mass distribution analysis without prior knowl-
edge about or control over the position of the added particle.

The method could very well be applied to single-cell
measurements or nanoparticle detection, where a very accu-
rate particle mass measurement is needed and a time con-
suming position measurement using scanning electron mi-
croscopy imaging is inconvenient. It could equally well be
used for determining the mass of cells or particles flowing
inside a cantilever as demonstrated by Burg and Manalis.9

The method could also prove very useful for enhancing
the functionality of cantilever based mass sensors. This could
be achieved by having several areas on the cantilevers coated
for sensing of specific and different target molecules. By
measuring several vibration modes during operation, the
binding of desired targets in one area could be differentiated
from binding in other areas. In principle, this would make it
possible to design an artificial nose13,14 using only a single
cantilever.

We want to thank Dr. F. Amiot for fruitful discussions.
CINF is sponsored by The Danish National Research
Foundation.
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FIG. 3. Measured relative resonant frequency change ��n /�n of the first
four modes as a function of the position of the attached gold bead �symbols�.
The curves show the calculated relative resonant frequency changes accord-
ing to Eq. �5�.

FIG. 4. The position zfreq and mass ratio �m /m0 of the attached gold bead
extracted from resonant frequency measurements as a function of the visu-
ally determined position zopt.
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