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Abstract

We use cosmic microwave background (CMB) temperature maps from the 500 deg2 SPTpol survey to measure the
stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM)
cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by
the thermal Sunyaev–Zel’dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the
SPTpol 95 and 150 GHz data sets, to estimate the background CMB gradient. For lensing reconstruction, we
employ two versions of the RM catalog: a flux-limited sample containing 4003 clusters and a volume-limited
sample with 1741 clusters. We detect lensing at a significance of 8.7σ(6.7σ) with the flux (volume)–limited
sample. By modeling the reconstructed convergence using the Navarro–Frenk–White profile, we find the average
lensing masses to be M 1.62 stat. 0.04 sys.200 m 0.25

0.32= -
+( [ ] [ ]) and 1.28 stat. 0.03 sys.0.18

0.14 -
+( [ ] [ ]) M1014´ 

for the volume- and flux-limited samples, respectively. The systematic error budget is much smaller than the
statistical uncertainty and is dominated by the uncertainties in the RM cluster centroids. We use the volume-limited
sample to calibrate the normalization of the mass-richness scaling relation, and find a result consistent with the
galaxy weak-lensing measurements from DES.

Key words: cosmic background radiation – galaxies: clusters: general – gravitational lensing: weak

1. Introduction

The abundance of galaxy clusters as a function of mass and
redshift is highly sensitive to the the details of structure growth
and the geometry of the universe (e.g., Allen et al. 2011). Past
cluster surveys have yielded competitive constraints on a
number of open questions in cosmology today, most notably on
the sum of the neutrino masses and the drivers for cosmic
acceleration (Mantz et al. 2008, 2015; Vikhlinin et al. 2009b;
Rozo et al. 2010; Hasselfield et al. 2013; de Haan et al. 2016;

Planck Collaboration et al. 2016a; Salvati et al. 2018). Future
surveys (LSST Science Collaboration et al. 2009; Merloni et al.
2012; Benson et al. 2014; CMB-S4 Collaboration et al. 2016;
Henderson et al. 2016; The Simons Observatory Collaboration
et al. 2018) will find tens to hundreds of thousands of galaxy
clusters, with the potential for significantly better cosmological
constraints. Achieving this improvement, however, will also
require a calibration between cluster mass with observable
quantities such as X-ray luminosity, the Sunyaev–Zel’dovich
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(SZ) effect, or optical richness (Sunyaev & Zel’dovich 1972;
Sunyaev & Zeldovich 1980; Vikhlinin et al. 2009a; Rozo et al.
2010; Applegate et al. 2014; von der Linden et al. 2014).

Gravitational lensing is one of the most promising
techniques to estimate galaxy cluster masses. Gravitational
lensing has the significant advantage that it directly probes the
total matter distribution in a galaxy cluster, without depending
on complex baryonic physics. Optical weak-lensing measure-
ments have demonstrated accurate mass estimates that have
been used in recent cluster cosmological analyses (Rozo et al.
2013; von der Linden et al. 2014). While galaxies may be the
most well-known lensing source (Hoekstra et al. 2013), any
background light source can be used. The cosmic microwave
background (CMB) is an effective alternative due to its
extremely well-measured statistical properties and known high
redshift (z∼1100). CMB-cluster lensing is particularly
powerful for high-redshift clusters, for which it is more
difficult to observe background galaxies with sufficient signal-
to-noise (S/N). Consequently, it is one of the most promising
methods for future CMB surveys, including CMB-S4, which
are expected to return thousands of high redshift (z>1)
clusters (CMB-S4 Collaboration et al. 2016). For low-redshift
clusters, CMB lensing is complementary to galaxy weak-
lensing measurements, as the systematics associated with the
two measurements are different. However, the CMB-cluster
lensing signal is small. We estimate the lensing S/N to be ∼0.5
for a cluster with M∼ M1014

, even for a futuristic
experiment like CMB-S4. So we are limited to measuring the
average mass of a set of clusters.

Several estimators have been proposed to extract the CMB-
cluster lensing signal using CMB temperature and polarization
maps (Seljak & Zaldarriaga 2000; Dodelson 2004; Holder &
Kosowsky 2004; Maturi et al. 2005; Lewis & Challinor 2006;
Hu et al. 2007; Yoo & Zaldarriaga 2008; Yoo et al. 2010;
Melin & Bartlett 2015; Horowitz et al. 2017). Measurements
have now been performed by a number of experiments using
CMB temperature data. Baxter et al. (2015) detected CMB-
cluster lensing at 3.1σ using South Pole Telescope (SPT) SZ
survey data for a sample 513 SPT-selected clusters. Additional
detections of CMB-cluster lensing have been made using
ACTPol (Madhavacheril et al. 2015) and Planck data (Planck
Collaboration et al. 2016a; Raghunathan et al. 2018). CMB-
cluster lensing has also been used to calibrate the mass-richness
(M l– ) relation of the redMaPPer (RM) algorithm using both
Planck data at the locations of clusters in Sloan Digital Sky
Survey (SDSS, Geach & Peacock 2017) data, and SPT-SZ data
at the locations of clusters in Dark Energy Survey (DES) Year-1
(Baxter et al. 2018, hereafter B18) data.

These initial measurements have estimated the lensing signal
from CMB temperature data. Lensing measurements using
temperature data are susceptible to bias from foreground
signals—in particular the thermal SZ (tSZ) signal from the
cluster itself. The bias due to the tSZ effect can be mitigated by
using tSZ-free maps for lensing measurements (Baxter et al.
2015) or by including additional filtering when estimating the
background gradient with a lensing quadratic estimator
(QE, B18). Both of these methods reduce the lensing S/N.
We follow a different strategy here by reworking the standard
QE to use a tSZ-free gradient map from the SPTpol survey for
a tSZ-bias free lensing reconstruction. While this paper was in
the production stage, Madhavacheril & Hill (2018) published a
similar method using simulated data sets where they also

demonstrated that the tSZ-free gradient QEs can robustly
reconstruct CMB lensing using temperature data alone.
In the current work, we apply the modified QE to SPTpol

CMB temperature maps and reconstruct the lensing signal at
the location of galaxy clusters from the DES Year-3 RM
catalog. We employ two samples of the RM catalog and obtain
lensing detection significances of 8.7σ with 4003 clusters from
the flux-limited sample and 6.7σ for a smaller volume-limited
sample containing 1741 clusters. We use the lensing measure-
ments from the volume-limited sample to calibrate the M l–
relation of the RM cluster sample at the 18% level. We validate
our results against several sources of systematic errors and note
that the uncertainty in the knowledge of the cluster mis-
centering introduces a ∼3% error in our lensing measurements,
which is subdominant compared to the statistical error.
The paper is organized as follows. In Section 2 we describe

the SPTpol CMB temperature map and the DES RM cluster
catalog. This is followed by a description of the lensing
estimator, simulations used to validate the pipeline, cluster
convergence profiles, cutout extraction, and the modeling in
Section 3. Pipeline and data validation along with the estimates
of the systematic error budgets are summarized in Section 4.
We present our lensing measurements and compare them to the
literature in Section 5. The conclusion is in Section 6.
Throughout this work, we use the best-fit ΛCDM cosmology

obtained from the chain that combines Planck 2015 data with
external data sets TT,TE,EE+lowP+lensing+ext (Planck
Collaboration et al. 2016b). We define all halo quantities with
respect to the radius R200 m, defined as the region within which
the average mass density is 200 times the mean density of the
universe at the halo redshift. For parameter constraints, we
report the median values and 1σ uncertainties from the 16th
and 84th percentiles.

2. Data

We describe the CMB data sets from the SPTpol survey in
Section 2.1. This is followed by a brief description of the DES
experiment and the selection of the cluster catalog used in this
work in Section 2.2.

2.1. SPTpol 500 deg2 Survey

SPTpol is the second camera installed on the 10 m SPT
(Padin et al. 2008; Carlstrom et al. 2011) located at the
Amundsen–Scott South Pole station. The SPTpol focal plane
consists of 1536 polarization-sensitive transition edge sensor
bolometers (360 at 95 GHz and 1176 at 150 GHz; Austermann
et al. 2012). The SPTpol 500deg2 survey spans 15 degrees of
decl., from −65° to −50°, and 4 hours of R.A., from 22 to 2 hr.
In this work, we use CMB temperature maps from observations
between 2013 April and 2016 September in frequency bands
centered at approximately 95 and 150 GHz. The telescope
beam and pointing solutions were characterized using Venus
and bright point sources in the SPTpol survey region. The final
telescope beam along with the pointing jitter roughly
corresponds to a θFWHM=1 22 (1 7) Gaussian for the 150
(95)GHz data set.
We briefly summarize the procedure we use to reduce raw

CMB data to maps and refer the reader to Henning et al. (2018)
for further details. The raw data are composed of digitized time-
ordered data (TOD) for each detector that are converted into CMB
temperature units. We bin the TOD into two different maps using
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a flat-sky approximation in the Sanson-Flamsteed projection
(Calabretta & Greisen 2002; Schaffer et al. 2011). To construct
the first map, in which we aim to reconstruct the small-scale
lensing signal, we remove large-scale modes ℓ�300, bandpass
filter the TOD in the range of approximately 300�ℓx�20,000,
and bin them into 0 5 square pixels. For the second map, intended
for estimation of the large-scale CMB gradient, we apply minimal
TOD filtering by only removing modes below ℓx�30, and bin
them into 3′ square pixels. While we only use the data from the
150 GHz channel for the first map, the latter is a tSZ signal
cleaned map produced by linearly combining the 95 and 150GHz
channels. We use this tSZ-free map to reconstruct the background
gradient of the CMB at the cluster locations. As we will see later
in Section 3.1, the gradient estimation using the tSZ-free map
helps in removing the tSZ-induced lensing bias. The minimal
filtering on this map allows us to recover large-scale modes,
which indeed helps in a better estimation of the background
gradient. The 0 5 resolution 150 GHz map has a white noise level
of ΔT=6μK′, estimated using a jackknife approach. The low-
resolution tSZ-free combination is noisier with ΔT∼17 μK′.

2.2. DES and the redMaPPer Catalog

The DES is a ∼5000 deg2, optical to near-infrared survey
conducted using the Dark Energy Camera (Flaugher et al.
2015) mounted on the 4 m Victor Blanco telescope at Cerro
Tololo Observatory in Chile, and has recently begun its 6th
year of observations. For this analysis, we use the cluster
catalog obtained from the first 3 years of DES observations,
which almost covers the SPTpol 500 deg2 survey.

The cluster catalog was derived using the RM algorithm
(Rykoff et al. 2014). RM is an optical cluster-finding algorithm
which detects candidates by identifying over-densities of
luminous red galaxies with luminosity greater than 20% of
L*. It is based on our understanding that galaxy clusters are
agglomerations of galaxies containing old and subsequently red
stars. The algorithm iteratively assigns membership and
centering probabilities for each red galaxy identified as
belonging to a cluster candidate. A weighted sum of the
membership probabilities, richness λ, is assigned to each
candidate. The center comes from the galaxy with the highest
centering probability. The DES RM catalog contains two
samples: a flux-limited sample and a volume-limited sample.
The flux-limited sample has more high-redshift clusters
detected from deep fields in the survey. On the other hand,
the volume-limited sample is independent of survey depth,
complete above a luminosity threshold (McClintock et al.
2019, hereafter M19), and normally preferred for cosmological
analysis. See Rykoff et al. (2016) for more information on the
application of RM to the DES survey data.

The RM cluster catalog version employed in this analysis is
y3_gold:v6.4.22. The Year-3 gold catalog is based on the
previous catalog from the Year-1 data (Drlica-Wagner et al.
2018), with some updates described in Morganson et al.
(2018). The catalog contains 54,112 clusters above richness
λ�20 in the flux-limited sample and 21,094 clusters in the
volume-limited sample. Of these, 5828 (2428) clusters from the
flux(volume)-limited sample lie within the SPTpol 500 deg2

survey in the redshift range 0.1�z�0.95 (0.90). We
additionally remove clusters near the survey edges by removing
the cutouts (see Section 3.4) with more than 5% masked pixels
or within 10′ distance from any bright (�6 mJy at 150 GHz)
point sources detected in the SPTpol temperature map. These

cuts leave 4003 (1741) clusters with λ�20 from the flux
(volume)–limited sample with a median redshift of z 0.77=˜
(0.48). The error in the cluster photo-z estimates are small with

z0.01 1zs = +ˆ ( ) (Rozo et al. 2016).

3. Methods

We now turn to the method for measuring the cluster lensing
signal. First, we describe the modified QE, which uses a tSZ-
free gradient map to eliminate the tSZ-induced bias in
Section 3.1. Next, we present the lensing pipeline starting
with the simulations used in the analysis in Section 3.2,
calculation of the cluster convergence profiles in Section 3.3,
cluster cutouts extraction in Section 3.4, the weighting scheme
applied to obtain the stacked convergence in Section 3.5, and
modeling in Section 3.6.

3.1. Quadratic Estimator

We use a quadratic lensing estimator (Hu et al. 2007) to
extract the cluster lensing signal. Specifically, we obtain the
convergence κ which is related to the underlying lensing
potential f as 2 2k f= - . The QE uses two maps to
reconstruct the lensing convergence: one map of the CMB
gradient on large scales, and one map of the CMB temperature
fluctuations on small scales. In the absence of lensing, the two
maps would be uncorrelated. The convergence reconstructed
from the two maps will be (Hu et al. 2007)

n n nA d e G LRe , 1n
ℓ ℓ

i ℓ2 *òk = - -ˆ ˆ { · [ ( ˆ) ( ˆ)]} ( )ˆ·

where G is the temperature gradient map and L is the
temperature fluctuation map, both optimally filtered to max-
imize the lensing S/N. The two maps and the optimal weights
are described in the next section. The normalization factor Aℓ

can be calculated following Equation (18) of Hu et al. (2007).
Since the desired input to the QE is the gradient of the unlensed
CMB, the gradient map G is low-pass filtered (LPF) at ℓG (Hu
et al. 2007) to avoid multipoles where the cluster lensing or
foregrounds begin to enter. The LPF negligibly degrades the
lensing S/N, since most of the gradient information is at large
scales (see Figure 1 of Hu et al. 2007).
When, as in this work, temperature maps are used in both

legs of the QE, lensing is not the only process that introduces
correlations between the maps G and L. Undesired correlations
are also sourced by clusters’ own SZ signals; these correlations
lead to severe contamination of the lensing reconstruction. An
obvious way to reduce the tSZ bias would be to generate a tSZ-
free map from a linear combination of single-frequency maps;
this has been done in previous analyses (Baxter et al. 2015).
However, this linear combination can substantially increase the
map noise and degrade the lensing S/N. For instance, the tSZ-
free map used by Baxter et al. (2015) had a noise level
approximately three times higher than the SPT-SZ 150 GHz
map alone. Modeling the tSZ signal is possible in principle as
an alternative, but we do not yet have an adequate under-
standing of the intracluster medium to do so reliably.
Modifying the LPF in the gradient map, ℓG, is another

plausible alternative to reduce but not eliminate this correlation.
The lensing bias due to this correlation will be particularly
large for massive nearby clusters that span a large angular
extent on the sky. While reducing the bias, adopting a lower ℓG
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will reduce the number of modes for the gradient estimation
and result in a lower S/N. Thus, the choice of ℓG is a trade-off
between S/N and biases due to both the magnification effect
considered by Hu et al. (2007) and from foreground emission.
For example, B18, using the SPT-SZ temperature maps
(ΔT=18 μK′), chose ℓG=1500 and reported an upper limit
of 11% on the tSZ-induced bias due to clusters in the richness
range λä[20, 40].

3.1.1. tSZ-free Map for Gradient Estimation

A key point in this analysis is that for QE-based lensing
reconstruction, we only need to eliminate tSZ-induced correla-
tions between the maps G and L used in the two legs, which
can be done by removing the tSZ signal from either one of the
maps. Hence, instead of treating ℓG as a free parameter used to
reduce the tSZ bias, we eliminate the bias completely by
working with a tSZ-free map, T SZ free‐ , for the gradient
estimation G. Recently, Madhavacheril & Hill (2018) also
made a successful demonstration of this method independently
using simulations. In this analysis, the T SZ free‐ map G is a linear
combination of the SPTpol 95 and 150 GHz temperature data.
The second map L is the lower-noise SPTpol 150 GHz data,
T150, alone.

We can now write down expressions for the two maps, G
and L:

G iℓ W T , 2ℓ ℓ
G

ℓ
SZ free= ( )‐

L W T . 3ℓ ℓ
L

ℓ
150= ( )

Here, Wℓ
G and Wℓ

L are the optimal linear filters (Hu et al. 2007)
to maximize the lensing S/N:

W C C N ℓ ℓ

W C N

,
0, otherwise

, 4

ℓ
G ℓ ℓ ℓ G

ℓ
L

ℓ ℓ

unl SZ free 1

150 1

= +

= +

-

-

⎧⎨⎩
( )

( ) ( )

‐

with C Cℓ ℓ
unl( ) corresponding to (un)lensed CMB temperature

power spectra calculated using the Code for Anisotropies in the
Microwave Background (CAMB,87 Lewis et al. 2000). Nℓ is
the noise spectrum for the indicated map, after deconvolving
the beam and filter transfer function given in Equation (5). We
also add estimates of foreground power such as SZ, CIB, and
radio galaxy emission, based on measurements by George et al.
(2015), into Nℓ. As described previously, ℓG is chosen to
remove the magnification bias discussed by Hu et al. (2007)
and additionally to suppress power from signals other than the
primary unlensed CMB. We set ℓG=2000 for clusters with
richness λ<60. For the rest, we use ℓG=1000, as the
convergence signal from these massive clusters can cause a
negative bias in the estimate of the background gradient. While
this is a sharp change in ℓG, we will see later that it causes a
negligible effect in our final S/N.

Although this method essentially eliminates the tSZ bias,
creating a tSZ-free map can enhance other foregrounds (relative
to the CMB) along with the noise. We look into possible biases
from other foregrounds in Section 4.2.1 using the simulations
from Sehgal et al. (2010, hereafter S10).

3.2. Simulations of the Microwave Sky

In this section, we describe the simulations used for the
pipeline validation. We calculate the large-scale structure
lensed CMB power spectra for the fiducial Planck 2015
cosmology (Planck Collaboration et al. 2016b) using CAMB.
and create 300 300¢ ´ ¢ Gaussian realizations of the CMB
temperature map with 0 25 pixel resolution.88 Given the small
angular extent, these simulations are done in the flat-sky
approximation. These simulations are then lensed using the
simulated galaxy cluster convergence profiles from the next
section. Next we apply frequency-dependent foreground
realizations (see Section 4). The simulated maps are convolved
by the beam functions, and are rebinned to 0 5 pixels to reduce
the computational requirements.
For realistic simulations, we must also account for the noise

and the filtering applied to the real data. We add instrumental
noise realizations corresponding to SPTpol maps (see
Section 2.1). We follow B18 and other SPT works and
approximate the map filtering using a function of the form:

F e e e . 5ℓ
ℓ ℓ ℓ ℓ ℓ ℓx x1

6
2

6
3

6= - - - ( )¯ ( ∣ ¯∣) ( ) ( )

We validate the robustness of this approximation in
Section 4.2.3. For the small-scale lensing map, we set
ℓ1=300, ℓ2=300, and ℓ3=20,000. For the gradient map,
we set ℓ1=0 (as the gradient map does not have an isotropic
filter), ℓ2=30, and ℓ3=3000.

3.3. Cluster Convergence Profile

Now we summarize the method to model the convergence
signal at cluster locations. The total convergence M z,k( )
profile for a galaxy cluster includes contributions from its own
matter over-density (the 1-halo term), as well as from
correlated structures along the line of sight (the 2-halo term;
Seljak 2000; Cooray & Sheth 2002). For the 1-halo term,

M z,h1k ( ), we use the Navarro–Frenk–White (NFW, Navarro
et al. 1996) profile in Equation (6) to model the underlying dark
matter (DM) density profile of the DES RM galaxy clusters,

r
1

, 6
r

R

r

R

0
2

s s

r
r

=
+( ) ( )

( ) ( )

where Rs is the scale radius and ρ0 is the central cluster density.
In Section 4.2.2 we quantify the robustness of the inferred
masses to this assumption by instead using the Einasto DM
profile (Einasto & Haud 1989). We use the photometric redshift
measurements in the DES RM cluster catalog and use the
Duffy et al. (2008) halo concentration formula to obtain the
concentration parameter c M z R R,200 200 s=( ) . The conv-
ergence profile h1k q( ) at a radial distance θ for a spherically
symmetric lens like NFW is the ratio of the surface mass
density of the cluster and the critical surface density of the
universe at the cluster redshift Σ(θ)/Σ(crit). To get the NFW
convergence profile, we adopt the closed-form expression
given by Equation (2.8) of Bartelmann (1996).
When evaluating the pipeline using mock cluster data sets,

we leave out the 2-halo term. For the real data, we also
consider the lensing arising from structures surrounding the

87 https://camb.info/

88 We have confirmed that the results are unchanged when going to smaller
initial pixels.
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cluster. We model the 2-halo term contribution, M z,h2k ( ), to
the total lensing convergence using Equation (13) of Oguri &
Hamana (2011). The bias bh(M, z) of a halo with mass
M≡M200 m was calculated adopting the Tinker et al. (2010)
formalism. Finally, we correct the cluster convergence profile

M z,h1k ( ) for the uncertainties in the DES cluster centroids in
Section 3.6.

3.4. Cluster Cutouts

We now describe the process of extracting cluster cutouts
from SPTpol maps. The lensing QE described previously is
applied to these cutouts to reconstruct the lensing signal. We
extract 300 300¢ ´ ¢ cutouts from the SPTpol temperature (tSZ-
free and 150 GHz) maps around each cluster from the DES RM
cluster catalog. This corresponds to a roughly ∼135 Mpc
region around a cluster at z 0.77=˜ . While the cutout size is
much larger than the virial radius of the cluster, we emphasize
it is necessary to robustly reconstruct the lensing signal using
the background CMB. This is because the amplitude of the
lensing signal is proportional to the level of the background
gradient, and the CMB has power on scales much larger than
the typical cluster size of a few arcminutes. Performing the
analysis with smaller cutouts will reduce the S/N of the
estimated CMB gradient and affect the final lensing S/N. After
extracting the lensing signal, we limit the modeling and
likelihood calculations to a 10′ region around the cluster.

3.5. Stacked Convergence and the Weighting Scheme

The lensing S/N for a single cluster is much less than unity,
and we must stack the lensing signal from several clusters to
achieve a reasonable S/N. Thus the stacked convergence map
is simply

w

w
, 7

j j j j

j j
MF

å
å

k
k k

k=
- á ñ

-ˆ
[ ˆ ˆ ]

ˆ ( )

where jk̂ refers to reconstructed convergence map of cluster j
and the weighting scheme w is described as follows. From the
stacked map, we remove all modes above the SPTpol 150 GHz
beam scale of θFWHM∼1 2. We also remove an estimate of
the mean field MFk̂ from this stacked convergence map. The
mean field arises because of two reasons: The first is because
the temperature maps, before being filtered using Equation (2),
are apodized using a Hanning window89 with a 10′ edge taper
to reduce edge effects. The other reason is the presence of
inhomogeneous noise in the survey region. We obtain the
mean-field bias by stacking the convergence maps recon-
structed at 50,000 random locations in the maps.

Weighting scheme: We decompose the weights for each
cluster into two components: The first is the inverse-noise-
variance weight, wk, constructed from the observed standard
deviation σκ in the reconstructed SPTpol convergence maps in
a ring between 10′ and 30′ around the cluster. The noise in
convergence is proportional to the noise in the associated
gradient map and increases, as expected, when ℓG is reduced. The
second90 weight comes from the noise in the convergence maps
due to the presence of tSZ signal in the second leg of the QE,

the SPTpol 150 GHz map. While our method completely
eliminates the tSZ-induced lensing bias, the presence of the tSZ
signal in the second map tends to increase the variance in the
convergence maps. The noise is proportional to the tSZ
brightness and, as expected, is higher for massive clusters. For
example, the lensing signal of a cluster is proportional to its
mass M, while the tSZ signal scales roughly as M5/3.
We obtain this second set of weights, wSZ, using simulations.

For every cluster in the DES sample, we reconstruct the
convergence profile using a simulated tSZ-free gradient map
and a 150 GHz map with tSZ signal, assuming an Arnaud
profile (Arnaud et al. 2010) with a log-normal scatter of 20% in
the Y MSZ – relation. We turn off cluster lensing, as the objective
here is to only get an estimate of the tSZ-induced noise in the
convergence maps. A total of 25 simulations were used to get
the noise estimate for each DES cluster. The weights are
estimated as w 1SZ SZ

2s= , where σSZ is the standard deviation
of the “null” convergence map within an angular distance of
10′ from the cluster center. The errors increase with richness
and take a power-law form parameterized as SZ 0s l s l= a( )
with values , 0.0045, 1.550s a =( ) ( ). The results are
unchanged if we derive the weights using the tSZ signal
from S10. The total weight is now

w
1

. 8
2

SZ
2s s

=
+k

( )

Introducing wSZ down-weights the most massive clusters,
reducing the contribution of clusters with λ�60 to less than
1% in the final stacked sample. This is why the change in
gradient-map LPF scale to ℓG=1000 from the fiducial
ℓG=2000 for these clusters (see Section 3.1.1) has negligible
effects in our final results.
An alternative to this down-weighting is to swap the maps in

the two legs of the QE (i.e., the 150 GHz map for the gradient
estimation and the tSZ-free map to reconstruct lensing) for
clusters with σSZ>σκ, which is approximately true for
clusters with λ>40. However, this results in a minimal gain,
as the SPTpol tSZ-free map has a higher noise (×3) compared
to the SPTpol 150 GHz maps. Some other approaches to handle
the additional noise from the tSZ signal include (a) rotating
the reconstructed lensing map based on the direction of the
background CMB gradient and fitting for the tSZ-noise, and
(b) removing a matched-filter estimate of the tSZ signal from
the 150 GHz map before passing the map into the QE. We will
explore such possibilities in detail in a future work (S. Patil
et al. 2018, in preparation).

3.6. Model Fitting

We radially bin the stacked convergence map k̂ for the
likelihood calculation in Equation (9). To obtain the average
lensing mass of the DES RM cluster sample, we need to
compare this observed, radially binned, stacked convergence
profile to convergence models generated using an assumed halo
profile. Essentially, we create a convergence model for every
cluster using the NFW profile (see Section 3.3) as a function of
mass and the cluster redshift M z,h1k ( ), add the two halo term

M z,h2k ( ), filter the model as per the real data, and then stack
all the clusters using the weights described in the previous
section.
The convergence model M z,h1k ( ) must be slightly modified

to account for the uncertainties in the RM cluster centroids.
Rykoff et al. (2016) compared the centroids of DES RM

89 http://mathworld.wolfram.com/HanningFunction.html
90 We note that for the mean field reconstructed from random locations, we
only apply the weight w 1 2s= k for stacking.
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clusters with SZ (Bleem et al. 2015) and X-ray observations
and found a fraction, fmis=0.22±0.11, of the DES clusters
to be mis-centered by σR, which is a fraction of the cluster
radius R h100 0.2 1l=l

-( ) Mpc. They further modeled the
mis-centering as a Rayleigh distribution with σR=cmisRλ

where ln cmis=−1.13±0.22. Mis-centering ought to smear
the convergence profiles, and we use the prescription provided
in Equation (34) of Oguri & Takada (2011) to account for the
cluster mis-centering. We set fcen=1−fmis=0.78 and
σs=σR/DA(z), where σR is picked from the Rayleigh
distribution (Rykoff et al. 2016) and DA(z) is the angular
diameter distance at the cluster redshift z. After the mis-
centering correction, we filter the model using the approx-
imation to the data filtering in Equation (5) and remove all
modes above the SPTpol 150 GHz beam similar to the data.
The filtered model of all the individual clusters is weighted
(Section 3.5), stacked, and radially binned.

With the model prediction in hand, we can then write down
the likelihood of observing the real data as

M

C

2 ln

, 9T
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where ,k q k qˆ ( ) ( ) are the azimuthally averaged radial profiles
of the stacked data and model convergences, respectively,
binned in 10 linearly spaced intervals with Δθ=1′. To obtain
the covariance matrix, we use a jackknife re-sampling
technique. We divide the SPTpol 500 deg2 region into
N=500 subfields and estimate the covariance matrix for the
radially binned convergence profile as

C
N

N

1
, 10

j

N

j j
T

1

500

å k q k q k q k q=
-

- á ñ - á ñ
=

=
ˆ [ ˆ ( ) ˆ ( ) ][ ˆ ( ) ˆ ( ) ] ( )

where jk qˆ ( ) is the azimuthally binned stacked convergence of
all the clusters in the jth subfield and k qá ñˆ ( ) is the ensemble
average of all 500 subfields. We test this approach by
alternatively estimating the covariance matrix using 500
realizations of the random convergence stacks. We do not
note any significant differences between the uncertainties
estimated using the two approaches. We apply the Hartlap

et al. (2007) correction to C
1-ˆ to account for the noise in

covariance estimation due to the finite number of jackknife re-
sampling.

4. Data and Pipeline Validation

In this section, we describe tests used to investigate the
known and unknown systematic effects in the data and to
validate the pipeline. We start with the test for unknown
systematics through the “curl” null test (Section 4.1). Next we
calculate the expected systematic error budget from known
sources of systematic uncertainty (Section 4.2).

4.1. “Curl” Null Test

We perform a “curl” null test (Hu et al. 2007) at 4003 cluster
locations from the DES RM Year-3 flux-limited sample.
Specifically, we replace the divergence of the gradient field,

n nG L* · [ ( ˆ) ( ˆ)], in Equation (1) with the curl operator. Since
the curl of a gradient field is zero, the reconstructed field should

be consistent with zero, unless there is a systematic bias in the
data. The result of the curl test is shown in Figure 1. We
radially bin the test result similar to the cluster stack as
described in Section 3.6 and compare it to a zero signal. The
test returns a probability to exceed (PTE) value of 0.26,
consistent with a null signal.

4.2. Systematic Error Budget

Now we consider possible sources of systematic error. We
estimate the bias due to each cluster’s tSZ emission and residual
foregrounds, the assumption of an underlying cluster profile,
uncertainties in the DES RM mis-centering parameter fmis,
approximations to the filter transfer function (Equation (5)),
uncertainties in the beam measurements, and the assumption of a
background cosmology. Another source of systematic error is
the uncertainties in the cluster redshifts, estimated photome-
trically. However, the impact of photo-z errors was estimated to
be negligible by R17, and we ignore them here.
We rely on the S10 simulations to estimate the level of

residual-tSZ/foreground bias in the RM Year-3 flux-limited
sample. In all the other cases, we use the data and report the
shift in the average lensing mass of the clusters in the RM
Year-3 volume-limited sample obtained in Section 5. The
combined systematic error budget is presented in Table 1. The
systematic error calculated as a quadrature sum of the errors
presented in Table 1 is much smaller than the statistical error in
the measurements at a level of 0.15σ. Using a direct sum, the
combined error budget is 0.27σ. The dominant error comes
from the uncertainty in the DES RM cluster centroids shifting
the mean lensing mass by 2.8%.

4.2.1. Cluster tSZ Signal and Residual Foregrounds

In this work, we eliminate the bias due to tSZ signal in the
reconstructed lensing maps using SZ‐free maps to estimate
the background gradient of the CMB. However, projecting just
the tSZ signal out tends to modify other frequency-dependent
foregrounds, and the resultant map is not an optimal

Figure 1. Stacked result of the curl test performed at the cluster locations by
replacing the divergence operator in Equation (1) with a curl operator. We
obtain a PTE value of 0.26, consistent with a null result. For the ease of visual
comparison, we adopt the same color scale as in Figure 3.
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foreground-free CMB map for the lensing reconstruction. This
enhancement of foregrounds generally acts as an additional
source of noise and tends to increase the variance of the
reconstructed lensing maps. At the cluster locations, however,
an increase in foreground emission due to galaxies inside the
cluster can introduce undesired mode coupling between the
estimated gradient map and the lensing map, resulting in a
biased lensing signal. Since massive clusters host more
galaxies, we can expect the bias to increase with the cluster
mass or equivalently richness. Here we quantify this bias using
the S10 foreground simulations.91

To this end, we begin with the simulated skies described in
Section 3.2, to which we then add simulated clusters, including
the lensing signal (only the 1-halo term), thermal and kinetic SZ
effects, and emission associated with the cluster (e.g., from
member galaxies). These simulations also include foregrounds
uncorrelated with the clusters, such as field radio galaxies. The
addition of foregrounds using S10 simulations is described as
follows. Note that the foreground maps, whether associated with
the cluster or not, are not lensed by the cluster in these
simulations. The number of simulated clusters and their redshifts
and richnesses are derived from the DES RM Year-3 flux-
limited sample. The richnesses and redshifts are converted to
cluster masses according to the M l– relation (Equation (12)),
with best-fit parameters from Melchior et al. (2017), AM17=
2.35× M1014

, αM17=1.12, and βM17=0.18.
For foregrounds, we extract half-arcminute resolution

300 300¢ ´ ¢ cutouts of the 95 and 150 GHz S10 simulations
of the tSZ, kSZ, radio, and infrared galaxies around halos
corresponding to the mock cluster sample. We scale the tSZ
power down from the S10 simulations by a factor of 1.75 to
match the George et al. (2015) measurements. The S10
simulations contain ∼16,000 halos above M200 m� M1014


and 175 halos above M200 m�5× M1014

 at redshifts
z�0.25. These foreground cutouts are added to our mock
galaxy cluster–lensed CMB data sets. The maps are then
processed in the same way as explained in Section 3.1, to
extract the tSZ cleaned map, and passed into the QE.

We present the results in Figure 2. The true normalization is
shown as the solid purple line. In the figure, the light shaded
data points are the result for a single simulation run (∼4000
clusters) and the darker data points are the results for 10×the
sample size. For our baseline analysis with SZ‐free maps for

the gradient estimation and ℓG=2000, the recovered normal-
ization is 0.5σ from the true value. We obtain A=2.30±
0.09× M1014

 (black circle), implying no significant residual
foreground bias in the lensing measurements. This result also
provides evidence that the lensing pipeline is unbiased.
Comparison to standard QE: We also use the S10

simulations to compare the modified QE to the standard case
using the 150 GHz map for the background CMB gradient
estimation. In the standard case, the correlations introduced
between the two maps by the foregrounds, the tSZ signal in
particular, can be alleviated by lowering the LPF threshold ℓG

for the gradient map as in Equation (4). As described in
Section 3.1, the choice of ℓG is a trade-off between the level of
foreground bias and the lensing S/N. Here we adopt
ℓG=2000 and ℓG=1500 and note that the results are heavily
biased in both cases: red squares (orange diamonds) for
ℓG=1500 (ℓG=2000). The level of bias is higher when ℓG is
set to 2000 compared to 1500, as expected. This bias is
predominantly due to the tSZ signal and can be reduced by
removing massive clusters from the analysis as in B18. For
comparison, when we apply a richness cut of λä[20, 40], the
lensing bias is reduced from 82% to 65% for ℓG=2000 and
52%–35% for ℓG=1500. This cut removes ∼500 massive
clusters from the analysis. This result can be compared to the
conservative tSZ bias of 11% set by B18 with ℓG=1500 for
the same richness range λä[20, 40]. B18 obtained a lower
bias value, as the high-ℓ modes in the SPT-SZ maps are down-
weighted due to 4×higher noise. This also suggests that we
cannot handle the tSZ bias by simply removing clusters above a
certain richness (e.g., λ40) for low-noise CMB data sets.
Finally, a subtle point from the figure is that the mass

constraints obtained using the 150 GHz map for gradient
estimation (orange diamonds) are better (∼14%) than those
obtained using the tSZ-free map for gradient estimation (black

Table 1
Systematic Error Budget in the Stacked Mass for DES RM Year-3 Volume-

limited Sample

Source of Error Magnitude of Error

% frac. of σstat

Beam uncertainties <0.01% L
Cluster mis-centering 2.78% 0.12σ
Cosmology 0.39% 0.03σ
Filtering ℓx 0.21% 0.02σ
Halo profile 0.12% 0.01σ
Residual foregrounds 2.12% 0.09σ
Total 3.53% 0.15σ

Note.This is a list of systematic errors estimated for the lensing mass
measurement.

Figure 2. Quantifying the level of bias due to residual foregrounds and the tSZ
signal using S10 simulations. The recovered lensing mass, unbiased for the
fiducial case with SZ‐free map for gradient estimation and ℓG=2000, is shown
as black circles. The equivalent biased results with just the 150 GHz map and
ℓG=1500 (2000) cutoff scales for the gradient estimation are shown as red
squares (orange diamonds). Each light shaded point corresponds to an
individual simulation run with clusters from the DES RM Year-3 flux-limited
sample. The darker data points are the values obtained for 10×the sample size.

91 https://lambda.gsfc.nasa.gov/toolbox/tb_sim_ov.cfm
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circles), despite adopting ℓG=2000 in both cases. This hit in
the S/N arises because the SPTpol SZ‐free map is noisier than
the 150 GHz.

4.2.2. Cluster Profile

In our fiducial analysis, we assume that the underlying halo
profile of the clusters follows the NFW DM model. However,
in real clusters, deviations from the NFW profile have been
observed (e.g., Diemer & Kravtsov 2014), and Child et al.
(2018) argued that the Einasto model is a better fit than NFW to
stacked halo profiles.

In this section, we estimate the magnitude of a possible bias
due to the assumption of the incorrect mass profile by using an
Einasto profile (Einasto & Haud 1989) to model the lensing
convergence κ1 h. The lensing QE and subsequently the
reconstructed convergence maps remain unchanged. The
Einasto profile is defined as

r
r

R
exp

2
1 , 11

s
Ein 0

r r
a

= - -
a⎛

⎝
⎜⎜

⎡
⎣⎢
⎛
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⎞
⎠⎟

⎤
⎦⎥

⎞
⎠
⎟⎟( ) ( )

where α=0.18 is the shape parameter (Ludlow et al. 2013).
As in the NFW analysis, the concentration c200 as a function of
mass and cluster redshift is obtained using the Duffy et al.
(2008) relation. We use the general framework for spherically
symmetric halos defined in R17, and simply plug the provided
density profile into Equation (2.9) of R17 to obtain the Einasto
convergence κ1 h,Ein profiles. The h2k term remains the same.
For the Einasto case, we see a negligible shift of 0.01σ
compared to our fiducial result.

4.2.3. Uncertainties in Filter Transfer Function and Beam

As described in Section 2, the SPTpol map-making process
is lossy, with noisy modes along the scan direction filtered out.
The ideal, if computationally expensive, approach to handle the
filtering would be an end-to-end simulation from the TOD to
the lensing reconstruction. In this work, we take a computa-
tionally much cheaper approach and approximate the filtering
by the phenomenological fit to the filter transfer function in
Fourier space given by Equation (5). The major uncertainty is
in the position of the high-pass filter (HPF) in the scan
direction: this filters modes more strongly than the isotropic
HPF, and the LPF is at angular scales that do not matter to the
reconstruction. The estimated position for this HPF is
ℓx=300±20. We also recompute the models for an assumed
ℓx=280 and 320 to evaluate the shifts in the lensing masses.
We note no significant effect (masses shift by roughly ±0.02σ),
indicating that the uncertainty in the simplified filtering
treatment causes negligible changes to our results.

Similarly, we also check the effect of errors in the telescope
beam modeling Bℓ that were derived using Venus observations
(see Section 2.1). We find that the effect due to beam
uncertainties in the final result is also negligible. The shift in
the lensing mass is 0.01σ when we modify Bℓ→Bℓ+2σ.

4.2.4. Uncertainties in fmis Parameter

In our baseline analysis, we perform a mis-centering
correction of the cluster convergence models (see Section 3.6)
using fmis=0.22 based on the results by Rykoff et al. (2016) for

the RM clusters from the science verification data. Now we
generate new convergence models assuming a larger fraction,
33%, of the clusters are mis-centered by modifying the mis-
centering parameter by its 1σ error from Rykoff et al. (2016).
Since the two parameters, fmis and cmis, describing the cluster
mis-centering are highly correlated, we also modify ln
cmis=−1.32 for this test.
The recovered mass increases by 2.8% in this case.

However, the shift is only 0.12σ, 1/8th of the statistical
uncertainty. The direction of the shift is consistent with
expectations, as assuming a larger fmis should smear the
convergence model more than the fiducial case, leading to an
increased lensing mass. Since this is the dominant systematic,
we also estimate the error for the flux-limited sample. The
mean lensing mass of the volume-limited sample goes up 3.2%,
but the change is still smaller than the statistical error (0.16σ).

4.2.5. Underlying Cosmology

The systematic error arising due to the assumption of a
background cosmology is quantified here. As described in
earlier sections, in our fiducial analysis we use the ΛCDM
cosmology obtained using the Planck 2015 data sets (Planck
Collaboration et al. 2016b). Here we repeat the analysis by
modifying the lensed CMB power spectra Cℓ to include the 1σ
errors to the Planck 2015 cosmological parameters. Modifying
the background cosmology alters the weights of Equation (4) in
the lensing estimator and also the model convergence profiles

M z,h1k ( ) and M z,h2k ( ). However, the effect due to back-
ground cosmology in the inferred lensing mass is negligible
with a shift in the lensing mass 0.03σ.

5. Results and Discussion

The main results of this work are the lensing-derived cluster
mass constraints for the DES RM Year-3 cluster samples using
SPTpol tSZ-free ×150 GHz temperature maps. Below, we first
present the lensing mass estimates in Section 5.1 and use the
lensing measurements from the DES Year-3 volume-limited
sample to independently calibrate the M l– relation of the
cluster sample in Section 5.2. Finally, in Section 5.3 we
compare our results to literature.

5.1. Stacked Mass Measurements

In Figure 3, we present the results of our stacked lensing
measurements. The left (right) panel corresponds to the conv-
ergence maps stacked at the location of clusters in the DES Year-3
flux (volume)–limited sample. The variance in the flux-limited
sample is lower than the volume-limited sample because the flux-
limited sample has twice as many objects. An estimate of the mean
field has been subtracted from the maps. We reject the null
hypothesis of no lensing with a significance of 8.7σ for the flux-
limited sample of 4003 clusters. The obtained S/N is consistent
with our expectations from the simulations, shown as lighter black
circles in Figure 2. For the smaller volume-limited sample, the no-
lensing hypothesis is ruled out at 6.7σ.
The radially binned convergence profiles that are used to

estimate the cluster masses are shown in Figure 4, along with
the best-fit model curves. The PTE values for the best-fit
convergence models are 0.68 and 0.65 for the full- and volume-
limited samples, respectively. The ringing pattern is because of
the sharp filtering of modes above the SPTpol beam scale. The
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error bars plotted are the square root of the diagonal entries of
the covariance matrix estimated using Equation (10). As
explained in Section 3.6, all the mass estimates are derived
by fitting a NFW profile along with the contribution from
the 2-halo term to the measured radially binned profile.
The recovered lensing masses for the stacked flux and volume-
limited samples are M200 m = 1.28 0.18

0.14
-
+ × M1014

 and
1.62 0.25

0.32
-
+ × M1014

, respectively. According to expectations,
the lensing masses shift up by 0.3σ when the 2-halo term is
excluded.

A higher mean mass is expected for the volume-limited
sample. At redshifts above z∼0.6, galaxies at the luminosity
threshold adopted by RM become too faint to be detected in the
DES data. Consequently, the richness of the clusters is
extrapolated from the subset of galaxies that are sufficiently
bright to be detected. This extrapolation introduces additional
noise in the richness estimates. The increased scatter leads to
more low-mass systems scattering up to apparently rich
systems, thereby lowering the mean mass of the selected
halos. For this reason, we restrict our analysis to the volume-
limited sample in the subsequent sections.

5.1.1. Comparison to B18 Analysis

Now we discuss the differences in the analysis choices
between B18 and this work to compare the lensing S/N, 8.1σ
versus 6.7σ, obtained in the two works.92 B18 used the
2500 deg2 SPT-SZ data and DES RM Year-1 volume-limited
sample in range λä[20, 40] with 2×more93 clusters than this
work. Here we use the SPTpol 150 GHz map, which is
∼4×deeper than the SPT-SZ survey. However, as shown in
Figure 2 of R17, the presence of foregrounds sets a floor to the
achieved performance at low noise levels, and we note that the
improvement in S/N does not follow a simple scaling based on
noise level.

5.2. Mass-richness M–λ Scaling Relation Calibration

We now apply the lensing mass measurements from
Section 5.1 to constrain the relationship between a cluster’s
mass, M, and optical richness, λ, in the DES RM Year-3
volume-limited sample. We limit the analysis to just the
volume-limited sample because the flux-limited sample has
selection bias, as explained in Section 5.1. Following earlier
weak-lensing analyses of RM clusters (Melchior et al. 2017;
McClintock et al. 2019; Simet et al. 2018), we use a power-law
scaling relation for cluster mass,M, as a function of richness, λ,
and redshift, z,

M A
z

40

1

1 0.35
, 12

l
=

+
+

a b
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

where A is a normalization parameter, and the exponents α and
β are richness and redshift evolution parameters, respectively.
The pivot points for the richness and redshift evolution were set
based on DES weak-lensing measurements of M19. The model
for the stacked mass is

M A M
w M z

w
, ,

,
, 13

j j j j

j j

å
å

a b
l

º =( )
( )

( )

where the sum runs over the number of clusters in the sample
and the weight w for each cluster is given in Equation (8).
We do not split the stacks into different richness or redshift

bins. As a result, the data’s sensitivity to the two evolution
parameters is minimal, and we apply informative priors to both.
We perform a Markov chain Monte Carlo analysis using the
publicly available emcee (Foreman-Mackey et al. 2013) code to
sample the likelihood space. We assume a flat prior for the
normalization parameter A in the range Aä[0.1, 100]×

M1014
. For the slopes, we use a Gaussian prior based

on M19. Specifically, we set (α0, σα)=(1.356, 0.056) and
(β0, σβ)=(−0.3, 0.3). The posteriors on both the richness
evolution parameters, as expected, follow the assumed prior.
We obtain a normalization value of A=2.70 0.50

0.51
-
+ × M1014

,
which is consistent with results from DES weak-lensing
measurements of ADES=3.08±0.21× M1014

 by M19.
The marginalized posterior for A is shown as the black curve in

Figure 3. Inverse-variance weighted stacked convergence maps at the location of 4003 and 1741 clusters in the range λä[20, 1000] from the flux-limited (left) and
the volume-limited (right) samples of the DES RM Year-3 cluster catalog. The contour corresponds to the regions above 3.5σ. The null hypothesis of no lensing is
rejected at 8.7σ and 6.7σ for the two cases, respectively.

92 We perform the comparison with the volume-limited sample, as B18 also
performed the analysis with the DES Year-1 volume-limited sample.
93 Despite 5×larger sky coverage, the B18 cluster sample was only 2×larger
than the one used here, because the overlap between the SPT-SZ survey and
DES Year-1 data was only 40%, compared to a nearly full overlap between
DES 3-year data and the SPTpol survey.
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Figure 5, along with measurements from M19 as the orange
shaded region.

5.3. Comparison to Literature

We now compare our results to similar works from the
literature performed with the RM cluster catalogs from the
SDSS and DES experiments. Since the richness estimated for a
given cluster from surveys A and B can vary slightly,
depending on the adopted data reduction and analysis choices,
we include a small correction factor A B ‐ when comparing
results from two surveys. We compute the ratio λA/λB for the
overlapping clusters in the two surveys and simply set A B ‐ to
the median value of the ratios. We find the richness estimates in

DES Year-3 and Year-1 to be consistent with 1Y3 Y1 =‐ . For
the rest, we set 1.08Y3 SV =‐ and 0.93Y3 SDSS =‐ (M19). The
comparison after including this correction factor is presented in
Figure 6, which is similar to Figure 15 in M19. Specifically, we
show the difference in M200 m masses obtained from different
works for a cluster with richness λ=40 at redshift z=0.35,
the pivot points in Equation (12). The figure is normalized

Figure 4. Azimuthally averaged radial profile of the stacked convergence maps from Figure 3. The black circles and orange diamonds correspond to the flux and
volume-limited Year-3 DES RM cluster samples. The error bars are the diagonal value of the covariance matrix estimated using the jackknife technique in
Equation (10). The data points for the two samples have been artificially shifted from the bin centers to avoid cluttering.

Figure 5.Marginalized posteriors of the normalization parameter A of the M l–
relation for the volume-limited sample of the RM cluster catalog. The result is
consistent with the best-fit values obtained by DES weak-lensing measure-
ments (M19), shown as the shaded region.

Figure 6. Comparison of M200 m mass estimates of galaxy clusters obtained
using the M l– relation from different works in the literature using the RM
cluster catalogs. The points have been normalized using the 1σ error from the
analysis with the Year-3 volume-limited sample of the DES RM catalog. The
filled (open) points represent measurements using the CMB-cluster lensing
(galaxy weak-lensing) technique.
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using the 1σ error from the current work with the Year-3
volume-limited DES RM catalog sample.

Each analysis uses a different cluster sample and lensing
data. Simet et al. (2018) and Geach & Peacock (2017) use the
SDSS RM catalog sample containing roughly 26,000 clusters.
Melchior et al. (2017) use the full catalog from the DES science
verification data, while B18 and M19 perform the analysis
using the DES Year-1 volume-limited sample. The works by
Geach & Peacock (2017) and B18 use the CMB-cluster lensing
technique (filled points) with Planck and SPT-SZ CMB
temperature maps. All the others use galaxy weak-lensing
measurements and are represented as open points. As evident
from the figure, our results are consistent with other similar
works in the literature.

6. Conclusions

We have built a modified lensing QE to reconstruct lensing
potential at the location of the DES RM clusters using the
SPTpol 500 deg2 field CMB temperature maps. We detect a
stacked lensing signal at 8.7σ and 6.7σ level for the flux- and
volume-limited samples of the Year-3 RM cluster catalog. The
modified QE eliminates the tSZ-induced lensing bias by using
two maps for lensing reconstruction: a low-noise SPTpol
150 GHz map to reconstruct the small-scale lensing, and a tSZ-
free map to estimate the background CMB gradient. The tSZ-
free map is internal, constructed from the SPTpol 95 and
150 GHz channels.

We model the lensing signal, assuming a NFW profile for
the galaxy clusters, and find the stacked lensing masses to be
M200 m = 1.28 stat. 0.03 sys.0.18

0.14 -
+ [ ] [ ] and 1.62 stat.0.25

0.32 -
+ [ ]

0.04 sys.[ ]× M1014
 for the two catalog samples. The

uncertainties in our knowledge about the cluster centroids are
the dominant contributor (∼3%) to the systematic error budget.
We use the mass measurements from the volume-limited
sample to calibrate the mass-richness M l– scaling relation of
the RM galaxy clusters. The constraints on the richness and
redshift evolution parameters are dominated by the priors
assumed from the DES weak-lensing measurements M19.
We obtain a best-fit normalization parameter of A=2.70 
0.51× M1014

. The results are consistent with other similar
works in the literature, performed using the RM catalogs from
DES and SDSS surveys. It must be noted that one must account
for the Malmquist and Eddington biases (e.g., Allen et al. 2011)
when using the provided scaling relation parameters to infer
individual cluster masses for cosmological analysis with cluster
abundance measurements. The Malmquist bias is due to
selection effects, while the Eddington bias arises due to
uncertainties in the inferred cluster masses, which tends to up-
scatter the low-mass clusters into higher mass bins. An an
example, see the corrections performed by Battaglia et al.
(2016) for the ACT and Penna-Lima et al. (2017) for the
Planck cluster samples, respectively. However, these correc-
tions are not required for the current analysis because we only
measure the average mass of a set of clusters.

While CMB polarization data, which are almost unaffected
by the presence of foregrounds, are expected to provide robust
lensing estimates with the future low-noise CMB data sets like
CMB-S4 R17, the estimator presented here and in a similar
work by Madhavacheril & Hill (2018) will be vital to extract
lensing robustly from future low noise CMB temperature
data sets.
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