
Publ. Astron. Soc. Japan (2016) 68 (3), 43 (1–7)

doi: 10.1093/pasj/psw037

Advance Access Publication Date: 2016 April 22

43-1

Mass constraint for a planet in a protoplanetary

disk from the gap width

Kazuhiro D. KANAGAWA,1,2,∗ Takayuki MUTO,3 Hidekazu TANAKA,1

Takayuki TANIGAWA,4 Taku TAKEUCHI,5 Takashi TSUKAGOSHI,6

and Munetake MOMOSE
6

1Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, Hokkaido

060-0819, Japan
2Institute of Physics and CASA∗, Faculty of Mathematics and Physics, University of Szczecin, Wielkopolska

15, 70-451 Szczecin, Poland
3Division of Liberal Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
4School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku,

Kitakyushu, Fukuoka 807-8555, Japan
5Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama,

Meguro-ku, Tokyo 152-8551, Japan
6College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-851, Japan

∗E-mail: kazuhiro.kanagawa@usz.edu.pl

Received 2016 January 18; Accepted 2016 March 12

Abstract

A giant planet creates a gap in a protoplanetary disk, which might explain the observed

gaps in protoplanetary disks. The width and depth of the gaps depend on the planet mass

and disk properties. We have performed two-dimensional hydrodynamic simulations

for various planet masses, disk aspect ratios, and viscosities, to obtain an empirical

formula for the gap width. The gap width is proportional to the square root of the planet

mass, −3/4 the power of the disk aspect ratio and −1/4 the power of the viscosity. This

empirical formula enables us to estimate the mass of a planet embedded in the disk

from the width of an observed gap. We have applied the empirical formula for the gap

width to the disk around HL Tau, assuming that each gap observed by the Atacama

Large Millimeter/submillimeter Array (ALMA) observations is produced by planets, and

discussed the planet masses within the gaps. The estimate of planet masses from the

gap widths is less affected by the observational resolution and dust filtration than that

by the gap depth.

Key words: planet–disk interactions — protoplanetary disks — stars: individual (HL Tau)

1 Introduction

Recent observations of protoplanetary disks have shown

disks with non–axisymmetric structures (e.g., Casassus

et al. 2013; Fukagawa et al. 2013; van der Marel et al.

2013; Pérez et al. 2014) and/or gap structures (e.g., Osorio

et al. 2014; ALMA Partnership 2015). One possible origin

of these structures is the dynamic interaction between the

disk and embedded planets (Lin & Papaloizou 1979, 1993;

Goldreich & Tremaine 1980). A large planet embedded in

a disk produces a gap around its orbit. The planet mass

C© The Author 2015. Published by Oxford University Press on behalf of the Astronomical Society of Japan. This is an Open Access article distributed under the terms of the

Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided

the original work is properly cited.
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and the disk properties are reflected in the gap width and

depth. It is important to construct a model of a gap that

can predict a planet’s mass.

Recent studies on the gap formation (e.g., Duffell &

MacFadyen 2013; Kanagawa et al. 2015a, 2015b, hereafter

Paper I) have revealed that the gap depth is related to the

planetary mass, the disk aspect ratio (temperature), and the

viscosity, as

�min

�0

=
1

1 + 0.04 K
, (1)

where �min and �0 are the surface densities at the bottom

of the gap and at the edge, respectively. The dimensionless

parameter K is defined by

K ≡

(

Mp

M∗

)2 (

hp

Rp

)−5

α−1, (2)

where Mp, M∗, Rp, hp, and α are the masses of the planet and

the central star, the orbital radius of the planet, the scale

height at Rp, and the viscous parameter with the prescrip-

tion by Shakura and Sunyaev (1973), respectively. The gap

depth given by equation (1) agrees well with the results of

the hydrodynamic simulations (Varnière et al. 2004; Duffell

& MacFadyen 2013; Fung et al. 2014).

As seen from equation (1), the gap depth is determined

by the dimensionless parameter K, which is a function of

Mp, hp, and α. Hence, the planet mass can be estimated

from the depth of the observed gap if the disk aspect ratio

and the viscosity are given. Paper I applied equation (1) to

a gap of the HL Tau disk observed by the ALMA (Ata-

cama Large Millimeter/submillimeter Array) Long Baseline

Campaign (ALMA Partnership 2015) and estimated that

the lower limit of the mass of the planet within the gap at

30 au is 0.3 MJ if this gap originated from the disk–planet

interaction. It is, however, very difficult to estimate the mass

of a planet in a deep gap because the emission at the bottom

of the gap should be measured with a reasonable signal-to-

noise ratio. In contrast, the gap width can be more easily

measured than the gap depth.

It is known that the width of the gap induced by a

planet increases with the planet mass (Takeuchi et al. 1996;

Varnière et al. 2004; Duffell & MacFadyen 2013; Duffell

2015; Duffell & Chiang 2015). However, a quantitative

relationship between the gap width and the planet mass is

not clear. Varniere, Quillen, and Frank (2004) reported that

if (Mp/M∗)
2(hp/Rp)−2α−1 � 0.3, the gap edges are between

the locations of the m = 2 and 1 outer Lindblad resonances.

If Keplerian rotation is assumed, the distances between the

planet and the m = 2 and 1 outer Lindblad resonances are

0.31Rp and 0.59Rp, respectively (Goldreich & Tremaine

1980). On the other hand, the hydrodynamic simulations

performed by Duffell and MacFadyen (2013) show that

narrower gaps are created. The half-width of the gap given

by Duffell and MacFadyen (2013) is below 0.23 Rp even if

(Mp/M∗)
2(hp/Rp)−2α−1 > 0.3 (see figure 6 of their paper).

Further investigation has been required in order to constrain

the planet mass from the width of the observed gaps.

In this paper, we derive an empirical relationship

between the gap width and the planet mass, performing

26 runs of two-dimensional hydrodynamic simulation. In

section 2, we describe the numerical method. In section 3,

we show our results and the empirical formula for the gap

width. We apply the formula to estimate the masses of the

planets in the observed gaps of the HL Tau disk in section 4.

Section 5 is the summary.

2 Numerical method

We study the shape of the gap induced by a planet embedded

in a protoplanetary disk using the two-dimensional hydro-

dynamic code FARGO (Masset 2000), which is widely used

to study disk–planet interaction (e.g., Crida & Morbidelli

2007; Baruteau et al. 2011; Zhu et al. 2011). The compu-

tational domain ranges from R/Rp = 0.4 to 4.0, with 1024

× 2048 radial and azimuthal zones. The disk scale height,

h, is resolved by 22 (radial) and 16 (azimuthal) zones in

the vicinity of the planet. For simplicity, we neglect the gas

accretion on to the planet and assume the planet rotates

on the fixed orbit with R = Rp. We adopt a constant kine-

matic viscosity coefficient ν, which is ν = αcphp, (Shakura &

Sunyaev 1973), where cp is sound speed at R = Rp. The disk

aspect ratio h/R is also set to be a constant throughout the

disk. We adopted a smoothing length for the gravitational

potential of the planet as 0.6hp. We have checked that the

choice of the smoothing length does not significantly influ-

ence the gap width.

We perform 26 runs of the hydrodynamic simulation

for various planetary masses (0.1 MJ–2 MJ, if M∗ = 1 M⊙),

disk aspect ratios (1/30–1/15) and the parameter α of the

viscosity (10−2–10−4), which are listed in table 1. In this

work, we follow 104–105 orbits at the planet’s location to

reach the steady state. In the cases with α = 10−4, a very

long time, i.e., ∼105 planetary orbits, is required to obtain

the steady gap width. Such long calculations are necessary

because of the slow viscous evolution in the less viscous

disk.

Initially, the surface density is constant [�(R) = �0]

in the whole region. The initial angular velocity is given

as �K

√

1 − η, where �K is the Keplerian angular velocity

and η = (1/2)(h/R)2dln P/dln R. The radial drift velocity is

given by vR = −3ν/(2R). The planet mass smoothly builds

up from zero to the final value by using the ramp function

defined by sin 2[πt/(64Porbit)].
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Table 1. Our models and gap widths.

Mp/M∗ hp/Rp α K ′ �gap/Rp Mp/M∗ hp/Rp α K ′ �gap/Rp

5 × 10−4 1/30 1 × 10−2 0.68 0.36 5 × 10−4 1/25 1 × 10−3 3.91 0.61

1 × 10−3 1/30 1 × 10−2 2.71 0.51 1 × 10−3 1/25 1 × 10−3 15.6 0.79

5 × 10−4 1/20 1 × 10−2 0.20 0.27 3 × 10−4 1/20 1 × 10−3 0.72 0.39

1 × 10−3 1/20 1 × 10−2 0.80 0.42 5 × 10−4 1/20 1 × 10−3 2.00 0.50

5 × 10−4 1/30 4 × 10−3 1.69 0.46 7 × 10−4 1/20 1 × 10−3 3.92 0.58

1 × 10−3 1/30 4 × 10−3 6.77 0.65 1 × 10−3 1/20 1 × 10−3 8.00 0.69

5 × 10−4 1/20 4 × 10−3 0.50 0.36 1 × 10−3 1/15 1 × 10−3 3.37 0.56

1 × 10−3 1/20 4 × 10−3 2.00 0.51 2 × 10−3 1/15 1 × 10−3 13.5 0.71

1 × 10−3 1/15 4 × 10−3 0.84 0.44 1 × 10−4 1/20 6 × 10−4 0.13 0.24

2 × 10−3 1/15 4 × 10−3 3.37 0.59 5 × 10−4 1/20 6 × 10−4 3.13 0.55

5 × 10−4 1/30 1 × 10−3 6.77 0.67 1 × 10−3 1/20 6 × 10−4 12.5 0.76

1 × 10−3 1/30 1 × 10−3 27.1 0.83 1 × 10−4 1/20 1 × 10−4 0.80 0.38

1 × 10−4 1/25 1 × 10−3 0.16 0.24 5 × 10−4 1/20 1 × 10−4 20.0 0.92

Fig. 1. The surface density distributions at 104 planetary orbits obtained by two-dimensional hydrodynamic simulations for Mp = 0.3 MJ (left) and

Mp = 1.0 MJ (right). Other parameters are set to be hp/Rp = 1/20, α = 10−3, and M∗ = 1 M⊙. (Color online)

At the inner and outer boundaries (R/Rp = 0.4 and 4.0),

we keep the initial condition described above. In addition,

we introduce wave-killing zones near the boundaries (0.4 <

R/Rp < 0.5 and 3.2 < R/Rp < 4.0) to avoid artificial wave

reflection at the boundaries (de Val-Borro et al. 2006).

3 Results

3.1 Empirical formula for the gap width

Figure 1 shows two-dimensional distributions of the sur-

face density at t = 104 planetary orbits in runs with Mp

= 0.3 MJ and 1.0 MJ. To measure the gap width, we take

an azimuthal average of the surface density (figure 2).

We define the gap region by the radial extent where the

azimuthally averaged surface density is smaller than half of

the initial surface density. The gap width �gap is given by

Rout − Rin. Then we obtain radii Rin, Rout of the inner and

outer edges of the gap region. Note that we can make a rea-

sonable guess of the gap width from only the snapshot of

the simulations (or observations) since the surface density

approaches �0 outside the gap region. The gap width in the

case of 1.0 MJ (�gap = 0.69Rp) is ∼80% larger than that in

the case of 0.3 MJ (�gap = 0.39Rp).

Figure 3 shows �gap against the dimensionless parameter

K ′ defined by

K
′ =

(

Mp

M∗

)2 (

hp

Rp

)−3

α−1, (3)

and they are also recorded in table 1. It is clear that the

gap width is well scaled by the parameter K ′. We find an

empirical formula for the gap width as

�gap

Rp

= 0.41

(

Mp

M∗

)1/2 (

hp

Rp

)−3/4

α−1/4 = 0.41 K
′1/4. (4)
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Fig. 2. Radial distributions of the azimuthally averaged surface density

for runs with Mp = 0.3 MJ (blue) and 1.0 MJ (red) presented in figure 1.

The horizontal dotted line indicates the level of �0/2. (Color online)

Fig. 3. Widths of the gaps, �gap = (Rout − Rin), against the dimensionless

parameter K ′. The dotted line is the empirical formula for the gap width

given by equation (4). The color of symbols denotes the disk aspect

ratio: hp/Rp = 1/15 (black), 1/20 (red), 1/25 (blue), and 1/30 (green). The

symbols denote the viscosity: α = 10−2 (cross), 4 × 10−3 (square), 10−3

(circle), 6.4 × 10−4 (triangle), and 10−4 (diamond). (Color online)

As seen from equation (4), the gap width depends weakly

on the planet mass and the viscosity, which is consistent

with previous studies (Varnière et al. 2004; Duffell &

MacFadyen 2013). We also find that the disk aspect ratio

affects the gap width as h−3/4
p . Solving equation (4) for

Mp/M∗, we obtain

Mp

M∗

= 2.1 × 10−3

(

�gap

Rp

)2 (

hp

0.05 Rp

)3/2
( α

10−3

)1/2

. (5)

This equation allows us to estimate the planet mass from the

observation gap width. The planet mass strongly depends

on �gap and hp/Rp, as compared with α. Hence, if �gap

and hp/Rp are measured accurately from high-resolution

observations, the planet mass can be well constrained. Note

that equation (5) should be applied to the gap whose �min is

smaller than 0.45�0, which is the depth of the most shallow

gap in figure 3.

The gap width given by equation (4) is reasonably con-

sistent with that given by the hydrodynamic simulations of

Varnière et al. (2004) and Duffell and MacFadyen (2013).

Their results have larger scatter, which may be partly due

to the short computational time. More detailed discussions

on our simulations will be described in a forthcoming paper

(K. Kanagawa et al. in preparation).

3.2 Test for the gap formation induced

by the planet

The mass of the planet in the gap can be estimated from the

gap width [equation (4)] or the depth [equation (1)]. If the

width and depth give the same planet mass, it is supported

that the gap is formed by a planet. Combining equations (1)

and (4), we obtain the relationship between the gap width,

the depth, and the disk aspect ratio as

�gap

Rp

(

�min

�0 − �min

)1/4 (

hp

Rp

)−1/2

= 0.92. (6)

This should be satisfied for a gap created by a planet. Note

that equation (6) contains only observable quantities since

the aspect ratio can be also estimated by the observed disk

temperature. When the gap width and depth are precisely

observed in gas emission, equation (6) enables us to judge

whether the gap is created by the planet. For the observation

of the dust thermal emission, the mass estimate from the gap

width [equation (5)] is still useful as long as dust particles

are well coupled to the gas, as discussed in the next section.

4 Application to HL Tau disk

Recently, clear axisymmetric gaps in HL Tau disk were

discovered in dust thermal emission by the Long Baseline

Campaign of ALMA (ALMA Partnership 2015). Recent

hydrodynamic simulations can reproduce the observational

image of the HL Tau disk using the disk–planet inter-

action (e.g., Dong et al. 2015; Dipierro et al. 2015;
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(a)

(b)

(c)

Fig. 4. (a) Observed radial profile of the brightness temperatures of dust

continuum emission in the disk of HL Tau along the major axis. The data

are averaged over ± 15◦ in PA from the major axis (PA = 138◦ and 318◦)

after the deprojection of the observed images under the assumption

that the inclination angle = 46.◦7. The hatched regions indicate the full

width for each gap for β = 1.5. (b) The radial profiles of the optical depth

in Band 6. The thin dashed and solid lines denote the unperturbed value

of the optical depth τunp and τunp/2 for measuring the gap width (see

text). (c) The radial profiles of the aspect ratio obtained by the disk

temperature. (Color online)

Picogna & Kley 2015; Jin et al. 2016). In Paper I, we

applied equation (1) to estimate the planet mass for the

HL Tau disk. In this study, equation (4) is applied to the

widths of the observed gap. As done in Paper I, using

the brightness temperatures in Bands 6 and 7, we obtain

the optical depth in Band 6 and the gas temperature for the

assumed spectral index β (figure 4). The disk aspect ratio is

calculated from the temperature by h/R = c/(R�K), where

c = 105(T/300 K)1/2 cm s−1. We assume that the mass of the

central star is 1 M⊙. We identify three prominent gaps in

the optical depth at R = 10 au, 30 au and 80 au in figure 4b.

Although the gap at 80 au could be regarded as two gaps,

Dipierro et al. (2015) pointed out that this structure can be

considered as one gap with remaining dust in the horseshoe

region. Thus, we assume that the 80-au gap is created by a

single planet.

The optical depth outside the gaps can be fitted by

τ unp = 9.5(R/1 au)−0.4 in figure 4b. We regard τ unp as the

unperturbed surface density to measure the gap width. Note

Table 2. Measured gap properties and estimated planet

masses.∗

Rin Rout
�gap

Rp

hp

Rp
Mp (MJ)

(au) (au) (from the width)

10-au gap 7 16.5 0.81 0.05 1.4

30-au gap 28.5 36 0.23 0.07 0.2

80-au gap 70 94 0.29 0.1 0.5

∗We set α = 10−3, β = 1.5, and M∗ = 1 M⊙ at the evaluation in this table.

that the opacity is assumed to be constant throughout the

disk. The locations of the inner and outer gap edges, Rin

and Rout, are determined by intersection points with τ unp/2

and we measure the gap width as Rout − Rin. The location

of the planet, Rp, is simply estimated as (Rin + Rout)/2.

We assume that the gap widths of the gas and dust disks

are similar. That is, it is assumed that dust particles are

reasonably coupled to the disk gas and thus the dust filtra-

tion is weak. If the dust filtration is strong, the dust surface

density is enhanced at the outer edge of the gap by orders

of magnitude and is significantly reduced at the inner part

of the disk (e.g., Zhu et al. 2012; Dong et al. 2015; Picogna

& Kley 2015). In the case of relatively weak filtration, on

the other hand, the gap widths of the dust disk are not

altered much (see figure 3 of Zhu et al. 2012). Because no

significant pile-up of dust is found at the outer edge of each

gap in figure 4b, the assumption of the weak dust filtra-

tion would be valid for the HL Tau disk. Dong, Zhu, and

Whitney (2015) also estimated the mass of the planets in

the HL Tau disk by using hydrodynamic simulations that

include dust filtration for α = 10−3 and Mdisk = 0.17 M⊙.

Their result indeed shows that the gap width of millimeter-

sized dust particles is similar (within a factor of 2) to that

of small particles tightly coupled to the gas because of rela-

tively weak dust filtration in the massive disk of HL Tau (see

figure 10 of Dong et al. 2015), though the gap depth is much

affected even in the case of the weak filtration. Hence the

gap width of the dust disk is more suitable for estimating the

planet mass than the gap depth of the dust disk. In addi-

tion, for particles smaller than millimeter-sized particles,

gap widths (and gap depths) in gas and dust are more similar

to each other. Jin et al. (2016) have also performed hydro-

dynamic simulations with 0.15-millimeter-sized particles in

similar situation to that of Dong, Zhu, and Whitney (2015)

(α = 10−3 and Mdisk = 0.08 M⊙), and reproduced the

observed image of the HL Tau disk. In their simulations,

the gap widths in gas and dust are very similar.

Table 2 shows the properties of the observed gaps and

the estimated planet masses. In this table, we set β = 1.5 to

obtain the optical depth and the aspect ratio, and adopt α

= 10−3 for estimating the planet masses. The planet masses

for the gaps at 10 au, 30 au, and 80 au are estimated from
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the gap widths to be 1.4 MJ, 0.2 MJ, and 0.5 MJ, respec-

tively. The estimated mass of the planet at the 30-au gap is

consistent with that estimated from the gap depth in Paper I.

We should note that the gap properties and the esti-

mated masses depend on β, as seen in figure 4b. The

radiative transfer model of Pinte et al. (2016) implies that

β ≃ 1. For the innermost gap, the planet mass is estimated

to be 3.3 MJ (1.3 MJ) if β = 1 (2) from the gap width.

For the 80-au gap, the gap width is much more affected by

the choice of β. The disk aspect ratio can be influenced by

the choice of β, which may not be neglected because the

planet mass depends relatively strongly on the disk aspect

ratio [Mp ∝ (hp/Rp)3/2, see equation (5)]. For instance, the

disk aspect ratio at the outermost gap can be changed from

0.08 to 0.11 if we vary β from 2.0 to 1.5 (see figure 4c). In

this case, the estimated mass of the planet can be changed

from 0.35 MJ to 0.57 MJ. Therefore, an accurate estimate

of β is essential in deriving the planet mass from the gap

shape. Future multi–frequency and high spatial resolution

observations may constrain the planet mass better.

The location of the planet (Rp) can affect the mass

estimate because the gap width is scaled by Rp in

equation (5). Although we simply estimate Rp as (Rin +

Rout)/2 by assuming a symmetric gap, Rp can be changed

because the actual shape of the gap is slightly non–

symmetric. Indeed, for instance, Rp for the innermost planet

is set to be ∼13 au in the previous simulations, which is

slightly larger than that in table 2. If Rp = 13 au is adopted,

the estimated mass of the planet is slightly smaller (1.1 MJ)

than that in table 2.

In addition to β and Rp, the planet mass can also depend

on the choice of the viscous parameter α, which is highly

uncertain. However, the estimate of the planet mass varies

only α1/2 [see equation (5)] and therefore, the dependency

of the planet mass on the viscous parameter is not very

strong.

The relatively narrow 10- and 30-au gaps are only

marginally resolved with the observation. As seen in

figure 2, each gap width measured at the level of �0/2 is

wider than that of the bottom region, which determines the

gap depth. For the marginally resolved gap, the gap width

can be accurately measured as compared with the minimum

surface density of the gap. Hence mass estimated from the

gap width is less affected by the resolution.

Dong, Zhu, and Whitney (2015) estimated the planet

masses to be 0.2 MJ for these three gaps of the HL Tau disk

from their hydrodynamic simulations, by including dust fil-

tration. Their result is consistent with our estimate for the

30-au gap. For the 10-au gap, our estimated mass is much

larger than their result. This is probably because quanti-

tative comparison between the model and observations is

not the main focus of their work. In their model, the gap

width of millimeter-sized dust particles is ∼5 au (see their

figure 10), which is about half of our measured width for

the 10-au gap of the HL Tau disk. If the gap width is

halved, the planet mass estimated from the width is four

times smaller [see equation (5)]. This partially explains the

difference between our results and theirs. We also find a

difference of a factor of 2.5 in the planet mass estimate for

the 80-au gap. It may be due to the uncertainty in β.

Adopting 0.15-millimeter-sized particles, Jin et al.

(2016) have also estimated similar masses of the planets

to Dong, Zhu, and Whitney (2015) (0.35 MJ, 0.17 MJ, and

0.26 MJ for the innermost, middle and outermost gaps).

Their estimated masses of the planets are smaller than those

given by our estimate (table 2), because they assumed the

mass of the central star as 0.55 M⊙, which is smaller than

that adopted in table 2 (1 M⊙). Adopting M∗ = 0.55 M⊙,

we estimate the masses of the planets as 0.77 MJ, 0.11 MJ,

and 0.28 MJ for the innermost, middle and outermost gaps,

respectively. For the middle and outermost gaps, the esti-

mated planet masses are quite similar to the result of Jin

et al. (2016). For the innermost gap, our estimate gives the

same mass of the planet as their result if the gap width is

narrower by only ∼2 au than that measured from figure 4b.

Dipierro et al. (2015) also derived the planet masses

from hydrodynamic simulations similar to Dong, Zhu, and

Whitney (2015), but by assuming a much less massive disk;

Mdisk = 0.0002 M⊙. Their result shows a strong filtration

at shallow gaps for millimeter-sized particles (figure 3 of

Dipierro et al. 2015), in contrast to Dong, Zhu, and

Whitney (2015) and Jin et al. (2016). This is reasonable

because dust filtration is stronger for a less-massive disk,

since the coupling between the gas and dust is weaker. How-

ever, the observations suggest that the disk mass should be

∼0.1 M⊙ for the HL Tau disk if the gas-to-dust mass ratio

is ∼100 (Robitaille et al. 2007; ALMA Partnership 2015).

5 Summary

We have derived an empirical formula for the gap width

[equation (4)], by performing 26 runs of hydrodynamic sim-

ulation. The gap width is expressed as a power-law func-

tion of the planet mass, the disk aspect ratio, and the vis-

cosity. This empirical formula enables us to estimate the

planet mass from the gap width. Paper I presented the

relationship between the gap depth and the planet mass

as equation (1). If the gap is created by the planet, the

masses estimated by equations (1) and (4) should be con-

sistent, and the gap width and the gap depth should satisfy

equation (6). With this, it is possible to check whether the

gap is created by a planet when the gap width and depth

are accurately observed in the gas emission. For the dust

thermal emission, if dust filtration is not very effective, an
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estimate of planet mass from the gap width is still useful

because the gap widths in the gas and dust disks are not so

different.

We have applied the empirical formula for the gap

width to the gaps in the HL Tau disk observed in dust

thermal emission by ALMA. We have estimated the mass

of planets in the gaps at 10 au, 30 au, and 80 au as 1.4 MJ,

0.2 MJ, and 0.5 MJ, respectively, assuming M∗ = 1 M⊙. For

the innermost gap, the whole structure may not be com-

pletely resolved by the observation and measuring the gap

depth is difficult. The dust filtration alters the gap depth

more than the gap width. The estimate that results from

the gap width gives us a more accurate planet mass than

that from the gap depth. Our estimate depends on the par-

ticle size of dusts (i.e., the dust opacity index of β) and

the disk model for the dust filtration. More sophisticated

models in the HL Tau disk would improve the above esti-

mates of the planet mass. If the gap is observed in gas

emission, we can constrain a planet mass from the gap

depth and width, without uncertainty of the dust and disk

models.
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